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Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost, adapt their evaluation strategy to each input, and can explicitly trade
numerical precision for speed. We demonstrate these properties in continuous-depth
residual networks and continuous-time latent variable models. We also construct
continuous normalizing flows, a generative model that can train by maximum
likelihood, without partitioning or ordering the data dimensions. For training, we
show how to scalably backpropagate through any ODE solver, without access to its
internal operations. This allows end-to-end training of ODEs within larger models.
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IDEA IS OLD

Continuous time recurrent neural networks

dfl?j -
TiE = =48 Z wjja(xj — Hj) + Ii(t)
J=1
J.J. Hopfield, Neurons with graded response have collective computational properties

like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81, 3088-3092 (1984).
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ORDINARY DIFFERENTIAL EQUATIONS
FROM THE POINT OF VIEW OF MACHINE
LEARNING



DIFFERENTIAL EQUATIONS

Nonlinear ordinary differential equations used as a machine

learning model ;
Etm(t) = F(x(1), q(1))

« F nonlinear functions

- ¢(t) arbitrary parameters

Output «(T) is classified using a linear classifier.



DIFFERENTIAL EQUATIONS

Loss function L(x(T)) is a function of a final output (7).

Question
How to minimize the loss?



DIFFERENTIAL EQUATIONS

Answer
Use the method of Lagrange multipliers

Functional
T
S=L(x(T)) —i—/o a(t)[F(x, q) — | dt

where a(t) is a vector of Lagrange multipliers



LOSS MINIMIZATION

We obtain: 5
— 20 = al) 5 (), a(9)
with the condition ar
a(T) = o2(T)

Differential equation for backward propagation, known as
adjoint equation
Then

oL 0

— = a(t)m

0 F(a(t), a(t)



EULER-LAGRANGE FORM OF THE EQUATIONS

Forward and backward equations can be written in the form of
the Euler-Lagrange equations

or_aor_g
da dtda
oL oL
dx dtox

with the Lagrangian

L(z,a,z,t) = ax — aF(x, q(t))
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HAMILTONIAN FORM OF THE EQUATIONS

Generalized momentum
OL

— =a

ox
The Hamiltonian
H(z,a,t) = ax — L = aF(x, q(t))

Forward and backward equations can be written take the form
of the Hamilton equations

do_on
dt  da’
da OH

TS

n



CONSEQUENCES

- If the parameters g do not depend on ¢ then
aF(z, q) = const,

- Liouville's theorem

d

&P(a:, a,t)=0

where P(z, a, t) is the probability density function
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How DO NEURAL ODES LEARN?

- Mutual information does not change:

d
(Y X(#) =0

Neural ODEs cannot learn?
- Coarse graining
- Information entropy

H(t) = —/P(a:, t)log P(x, t) dVx
has time derivative

dﬂtﬂ(t) - /Tr {;;F(a:, q(t))} P(a, ) dVa
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FROM DIFFERENTIAL EQUATIONS TO
NEURAL NETWORKS




FROM DIFFERENTIAL EQUATIONS TO NEURAL NETWORKS

Sum of linear and non-linear parts

d

Eﬁm(t) = w(t)x+ b(t) + g(x)

For example, nonlinearity g(z) = —va? leads to
d
Zai(t) = D wig(Oz(8) + bil) — yai()?
J

and backward propagation
d
_%ai(t) = Z aj(t)wi(t) — 3ywi(t)? ai(t)

J
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FROM DIFFERENTIAL EQUATIONS TO NEURAL NETWORKS

Euler's method:
1 = o+ Atwizy + Atby + Atg(ax)
Let us make a second-order error:

1 = T+ Atwpzy + Atby + Atg(x; + Atwx; + Atby)
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FROM DIFFERENTIAL EQUATIONS TO NEURAL NETWORKS

New non-linear function
h(z) = 2+ Atg(z)

and new matrices

W, =1+ Atw;,
B; =Atb,
Then
T1,1- IV
x
i1 = h( Wiz, + B) w2t >

T3,
We get a feedforward neural network B



DISCRETE > CONTINUOUS

Let us consider two-dimensional function

+1

The features of Neural ODEs preserve the topology of the input
space, thus Neural ODEs cannot represent this function



DISCRETE > CONTINUOUS

- Error arising when taking discrete steps allows the
trajectories to cross

- Training on finite sample of inputs the flow could squeeze
through the gaps between sampled points



EXAMPLE

2D space

3D space
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SUMMARY




SUMMARY

- The gradient of the loss function with respect to to the
hidden state can be considered as a generalized
momentum conjugate to the hidden state, allowing
application of the tools of classical mechanics.

- Not only residual networks, but also feedforward neural
networks with small nonlinearities and the weights

matrices deviating only slightly from identity matrices can
be related to the differential equations
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