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Abstract

We present nonlinear stochastic differential equation (SDE) which forms the background for the
stochastic modeling of return in the nancial markets. SDE is obtained by the analogy with earlier
proposed model of trading activity in the nancial markets and generalized within the nonextensive
statistical mechanics framework. Proposed stochastic model generates time series of return with
two, the probability distribution function and the power spectral density, power-law statistics.

Introduction

Recently we investigated the properties of stochastic multiplicative point processes analytically and
numerically [1]. We derived formula for the power spectrum and related the model with the general
form of multiplicative stochastic differential equations [2, 3]. Consequently, the stochastic model
of trading activity based on the Poisson-like process driven by the nonlinear stochastic differential
equation (SDE) was presented in Refs. [4, 5, 6, 7]. The statistical similarity of trading activity
and absolute return together with the general background of non-extensive statistics give us an
opportunity to model dynamics of return by nonlinear SDE.

Stochastic model with q-Gaussian PDF and long memory

We have proposed nonlinear SDE [2, 3]

dx = σ2
(

η − λ

2

)

x2η−1dt + σxηdW (1)

Due to requirement of the stationarity of the process, the stochastic equation (1) should be analyzed
together with the appropriate restrictions of the diffusion in some finite interval xmin 6 x 6 xmax

[2]. Solutions of SDE (1) exibit power-law probability distribution function, P (x) ∼ x−λ, and
power spectral density, S(f ) ∼ 1/fβ, in wide range of frequencies. Here

β = 1 − λ − 3

2η − 2
,

1

2
< β < 2 . (2)

Power spectral density is determined mainly by the power-law behavior of the coefficients of SDE
(1) at big values of x ≫ xmin. Changing the coefficients at small x, the spectrum retains power-law
behavior. Therefore, we propose the following modification of Eq. (1)

dx = σ2
(

η − λ

2

)

(x2
0 + x2)η−1xdt + σ(x2

0 + x2)η/2dW. (3)

The associated Fokker-Planck equation gives q-Gaussian PDF,

P (x) =
Γ(λ/2)√

πx0Γ((λ − 1)/2)

(

x2
0

x2
0 + x2

)λ/2

≡ Aq expq

(

−λ
x2

(3 − q)σ2
q

)

, (4)

q = 1 + 2/λ. (5)

Here expq(·) is q-exponential defined as expq(x) ≡ (1 + (1 − q)x)1/(1−q).
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Figure 1: PDF, P (x), of solution of Eq. (3) with parameters x0 = 1, σ = 1, λ = 3 and
η = 5/2 coinciding with the analytical Eq. (4) and spectrum, S(f ), in comparison with the
line representing 1/f spectrum.

Equation with two power-law exponents

In order to get spectrum with two power-law exponents we propose SDE

dx̃ =

(

η − λ

2
− (x̃ǫη)2

)

(1 + x̃2)η−1

((1 + x̃2)1/2ǫ + 1)2
x̃dt̃ +

(1 + x̃2)η/2

(1 + x2)1/2ǫ + 1
dW̃ . (6)

Here x̃ = x/x0 and t̃ = tσ2x
2(η−1)
0 are scaled variables. We demonstrate an example solutions of

equation (6) in figure 2.

Figure 2: Model calculated from Eq. (6) with the parameters η = 5/2, λ = 4.0, and ǫ = 0.01
PDF, P (x), (continuum line) in comparison with empirical histogram of one minute returns
of ABT stocks traded on NYSE (dots) and power spectrum, S(x), of returns.

Power-law statistics of financial variables

We consider two statistics of two financial variables: probability distribution functions (PDF) and
power spectral density S(f ).
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Figure 3: Left: PDF of absolute return, empirical (blue), moving averge (red), model
(black). Right: power spectrum of the absolute return for IBM stocks, β1 = 0.3, β2 = 0.73.

Nonlinear stochastic model of return

We assume that empirical return r can be written as

r = ξ{f (MA(r)), λ2} (7)

Here ξ{r0, λ} is a q-Gaussian stochastic variable, and MA(r) a moving average of return. Con-
ditional ξ{r0, λ} can be determined from empirical data for the fixed values of moving average
MA(r). The q-Gaussians with λ2 = 5 and

f (MA(r)) = 1 + 2.5 × |MA(r)|

are good approximations of ξ fluctuations for all stocks and values of modulating MA(r). The
PDF of moving average MA(r) can be approximated with q-Gaussian with parameters r̄0 = 0.2
and λ = 4. We propose to model the slowly diffusing long range memory modulating stochastic
return MA(r) by X = 1/τ

∫ t+τ
t x(t′)dt′, where x is a continuous stochastic variable defined by

nonlinear SDE (6):

dx̃ =

(

η − λ

2
− (x̃ǫη)2

)

(1 + x̃2)η−1

((1 + x̃2)1/2ǫ + 1)2
x̃dt̃ +

(1 + x̃2)η/2

(1 + x2)1/2ǫ + 1
dW̃ .
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Figure 4: Comparison of empirical and model statistics of one minute returns traded on
NYSE, PDF of normalized returns (a) empirical (red thin line) and model (gray thick line);
and power spectrum of absolute return (b) empirical (red thin line) averaged over 24 stocks
and model (green thick line) averaged over 24 realizations. All parameters are as follows:
λ = 3.6 q2 = 1.4; r̄0 = 0.2; τ = 0.0001/σ2 = 60 s; ǫ = 0.01.

Conclusions

We propose the nonlinear SDE reproducing the fascinating statistical properties of the financial
variables with q-Gaussian PDF and fractured behavior of the power spectrum. The proposed
stochastic model with empirically defined parameters reproduces the distribution of return and the
correlations evaluated through the power spectral density of absolute return. Stochastic modeling
of the financial variables by nonlinear SDE is consistent with the nonextensive statistical mechanics
and provides new opportunities to capture empirical statistics in detail.
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