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ﬂ Rydberg atoms
© siow light

© Rydberg EIT

@ Storing of slow light

e Storing slow light using two Rydberg states

e Summary
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Rydberg atoms

P SchauB et al, Nature 491, 87 (2012).
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Rydberg atoms

Rydberg atom

A Rydberg atom is an excited atom with an electron in a stafe
with a very high principal guantum number n > 50.

Rydberg electron

lon core
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Rydberg atom

Distinctive properties of Rydberg states:

@ an enhanced response to electric and
magnetic field

@ long decay times

@ electron wavepackets move along
classical orbits

@ excited electron experiences Coulomb
electric potential

@ radius of an orbit scales as n?
@ energy level spacing decreases as 1/n°
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Interactions between Rydberg atoms

@ Transition dipole moment to nearby states scales as n?
@ Strong dipole-dipole interactions
@ The interaction strength rapidly increases with n;

@ The strength of interactions for n > 100 can be comparable
to the strength of the Coulomb interaction between ions.

@ Can be used for engineering of desired many-parficle states.
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Interactions between Rydberg atoms

@ Inferactions depend on the distance as:
e in the van der Waals regime

1/R8
e in the dipole-dipole regime

1/R3
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Consequences of interactions

@ Strong long-range interactions lead to cooperative effects
such as:

e superradiance
e dipole blockade.
@ May provide a basis for applications such as single-photon
sources and quantum gates.
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Dipole blockade

@ If one atom is excited info the Rydberg state
e sfrong interaction shifts the resonance frequencies of all the
surrounding atoms
@ suppressing their excitation.
@ Rydberg blockade can be applied in

e guantum information processing
@ non-linear quantum optics using Rydberg EIT
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Slow light

18 February 1999
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Three level A system

Probe beam: Q, = pgekp
Control beam: Q. = pgeke
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Three level A system

@ Dark state

D) ~ Qc[g) — Qpls)
@ Transitions g — e and s — e interfere destructively
@ Cancelation of absorbtion
@ Electromagnetically induced transparency—EIT
@ Very fragile
@ Very narrow transparency window

Julius Ruseckas (Lithuania) Rydberg slow light April 28, 2016 12 /33



Slow light

Transmission

@ Narrow transparency window

-~ Aw ~ 1 MHz

2% e Very dispersive medium
@ Small group velocity — slow light
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Rydberg EIT

)

A weak probe field £ is coupled to Rydberg levels by a strong
control field Q.
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Rydberg EIT

S S
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A weak probe field £ is coupled to Rydberg levels by a strong
control field Q.
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Rydberg EIT

A weak probe field £ is coupled to Rydberg levels by a strong
control field Q.

Julius Ruseckas (Lithuania) Rydberg slow light April 28, 2016 14/ 33



Rydberg EIT

@ EIT — afom-light interactions without absorption
@ Rydberg states — strong long-range atom-atom interactions
@ As aresult — photon-photon interactions.
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Rydberg EIT

For a single incident probe photon
@ the conftrol field induces a tfransparency
in a narrow spectral window via EIT

@ probe photon is coupled to Rydberg
excitation forming a combined
quasiparticle — Rydberg polariton

@ Rydberg polariton propagates at a
reduced speed <« ¢
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Rydberg EIT

When two probe photons
propagate in the Rydberg
medium

@ strong interaction between
two Rydberg atoms tunes
the fransition out of the
resonance

@ destroying the fransparency
and leading to absorption.
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Experimental realization of quantum nonlinear

optics

A. V. Gorshkov et al, Phys. Rev. Lett. 107, 133602 (2011).
T. Peyronel et al, Nature 488, 57 (2012).
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Disadvantage of Rydberg EIT

Only one photon propagates without absorption in the Rydberg
blockade region. All additional photons are absorbed leading
fo losses

Our proposal
To use atom-atom interactions during light storage.
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Storing of slow light

Hau ef al, Nature, 2001
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Storing of slow light

@ Dark state a
D) ~1g) = &°1s)

@ Information on probe beam is contained in the atomic
coherence

@ Storing of light — switching off control beam; information
about light is retained in the atomic coherence

@ Releasing — switch on control beam
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Storing of slow light

@ Initial storage times (L. V. Hau et al, Nature 2001): 1ms

@ Now achievable storage time ~ 1 min
G. Heize ef al, Phys. Rev. Left. 111, 033601 (2013).

