Phase-space curvature in spin-orbit coupled ultracold atomic systems

Julius Ruseckas Jogundas Armaitis Egidijus Anisimovas

Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania

Abstract

The Berry phase, as well as Berry curvatures in real and momentum spaces, has been thoroughly discussed in the literature in various contexts [1]. Here we approach the phase-space Berry curvature with applications in ultracold-atom systems in mind. We consider ultracold atom systems with artificially engineered spin-orbit coupling [2], which have recently attracted considerable attention. We derive quantum-mechanical Heisenberg equations of motion where position-space, momentum-space, and phase-space Berry curvatures show up without relying on the semiclassical approximation [3]. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. We show that in the semiclassical regime the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.
[1] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep. Prog. Phys. 77, 126401 (2014) [2] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öberg, Rev. Mod. Phys. 83, 1523 (2011), [3] J. Armaitis, J. Ruseckas, and E. Anisimovas, Phys. Rev. A 95, 043616 (2017)

Adiabatic approximation and spin-orbit coupling

Postion-dependent spin-orbit coupling for ultracold atoms

$$
\begin{array}{ll}
\text { (a) Coupling Scheme } & \text { (c) Physical level diagram }
\end{array}
$$

S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and G. Juzeliūnas, New. J. Phys. 17, 033045 (2015)
Hamiltonian with position-dependent spin-orbit coupling

$$
H=\frac{\hbar^{2}}{2 m}(\boldsymbol{k}-\boldsymbol{A}(\boldsymbol{r}))^{2}+V(\boldsymbol{r}) \equiv \frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+\vec{B} \cdot \vec{\sigma}+W(\boldsymbol{r}) I,
$$

where \boldsymbol{A} and V are 2×2 matrices:

$$
V(\boldsymbol{r})=\vec{v}(\boldsymbol{r}) \cdot \vec{\sigma}+v_{0}(\boldsymbol{r}) I, \quad A_{j}(\boldsymbol{r})=\vec{a}_{j}(\boldsymbol{r}) \cdot \vec{\sigma}
$$

Adiabatic approximation
Unitary operator U diagonalizes the term $\vec{B} \cdot \vec{\sigma}$. Adiabatic approximation: the wave function remains in either the lower or upper dispersion branch with respect to the position- and momentum-dependent effective magnetic field $\vec{B} ; \Psi=\psi \mathcal{P}_{ \pm}$, where $\mathcal{P}_{ \pm}$are eigenstates of σ_{z} In the effective Hamiltonian

$$
H_{\mathrm{eff}}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} H U \mathcal{P}_{ \pm}
$$

the covariant operators appear

$$
\boldsymbol{r}_{\mathrm{c}}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} \boldsymbol{r} U \mathcal{P}_{ \pm}, \quad \boldsymbol{k}_{\mathrm{c}}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} \boldsymbol{k} U \mathcal{P}_{ \pm}
$$

Covariant operators can be written as

$$
\boldsymbol{r}_{\mathrm{c}}=\boldsymbol{r}-\mathcal{A}^{(k)}, \quad \boldsymbol{k}_{\mathrm{c}}=\boldsymbol{k}-\mathcal{A}^{(r)}
$$

where the operators

$$
\mathcal{A}^{(k)}=-\mathcal{P}_{ \pm}^{\dagger} U^{\dagger}[\boldsymbol{r}, U] \mathcal{P}_{ \pm}, \quad \mathcal{A}^{(r)}=-\mathcal{P}_{ \pm}^{\dagger} U^{\dagger}[\boldsymbol{k}, U] \mathcal{P}_{ \pm}
$$

correspond to Berry connections. Commutators:

$$
\left[\left(r_{\mathrm{c}}\right)_{j},\left(r_{\mathrm{c}}\right)_{l}\right]=\mathrm{i} \Theta_{j l}^{(k, k)}, \quad\left[\left(k_{\mathrm{c}}\right)_{j},\left(k_{\mathrm{c}}\right)_{l}\right]=\mathrm{i} \Theta_{j l}^{(r, r)}, \quad\left[\left(r_{\mathrm{c}}\right)_{j},\left(k_{\mathrm{c}}\right)_{l}\right]=\mathrm{i} \delta_{j, l}+\mathrm{i} \Theta_{j l}^{(k, r)}
$$

