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Weak measurements



Measurements in quantum mechanics

• A result is obtained after an interaction of the measuring
apratus with a single quantum system

• Possible results of the measurement are given by the
eigenvalues of the corresponding operator

• Strong interaction between the measuring aparatus and
the quantum system

• Large change in the state of the quantum system—wave
function collapse
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Question

What if the strength of the interaction is weak ?
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Weak measurements

It is possible to get an information about quantum system
even when the interaction between the system and the
aparatus is weak—weak measurement.

A large ensemble of identical quantum systems is needed.

6



Weak measurements

Yakir Aharonov (left) and Lev Vaidman
Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). 7



Weak measurements

Hamiltonian describing the interaction between the quantum
system and the measurement aparatus

ĤI = λq̂Â

• Â is the operator acting on the system
• q̂ is the position of the measurement aparatus
• λ→ 0 is the interaction strength

The measurement aparatus initially is in the state |Φ(0)⟩ and
the measured system in the state |ψ⟩.
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Weak measurements

• The measurements are performed on an ensemble of
identical systems, each of which is prepared in the same
initial state. The readings of the detectors are collected
and averaged.

• Action of the Hamiltonian ĤI results in a small change of
the mean momentum of the measuring aparatus
⟨p̂q⟩τ − ⟨p̂q⟩0.

• We define the “weak value” of the operator Â as

Aw ≡ ⟨p̂q⟩0 − ⟨p̂q⟩τ
λτ

• In the limit λ→ 0:

Aw = ⟨ψ|Â|ψ⟩
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Post-selection

We can consider the following procedure:

1. The momentum pq of the measuring aparatus after the
interaction is measured for each system in the ensemble.

2. The final, post-selection measurement on the ensemble is
performed. The post-selection measurement determines
wheter the quantum system is in the state |b⟩.

3. The outcomes pq only for the systems found in the state
|b⟩ are colleced and used to calculate the average ⟨p̂q⟩b.
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Post-selection

Similar to the previous definition,

Aw
b =

⟨p̂q⟩0 − ⟨p̂q⟩b
λτ

is the weak value of of the operator Â with the condition that
the system is found in the state |b⟩.

Using conditional probability

⟨p̂q⟩b =
⟨Ψ(τ)|p̂q ⊗ |b⟩⟨b|Ψ(τ)⟩

⟨Ψ(τ)|b⟩⟨b|Ψ(τ)⟩
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Post-selection

Even in the limit λ→ 0 the average ⟨p̂q⟩b depends on the initial
state of the detector and is a sum of two terms containing the
anticommutator {Â, |b⟩⟨b|} and the commutator [Â, |b⟩⟨b|].

We can combine those two parts into one complex-valued
quantity

Aw
b =

⟨b|Â|ψ⟩
⟨b|ψ⟩
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Experimental realization

Science 332, 1170 (2011).
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Experimental realization
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Experimental realization

• The polarization degree of freedom of the photons is used
as a pointer that weakly couples to and measures the
momentum of the photons.

• A polarizer prepares the photons with a diagonal
polarization

|D⟩ = 1√
2
(|H⟩+ |V⟩)

• The photons impinge upon the crystal of birefringent
calcite with an incident angle θ that depends on their
transverse momentum kx.

• Crystal of calcite is 0.7 mm-thick with its optic axis at 42◦

in the x-z plane.

15



Experimental realization

• |H⟩ becomes the extraordinary polarization that
encounters an angle-dependent index of refraction, ne(θ),
and |V⟩ becomes the ordinary polarization that
encounters a constant index of refraction, no.

• Piece of calcite rotates the polarization state to
1√
2
(e−iφ(kx)/2|H⟩+ eiφ(kx)/2|V⟩)

• A quarter waveplate and a beam displacer are used to
measure the polarization of the photons in the circular
basis

• The momentum information encoded in polarization is
transformed into an intensity difference between the two
vertically displaced interference patterns.
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Bohmian mechanics



Classical mechanics

In a classical mechanics the state of a system at time t is
described by

• positions {q1(t), q2(t), . . . , qN(t)}
• velocities {v1(t), v2(t), . . . , vN(t)}
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Bohmian mechanics

Bohmian mechanics describes the state of the quantum
system by

• positions {q1(t), q2(t), . . . , qN(t)}
• wave function Ψ(q1, q2, . . . , qN, t)

Spin of a particle is included in the wave function Ψ.
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Bohmian mechanics: equations of motion

Equations of Bohmian mechanics

d
dtqi =

ℏ
mi

Im Ψ∗∇iΨ

Ψ∗Ψ

iℏ ∂
∂tΨ = −

N∑
i=1

ℏ2

2mi
∇2

i Ψ+ VΨ
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Bohmian mechanics

Quantum Equilibrium Hypothesis
Whenever a system has wave function Ψ then its
configuration is (or can be taken to be) random with
probability distribution |Ψ|2.
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Double-slit experiment

Bohmian trajectories in the double-slit experiment
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Pilot-Wave Hydrodynamics

 

 

https://youtu.be/nmC0ygr08tE
 

 

https://youtu.be/72DA4fgamPE
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Connetction with weak measurements

Weak measurement of velocity:

v(x) = lim
τ→0

1
τ

(
x − Re ⟨x|Û(τ)X̂|Ψ⟩

⟨x|Û(τ)|Ψ⟩

)

where Û(τ) = exp
(
− i

ℏĤτ
)

H. M. Wiseman, New J. Phys. 9, 165–177 (2007).
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Experimental Bohmian trajectiories



Experimental trajectories of single photons

Science 332, 1170 (2011).
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Experimental trajectories of single photons
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Experimental trajectories of single photons

• A system of three cylindrical lenses, with the middle lens
translatable in the z direction, allows the initial slit
function to be imaged over an arbitrary distance.

• The momentum information encoded in polarization is
transformed into an intensity difference between the two
vertically displaced patterns.

• The pixel on the CCD where each photon is detected
corresponds to the photon’s x position.
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Reconstructed trajectories
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Trajectories of entangled photons

Science Advances 2, e1501466 (2016).
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Experimental setup
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Experimental setup

• Two photons are prepared in a maximally entangled state
• Due to the polarizing beamsplitter, photon 1 has
horizontal polarization in the upper slit and vertical
polarization in the lower slit.

• Because of the initial polarization entanglement, the path
of photon 1 is now entangled with the polarization of
photon 2

• A Pockels cell blocks photon 1 unless photon 2 was
detected

• The trajectories of a single photon 1 are measured,
postselected on a detection of photon 2
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Nonlocality in Bohmian mechanics

The trajectory of photon 1 is affected by the remote choice of
how to measure photon 2
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Entangled state of photons

The joint state of the double-slit particle and another
quantum system with a spin degree of freedom

|Ψ(t)⟩ = 1√
2

∫
dx1dx2|x1⟩|x2⟩

×
(
Ψu(x1, t)ϕH(x2, t)|H⟩+Ψl(x1, t)ϕV(x2, t)|V⟩

)

Classical intuition
Measurement of the spin of particle 2 should indicate
through which slit particle 1 had gone
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Predictions of the theory

If, at the time of the measurement of the spin of particle 2,
particle 1 is in

• the near field of the double-slit apparatus→ the
measurement outcome is perfectly correlated with the
origin of each Bohmian trajectory

• the far field→ the trajectories predicted by Bohmian
mechanics often fail to agree with the outcome of the
measurement
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Surreal behavior

The trajectories of photon 1 are measured without performing
a postselection on photon 2

Polarization of photon 2 along a trajectory of photon 1
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Summary

Indeed, our observation of the change in polarization of a
free space photon, as a function of the time of measurement
of a distant photon (along one reconstructed trajectory), is
an exceptionally compelling visualization of the nonlocality
inherent in any realistic interpretation of quantum
mechanics.

35



Thank you for your attention!
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