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Whatis 1/f noise?

1/f noise
a type of noise whose power spectral density S(f) behaves like

S(fy~1/f%,  Biscloseto 1

@ occasionally called “flicker noise”
@ or "pink noise”
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1/f noise
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Fig. 6. Frequency variation for tube No. 2, coated filament; same data as in Fig. 4
plotted to a frequency scale; curves E and F give Hartmann’s results for 2 m-a. and
20 m-a.; points G were obtained with less steady measuring circuit.

First observed (in 1925) by Johnson in vacuum tubes.
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1/f noise
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FIG. 8. Final power spectrum density estimate (dealiased)

Fluctuations of signals exhibiting 1/f behavior of the power
spectral density at low frequencies have been observed in a
wide variety of physical, geophysical, biological, financial, traffic,
Internet, astrophysical and other systems.
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1/f noise

Many mathematical models:
@ Superposition of relaxation processes

2 N N
S(f :/ ———dy~ ~—, w K
() . 72+w2 Y 2w M 72

@ Dynamical systems at the edge of chaos
Xne1 = Xn+ X5 mod 1

@ Alternating fractal renewal process

S I I I S
b=0 TIME ¢

t t tsts ts ts

I fe— 72 —..{T3|T4}<——T5——+—Ts_.

@ Self-Organized Ciriticallity
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Particular model of 1/f noise: point process

I(t)

t

@ The signal of the model consists of pulses or events

I(t)y=a> o(t—t)
k

@ Point processes arise in different fields such as physics,
economics, ecology, neurology, seismology, fraffic flow,
financial systems and the Internet.
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Correlated inter-pulse durations
Inter-pulse durations perform a random walk:

Tyl =Tk o
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Correlated inter-pulse durations
The spectrum is

in the frequency range
o2 , o2 1
T < f < min 5
Trax TminTiax Tmax

where P.(7) is the PDF of inter-pulse durations and

o? = /P(Tlek_1)(Tk — T_1)% dry
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Point processes

(*] More ge| erGI eqUGIiOI |
2u—1 s
Tk ]—Tk—{—’}/Tk +JTI€k

@ Allows to obtain power-law exponent 3 in the spectrum
different from 1.

@ Used for modeling of the internote interval sequences of the
musical rhythms
D. J. Levitin, P Chordia, and V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).
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Conclusion

One of possible origins of 1/f noise
Brownian motion in fime axis leads to 1/f noise
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Question

Can this way to 1/f noise be applied not only to
a sequence of pulses?
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The main idea

In a sequence of pulses the pulse number can be interpreted as
an internal time.
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The main idea

@ Start from a stochastic differential equation
@ Inferpret the time as an internal parameter.

@ Add an additional equation relating the physical time to the
infernal time.

@ Increments of the physical fime should be a power-law
function of the magnitude of the signal.
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Why two fimes?

@ Impurities and regular structures in a medium results in a
fransport of variable speed, the parficle may be trapped for
some time or accelerated.

@ The waiting fime can depend on the particle position
@ or on the intensity of the signal.
@ Example: a diffusion on fractals and multifractals.
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Time-subordinated Langevin equations

We consider the situation when the increments of the physical
fime are deterministic

dx; =F(x;)dr + dW;
dt, =g(x;)dr

One can reduce the system of equations to a single equation in
physical time with a multiplicative noise

. F(Xf) 1

de dt +

AW,

~a(x) a(xt)
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Only positive values of x

We choose the function g(x) as a power-law function of x:
dt, = x~2dr
A simple Brownian motion
dx, = dW;

restricted to a interval between Xx,,i, and Xn.x leads to the
equation in the physical fime

dxy = X;,)de
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Bessel process

A Bessel process

dx, = (n— %) Larvaw,

leads to the equation in the physical fime

dx,:( _%> X2t + x1aW,
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Geometric Brownian motion

Geometric Brownian motion
dx, = <?7 2) X-d7 + X dW,;

together with the relation between the internal time and the
physical time

dt, = x2(=Nqr

leads to the same equation in the physical fime

dxf=< _%> X2t + x1aw,
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Numerical example
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Generated signal (red line) Spectrum of the signal (red curve).

together with the corresponding Blue line shows the slope 1/f
infernal time (blue line). The
parametersare n =5/2and A =3
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Nonlinear SDEs

AN 21
_ n— Ui
dx; = ( — 2) ;' dt 4+ x ! dWh
@ This nonlinear SDE has been proposed in

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).

B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).

@ Such nonlinear SDEs have been used to describe signals in
socio-economical systems
V. Gontis, J. Ruseckas and A. Kononovicius, Physica A 389, 100 (2010).
J. Mathiesen, L. Angheluta, R T. H. Ahigren and M. H. Jensen, Proc. Natl. Acad. Sci.
110, 17259 (2013).
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Estimation of spectrum from scaling properties

dx; = ( _%) X2 dt 4 XA W,
@ Steady state PDF has power-law form

Po(x) ~x*

@ The change of the magnitude of the stochastic variable
X — ax is equivalent to the change of fime scale
t— Q2= Dt,

@ Trasnsition probability has a scaling property

P(ax’, t|ax,0) = a~'P(x', a®"=Dt|x,0)
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Estimation of spectrum from scaling properties

@ Autocorrelation function can be written as
C(t) = / dx / dx’ XX’ Py(x)P¢(X', X, 0)
@ The autocorrelation function C(t) has scaling property

C(at) ~ a@®~1C(#)

with
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Both positive and negative values of x

The Ornstein-Uhlenbeck process
dx, = —yx.df + dW;

The relation between the internal time and the physical time

1
df = ———dr
(2 +xg)

Resulting nonlinear SDE in physical time

Xt = =1 (F +8) Xt + (F +36) 1 W,
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Both positive and negative values of x

Equation

A X

leads to SDE in the physical time

A
dxy = (77 - 5) (O +X2)7 T xpdt + (X2 + x3)2dWy
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Both positive and negative values of x
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Generated signal (red line) Spectrum of the signal (red curve).

together with the corresponding Blue line shows the slope 1/f
infernal time (blue line). The
parametersare n =5/2and A =3
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Numerical approach

Using internal fime we can obtain an effective way of solving
non-linear SDEs.
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Numerical approach

Using internal fime we can obtain an effective way of solving
non-linear SDEs.

For example, let us consider the non-linear SDE

dx; = ( — %) xf"‘]df + x!dW;
We infroduce operational time + by the equation

dry = x2"dt
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Numerical approach

Discretizing the infernal time = with the step Ar and using the
Euler-Marujama approximation for the SDE we get

AN\ ]
Xk IXk+( —§> X—kAT+ \/ATEk,

AT
e =t + o
Xk
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Summary

@ 1/f noise can be obtained by introducing the difference
between the internal time and the physical time

@ and also assuming that the increments of the physical time
have power-law dependence on the infensity of the signall

@ This difference between physical and intfernal times can
arise due to presence of fraps or other impurities in an
inhomogeneous medium

@ Introduction of internal fime can be an effective way to
solve highly non-linear SDEs.
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Thank you for your attention!
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