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Abstract

During the last several years there has been a great deal of interest in slow and stationary light which can be
described using the concept of dark-state polaritons (DSPs) [1,2]. The slow and stationary DSPs are quasiparticles
composed of light and atomic spin excitations. They are formed in resonant atomic media under the influence of
several light beams of higher intensities [1-3]. In the previous studies it was shown that the stationary DSPs can
be produced by applying two counter-propagating control beams in a double Lambda setup [1,2]. Such polaritons
behave as bosons with a finite effective mass and can even experience the Bose-Einstein condensation [2]. Yet the
existing studies restrict to polaritons which are described by a single-component field, there being no previous
treatment of multi-component DSPs.
Here we propose a more complex setup involving four control laser beams and two probe beams. This makes it
possible to create the two component slow and stationary polaritons exhibiting a number of distinct properties,
such as neutrino type oscillations between the probe fields. Under certain conditions the DSPs can be described
by a Dirac-type equation for a relativistic particle with a finite mass. This leads to the “particle-antiparticle”’
dispersion branches separated by a gap δ. The corresponding Compton wave-length λC = v0/δ determines the
tunneling length of probe light though the sample, v0 being the “ultrarelativisitc” velocity of slow polaritons.
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Formulation

Conditions:

• Propagation of two weak (probe) light beams in a resonant atomic medium under the
influence of several stronger (control) laser beams.

• Probe beams couple the ground state g to two excited states e1 and e2 .

•Control beams couple excited states ej to another two ground states sk .

•Control beams make the medium transparent for resonant probe beams in a narrow fre-
quency range due to the electromagnetically induced transparency (EIT).

• 4-photon resonance: ω1 − ω11 = ω2 − ω21 , ω1 − ω12 = ω2 − ω22 .

Limiting cases:

• 〈B1|B2〉 = 0 — two not connected tripods

• 〈B1|B2〉 = 1 — double Lambda setup

• 0 < | 〈B1|B2〉 | < 1 — two connected tripods

Matrix representation: E =

(

E1
E1

)

, Φs =

(

Φs1
Φs2

)

, Φe =

(

Φe1
Φe2

)

Equation for the slowly (in time) varying amplitudes of the probe fields:

∂tE − i

2
ck̂−1∇2E − i

2
ck̂E = igΦ∗

gΦe

Equations for the atomic probability amplitudes (neglecting atomic motion):

i~∂tΦg = −~gE†Φe

i~∂tΦe = ~∆̂Φe − ~Ω̂Φs − ~gΦgE
i~∂tΦs = ~δ̂Φs − ~Ω̂†Φe

Here the matrices are k̂ =

(

k1 0
0 k2

)

, Ω̂ =

(

Ω11 Ω12

Ω21 Ω22

)

, ∆̂ =

(

∆1 0
0 ∆2

)

, δ̂ =

(

δ1 0
0 δ2

)

g = gj = µj(ωj/2ǫ0~)1/2 is the coupling strength; Φg and Φe are the atomic probability amplitudes of the ground

and excited states; k1 = ω1/c and k2 = ω2/c are wave-numbers; ∆1 and ∆2 are the detunings from one-photon

resonance; δ1 and δ2 are the detunings from two-photon resonance.

The adiabatic approximation (neglection of the excited state population): Φs = −gΦgΩ̂
−1E

Matrix equation for the two-component probe field (for stationary control fields):

v−1 ∂

∂t
E − i

2
k̂−1∇2E − i

2
k̂E + i

(

v−1 − 1

c

)

D̂E = 0

D̂ = Ω̂δ̂Ω̂−1 — matrix of the two-photon detuning

v−1 =
1

c
+

g2n

c
(Ω̂†)−1Ω̂−1 — defines matrix of inverse group velocity

Counter-propagating beams

Counter-propagating probe and control beams:
E1(r, t) = Ẽ1(r, t)e

ik1z , E2(r, t) = Ẽ2(r, t)e
−ik2z and

Ω1j = Ω̃1je
ik1jz , Ω2j = Ω̃2je

−ik2jz .

Equation for paraxial probe beams neglecting the diffraction
term:

ṽ−1 ∂

∂t
Ẽ + σz

∂

∂z
Ẽ + i

(

ṽ−1 − 1

c

)

D̃Ẽ = 0

The Rabi frequencies of control beams with equal intensities: Ω̃ij = Ω√
2
exp(iSij)

The relative phase of the control fields: S = 1
2(S12 + S21 − S11 − S22)

• S = ±π/2 — two not connected tripods

• S = 0 — double Lambda setup

• 0 < |S| < π/2 — two connected tripods

Matrix of inverse polariton velocity: σzṽ
−1 ≈ 1

v0

1
sin2 S

(

1 − cos S
cos S −1

)

Eigenvalues of σzṽ
−1: 1

v±gr
= ± 1

v0| sin S|, v0 = cΩ2

g2n

Eigenfunctions of σzṽ
−1: χ± = 1√

2(1∓| sin S|)

(

cos S
(1 ∓ | sin S|)

)

• The group velocity is a non-diagonal matrix (for S 6= π/2)

• Individual probe fields do not have a definite group velocity

• Only special combinations of both probe fields (polaritons) propagate in the atomic cloud
with the definite velocities

• Neutrino-type oscillations are possible (next)

Neutrino type oscillations for polaritons

Zero two-photon detuning δ1 = δ2 = 0

σzṽ
−1 ∂

∂t
Ẽ +

∂

∂z
Ẽ = 0

Two polaritons Ẽ± ∼ χ±. Two dispersion branches with opposite slopes:
∆ω± = ±vgr∆k . Here ∆ω = 0 is the intersection point of both polariton branches.

E1 is reflected into E2. Reflection and transmission coefficients:

R =
−2i cos(S) sin(∆ωL/vgr)

(1 − | sin S|)e−i∆ω L
vgr − (1 + | sin S|)ei∆ω L

vgr

, T =
2| sin S|

(1 + | sin S|)ei∆ω L
vgr − (1 − | sin S|)e−i∆ω L

vgr

Oscillations of R and T occur if |S| 6= π/2 i.e. if we have two connected tripod systems
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Dirac equation for two-component polariton

We assume that S = ±π/2. Non-zero two photon detuning
δ1 = −δ2 ≡ δ 6= 0

•A gap in dispersion (“electron-positron” type spectrum)

•Dirac type equation with non-zero mass for two component
polaritons:

i
∂

∂t
Ẽ = −iv0σz

∂

∂z
Ẽ + δσyẼ

Relativistic particle-antiparticle dispersion: ∆ω± = ±
√

v2
0∆k2 + δ2

~δ = mv2
0 — gap width, m — polariton effective mass
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Reflection and transmission coefficients at the gap center (∆ω = 0):

T = cosh−1(L/λC) , R = tanh(L/λC)

λC = ~/mv0 = v0/δ — Compton wave-length of the polariton. The Compton wave-length
determines the polariton tunneling length.


