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Abstract
We study the propagation of two weak probe fields of light in an atomic ensemble coherently
driven by two pairs of control laser fields in a double tripod-type setup. The probe fields
“dressed” by the atomic medium form quasi-particles termed spinor slow light polaritons
(SSPs). The SSPs represent a two-component field which is shown to obey under certain
conditions a relativistic equation of the Dirac-type. The polaritons posses an “effective speed
of light” given by the group-velocity of slow-light, and can be made massive by inducing a
small two-photon detuning. This leads to formation of the “particle-antiparticle” dispersion
branches separated by a gap. The corresponding effective Compton length determines the
tunneling length of the probe light through the band-gap along the sample. We also
investigate to exchange the optical vortex between the control and probe fields using the
double tripod scheme.
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Double-tripod linkage pattern

Conditions:

• Propagation of two weak (probe) light beams in a resonant atomic medium under the
influence of several stronger (control) laser beams.

• Probe beams couple the ground state g to two excited states e1 and e2 .

•Control beams couple excited states ej to another two ground states sk .

•Control beams make the medium transparent for resonant probe beams in a narrow frequency
range due to the electromagnetically induced transparency (EIT).

• 4-photon resonance: ω1 − ω11 = ω2 − ω21 , ω1 − ω12 = ω2 − ω22 .

Limiting cases:

• 〈B1|B2〉 = 0 — two not connected tripods

• 〈B1|B2〉 = 1 — double Lambda setup

• 0 < | 〈B1|B2〉 | < 1 — two connected tripods

Description

Matrix representation — spinor slow light:

E =

(
E1

E2

)
, Ω̂ =

(
Ω11 Ω12

Ω21 Ω22

)
, δ̂ =

(
δ1 0
0 δ2

)
δ1 and δ2 are the detunings from two-photon resonance.
Matrix equation for the two-component probe field (for counter-propagating control fields):

(c−1 + v−1)
∂

∂t
E + σz

∂

∂z
E − i

2k
∇2
⊥E + iv−1D̂E = 0

Similar to the equation for probe field in Λ scheme, only with matrices.

D̂ = Ω̂δ̂Ω̂−1 — matrix of the two-photon detuning

v−1 =
g2n

c
(Ω̂†)−1Ω̂−1 — defines matrix of inverse group velocity;

g is the coupling strength, n is the atom number density.

•The group velocity is a non-diagonal matrix

• Individual probe fields do not have a definite group velocity

•Only special combinations of both probe fields (polaritons)
propagate in the atomic cloud with the definite velocities

The Rabi frequencies of control beams with equal intensities: Ωij = Ω√
2

exp(iSij)

The relative phase of the control fields: S = 1
2(S12 + S21 − S11 − S22)

• S = ±π/2 — two not connected tripods

• S = 0 — double Lambda setup

• 0 < |S| < π/2 — two connected tripods

Matrix of inverse polariton velocity: σzv
−1 = 1

v0

1
sin2 S

(
1 − cosS

cosS −1

)
, v0 =

cΩ2

g2n

Neutrino type oscillations for polaritons

Zero two-photon detuning δ1 = δ2 = 0

σzṽ
−1 ∂

∂t
Ẽ +

∂

∂z
Ẽ = 0

Two polaritons Ẽ±. Two dispersion branches with opposite slopes:
∆ω± = ±vgr∆k . Here ∆ω = 0 is the intersection point of both
polariton branches.

E1 is reflected into E2. Reflection and transmission coefficients:

R =
−2i cos(S) sin(∆ωL/vgr)

(1− | sinS|)e−i∆ω
L
vgr − (1 + | sinS|)ei∆ω

L
vgr

, T =
2| sinS|

(1 + | sinS|)ei∆ω
L
vgr − (1− | sinS|)e−i∆ω

L
vgr

Oscillations of R and T occur if |S| 6= π/2 i.e. if we have two connected tripod systems
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Dirac equation for two-component polariton

We assume that S = ±π/2. Non-zero two photon detuning
δ1 = −δ2 ≡ δ 6= 0

•A gap in dispersion (“electron-positron” type spectrum)

•Dirac type equation with non-zero mass for two component
polaritons:

i
∂

∂t
Ẽ = −iv0σz

∂

∂z
Ẽ + δσyẼ

Relativistic particle-antiparticle dispersion: ∆ω± = ±
√
v2

0∆k2 + δ2

~δ = mv2
0 — gap width, m — polariton effective mass
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Reflection and transmission coefficients at the gap center (∆ω = 0):

T = cosh−1(L/λC) , R = tanh(L/λC)

λC = ~/mv0 = v0/δ — Compton wave-length of the polariton. The Compton wave-length
determines the polariton tunneling length.

Transfer of optical vortex to probe beams

•Co-propagating probe beams

•Control beams with Rabi frequencies Ω11 ∼ ei`ϕ and Ω22 ∼ e−i`ϕ

have optical vortices with opposite vorticity

• Incident field E1 is without vortex

• Probe field E2 acquires an optical vortex
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Conclusions
• The spinor slow light in atomic medium obeys an effective Dirac equation for a massive particle.

• By changing the two-photon detuning the medium can act as a photonic crystal with a controllable band-gap.

• If the frequency of the incoming probe light is within the band-gap, the light tunnels through the sample. The

tunneling length is given by the effective Compton wave-length of the SSP.

• For frequencies of the incoming light outside the band-gap, the reflection and transmission coefficients exhibit an

oscillatory dependence on the two-photon detuning and the sample length. This can be interpreted as a

mirrorless frequency filter.
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