where various Berry curvatures are given by

$$
\begin{array}{ll}
\Theta_{j l}^{(k, k)}=\mathrm{i}\left[r_{j}, \mathcal{A}_{l}^{(k)}\right]-\mathrm{i}\left[r_{l}, \mathcal{A}_{j}^{(k)}\right], & \Theta_{j l}^{(r, r)}=\mathrm{i}\left[k_{j}, \mathcal{A}_{l}^{(r)}\right]-\mathrm{i}\left[k_{l}, \mathcal{A}_{j}^{(r)}\right] \\
\Theta_{j l}^{(k, r)}=\mathrm{i}\left[r_{j}, \mathcal{A}_{l}^{(r)}\right]-\mathrm{i}\left[k_{l}, \mathcal{A}_{j}^{(k)}\right], & \Theta_{j l}^{(r, k)}=\mathrm{i}\left[k_{j}, \mathcal{A}_{l}^{(k)}\right]-\mathrm{i}\left[r_{l}, \mathcal{A}_{j}^{(r)}\right]
\end{array}
$$

The effective Hamiltonian can be written as

$$
H_{\mathrm{eff}}=\frac{\hbar^{2}}{2 m} \boldsymbol{k}_{\mathrm{c}}^{2}+W\left(\boldsymbol{r}_{\mathrm{c}}\right)+\mathcal{V}
$$

where

$$
\mathcal{V}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} \vec{B} \cdot \vec{\sigma} U \mathcal{P}_{ \pm}+\mathcal{V}^{(r)}+\mathcal{V}^{(k)}
$$

with
$\mathcal{V}^{(r)}=\frac{\hbar^{2}}{2 m} \mathcal{P}_{ \pm} U^{\dagger}[\boldsymbol{k}, U] \mathcal{P}_{\mp} \cdot \mathcal{P}_{\mp} U^{\dagger}[\boldsymbol{k}, U] \mathcal{P}_{ \pm}, \quad \mathcal{V}^{(k)}=\sum_{j l} w_{j l}^{(2)} \mathcal{P}_{ \pm} U^{\dagger}\left[r_{j}, U\right] \mathcal{P}_{\mp} \mathcal{P}_{\mp} U^{\dagger}\left[r_{l}, U\right] \mathcal{P}_{ \pm}$
Here we assumed, that the potential $W(\boldsymbol{r})$ is at most quadratic.
Heisenberg equations for the covariant operators

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}=\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{k}_{\mathrm{c}}, H_{\mathrm{eff}}\right], \quad \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}=\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{r}_{\mathrm{c}}, H_{\mathrm{eff}}\right]
$$

contain Berry curvature terms:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}=-\frac{1}{\hbar} \nabla W\left(\boldsymbol{r}_{\mathrm{c}}\right)+\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{k}_{\mathrm{c}}, \mathcal{V}\right]+\frac{\hbar}{2 m} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(r, r)},\left(k_{\mathrm{c}}\right) l\right\}+\frac{1}{2 \hbar} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(r, k)}, \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)\right\} \\
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}=\frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}+\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{r}_{\mathrm{c}}, \mathcal{V}\right]+\frac{\hbar}{2 m} \sum_{i l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(k, r)},\left(k_{\mathrm{c}}\right)_{l}\right\}+\frac{1}{2 \hbar} \sum_{i l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(k, k)}, \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)\right\}
\end{aligned}
$$

Particular case: synthetic magnetic field

Y.-J. Lin, R. L. Compton, K. Jiménez-García,
J. V. Porto and I. B. Spielman, Nature, 462, 628 (2009).

Semiclassical approximation

We neglect the commutator between position and momentum. Eigenvectors $\chi_{ \pm}(\boldsymbol{r}, \boldsymbol{k})$ of the matrix $\vec{B} \cdot \vec{\sigma}$ prametrically depend on the numbers \boldsymbol{r} and \boldsymbol{k}. Berry connections:

$$
\mathcal{A}^{(k)}=\mathrm{\chi}_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(r)} \chi_{ \pm}, \quad \mathcal{A}^{(r)}=-\mathrm{i} \chi_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(k)} \chi_{ \pm}
$$

Berry curvatures:

$$
\begin{array}{ll}
\Theta_{j l}^{(k, k)}=-\nabla_{j}^{(k)} \mathcal{A}_{l}^{(k)}+\nabla_{l}^{(k)} \mathcal{A}_{j}^{(k)}, & \Theta_{j l}^{(r, r)}=\nabla_{j}^{(r)} \mathcal{A}_{l}^{(r)}-\nabla_{l}^{(r)} \mathcal{A}_{j}^{(r)} \\
\Theta_{j l}^{(k, r)}=-\nabla_{j}^{(k)} \mathcal{A}_{l}^{(r)}-\nabla_{l}^{(r)} \mathcal{A}_{j}^{(k)}, & \Theta_{j l}^{(r, k)}=\nabla_{j}^{(r)} \mathcal{A}_{l}^{(k)}+\nabla_{l}^{(k)} \mathcal{A}_{j}^{(r)}
\end{array}
$$

Scalar potentials:

$$
\mathcal{V}^{(r)}=-\frac{\hbar^{2}}{2 m} \chi_{ \pm}^{\dagger} \nabla^{(r)} \chi_{\mp} \cdot \chi_{\mp}^{\dagger} \nabla^{(r)} \chi_{ \pm}, \quad \mathcal{V}^{(k)}=-\sum_{j, l} w_{j l}^{(2)} \chi_{ \pm}^{\dagger} \nabla_{j}^{(k)} \chi_{\mp} \chi_{\mp}^{\dagger} \nabla_{l}^{(k)} \chi_{ \pm}
$$

Equations of motion

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}=-\frac{1}{\hbar} \boldsymbol{\nabla} W\left(\boldsymbol{r}_{\mathrm{c}}\right)-\frac{1}{\hbar} \boldsymbol{\nabla}^{(r)} \mathcal{V}+\frac{\hbar}{m} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(r, r)}\left(k_{\mathrm{c}}\right)_{l}+\frac{1}{\hbar} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(r, k)} \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}=\frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}+\frac{1}{\hbar} \boldsymbol{\nabla}^{(k)} \mathcal{V}+\frac{\hbar}{m} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(k, r)}\left(k_{\mathrm{c}}\right)_{l}+\frac{1}{\hbar} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(k, k)} \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)
\end{aligned}
$$

Spin-orbit coupling in one dimension

Let us consider the system with the Hamiltonian

$$
H=H_{0}-F x, \quad H_{0}=\frac{\hbar^{2}}{2 m}\left(k-a \sigma_{3}\right)^{2}+\frac{\hbar \Omega}{2}\left[\cos (x / \lambda) \sigma_{1}+\sin (x / \lambda) \sigma_{2}\right]
$$

Response to a force: effective mass

Hamiltonian H_{0} has been realized experimentally

Y.-J. Lin, K. Jiménez-García and I. B. Spielman, Nature 471, 83-86 (2011). Exact solution: effective mass

$$
\frac{m}{m_{ \pm}^{*}}=1 \pm \frac{k_{0}^{2}}{\kappa a} \approx 1 \pm \frac{1}{\kappa}\left(a+\frac{1}{\lambda}\right) ; \quad k_{0}=a+\frac{1}{2 \lambda}, \quad \kappa=\frac{\Omega}{2 a} \frac{m}{\hbar}
$$

Semiclassical dynamics follows the equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{C}}=\frac{F}{\hbar}\left(1-\Theta^{(r, k)}\right), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{\mathrm{c}}=\frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}\left(1+\Theta^{(k, r)}\right)+\frac{1}{\hbar} \nabla^{(k)} \mathcal{V}
$$

In the limit $1 / \lambda a \ll 1$ and $|k| \ll \kappa$,

$$
\Theta^{(r, k)}=-\Theta^{(k, r)} \approx \mp \frac{1}{2 \lambda \kappa}
$$

Closed equation for the center of mass motion

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{c}}=\frac{F}{m}\left(1 \pm \frac{1}{\kappa}\left(a+\frac{1}{\lambda}\right)\right)
$$

The effective mass in semiclassical approximation is correctly captured by the phase-space Berry curvature.

