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Slow light
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Three level Λ system

Probe beam: Ωp = µgeEp
Control beam: Ωc = µseEc
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Three level Λ system

Dark state
|D〉 ∼ Ωc |g〉 − Ωp|s〉

Transitions g → e and s → e interfere destructively
Cancellation of absorption
Electromagnetically induced transparency—EIT
Very fragile
Very narrow transparency window
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Slow light

Narrow transparency window
∆ω ∼ 1 MHz

Very dispersive medium
Small group velocity
— slow light

Julius Ruseckas (Lithuania) Multi-component slow light July 19, 2012 6 / 35



Slow light

Narrow transparency window
∆ω ∼ 1 MHz

Very dispersive medium
Small group velocity
— slow light

Julius Ruseckas (Lithuania) Multi-component slow light July 19, 2012 6 / 35



Slow light

Narrow transparency window
∆ω ∼ 1 MHz

Very dispersive medium
Small group velocity
— slow light

Julius Ruseckas (Lithuania) Multi-component slow light July 19, 2012 6 / 35



Storing of slow light

Nature, Hau et al, 2001
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Storing of slow light

Dark state
|D〉 ∼ |g〉 −

Ωp

Ωc
|s〉

Information on probe beam is contained in the atomic coherence
Storing of light—switching off control beam;
information in the atomic coherence is retained
Releasing—switch on control beam
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Storing of slow light

Initial storage times (L. V. Hau et al, Nature 2001): 1 ms
Later improvement:

Storage time 240 ms:
U. Schnorrberger et al, Phys. Rev. Lett. 103, 033003 (2009).
storage time > 1 s
R. Zhang et al, Phys. Rev. Lett. 103, 233602 (2009).
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Stationary light

Stationary light:
Storing without switching off the control fields

Theory:
A. Moiseev and B. S. Ham, Phys. Rev. A 73, 033812 (2006).

F. E. Zimmer, J. Otterbach, R. G. Unanyan, B. W. Shore, and M. Fleischhauer,
Phys. Rev. A 77, 063823 (2008).

M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Phys. Rev. Lett. 101, 163601 (2008).

J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliūnas, and M. Fleischhauer,
Phys. Rev. Lett. 104, 033903 (2010).

Experiment:
Y.-W. Lin et al., I. A. Yu, Phys. Rev. Lett. 102, 213601 (2009).
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Double Λ scheme

An additional excited state
An additional, counter-propagating control laser beam
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Stationary light

Quadratic dispersion
Stationary polariton (normal mode of the radiation) with
non-zero meff
Stationary light
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Multi-component slow light

Slow light consisting of several connected fields?
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First try: double Λ scheme

Used for stationary light
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Double Λ scheme: bad for our purposes

Only one dark state can be formed
Only one dark state polariton (propagating without absorbtion)
For multicomponent slow light we need to add more levels.
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Double tripod setup

R. G. Unanyan, J. Otterbach, M. Fleischhauer, J. Ruseckas, V. Kudriašov, G. Juzeliūnas,
Phys. Rev. Lett. 105, 173603 (2010).
J. Ruseckas, V. Kudriašov, G. Juzeliūnas, R. G. Unanyan, J. Otterbach, M. Fleischhauer,
Phys. Rev. A 83, 063811 (2011).
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Double tripod setup

Probe fields E1 and E2 are coupled via atomic coherences if
〈B1|B2〉 6= 0
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Double tripod setup

Limiting cases:
〈B1|B2〉 = 0 — two not connected tripods
〈B1|B2〉 = 1 — double Lambda setup
0 < | 〈B1|B2〉 | < 1 — two connected tripods
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Another scheme
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Another scheme
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Propagation of slow light

Matrix representation — Spinor slow light:

E =

(
E1
E2

)

Equation for two-component probe field in the atomic cloud:

(c−1 + v̂−1)
∂

∂t
E +

∂

∂z
E + iv̂−1D̂E = 0

Similar to the equation for probe field in Λ scheme, only with matrices.
Here v̂−1 is a matrix of inverse group velocity (not necessarily
diagonal).
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Neutrino-type oscillations for slow light

