Slow and stored light using Rydberg atoms

Julius Ruseckas

Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania

April 28, 2016

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 1 / 33

イロト イポト イヨト イヨト

Rydberg atoms

Slow light

Storing of slow light

5 Storing slow light using two Rydberg states

Summary

イロト イポト イヨト イヨト

Rydberg atoms

P. Schauß et al, Nature 491, 87 (2012).

Julius Ruseckas (Lithuania)

Rydberg slow light

<ロ> <同> <同> <同> < 同> < 同>

Rydberg atom

A Rydberg atom is an excited atom with an electron in a state with a very high principal quantum number $n \ge 50$.

イロト イヨト イヨト

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 4 / 33

Distinctive properties of Rydberg states:

- an enhanced response to electric and magnetic field
- long decay times
- electron wavepackets move along classical orbits
- excited electron experiences Coulomb electric potential
- radius of an orbit scales as n^2
- energy level spacing decreases as $1/n^3$

イロト イポト イヨト イヨト

- Transition dipole moment to nearby states scales as n^2
- Strong dipole-dipole interactions
- The interaction strength rapidly increases with n;
- The strength of interactions for $n \ge 100$ can be comparable to the strength of the Coulomb interaction between ions.
- Can be used for engineering of desired many-particle states.

Image: A matrix and a matrix

Interactions between Rydberg atoms

Interactions depend on the distance as:

• in the van der Waals regime

 $1/R^{6}$

• in the dipole-dipole regime

 $1/R^{3}$

Image: A matrix and a matrix

- Strong long-range interactions lead to cooperative effects such as:
 - superradiance
 - dipole blockade.
- May provide a basis for applications such as single-photon sources and quantum gates.

• If one atom is excited into the Rydberg state

- strong interaction shifts the resonance frequencies of all the surrounding atoms
- suppressing their excitation.
- Rydberg blockade can be applied in
 - quantum information processing
 - non-linear quantum optics using Rydberg EIT

Slow light

Julius Ruseckas (Lithuania)

Rydberg slow light

Three level Λ system

Probe beam: $\Omega_{\rm p} = \mu_{ge} E_{\rm p}$ Control beam: $\Omega_{\rm c} = \mu_{ge} E_{\rm c}$

Three level **A** system

Dark state

 $|D
angle \sim \Omega_{
m c}|g
angle - \Omega_{
m p}|s
angle$

- Transitions g
 ightarrow e and s
 ightarrow e interfere destructively
- Cancelation of absorbtion
- Electromagnetically induced transparency—EIT
- Very fragile
- Very narrow transparency window

- Narrow transparency window $\Delta \omega \sim 1 \, \mathrm{MHz}$
- Very dispersive medium
- Small group velocity slow light

< <p>O > < <p>O >

э

- 王

A weak probe field ${\cal E}$ is coupled to Rydberg levels by a strong control field $\Omega.$

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 14 / 33

- 王

A weak probe field ${\cal E}$ is coupled to Rydberg levels by a strong control field $\Omega.$

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 14 / 33

A weak probe field ${\cal E}$ is coupled to Rydberg levels by a strong control field $\Omega.$

- EIT \rightarrow atom-light interactions without absorption
- \bullet Rydberg states \rightarrow strong long-range atom-atom interactions
- As a result \rightarrow photon-photon interactions.

3

イロト イポト イヨト イヨト

For a single incident probe photon

- the control field induces a transparency in a narrow spectral window via EIT
- probe photon is coupled to Rydberg excitation forming a combined quasiparticle — Rydberg polariton
- Rydberg polariton propagates at a reduced speed « c

Image: A matrix and a matrix

When two probe photons propagate in the Rydberg medium

- strong interaction between two Rydberg atoms tunes the transition out of the resonance
- destroying the transparency and leading to absorption.

A D > A D >

Experimental realization of quantum nonlinear optics

A. V. Gorshkov et al, Phys. Rev. Lett. 107, 133602 (2011).

T. Peyronel *et al*, Nature **488**, 57 (2012).

 $46 \le n \le 100$

Only one photon propagates without absorption in the Rydberg blockade region. All additional photons are absorbed leading to losses

Our proposal

To use atom-atom interactions during light storage.

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 19 / 33

イロト イポト イヨト イヨト 一日

Hau et al, Nature, 2001

ъ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Storing of slow light

Dark state

$$|D
angle \sim |g
angle - rac{\Omega_{
m p}}{\Omega_{
m c}}|s
angle$$

- Information on probe beam is contained in the atomic coherence
- Storing of light switching off control beam; information about light is retained in the atomic coherence
- Releasing switch on control beam

- \bullet Initial storage times (L. V. Hau *et al*, Nature 2001): 1 ms
- Now achievable storage time ~ 1 min
 G. Heize *et al*, Phys. Rev. Lett. 111, 033601 (2013).

イロト イポト イヨト イヨト

Storing slow light using two Rydberg states

J. Ruseckas, I. A. Yu, and G. Juzeliūnas, in preparation

- Ladder scheme with the Rydberg state *s*
- Storing procedure:
 - Probe field is stored in a coherence between ground state g and Rydberg state s
 - π/2 pulse is applied converting the Rydberg state |s> to a supperposition of s and p Rydberg states

$$|+
angle = rac{1}{\sqrt{2}}(|s
angle + |p
angle)$$

Stored Rydberg slow light

- Resonance dipole-dipole interaction between Rydberg atoms V
- Exchange of the *s* and *p* Rydberg states.
- During the storage correlated pairs of atoms are created in the initially not populated state

$$|-
angle=rac{1}{\sqrt{2}}(|s
angle-|p
angle)$$

A D > A D >

State of atoms at the end of storage period

atom in state g
 atom in state +
 atom in state -

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 25 / 33

- At the end of the sorage a second π/2 pulse is applied, converting the state |−⟩ into Rydberg state |s⟩ and state |+⟩ into state |p⟩.
- Excitations in the *s* state are converted into the probe photons,
- *p* state excitations remain in the medium.

- No regenerated slow light without interaction between the atoms
- Restored probe beam contains correlated pairs of photons

2

프 에 제 프 어 ...

Image: A matrix and a matrix

Second-order correlation function:

$$\mathcal{G}^{(2)}(\tau) = \frac{\langle \mathcal{E}^{\dagger}(t) \mathcal{E}^{\dagger}(t+\tau) \mathcal{E}(t+\tau) \mathcal{E}(t) \rangle}{\langle \mathcal{E}^{\dagger}(t) \mathcal{E}(t) \rangle \langle \mathcal{E}^{\dagger}(t+\tau) \mathcal{E}(t+\tau) \rangle}$$

Can be measured using the Hanbury-Brown and Twiss detection scheme

-

Second-order correlation function of the restored light

We assume

$$r_{\rm c} \lesssim r_{\rm Ry}$$
,

where

• r_c is a characteristic interaction distance: $V(r_c)T = 1$

r_{Ry} is a mean distance between Rydberg atoms

Second order correlation function of the restored light

$$g^{(2)}_{ ext{out}}(au) \sim 1 - \cos[V(extbf{v}_{g0} au) au]$$

For small storage time T

$$g_{\mathrm{out}}^{(2)}(\tau) \sim [V(v_{g0}\tau)T]^2$$

Second-order correlation function of the restored light

$$g_{\rm out}^{(2)}(\tau) \sim [V(v_{g0}\tau)T]^2$$

- Allows to measure interaction potential
- Corrections due to the finite spectral width of EIT (see red dashed curve)

Influence of slow light losses

The restored light acquires a finite spectral width $\Delta \omega_{out} \sim v_{g0}/r_c$, which leads to a finite life-time of the dark state polariton, $\tau_{\rm pol}^{-1} = 2\Gamma (\Delta \omega_{\rm out}/\Omega_c)^2$. This distorts short time behaviour of $g_{\rm out}^{(2)}(\tau)$.

- Two-photon states can be created by properly storing and retrieving the slow light in the medium of Rydberg atoms
- The second-order correlation function of the restored light is determined by the atom-atom interactions during the storage.
- Measurement of the restored light allows one to probe interactions in many-body systems using optical means.
- Sensitivity of such measurements can be increased by increasing the storage time.

<ロ> <同> <同> < 回> < 回> < 回> = 三

Thank you for your attention!

Julius Ruseckas (Lithuania)

Rydberg slow light

April 28, 2016 33 / 33

3

イロト イポト イヨト イヨト