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Lévy a-stable distribution

» Stable distributions are “aftractors” for sums of
independent and identically distributed random
variables.

» Lévy stable distribution is a result of generalized
central limit theorem.

» Characteristic function has the form
F [Pa(2)] = (exp(ikz)) = exp(—a*|K|?).
» Asymptotically power-law:

Py(2) ~ 1/z1



Lévy a-stable distribution

Special cases:
» o = 1 Cauchy distribution

Pi(2) = ———sm
» o = 3/2 Holtsmark distribution
» o = 2 Gaussian distribution
1 2
Pa(2) = e %



Lévy a-stable distribution

There are systems exhibiting Lévy a-stable distributions:
» furbulent magnetised plasma
» photons in hot atomic vapours
» velocity distribution of particles in fractal turbulence



Brownian motion and Lévy flight

V.V, Yanousky et al [ Physica A 282 (2000] 13-34
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Lévy flights modeled by SDEs with Lévy noise

We consider the Langevin equation of the form

dx
3 = A0+ b()E()
The stochastic force (1) is:

» uncorrelated, (£(H)E(F)) = 6(F — 1)

» characterized by Lévy a-stable distribution:
(exp(iks)) = exp(—o(k|?)
» « is the index of stability and ¢ is the scale parameter.
Another way to write the same equation:

dx = a(x)df + b(x)dLy

dL$ stands for the increments of Lévy a-stable motion L¢



Fractional Fokker-Planck equation

Fractional Fokker-Planck equation instead of stochastic
differential equation:

(67

0 a
—a(xX)P(x,t)+o G

ox

0 a
E'D(X’ 1) =— b(x)*P(x, 1)

Here 0%/0|x|* is the Riesz-Weyl fractional derivative:
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Fractional equations in physical systems

If a(x) =0 and b(x) = const
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—P(x.1) = o® P(x,t
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Diffusion on fractal
structures:

» polymers

» plasmas

» fractal turbulence in
liquids
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Goals

1. To find a simple stochastic differential equation with
Lévy stable noise generating signals having
power-law steady state PDF,

Po(x) ~ x~*

2. To generalize previously proposed nonlinear
stochastic differential equation with Gaussian noise
that generates signals having 1/1 spectrum



1/f noise

» In contrast to the Brownian motion, the signals and
processes with 1/f spectrum cannot be modeled by
the linear stochastic equations

» A nonlinear stochastic differential equation
dx = o?(n — N/2)x*"~1dt + ox"dW;
generates signals exhibiting 1/f spectrum

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).
B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365,
217 (2006).

» Has been used to describe signals in
socio-economical systems



Problem

» The Riesz-Weyl fractional derivative is complicated. In
the coordinate space

0 1

a0 =~ gc0s (g 107700+ BT0)

where D, and D~* are the left and right
Riemann-Liouville derivatives

» It is difficult fo obtain SDEs with Lévy noise having
desired properties



Equation for steady state PDF

Equation for steady state PDF:

o 8?:]‘1 b(x)*Py(x) — %O(X)PO(X) =0

» Can be written as —dJ(x)/dx = 0, where J(x) is the
probability current,

» Reflective boundaries lead to the boundary condition
J(x)=0



SDEs generating signals with power-law PDF

Let us assume that
b(x) = x"

Fractional derivative of the power-law function

f(X) = va Xmin <K X < Xmax

o sn(m(g=p) [040)
) ~ sin (g(;—a)) r(1 +,o—a)Xp ’

-T<p<a



SDEs generating signals with power-law PDF

When
b(x) = x"

then the driff ferm has the form
a(x) = o%yx*
where

p=am—1)+1

and
sinm (5 —an+A)]  Tlan—A+1)

~osinfm(a(n = 1) = N)] T(aln—1) =X+ 2)

gl



SDEs generating signals with power-law PDF

Proposed equation
dx = gyx@=DH1at 4 x1dLy

Particular cases:
> oa=2:
dx = 0?(2n — \)x21~1dt 4+ x"dL2 .

> a=1:
dx = o cot[r(\ — n)]x"dt + x"dL} .



What if we allow x to be negative?

Power-law steady state PDF:
Po(x) ~ |x|7
Again we assume
b(x) =Ix[",  X>> Xmin
Fractional derivative of the power-law function
F(x) = IxI?,  Xmin < |X| < Xmax

is

o NG T4
d|x|« sin (5(a—p)) T(1+p—a)

x|, —lT<p<a



SDEs generating signals with power-law PDF

The driftf ferm has the form
a(x) = o*Ix|"~"x

where
p=almn—1)+1
and

Lo Sn [5(an — V)] Man—A+1)
sin [\ — a(n— 1) T(a(n—1)—A+2)

~ has a different expression!



SDEs generating signals with power-law PDF

Proposed equations

dx =o°v(xG + x?)2 (1= Dxdt + (x§ + x?)2dL¢
dx =0y (x§ + [x|%)"" xdt + (x§ + [X|*) = dLf



Estimation of power spectral density

Autocorrelation function can be written as

v

C(t) = / dx / dx’ XX’ Py(x)P¢(X', X, 0)

v

Py(x) is the steady state PDF
Px(x’, t|x,0) is the fransition probability
The transition probability can be obtained from the

solution of the fractional Fokker-Planck equation with
the initial condition Py(x’, 0|x,0) = §(x’ — x).

v

v



Scaling property of the proposed equation

» Our equation:
dx = g®yx@(=D+1qt 4 xndLe

» The increments of Lévy a-stable motion dL$ have the
scaling property

aLe, = a'l/edLe

» Changing the variable x to the scaled variable
Xs = ax or infroducing the scaled time f; = g*(= 1t
one gets the same resulting equation.



Estimation of power spectral density

» Trasnsition probability has a scaling property
Py(ax', tax,0) = a~ ' Py(x', a*("=Dt|x, 0)

» Steady state PDF has power-law form

Po(x) ~ x*

» Autocorrelation function C(t) has scaling property
C(at) ~ a*~'C(t)
where
A—3

=1
=

» This means that S(f) ~ 7



1/f noise

» S(f) ~ =P with
A—3

a(n—1)

» If A =3then s =1: we get 1/f noise

» Proposed stochastic differential equations with Lévy
stable noise are yet another model generating signals
having 1/f spectrum in a wide range of frequencies.

B=1+



Numerical example: x only positive
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Numerical example
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Summary

» We obtain a class of nonlinear SDEs with Lévy stable
noise giving the power-law steady state distribution of
the signal intensity

» and power-law behavior of the power spectral
density in any desirably wide range of frequencies.

» Proposed SDEs describe Lévy flights in non-equilibrium
and non-homogeneous environments

» In contrast to the SDEs with the Gaussian noise, the
constant in the drift term is different when the
stochastic variable can also be negative.



Summary

» Replacing a Gaussian noise with a Lévy stable noise
in the equation changes the scaling properties of the
signal

» In order to preserve original scaling properties, the
drift or diffusion coefficients should be changed as
well.



Thank you for your
attention!

R. Kazakevicius, J. Ruseckas, Physica A 411, 95 (2014)
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