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What is 1/f noise?

1/f noise
a type of noise whose power spectral density S(f ) behaves like

S(f ) ∼ 1/f β , β is close to 1

occasionally called “flicker noise”
or “pink noise”
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1/f noise

First observed (in 1925) by Johnson in vacuum tubes.
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1/f noise

Fluctuations of signals exhibiting 1/f behavior of the power
spectral density at low frequencies have been observed in a
wide variety of physical, geophysical, biological, financial, traffic,
Internet, astrophysical and other systems.
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1/f noise

Many mathematical models:
Superposition of relaxation processes

S(f ) =

∫ γ2

γ1

N
γ2 + ω2 dγ ≈

πN
2ω

, γ1 � ω � γ2

Dynamical systems at the edge of chaos

xn+1 = xn + xz
n mod 1

Alternating fractal renewal process

Self-Organized Criticallity
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Particular model of 1/f noise: point process

The signal of the model consists of pulses or events

I(t) = a
∑

k

δ(t − tk)

Point processes arise in different fields such as physics,
economics, ecology, neurology, seismology, traffic flow,
financial systems and the Internet.
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Correlated inter-pulse durations
Inter-pulse durations perform a random walk:

τk+1 = τk ± σ
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Correlated inter-pulse durations

The spectrum is
S(f ) =

ν

f
Pτ (τmin)

in the frequency range

σ2

τ3
max

� f �min

(
σ2

τminτ2
max

,
1

τmax

)

where Pτ (τ) is the PDF of inter-pulse durations and

σ2 =

∫
P(τk |τk−1)(τk − τk−1)2

dτk
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Point processes

More general equation

τk+1 = τk + γτ2µ−1
k + στµk εk

Allows to obtain power-law exponent β in the spectrum
different from 1.
Used for modeling of the internote interval sequences of the
musical rhythms
D. J. Levitin, P. Chordia, and V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).
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Conclusion

One of possible origins of 1/f noise
Brownian motion in time axis leads to 1/f noise
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Question

Can this way to 1/f noise be applied not only to
a sequence of pulses?
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The main idea

In a sequence of pulses the pulse number can be interpreted as
an internal time.

Start from a stochastic differential equation
Interpret the time as an internal parameter.
Add an additional equation relating the physical time to the
internal time.
Increments of the physical time should be a power-law
function of the magnitude of the signal.
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Why two times?

Impurities and regular structures in a medium results in a
transport of variable speed, the particle may be trapped for
some time or accelerated.
The waiting time can depend on the particle position
or on the intensity of the signal.
Example: a diffusion on fractals and multifractals.
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Time-subordinated Langevin equations

We consider the situation when the increments of the physical
time are deterministic

dxτ =F(xτ )dτ + dWτ

dtτ =g(xτ )dτ

One can reduce the system of equations to a single equation in
physical time with a multiplicative noise

dxt =
F(xt )

g(xt )
dt +

1√
g(xt )

dWt
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Only positive values of x

We choose the function g(x) as a power-law function of x :

dtτ = x−2η
dτ

A simple Brownian motion

dxτ = dWτ

restricted to a interval between xmin and xmax leads to the
equation in the physical time

dxt = xη
t dWt
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Bessel process

A Bessel process

dxτ =

(
η − λ

2

)
1
xτ
dτ + dWτ

leads to the equation in the physical time

dxt =

(
η − λ

2

)
x2η−1

t dt + xη
t dWt
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Geometric Brownian motion

Geometric Brownian motion

dxτ =

(
η − λ

2

)
xτdτ + xτdWτ

together with the relation between the internal time and the
physical time

dtτ = x−2(η−1)
dτ

leads to the same equation in the physical time

dxt =

(
η − λ

2

)
x2η−1

t dt + xη
t dWt

Julius Ruseckas (Lithuania) Time-subordinated Langevin equations July 15, 2015 18 / 29



Numerical example
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Nonlinear SDEs

dxt =

(
η − λ

2

)
x2η−1

t dt + xη
t dWt

This nonlinear SDE has been proposed in
B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).

B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).

Such nonlinear SDEs have been used to describe signals in
socio-economical systems
V. Gontis, J. Ruseckas and A. Kononovicius, Physica A 389, 100 (2010).

J. Mathiesen, L. Angheluta, P. T. H. Ahlgren and M. H. Jensen, Proc. Natl. Acad. Sci.

110, 17259 (2013).
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Estimation of spectrum from scaling properties

dxt =

(
η − λ

2

)
x2η−1

t dt + xη
t dWt

Steady state PDF has power-law form

P0(x) ∼ x−λ

The change of the magnitude of the stochastic variable
x → ax is equivalent to the change of time scale
t → a2(η−1)t .
Trasnsition probability has a scaling property

P(ax ′, t |ax , 0) = a−1P(x ′,a2(η−1)t |x , 0)
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Estimation of spectrum from scaling properties

Autocorrelation function can be written as

C(t) =

∫
dx
∫

dx ′ xx ′P0(x)Px (x ′, t |x , 0)

The autocorrelation function C(t) has scaling property

C(at) ∼ aβ−1C(t)

with
β = 1 +

λ− 3
2(η − 1)
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Both positive and negative values of x

The Ornstein-Uhlenbeck process

dxτ = −γxτdt + dWτ

The relation between the internal time and the physical time

dt =
1

(x2
τ + x2

0 )η
dτ

Resulting nonlinear SDE in physical time

dxt = −γ(x2
t + x2

0 )ηxtdt + (x2
t + x2

0 )
η
2 dWt
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Both positive and negative values of x

Equation

dxτ =

(
η − λ

2

)
xτ

x2
τ + x2

0

dτ + dWτ

leads to SDE in the physical time

dxt =

(
η − λ

2

)
(x2

t + x2
0 )η−1xtdt + (x2

t + x2
0 )

η
2 dWt
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Both positive and negative values of x

-60

-40

-20

 0

 20

 40

 60

 0  0.5  1  1.5  2  2.5  3

 0

 2

 4

 6

 8

x τ/10
3

t

Generated signal (red line)
together with the corresponding
internal time (blue line). The
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Numerical approach

Using internal time we can obtain an effective way of solving
non-linear SDEs.
For example, let us consider the non-linear SDE

dxt =

(
η − λ

2

)
x2η−1

t dt + xη
t dWt

We introduce operational time τ by the equation

dτt = x2η
t dt
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Numerical approach

Discretizing the internal time τ with the step ∆τ and using the
Euler-Marujama approximation for the SDE we get

xk+1 =xk +

(
η − λ

2

)
1
xk

∆τ +
√

∆τεk ,

tk+1 =tk +
∆τ

x2η
k
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Summary

1/f noise can be obtained by introducing the difference
between the internal time and the physical time
and also assuming that the increments of the physical time
have power-law dependence on the intensity of the signal
This difference between physical and internal times can
arise due to presence of traps or other impurities in an
inhomogeneous medium
Introduction of internal time can be an effective way to
solve highly non-linear SDEs.
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Thank you for your attention!
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