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Motivation



Motivation

arXiv:1806.07366 [cs.LG] (2018).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
3



Idea is old

Continuous time recurrent neural networks

τi
dxi
dt = −xi +

n∑
j=1

wj,iσ(xj − θj) + Ii(t)

J. J. Hopfield, Neurons with graded response have collective computational properties

like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81, 3088–3092 (1984).
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Ordinary differential equations
from the point of view of machine
learning



Differential equations

Nonlinear ordinary differential equations used as a machine
learning model

d
dtx(t) = F(x(t), q(t))

• F nonlinear functions
• q(t) arbitrary parameters

Output x(T) is classified using a linear classifier.
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Differential equations

Loss function L(x(T)) is a function of a final output x(T).

Question
How to minimize the loss?
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Differential equations

Answer
Use the method of Lagrange multipliers

Functional

S = L(x(T)) +

∫ T

0
a(t)[F(x, q)− ẋ] dt

where a(t) is a vector of Lagrange multipliers
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Loss minimization

We obtain:
− d

dta(t) = a(t) ∂

∂x(t)F(x(t), q(t))

with the condition
a(T) =

∂L
∂x(T)

Differential equation for backward propagation, known as
adjoint equation

Then
δL
δq(t) = a(t) ∂

∂q(t)F(x(t), q(t))
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Euler-Lagrange form of the equations

Forward and backward equations can be written in the form of
the Euler-Lagrange equations

∂L
∂a − d

dt
∂L
∂ȧ =0 ,

∂L
∂x − d

dt
∂L
∂ẋ =0

with the Lagrangian

L(x,a, ẋ, t) = aẋ − aF(x, q(t))
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Hamiltonian form of the equations

Generalized momentum
∂L
∂ẋ = a

The Hamiltonian

H(x,a, t) = aẋ − L = aF(x, q(t))

Forward and backward equations can be written take the form
of the Hamilton equations

dx
dt =

∂H
∂a ,

da
dt =− ∂H

∂x .
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Consequences

• If the parameters q do not depend on t then

aF(x, q) = constt

• Liouville’s theorem
d
dtP(x,a, t) = 0

where P(x,a, t) is the probability density function
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How do Neural ODEs learn?

• Mutual information does not change:

d
dtI(Y;X(t)) = 0

Neural ODEs cannot learn?
• Coarse graining
• Information entropy

H(t) = −
∫

P(x, t) logP(x, t) dNx

has time derivative
d
dtH(t) =

∫
Tr

{
∂

∂xF(x, q(t))
}

P(x, t) dNx
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From differential equations to neural networks

Sum of linear and non-linear parts

d
dtx(t) = w(t)x + b(t) + g(x)

For example, nonlinearity g(x) = −γx3 leads to

d
dtxi(t) =

∑
j

wi,j(t)xj(t) + bi(t)− γxi(t)3

and backward propagation

− d
dtai(t) =

∑
j

aj(t)wj,i(t)− 3γxi(t)2ai(t)
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From differential equations to neural networks

Euler’s method:

xl+1 = xl +∆twlxl +∆tbl +∆tg(xl)

Let us make a second-order error:

xl+1 = xl +∆twlxl +∆tbl +∆tg(xl +∆twlxl +∆tbl)
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From differential equations to neural networks

New non-linear function

h(x) = x +∆tg(x)

and new matrices

Wl =I +∆twl ,

Bl =∆tbl

Then

xl+1 = h(Wlxl + Bl)

We get a feedforward neural network
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Discrete > Continuous

Let us consider two-dimensional function

The features of Neural ODEs preserve the topology of the input
space, thus Neural ODEs cannot represent this function
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Discrete > Continuous

• Error arising when taking discrete steps allows the
trajectories to cross

• Training on finite sample of inputs the flow could squeeze
through the gaps between sampled points
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Example
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Example II

Activations in the first
channel after each layer.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Activations in the final
layer

0 1 2 3 4

5 6 7 8 9
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Summary



Summary

• The gradient of the loss function with respect to to the
hidden state can be considered as a generalized
momentum conjugate to the hidden state, allowing
application of the tools of classical mechanics.

• Not only residual networks, but also feedforward neural
networks with small nonlinearities and the weights
matrices deviating only slightly from identity matrices can
be related to the differential equations
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Thank you for your attention!

arXiv:1909.03767 [stat.ML] (2019)
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