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What is 1/f noise?

1/f noise
a type of noise whose power spectral density S(f ) behaves like

S(f ) ∼ 1/f β , β is close to 1

occasionally called “flicker noise”
or “pink noise”
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1/f noise

First observed (in 1925) by Johnson in vacuum tubes.

Julius Ruseckas (Lithuania) Nonlinear stochastic differential equations August 28, 2012 4 / 32



1/f noise

Fluctuations of signals exhibiting 1/f behavior of the power spectral
density at low frequencies have been observed in a wide variety of
physical, geophysical, biological, financial, traffic, Internet,
astrophysical and other systems.
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1/f noise

Many mathematical models:
Superposition of relaxation processes

S(f ) =
∫ γ2

γ1

N
γ2 + ω2 dγ ≈ πN

2ω
, γ1 � ω � γ2

Dynamical systems at the edge of chaos

xn+1 = xn + xz
n mod 1

Alternating fractal renewal process

Self-Organized Criticallity
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A bibliography on 1/f noise is vast

Published items in each year. Topic: 1/f noise, 1/f fluctuations, flicker
noise, pink noise (Web of Science)
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1/f noise

1/f noise is intermediate between white noise, S(f ) ∼ 1/f 0 and
Brownian motion S(f ) ∼ 1/f 2

In contrast to the Brownian motion generated by the linear
stochastic equations, the signals and processes with 1/f
spectrum cannot be understood and modeled in such a way.

Goal
to find a simple nonlinear stochastic differential equation (SDE)
generating signals exibiting 1/f noise
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Notes about 1/f noise

Often 1/f noise is defined by a long-memory process,
characterized by S(f ) ∼ 1/f β as f → 0.
A pure 1/f power spectrum is physically impossible because
the total power would be infinity.
We search for a model where the spectrum of signal has 1/f β

behavior only in some intermediate region of frequencies,
fmin � f � fmax, whereas for small frequencies f � fmin the
spectrum is bounded.
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Heuristic derivation of SDE

If S(f ) ∼ f−β then power spectral density has a scaling property

S(af ) = a−βS(f )

Wiener-Khintchine theorem

C(t) =
∫ +∞

0
S(f ) cos(2πft) df

Autocorrelation function C(t) has scaling property

C(at) ∼ aβ−1C(t)
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Heuristic derivation of SDE

Autocorrelation function can be written as

C(t) =
∫

dx
∫

dx ′ xx ′P0(x)Px(x ′, t |x ,0)

P0(x) is the steady state PDF
Px(x ′, t |x ,0) is the transition probability
The transition probability can be obtained from the solution of the
Fokker-Planck equation with the initial condition
Px(x ′,0|x ,0) = δ(x ′ − x).
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Heuristic derivation of SDE

Let us assume that
Steady state PDF has power-law form

P0(x) ∼ x−ν

Trasnsition probability has a scaling property

P(ax ′, t |ax ,0) = a−1P(x ′,a2(η−1)t |x ,0)

Then the autocorrelation function will have the required scaling
with

β = 1 +
ν − 3

2(η − 1)
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Heuristic derivation of SDE

To get the required scaling of transition probability:
SDE should contain only powers of x
The diffusion coefficient should be of the form x2η

The drift term is fixed by the requirement that the steady-state
PDF should be x−ν

Proposed SDE

dx = σ2(η − ν/2)x2η−1dt + σxηdWt

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).

B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).
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Transformation property

Introducing
z = xα

we get the equation of the same type

dz = σ′2(η′ − ν ′/2)z2η′−1dt + σ′zη
′
dWt

only with different parameters

σ′ = ασ , η′ = (η − 1)/α+ 1 , ν ′ = (ν − 1)/α+ 1
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Restriction of diffusion

Because of the divergence of the power-law distribution and the
requirement of the stationarity of the process, the SDE should be
analyzed together with the appropriate restrictions of the
diffusion in some finite interval.
When diffusion is restricted, scaling properties are only
approximate, but 1/f spectrum remains in a wide interval of
frequencies.

Julius Ruseckas (Lithuania) Nonlinear stochastic differential equations August 28, 2012 15 / 32



Restriction of diffusion

Because of the divergence of the power-law distribution and the
requirement of the stationarity of the process, the SDE should be
analyzed together with the appropriate restrictions of the
diffusion in some finite interval.
When diffusion is restricted, scaling properties are only
approximate, but 1/f spectrum remains in a wide interval of
frequencies.

Julius Ruseckas (Lithuania) Nonlinear stochastic differential equations August 28, 2012 15 / 32



Restriction of diffusion

Possible forms of restriction:
Reflective boundary conditions at x = xmin and x = xmax

Exponential restriction of the diffusion

dx = σ2
(
η − ν

2
+

m
2

(xmin

x

)m
− m

2

(
x

xmax

)m)
x2η−1dt + σxηdWt

Steady state PDF:

P0(x) ∼ x−ν exp
(
−
(xmin

x

)m
−
(

x
xmax

)m)
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Restriction of diffusion

q-exponential steady-state PDF

dx = σ2(η − ν/2)(x + x0)
2η−1dt + σ(x + x0)

ηdWt

P0(x) ∼ exp1+1/ν(−νx/x0)

Reflective boundary condition at x = 0
q-Gaussian steady-state PDF

dx = σ2(η − ν/2)(x2 + x2
0 )
η−1xdt + σ(x2 + x2

0 )
η/2dWt

P0(x) ∼ exp1+2/ν(−νx2/2x2
0 )

q-exponential function: expq(x) ