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Lévy α-stable distribution

I Stable distributions are “attractors” for sums of
independent and identically distributed random
variables.

I Lévy stable distribution is a result of generalized
central limit theorem.

I Characteristic function has the form

F [Pα(z)] = 〈exp(ikz)〉 = exp(−σα|k |α) .

I Asymptotically power-law:

Pα(z) ∼ 1/z1+α



Lévy α-stable distribution

Special cases:
I α = 1 Cauchy distribution

P1(z) =
σ

π(σ2 + z2)

I α = 3/2 Holtsmark distribution
I α = 2 Gaussian distribution

P2(z) =
1

σ
√

2π
e
− z2

2σ



Lévy α-stable distribution

There are systems exhibiting Lévy α-stable distributions:
I turbulent magnetised plasma
I photons in hot atomic vapours
I velocity distribution of particles in fractal turbulence



Brownian motion and Lévy flight



Lévy flights modeled by SDEs with Lévy noise

We consider the Langevin equation of the form

dx
dt

= a(x) + b(x)ξ(t)

The stochastic force ξ(t) is:
I uncorrelated, 〈ξ(t)ξ(t ′)〉 = δ(t − t ′)
I characterized by Lévy α-stable distribution:
〈exp(ikξ)〉 = exp(−σα|k |α)

I α is the index of stability and σ is the scale parameter.
Another way to write the same equation:

dx = a(x)dt + b(x)dLαt

dLαt stands for the increments of Lévy α-stable motion Lαt



Fractional Fokker-Planck equation

Fractional Fokker-Planck equation instead of stochastic
differential equation:

∂

∂t
P(x , t) = − ∂

∂x
a(x)P(x , t) + σα

∂α

∂|x |α
b(x)αP(x , t)

Here ∂α/∂|x |α is the Riesz-Weyl fractional derivative:

F
[
∂α

∂|x |α
f (x)

]
= −|k |αf̃ (k)



Fractional equations in physical systems

If a(x) = 0 and b(x) = const

∂

∂t
P(x , t) = σα

∂α

∂|x |α
P(x , t)

Diffusion on fractal
structures:

I polymers
I plasmas
I fractal turbulence in

liquids



Goals

1. To find a simple stochastic differential equation with
Lévy stable noise generating signals having
power-law steady state PDF,

P0(x) ∼ x−λ

2. To generalize previously proposed nonlinear
stochastic differential equation with Gaussian noise
that generates signals having 1/f spectrum



1/f noise

I In contrast to the Brownian motion, the signals and
processes with 1/f spectrum cannot be modeled by
the linear stochastic equations

I A nonlinear stochastic differential equation

dx = σ2(η − λ/2)x2η−1
dt + σxηdWt

generates signals exhibiting 1/f spectrum

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).

B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365,

217 (2006).

I Has been used to describe signals in
socio-economical systems



Problem

I The Riesz-Weyl fractional derivative is complicated. In
the coordinate space

∂α

∂|x |α
f (x) = − 1

2 cos
(
πα
2

){D−α+ f (x) + D−α− f (x)}

where D−α+ and D−α− are the left and right
Riemann-Liouville derivatives

I It is difficult to obtain SDEs with Lévy noise having
desired properties



Equation for steady state PDF

Equation for steady state PDF:

σα
∂α

∂|x |α
b(x)αP0(x)− ∂

∂x
a(x)P0(x) = 0

I Can be written as −dJ(x)/dx = 0, where J(x) is the
probability current.

I Reflective boundaries lead to the boundary condition
J(x) = 0



SDEs generating signals with power-law PDF

Let us assume that
b(x) = xη

Fractional derivative of the power-law function

f (x) = xρ, xmin � x � xmax

is

d
α

d|x |α
f (x) ≈

sin
(
π
(
α
2 − ρ

))
sin
(
π
2 (ρ− α)

) Γ(1 + ρ)

Γ(1 + ρ− α)
xρ−α , −1 < ρ < α



SDEs generating signals with power-law PDF

When
b(x) = xη

then the drift term has the form

a(x) = σαγxµ

where
µ = α(η − 1) + 1

and

γ =
sin
[
π
(
α
2 − αη + λ

)]
sin[π(α(η − 1)− λ)]

Γ(αη − λ+ 1)

Γ(α(η − 1)− λ+ 2)



SDEs generating signals with power-law PDF

Proposed equation

dx = σαγxα(η−1)+1
dt + xηdLαt

Particular cases:
I α = 2:

dx = σ2(2η − λ)x2η−1
dt + xηdL2

t .

I α = 1:
dx = σ cot[π(λ− η)]xηdt + xηdL1

t .



What if we allow x to be negative?

Power-law steady state PDF:

P0(x) ∼ |x |−λ

Again we assume

b(x) = |x |η , x � xmin

Fractional derivative of the power-law function

f (x) = |x |ρ, xmin � |x | � xmax

is

d
α

d|x |α
f (x) ≈

sin
(
π
2ρ
)

sin
(
π
2 (α− ρ)

) Γ(1 + ρ)

Γ(1 + ρ− α)
|x |ρ−α , −1 < ρ < α



SDEs generating signals with power-law PDF

The drift term has the form

a(x) = σαγ|x |µ−1x

where
µ = α(η − 1) + 1

and

γ =
sin
[
π
2 (αη − λ)

]
sin
[
π
2 (λ− α(η − 1))

] Γ(αη − λ+ 1)

Γ(α(η − 1)− λ+ 2)

γ has a different expression!



SDEs generating signals with power-law PDF

Proposed equations

dx =σαγ(x2
0 + x2)

α
2 (η−1)xdt + (x2

0 + x2)
η
2 dLαt

dx =σαγ(xα0 + |x |α)η−1xdt + (xα0 + |x |α)
η
αdLαt



Estimation of power spectral density

I Autocorrelation function can be written as

C(t) =

∫
dx
∫

dx ′ xx ′P0(x)Px (x ′, t |x , 0)

I P0(x) is the steady state PDF
I Px (x ′, t |x , 0) is the transition probability
I The transition probability can be obtained from the

solution of the fractional Fokker-Planck equation with
the initial condition Px (x ′, 0|x , 0) = δ(x ′ − x).



Scaling property of the proposed equation

I Our equation:

dx = σαγxα(η−1)+1
dt + xηdLαt

I The increments of Lévy α-stable motion dLαt have the
scaling property

dLαat = a1/α
dLαt

I Changing the variable x to the scaled variable
xs = ax or introducing the scaled time ts = aα(η−1)t
one gets the same resulting equation.



Estimation of power spectral density

I Trasnsition probability has a scaling property

Px (ax ′, t |ax , 0) = a−1Px (x ′,aα(η−1)t |x , 0)

I Steady state PDF has power-law form

P0(x) ∼ x−λ

I Autocorrelation function C(t) has scaling property

C(at) ∼ aβ−1C(t)

where

β = 1 +
λ− 3

α(η − 1)

I This means that S(f ) ∼ f−β



1/f noise

I S(f ) ∼ f−β with

β = 1 +
λ− 3

α(η − 1)

I If λ = 3 then β = 1: we get 1/f noise
I Proposed stochastic differential equations with Lévy

stable noise are yet another model generating signals
having 1/f spectrum in a wide range of frequencies.



Numerical example: x only positive
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Numerical example: x positive and negative
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Summary

I We obtain a class of nonlinear SDEs with Lévy stable
noise giving the power-law steady state distribution of
the signal intensity

I and power-law behavior of the power spectral
density in any desirably wide range of frequencies.

I Proposed SDEs describe Lévy flights in non-equilibrium
and non-homogeneous environments

I In contrast to the SDEs with the Gaussian noise, the
constant in the drift term is different when the
stochastic variable can also be negative.



Summary

I Replacing a Gaussian noise with a Lévy stable noise
in the equation changes the scaling properties of the
signal

I In order to preserve original scaling properties, the
drift or diffusion coefficients should be changed as
well.



Thank you for your
attention!

R. Kazakevičius, J. Ruseckas, Physica A 411, 95 (2014)
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