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Introduction



Rydberg atoms

P. Schauß et al, Nature 491, 87 (2012).
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Rydberg atoms

Rydberg atom
A Rydberg atom is an excited atom with an electron in a state
with a very high principal quantum number n ? 50.
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Rydberg atom

Distinctive properties of Rydberg states:
• an enhanced response to electric and
magnetic field

• long decay times
• electron wavepackets move along
classical orbits

• excited electron experiences Coulomb
electric potential

• radius of an orbit scales as n2

• energy level spacing decreases as 1/n3
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Interactions between Rydberg atoms

• Transition dipole moment to nearby states scales as n2

• Strong dipole-dipole interactions
• The interaction strength rapidly increases with n;
• The strength of interactions for n ? 100 can be comparable
to the strength of the Coulomb interaction between ions.

• Can be used for engineering of desired many-particle
states.
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Dipole blockade

• If one atom is excited into the Rydberg state
• strong interaction shifts the resonance frequencies of all
the surrounding atoms

• suppressing their excitation.

• Rydberg blockade can be applied in
• quantum information processing
• non-linear quantum optics using Rydberg EIT
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Slow light
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Three level Λ system

Probe beam: Ωp = µgeEp

Control beam: Ωc = µgeEc
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Three level Λ system

• Dark state
|D⟩ ∼ Ωc|g⟩ − Ωp|s⟩

• Transitions g → e and s → e interfere destructively
• Cancelation of absorbtion
• Electromagnetically induced transparency—EIT
• Very fragile
• Very narrow transparency window
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Slow light

• Narrow transparency window
∆ω ∼ 1 MHz

• Very dispersive medium
• Small group velocity — slow light
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Rydberg EIT

• EIT→ atom-light interactions without absorption
• Rydberg states→ strong long-range atom-atom
interactions

• As a result→ photon-photon interactions.
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Rydberg EIT

For a single incident probe photon
• the control field induces a transparency
in a narrow spectral window via EIT

• probe photon is coupled to Rydberg
excitation forming a combined
quasiparticle — Rydberg polariton

• Rydberg polariton propagates at a
reduced speed≪ c
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Rydberg EIT

When two probe photons
propagate in the Rydberg
medium
• strong interaction between
two Rydberg atoms tunes
the transition out of the
resonance

• destroying the
transparency and leading
to absorption.
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Experimental realization of quantum nonlinear optics

A. V. Gorshkov et al, Phys. Rev. Lett. 107, 133602 (2011).

T. Peyronel et al, Nature 488, 57 (2012).

46 ≤ n ≤ 100
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Experimental realization: attractive photons

O. Firstenberg et al, Nature 502, 71 (2013).
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Storing slow light using two Rydberg states

J. Ruseckas, I. A. Yu, G. Juzeliūnas, Phys. Rev. A 95, 023807 (2017).

• Ladder scheme with the
Rydberg state s

• Storing procedure:
1. Probe field is stored in a
coherence between
ground state g and
Rydberg state s

2. π/2 pulse is applied
converting the Rydberg
state |s⟩ to a
supperposition of s and
p Rydberg states

|+⟩ = 1√
2
(|s⟩+ |p⟩) 17



Stored Rydberg slow light

• Resonance dipole-dipole
interaction between
Rydberg atoms V

• Exchange of the s and p
Rydberg states.

• During the storage
correlated pairs of atoms
are created in the initially
not populated state

|−⟩ = 1√
2
(|s⟩ − |p⟩)
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Stored Rydberg slow light

• At the end of the sorage a
second π/2 pulse is
applied, converting the
state |−⟩ into Rydberg
state |s⟩ and state |+⟩ into
state |p⟩.

• Excitations in the s state
are converted into the
probe photons,

• p state excitations remain
in the medium.
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Consequences

• No regenerated slow light without interaction between the
atoms

• Restored probe beam contains correlated pairs of photons
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Second-order correlation function of the restored light

g(2)out(τ) ∼ [V(vg0τ)T]2

• Allows to measure
interaction potential

• Corrections due to the
finite spectral width of EIT
(see red dashed curve)
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Spinor slow light



Spinor slow light

M.-J. Lee, J. Ruseckas, et al, Nat. Commun. 5, 5542 (2014).
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Double tripod setup

• R. G. Unanyan, J. Otterbach, M. Fleischhauer, J. Ruseckas, V. Kudriašov,
G. Juzeliūnas, Phys. Rev. Lett. 105, 173603 (2010).

• J. Ruseckas, V. Kudriašov, G. Juzeliūnas, R. G. Unanyan, J. Otterbach,
M. Fleischhauer, Phys. Rev. A 83, 063811 (2011).

23



Double tripod setup

Probe fields E1 and E2 are coupled via atomic coherences if
⟨B1|B2⟩ ̸= 0
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Double tripod setup

Limiting cases:

• ⟨B1|B2⟩ = 0 — two not connected Λ schemes
• ⟨B1|B2⟩ = 1 — double Λ setup
• 0 < | ⟨B1|B2⟩ | < 1 — two connected Λ schemes
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Propagation of slow light

Matrix representation — Spinor slow light:

E =

(
E1
E2

)
, Ω̂ =

(
Ω11 Ω12
Ω21 Ω22

)
, δ̂ =

(
δ1 0
0 δ2

)
δ1 and δ2 are the detunings from two-photon resonance.

Equation for two-component probe field in the atomic cloud:

(c−1 + v̂−1)
∂

∂tE +
∂

∂zE + iv̂−1D̂E = 0

Similar to the equation for probe field in Λ scheme, only with
matrices.

