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1/f noise

Our researches are related with the 1/f noise problem and long-range
processes.

1/f noise is a type of noise whose power spectral density S(f ) as
a function of the frequency f behaves like S(f ) ∼ 1/f β where the
exponent β is close to 1.
Fluctuations of signals exhibiting 1/f behavior of the power
spectral density at low frequencies have been observed in a wide
variety of physical, geophysical, biological, financial, traffic, the
Internet, astrophysical and other systems.
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Example of 1/f noise
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Power spectral density of trading activity (number of trades per 1 min).
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1/f noise

1/f noise is intermediate between white noise, S(f ) ∼ 1/f 0 and
Brownian motion S(f ) ∼ 1/f 2.
Brownian motion can be generated by linear stochastic equation
The widespread occurring signals and processes with 1/f
spectrum cannot be understood and modeled in such a way.
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Point processes

The signal of the model consists of pulses or events

I(t) = a
∑

k

δ(t − tk )

Point processes arise in different fields, such as physics,
economics, ecology, neurology, seismology, traffic flow, financial
systems and the Internet.
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Power spectral density

Stochastic process for the interevent time

τk+1 = τk + a(τk ) + b(τk )εk

Approximate expression for power spectral density

S(f ) = 4Ī2τ̄

∫ ∞
0

dτ Pτ (τ) Re
∫ ∞

0
dq exp

(
i2πf [τq + a(τ)q2/2]

)
=

Ī2τ̄√
πf

∫ ∞
0

Pτ (τ) Re
√

x
τ

e−ix+iπ/4 erfc(
√
−ix) dτ , x ≡ πf τ2

a(τ)

B. Kaulakys, V. Gontis, and M. Alaburda, Phys. Rev. E 71, 051105 (2005)
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Stochastic multiplicative point process

Stochastic multiplicative process for the interevent time

τk+1 = τk + γτ2µ−1
k + στµk εk

Diffusion of the interevent time restricted to the finite interval
[τmin, τmax]. Probability density function (PDF) for τk

Pτ (τk ) =
1 + α

τ1+α
max − τ1+α

min

ταk , α =
2γ
σ2 − 2µ

Power spectral density in the low frequency limit

S(f ) = (2+α)(β−1)Γ(β−1/2)√
πα(τ2+α

max −τ2+α
min ) sin(πβ/2)

( γ
π

)β−1 1
fβ ,

β = 1 +
α

3− 2µ
, 1/2 < β < 2
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Signal of the point process. Simulated examples
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Simplest case:
γ = 0, µ = 0, β = 1 : 1/f spectrum.

Ruseckas et al. (Lithuania) Tsallis distributions March 02, 2009 9 / 37



Transformation to the stochastic differential equation

Transformation to the Itô stochastic differential equation (SDE) in
k -space

dτk = γτ2µ−1
k dk + στµk dW (k)

Transition from the occurrence number k to the actual time t
according to the relation dt = τk dk yields

dτ = γτ2µ−2dt + στµ−
1
2 dW

Averaged over time interval τk intensity of the signal x = 1
τ .

Transformation of the variable from τ to x yields

dx = σ2(η − λ/2)x2η−1dt + σxηdW (1)

where
η = 5/2− µ , λ = 2(η − 1 + γ/σ2)
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Stochastic differential equation for the signal

Equation (1) generates signals with the power-law distribution of the
signal intensity and power spectral density

P(x) ∼ x−λ , S(f ) ∼ f−β , β = 1− λ− 3
2η − 2
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Restricted diffusion

Exponentially restricted diffusion with the distribution densities

P(x) ∼ 1
xλ

exp
{
−
(xmin

x

)m
−
(

x
xmax

)m}
Is generated by the stochastic differential equation

dx = σ2
[
η − λ

2
+

m
2

(
xm

min
xm −

xm

xm
max

)]
x2η−1dt + σxηdW
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Numerical simulation
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1/f spectrum.
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Signals consisting of bursts