Julius Ruseckas (Lithuania) Rydberg slow light April 28, 2016 22 /33



Storing slow light using two Rydberg states

J. Ruseckas, I. A. Yu, and G. Juzelidnas, in preparation

@ Ladder scheme with the s p J J p
Rydberg state s A Vs — 1)
@ Storing procedure: o
@ Probe field is stored in a Qc § §
coherence between
ground state g and e
Rydberg state s %F @1
@ 7/2 pulse is applied Qp
converting the Rydber
9 Yy g g Y

state |s) to @
supperposition of s and p
Rydberg states

1
+) = ﬁ(ls> +1P))
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Stored Rydberg slow light

@ Resonance dipole-dipole s p J J p
inferaction between A Ve, — 1)
Rydberg atoms V 7o

@ Exchange of the sand p
Rydberg states.

@ During the storage e%% e @1

correlated pairs of atoms 0
are created in the initially L
not populated state 9

|

=) = 7(|S> )
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State of atoms at the end of storage period

O atomin stateg
® atom in state +
@ atom in state -
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Stored Rydberg slow light

e Atthe end of thesoragea ¢ p J J _p
i i A
second /2 pulse is applied, Ve — )
converting the state |-) into T
Rydberg state |s) and state  {2c s s

|+) info state |p).

@ Excitations in the s state are 6%% 2 @1

converted intfo the probe

photons, SPJ'— Q Q e

@ p state excitations remain in

the medium. @ @2

Julius Ruseckas (Lithuania) Rydberg slow light April 28, 2016 26/ 33



Consequences

@ No regenerated slow light without interaction between the
atoms

@ Restored probe beam contains correlated pairs of photons
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Second-order correlation function

Second-order correlation function:

(ETNET(t+T)E(H+ T)E())

9 = (e eI ET(F + e+ )

CC

Can be measured using the
Hanbury-Brown and Twiss detection
scheme

BS .
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Second-order correlation function

of the restored light

We assume
re <n
¢~ 'Ry» PY O 0] 0 o o
where OO Ow o
@ 1. is a characteristic interaction distance: o .o ° OO 2 o°
V()T =1 %oo ce e
@ Ry is @ mean distance between Rydberg © o
atoms

Second order correlation function of the restored light
gla(r) ~ 1 = cos[V(vgor)T]
For small storage fime T

g2 () ~ [V(vgor) TP
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Second-order correlation function

of the restored light

gl (r) ~ [V(vgor) TP

100 5 -
104 | N N
@ Allows to measure
. . . -8 L
intferaction potential @ 1©
@ Corrections due to the finite 1012 |
spectral width of EIT o6 |
(see red dashed curve) - !
100 10! 102 103
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Influence of slow light losses

The restored light acquires a finite spectral width Awous ~ Vgo/Te.
which leads to a finite life-time of the dark state polariton,
pol = 2T (Awout /Q)?. This distorts short time behaviour of gc(,i{( ).

100
e -
\
10’4 B \
]08 |
@)
10—12 |
10’16 -
" " P | " " PR | " " PR
100 10! 102 103

Julius Ruseckas (Lithuania) Rydberg slow light April 28, 2016 31/33



@ Two-photon states can be created by properly storing and
retrieving the slow light in the medium of Rydberg atoms
@ The second-order correlation function of the restored light is

determined by the atom-atom interactions during the
storage.

@ Measurement of the restored light allows one to probe
inferactions in many-body systems using optical means.

@ Sensitivity of such measurements can be increased by
increasing the storage time.
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Thank you for your affention!
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