The group velocity is a non-diagonal matrix
Individual probe fields do not have a definite group velocity
Only special combinations of both probe fields (normal modes)
propagate in the atomic cloud with the definite (and different)
velocities
This difference in velocities causes interference between probe
fields
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Neutrino-type oscillations for slow light

Light is converted to a superposition of modes with different wave
vectors.
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Neutrino-type oscillations for slow light

Copropagating beams, only one probe beam E1 is incident on the
atomic cloud.
Oscillations of transmission probabilities T1 and T2 occur.
Inclusion of non-adiabatic losses leads to attenuation of the
intensity of transmitted beams ∼ exp(−2φ2/α), where φ is a
phase of oscillations.
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Oscillations in double tripod setup

20 40 60 80 100
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Α

T
2

Dependence of transmission probabilities |T1|2 (blue line) and |T2|2
(red line) on the optical density α.
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Oscillations in another scheme
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Dependence of transmission probabilities |T1|2 (blue line) and |T2|2
(red line) on the optical density α.
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Photonic band-gap for two-component slow light

Counter-propagating beams in double tripod
setup
Non-zero two photon detuning
δ1 = −δ2 ≡ δ 6= 0
Dirac type equation with non-zero mass for
two component slow light:

i
∂

∂t
Ẽ = −iv0σz

∂

∂z
Ẽ + δσy Ẽ

Here v0 = cΩ2

g2n

A gap in dispersion (“electron-positron” type
spectrum)
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Photonic band-gap for two-component slow light

-4

-3

-2

-1

 0

 1
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-3 -2 -1  0  1  2  3

∆ω / δ
1

v
0
 ∆k

Relativistic particle-antiparticle dispersion:
∆ω± = ±

√
v2

0 ∆k2 + δ2

~δ = mv2
0 — gap width, m — polariton effective mass

Julius Ruseckas (Lithuania) Multi-component slow light July 19, 2012 28 / 35



Photonic band-gap for two-component slow light

-4

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

∆ω / δ
1

v
0
 ∆k

Relativistic particle-antiparticle dispersion:
∆ω± = ±

√
v2

0 ∆k2 + δ2

~δ = mv2
0 — gap width, m — polariton effective mass

Julius Ruseckas (Lithuania) Multi-component slow light July 19, 2012 28 / 35



Dirac equation for two-component slow light

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

|T|
2

Lδ/v
0

Reflection and transmission coefficients at the gap center
(∆ω = 0):

T = cosh−1(L/λC) , R = tanh(L/λC)

λC = ~/mv0 = v0/δ — Compton wave-length of the polariton.
The Compton wave-length determines the polariton tunneling
length.
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Multi-component stationary light

Double tripod configuration with counter-propagating beams.
Initially two-photon detuning δ is zero
and only one probe beam E1 with central frequency ∆ω = 0 is
incident on the atomic cloud
resulting in slow light, propagating with the velocity v0
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Multi-component stationary light

When the wave packet of the beam E1 is inside the cloud, the
two-photon detuning is suddenly increased from 0 to δ
A gap in the dispersion forms
If the width in frequency space is smaller than the width
of the gap 2δ
two-component stationary light is created
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Multi-component stationary light

Light is converted to superposition of eigenstates with positive and
negative frequencies.
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Multi-component stationary light

Instead of propagating, light oscillates between two probe fields:(
E1
E2

)
=

(
cos(δt)
sin(δt)

)

At later time t = tr , decreasing the two-photon detuning δ back to
zero, the stationary light is converted back to slow light

Probe beam can be frozen in the medium forming a two-component
stationary light and subsequently released.
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Summary

Two component slow and stationary light exhibits a number of
distinct properties, such as the neutrino type oscillations between
the components of light.
Under certain conditions the slow light can be described by a
relativistic equation of the Dirac-type for a particle of a finite mass,
dispersion branches are separated by an energy gap.
The corresponding Compton length determines the tunneling
length of multicomponent light though the sample.
The probe beams can be frozen in the medium forming a
two-component stationary light and subsequently released.
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Thank you for your attention!
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