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WHAT IS QUANTUM MACHINE LEARNING
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QUANTUM MACHINE LEARNING

Different approaches to combine quantum computing and
machine learning
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QUANTUM MACHINE LEARNING

• Quantum Machine Learning uses a
quantum device for performing
machine learning tasks.

• Quantum Machine Learning uses a
quantum device for classification or
feature extraction from quantum states.

• Larger speed or larger accuracy than it
is possible using classical machine
learning methods.
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QUANTUM MACHINE LEARNING

There are known algorithms for a quantum computer that
perform faster than classical counterparts:

• HHL algorithm for solving of a system of linear equations.
• Performs a matrix inversion using an amount of resources
growing only logarithmically in the dimensions of the
matrix.

• Requirement: matrix should be sparse or low rank

• Quantum Fourier transform
• Amplitude amplification methods based on Grover’s
search algorithm
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ALGORITHMS

• Quantum k-means clustering
• Quantum SVM
• Quantum PCA
• Quantum neural networks
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DATA INPUT



QUANTUM STATE PREPARATION

When QML algorithm processes classical data, one needs to
encode classical data to a quantum state. Two encoding
methods:

• Bit encoding
• Amplitude encoding
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BIT ENCODING

i-th data record consisting of a squence of N bits
b(i) = (b1, b2, . . . bN) is encoded as a sequence of qubits

O|i⟩|0⟩ = |i⟩|b(i)⟩ ,

where O is an operator representing an data oracle.

Bit encoding is used in

• Quantum SVM
• Quantum k-nearest neighbours
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BIT ENCODING

• Advantage: data is presnted in the same way as in
classical ML algorithm

• Disadvantage: needs large number of qubits
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AMPLITUDE ENCODING

Data record x = (x1, x2, . . . xN) having N elements is encoded in
superposition amplitudes

|φ(x)⟩ = 1
χ

N∑
i=1

xi|i⟩ , χ =

√√√√ N∑
i=1

x2
i .

Here |i⟩ are basis vectors.

Amplitude encoding is used in

• Quantum k-nearest neighbours
• Quantum neural networks

Advantage: for encoding N numbers one needs n = log2 N
qubits. Exponentially compact representation.
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QUANTUM RAM

• qRAM uses n qubits to address any quantum
superposition of N = 2n memory cells.

• O(logN) switches are needed to select memory cell
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CLASSIFIER USING PARAMETRIZED
QUANTUM CIRCUITS
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CLASSIFIER USING PARAMETRIZED QUANTUM CIRCUITS

• Quantum circuit parametrized by parameters θ
• Represented by an unitary operator U(θ)

• Input data x are represented by a quantum state |φ(x)⟩
• Quantum circuit transforms the input state to U(θ)|φ(x)⟩
• Classification result f(x, θ) is measured on the output
qubit in the state U(θ)|φ(x)⟩

• Parameters θ are optimized to get correct classification
results
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HYBRID QUANTUM-CLASSICAL TRAINING ALORITHM

input output

gradientsupdate

quantum device
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TRAINING ALGORITHM

• Quantum circuit parameters θ are optimized using
classical gradient descent algorithm

• Derivatives ∂θU(θ) with respect to the parameters are
calculated by a quantum circuit

input output

gradientsupdate

quantum device
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INPUT

Amplitude encoding is used for input

|φ(x)⟩ = 1
χ

N∑
i=1

xi|i⟩ , χ =

√√√√ N∑
i=1

x2
i .

using n qubits, 2n = N
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OBJECTIVE FUNCTION

Predicted labels ℓ(x) = λ1, λ2, . . . are obtained by measuring
the output state. The measurement corresponds to a
Hermitian operator

A =
∑

j
λjPλj ,

where Pλj are projection operators to the eigenspace
corresponding to λj.

Objective function: mean likelihood of inferring the correct
label

L(θ) = 1
M

∑
x:ℓ(x)=λj

⟨φ(x)|U†(θ)PλjU(θ)|φ(x)⟩ ,

where M is the size of the dataset.
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STRUCTURE OF QUANTUM CIRCUIT

• Quantum circuit are constructed from blocks

U(θ) = Gout(θout)BL(θL) · · ·B2(θ2)B1(θ1)

• Each block Bl(θl) consist of n single-qubit gates and n
controlled single-qubit gates forming a cyclic code.
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CYCLIC CODE

• Cyclic code is characterized by a hyperparameter
0 < r < n.

• For any qubit with index j there should be one controlled
single-qubit gate with the j-th qubit as the target and
(j + r) mod n -th qubit as the control.

• A cyclic code block can cause a near-maximum increase or
decrease of the bipartite entanglement entropy.
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RAPIDLY ENTANGLING BLOCK
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CIRCUIT PARAMETERIZATION

Single-qubit gate

G(α, β, γ) =

(
eiβ cosα eiγ sinα

−e−iγ sinα e−iβ cosα

)
, α, β, γ ∈ [0, π]

Controlled single-qubit gate

|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ G
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PARTIAL DERIVATIVES

• The partial derivatives of single-qubit gate G(α, β, γ) yield
a gate of the same type.

• A partial derivative of a controlled single-qubit gate is no
longer a unitary operator

• A partial derivative of a controlled single-qubit gate can
be represented as a linear combination of two unitary
operators

∂θ{|0⟩⟨0|⊗I+|1⟩⟨1|⊗G} = |1⟩⟨1|⊗∂θG =
1
2(I⊗∂θG−σz⊗∂θG)

• Partial derivatives ∂θU(θ) can be represented as a certain
linear combination of unitary circuits of the same
architecture.

• The sum of the terms in the derivatives are calculated by
classical postprocessing.
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PROBLEMS



PROBLEMS

• Barren plateaus (exponentially vanishing gradients)
• Data loading can take a large number of steps

24



BARREN PLATEAUS

• Random initialization of parameters.
• The probability that the gradient along any direction is
non-zero is exponentially small as a function of the
number of qubits.

• Can be caused by noise in quantum device
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BARREN PLATEAUS

• Exponential dimension of Hilbert space.
• Entanglement between the visible and hidden units in a
quantum neural network

• Entanglement causes information to be non-locally stored
in the correlations between the qubits rather than in the
qubits themselves.

• Measuring only visible qubits, such information is lost.
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SUMMARY



SUMMARY

• Quantum computers can accelerate ML algorithms
• For some ML tasks, even quantum computers with
moderate number (∼ 100) of qubits can be useful

• However, it is still unclear if QML provides practical
advantage
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