Numerical analysis indicates that solutions of SDE (1) have a
second structure composed of peaks, bursts, clusters of events.
Bursts are characterized by power-law distributions of burst size,
burst duration, and interburst time.
Proposed nonlinear SDE may simulate

avalanches in self-organized critical (SOC) models
extreme event return times in long memory processes

B. Kaulakys and M. Alaburda, J. Stat. Mech. P02051 (2009).
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Signals consisting of bursts
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Possibility of changing SDE

1/f β power spectral density is determined mainly by power-law
behavior of the coefficients of SDE (1) at big x . Changing the
coefficients at small x , spectrum retains power-law behavior.
PDF from associated Fokker-Planck equation has power-law
dependence on x .
Therefore, SDE (1) can be naturally connected with generalized
canonical distributions of nonextensive statistical mechanics —
q-exponentials.

q-exponential is defined as

expq(x) ≡ (1 + (1− q)x)
1

1−q

Ruseckas et al. (Lithuania) Tsallis distributions March 02, 2009 16 / 37



q-exponential distribution

Stochastic differential equation

dx = σ2(η − λ/2)(x + x0)2η−1dt + σ(x + x0)ηdW

is linear for small x � x0

restrict divergence of power-law distribution of x at x = 0
generates stochastic processes with power spectral density
S(f ) ∼ 1/f β

probability density function in the form of q-exponential

P(x) =
λ− 1

x0

(
x0

x + x0

)λ
=
λ− 1

x0
expq(−λx/x0)

q = 1 + 1/λ
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Numerical simulation
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Numerically simulated distribution density and power spectral density
(λ = 3, η = 5/2).
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q-Gaussian distribution

Stochastic differential equation

dx = σ2(η − λ/2)(x2
0 + x2)η−1xdt + σ(x2

0 + x2)η/2dW

allows negative values of x
for small x � x0 is linear, becomes ordinary Brownian motion with
relaxation
generates stochastic processes with power spectral density
S(f ) ∼ 1/f β

probability density function in the form of q-Gaussian

P(x) =
Γ(λ2 )

√
πx0Γ(λ−1

2 )

(
x2

0
x2

0 +x2

)λ
2

=
Γ(λ2 )

√
πx0Γ(λ−1

2 )
expq

(
−λ x2

2x2
0

)
q = 1 + 2/λ
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Numerical simulation

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

-1000 -500  0  500  1000

P(
x)

x

10-3

10-2

10-1

100

101

102

103

104

 0.0001 0.001  0.01  0.1  1  10  100

S(
f)

f

Numerically simulated distribution density and power spectral density
(λ = 3, η = 5/2).

Ruseckas et al. (Lithuania) Tsallis distributions March 02, 2009 20 / 37



Slowly changing mean

Another connection with q-exponential:
Stochastic process with slowly fluctuating mean driven by the
multiplicative stochastic differential equation.
Superstatistical approach
At small frequencies the spectrum is determined by the driving
SDE.
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q-exponential distribution

Conditional probability

ϕ(x |x̄) = x̄−1 exp(−x/x̄) .

The mean x̄ changes according to the equation

dx̄ = σ2
[
η − λ

2
+

1
2

x0

x̄

]
x̄2η−1dt + σx̄ηdW

The stationary PDF from associated Fokker-Planck equation is

P(x̄) =
(
x0Γ(λ− 1)

)−1
(x0/x̄)λ exp(−x0/x̄)

Then PDF of x is q-exponential

P(x) =
∫∞

0 ϕ(x |x̄)P(x̄) dx̄ = λ−1
x0

(
x0

x+x0

)λ
= λ−1

x0
expq(−λx/x0) , q = 1 + 1/λ
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Numerical simulation
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q-Gaussian distribution

Conditional probability

ϕ(x |x̄) = 2
(√
πx̄
)−1 exp(−x2/x̄2) , x > 0

The mean is proportional to x̄ which changes according to the equation

dx̄ = σ2

[
η − λ

2
+

x2
0

x̄2

]
x̄2η−1dt + σx̄ηdW

The stationary PDF from associated Fokker-Planck equation is

P(x̄) = 2
x0Γ(λ−1

2 )
(x0/x̄)λ exp(−x2

0/x̄
2)