D̂ = Ω̂δ̂Ω̂−1 is a matrix due to two-photon detuning,

v̂−1 =
g2n
c (Ω̂†)−1Ω̂−1

is a matrix of inverse group velocity (not necessarily diagonal).
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Spinor slow light

• The group velocity is a non-diagonal matrix
• Individual probe fields do not have a definite group
velocity

• Only special combinations of both probe fields (normal
modes) propagate in the atomic cloud with the definite
(and different) velocities

• This difference in velocities causes interference between
probe fields
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Spinor slow light for co-propagating beams

Two-photon detuning causes oscillations in the intensities of
transmitted probe fields

M.-J. Lee, J. Ruseckas, et al, Nat. Commun. 5, 5542 (2014).

• Detuning can be caused by the interaction
• For example: generation of correlated two-photon states
due interaction between Rydberg atoms
J. Ruseckas, I. A. Yu, G. Juzeliūnas, Phys. Rev. A 95, 023807 (2017). 28



Nonlinear quantum optics for
spinor slow light



Double tripod scheme with Rydberg levels

Double tripod atom-light coupling scheme involving the
Rydberg levels s1 and s2.
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Description of propagation

In the continuum approximation the probe fields and atomic
excitations can be represented by slowly varying operators
Ê†

j (z), Ψ̂
†
ej(z) and Ψ̂†

sj(z).

The probe fields are assumed to be sufficiently weak at the
input, so that the contribution due to more than two photons
is not important

Two-excitation wave functions

ΦEjEl(z, z′, t) =⟨vac|Êj(z, t)Êl(z′, t)|Φ⟩
ΦEjsl(z, z′, t) =⟨vac|Êj(z, t)Ψ̂sl(z′, t)|Φ⟩
Φsjsl(z, z′, t) =⟨vac|Ψ̂sj(z, t)Ψ̂sl(z′, t)|Φ⟩
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Double tripod scheme with Rydberg levels

|S1⟩ ∼ Ω11|s1⟩+Ω12|s2⟩ , |S2⟩ ∼ Ω21|s1⟩+Ω22|s2⟩

31



Approximate equations for propagation of two photons

Two-photon wave funtion

ΦEjEl = −1
2(ΦEjSl +ΦSjEl)

One-photon wave functions

c∂zΦEjSl =
i
2g2∆̃−1

j (ΦEjSl +ΦSjSl)

c∂z′ΦSjEl =
i
2g2∆̃−1

l (ΦSjEl +ΦSjSl)

Two atomic excitations∑
m

∆̃−1
m
(
vj,m(ΦEmSl +ΦSmSl) + vl,m(ΦSjEm +ΦSjSm)

)
− 2c

g2 V(z′ − z)ΦSjSl = 0
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Equal one-photon detunings

Closed equation

i∂RΦEjEl = −4Labs
∆̃

Γ
∂2

rΦEjEl

+
i

v̄ − Labs
∆̃
Γ V(r)

∑
m

(vl,m∂rΦEjEm − vj,m∂rΦEmEl)

+
V(r)

v̄ − Labs
∆̃
Γ V(r)

∑
m,n

Ajl,mnΦEmEn

Here

R =
1
2(z + z′) , r = z − z′ , v̄ =

1
2(v1,1 + v2,2)
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Equal one-photon detunings: consequences

• When ∆ ≫ Γ, equation of propagation has the form of a
Schrödinger equation; the center of mass coordinate R
plays the role of time.

• The first term: represents the kinetic energy
• The second term: couples the linear momentum and
represents spin-orbit coupling for the photons.

• The last term: effective potential for the photons
V(r) = Γ/(2Labs∆) when r is smaller than the blockade
radius
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Equal one-photon detunings: consequences

• When ∆ ≪ Γ, the propagation equation acquires the form
of a diffusion equation.

• The diffusion term: spreading out of the wave packet of
slow light caused by the non-adiabatic losses due to the
deviation from the EIT central frequency.

• The last term: the absorption of the photons when the
relative distance is small; the Rydberg blockade effect.
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Second-order correlation functions
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Only the first probe beam with the amplitude a is incident on
the atom cloud; v1,2/v1,1 = 1/2.

Second-order correlation functions normalized to the intensity
of the incident probe beam

G(2)
j,l (0) =

1
a4 |ΦEjEl(R = L, r = 0)|2
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Second-order correlation functions

Photon bunching, G(2)
1,1(0) > 1,

due to the atom-atom
interactions
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Opposite signs of one-photon detunings

• In contrast to a single ladder scheme, in the double tripod
setup the two one-photon detunings can take different
values

• Problem: the approximations leading to the single closed
equation are not valid when detunings are different.
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Two ladder schemes

No transfer of photons between probe beams.
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Description of propagation

One needs to solve two coupled equations

c∂zΦEjsl =
i
2g2∆̃−1

j (ΦEjsl +Φsjsl)

c∂z′ΦsjEl =
i
2g2∆̃−1

l (ΦsjEl +Φsjsl)

where

Φsjsl =
∆̃−1

j ΦEjsl + ∆̃−1
l ΦsjEl

2c
g2vV(z′ − z)− (∆̃−1

j + ∆̃−1
l )

Two-photon wave funtion

ΦEjEl = −1
2(ΦEjsl +ΦsjEl)
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Both probe beams incident on the atom cloud
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Summary



Summary

• The double tripod scheme can combine spin-orbit
coupling for the spinor slow light with an interaction
between photons.

• Atom-atom interactions can cause transfer of photons
between probe beams.

• In contrast to a single ladder scheme, in the double tripod
setup the two one-photon detunings can take different
values.

• Large one-photon detunings lead to an effective
interaction between photons which is attractive when
detunings are equal and repulsive when they have
opposite signs.
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Thank you for your attention!
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