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Abstract

Starting from the multiplicative point process and nonlinear stochastic models of 1/f noise and
power-law distributions [1, 2] we present nonlinear stochastic differential equations generating pro-
cesses with the q-exponential and q-Gaussian distributions of the observables with the long-range
power-law autocorrelations and 1/fβ noise [3]. Further we analyze properties of solutions of these
equations in relation with the superstatistical approach [4] and relevance of the generalized and
adapted equations for modeling of the financial processes [5].

Stochastic model with q-Gaussian PDF and long memory

We have proposed nonlinear SDE [1, 2]

dx = σ2
(

η − λ

2

)

x2η−1dt + σxηdW (1)

Due to requirement of the stationarity of the process, the stochastic equation (1) should be analyzed
together with the appropriate restrictions of the diffusion in some finite interval xmin 6 x 6 xmax

[1, 2]. Solutions of SDE (1) exibit power-law probability distribution function, P (x) ∼ x−λ, and
power spectral density, S(f ) ∼ 1/fβ, in wide range of frequencies. Here

β = 1 − λ − 3

2η − 2
,

1

2
< β < 2 . (2)

Power spectral density is determined mainly by the power-law behavior of the coefficients of SDE
(1) at big values of x ≫ xmin. Changing the coefficients at small x, the spectrum retains power-law
behavior. Therefore, we propose [3, 5] the following modification of Eq. (1)

dx = σ2
(

η − λ

2

)

(x2
0 + x2)η−1xdt + σ(x2

0 + x2)η/2dW. (3)

The associated Fokker-Planck equation gives q-Gaussian PDF,

P (x) =
Γ(λ/2)√

πx0Γ((λ − 1)/2)

(

x2
0

x2
0 + x2

)λ/2

≡ Aq expq

(

−λ
x2

(3 − q)σ2
q

)

, (4)

q = 1 + 2/λ. (5)

Here expq(·) is q-exponential defined as expq(x) ≡ (1 + (1 − q)x)1/(1−q).
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Figure 1: PDF, P (x), of solution of Eq. (3) with parameters x0 = 1, σ = 1, λ = 3 and
η = 5/2 coinciding with the analytical Eq. (4) and spectrum, S(f ), in comparison with the
line representing 1/f spectrum.

Equation with two power-law exponents

In order to get spectrum with two power-law exponents we propose SDE [5]

dx̃ =

(

η − λ0

2
−
(

x̃

x̃max

)2
)

(1 + x̃2)η−1

((1 + x̃2)1/2ǫ + 1)2
x̃dt̃ +

(1 + x̃2)η/2

(1 + x̃2)1/2ǫ + 1
dW̃ . (6)

Here x̃ = x/x0 and t̃ = tσ2x
2(η−1)
0 are scaled variables. We demonstrate an example solutions of

equation (6) in figure 2.

Figure 2: Model calculated from Eq. (6) with the parameters η = 5/2, λ0 = 4.0, x̃max = 105

and ǫ = 0.01 PDF, P (x), (continuum line) in comparison with empirical histogram of one
minute returns of ABT stocks traded on NYSE (dots) and power spectrum, S(x), of returns.

Nonlinear stochastic model of return

In the model proposed we assume that the empirical return rt can be written as instantaneous
q-Gaussian fluctuations ξ with a slowly diffusing parameter r0 and constant λ = 5.

rt = ξ{r0, λ}. (7)

The parameter r0 serves as a measure of instantaneous volatility of return fluctuations. We do
propose to model the measure of volatility r0 by the scaled continuous stochastic variable x, having
a meaning of average return per unit time interval. By the empirical analyses of high frequency
trading data on NYSE we introduced relation

r0(t, τ ) = 1 +
r̄0

τs
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, (8)

where r̄0 is an empirical parameter and the average return per unit time interval x(ts) can be
modeled by the nonlinear SDE (6).
Empirically defined parameters: η - exponent of multiplicativity, λ0 - power law exponent of x
long range PDF, ǫ - parameter dividing diffusion into two areas: stationary and excited one, and
xmax - the upper limit of diffusion.

Figure 3: Comparison of empirical statistics of absolute returns traded on the NYSE (black
thin lines) and VSE (light gray lines) with model statistics, (gray lines). Model parameters are
as follows: λ = 5; σ2

t = 1/3 · 10−6 s−1; λ0 = 3.6; ǫ = 0.017; η = 2.5; r̄0 = 0.4; xmax = 1000.
PDF of normalized absolute returns is given on (a),(c),(e) and PSD on (b),(d),(f). (a) and
(b) represents results with τ = 60 s; (c) and (d) τ = 600 s; (e) and (f) τ = 1800 s. Empirical
data from NYSE is averaged over 24 stocks and empirical data from VSE is averaged over 4
stocks.

Conclusions

We proposed a double stochastic process driven by the nonlinear scaled SDE reproducing the main
statistical properties of the absolute return, observed in the financial markets. Seven parameters of
the model enable us to adjust it to the power law statistics of various stocks including long range
behavior. All parameters introduced are recoverable from the empirical data and are responsible
for the specific statistical features of real markets. Seeking to discover the universal nature of return
statistics we analyse and compare extremely different markets in New York and Vilnius and adjust
the model parameters to match statistics of both markets.
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