Then PDF of x is q-Gaussian

P(x) =
2Γ(λ2 )

√
πx0Γ(λ−1

2 )

(
x2

0
x2

0 +x2

)λ
2

=
2Γ(λ2 )

√
πx0Γ(λ−1

2 )
expq

(
−λ x2

2x2
0

)
q = 1 + 2/λ
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Numerical simulation
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Application to the description of trading

Time series of financial data exhibit highly nontrivial statistical
properties. Many of these properties appear to be universal.
Trading activity, trading volume, and volatility are stochastic
variables with the long-range correlation. The autocorrelation of
the volatility decays only slowly as a power law
PDF of return and trading activity have fat tails exhibiting
power-law decay.
Proposed equations can exhibit both power-law PDF and
power-law spectrum.

Ruseckas et al. (Lithuania) Tsallis distributions March 02, 2009 26 / 37



Intertrade time

The distribution of intertrade time τ at big intertrade times is close to
stretched exponential.
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Intertrade time
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Modeling of trading sequence

Trade sequence — Poissonian like point process with slowly fluctuating
mean intertrade time. Each individual intertrade duration τ is
distributed according to exponential distribution

ϕ(τ |n) = n exp(−n τ)

The distribution of trading activity:

Pn(n) = 2
n0Γ(λ−1

2 )
(n0/n)λ exp(−n2

0/n
2) (2)

The distribution of intertrade durations

P(τ) =
∫∞

0
n
〈n〉ϕ(τ |n)Pn(n) dn −→

τ→∞

(
τ
τ0

)λ−4
3 exp

(
−3
(

τ
2τ0

) 2
3
)

Here 〈n〉 =
∫∞

0 nPn(n)dn is average trading activity and τ0 = 1/n0.
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Comparison with empirical data
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Used parameters: λ = 3.4, τ0 = 7.3 s .
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Trading return

The distribution of normalized return r per 1 min is close to q-Gaussian.
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Modeling of return

Standard deviation of return is proportional to the trading activity.

ϕ(r |n) =
1√
πan

exp
(
− r2

a2n2

)
a is the coefficient of proportionality.
Using the same distribution of trading activity (2) as in modeling the
intertrade duration, we get the distribution of return

P(r) =
∫∞

0 ϕ(r |n)Pn(n) dn =
Γ(λ2 )

√
πr0Γ(λ−1

2 )

(
r2
0

r2
0 +r2

)λ
2

=
2Γ(λ2 )

√
πr0Γ(λ−1

2 )
expq

(
−λ r2

2r2
0

)
, q = 1 + 2/λ

Here r0 = an0.
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Comparison with empirical data

Normalized return: r = (r − 〈r̃〉)/
√
〈(r̃ − 〈r̃〉)2〉.

For normalized return r0 =
√
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The same parameters as for intertrade duration: λ = 3.4 (q = 1.59).
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SDE for trading activity

In order to reproduce the empirical data for both the PDF and the
spectrum of the trading activity in the financial markets,
modification of the equation is proposed

dn = σ2

[
5/2− λ/2 +

n2
0

n2

]
n4

(nε+ 1)2 dt +
σn5/2

(nε+ 1)
dW

ε defines crossover between two areas of n diffusion.
Parameters: λ = 4.28, (q = 1.47), σ/τ0 = 0.005, ε/τ0 = 0.03.
V. Gontis, B. Kaulakys, J. Ruseckas, Physica A 387, 3891 (2008).

Problem of equation: unnaturally high spikes of activity.
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Spectrum and distribution
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Summary

Long-range memory processes with the power-law distributions of
the signal intensity and power spectral density can be modeled by
nonlinear stochastic differential equations.
Generalized canonical distributions of nonextensive statistical
mechanics can be obtained from proposed nonlinear SDE.
PDF of intertrade time and PDF of return can be obtained using
superstatistical approach from trading activity, whereas trading
activity may be modeled by proposed nonlinear SDE. Such
approach readily gives power-law spectrum of intertrade time and
absolute return.
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Thank you for your attention!
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