Position-dependent spin-orbit coupling for ultracold atoms

Julius Ruseckas, Artūras Acus, Gediminas Juzeliūnas, Algirdas Mekys
NGT

Ian B. Spielman
Joint Quantum Institute, NIST \& University of Maryland, USA Luis Santos
Institut für Theoretische Physik, Leibniz Universitat, Hannover, Germany
Shih-Wei Su, Shih-Chuan Gou, I-Kang Liu
Department of Physics, National Changhua University of Education, Taiwan

Recently several schemes have been proposed to create the spin-orbit coupling (SOC) of the Rashba-Dresselhaus type for ultracold atoms by illuminating them with several laser beams [1-3]. This leads to a number of distinct phenomena, such as formation of non-conventional Bose-Einstein condensates (BECs) of ultracold atoms affected by the SOC [2-4]. Here we explore effects due to the position-dependence of the SOC for atomic BECs. The position-dependence provides domains of the stripe phases with the stripes oriented in different directions. It is shown that non-trivial structures can be formed at the boundaries of these domains, such as defects or arrays of vortices and anti-vortices.
[1] J. Dalibard, F. Gerbier, G.Juzeliunas, and P.Ohberg, Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011).
[2] N. Goldman, G. Juzeliunas, P. Ohberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77126401 (2014).
[3] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494, 49 (2013).
[4] H. Zhai, Degenerate Quantum Gases with Spin-Orbit Coupling, Rep. Prog. Phys. 78026001 (2015).

Previous studies: SOC position independent ($\alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}=$ const)
D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, 025602 (2011).

Here: Effects due to position dependence of α_{x} and α_{y}.
S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and G. Juzeliūnas, New. J. Phys. 17, 033045 (2015).

A closed loop scheme to produce position dependent 2D SOC using Raman transitions $\Omega_{j, j+1}=\Omega \exp \left[i\left(\mathbf{k}_{j}-\mathbf{k}_{j+1}\right) \cdot \mathbf{r}+\frac{\pi}{4}\right]$

A pair of degenerate atomic dressed states

Rashba-Dresselhaus Spin-Orbit
Coupling (SOC)
$H=\frac{(\mathbf{p}-\mathbf{A})^{2}}{2 m}=\frac{p^{2}}{2 m}+\frac{\mathbf{p} \bullet \mathbf{A}}{2 m}+$ const $\quad \mathbf{p}=-i \hbar \nabla$

- Vector potential A - 2×2 matix:
$\mathbf{A}=\chi\left(\alpha_{x} \sigma_{x} \mathbf{e}_{x}+\alpha_{y} \sigma_{y} \mathbf{e}_{y}\right) \quad$ (2D SOC)
- σ_{x}, σ_{y} - Pauli matrices;
- H acts on a two-component spinor: $\psi=\binom{\psi_{1}}{\psi_{2}}$

Laser beams layout

We consider:

Atomic BEC
Solution of the Gross-Pitaevskii equation with position dependent SOC.

Atomic BEC affected by position dependent SOC

Acknowledgements:

G. J., A. A. and J. R. acknowledges the financial support by the European Social Fund under the Global Grant measure (project no. VP1-3.1-ŠMM-07-K-02-046).

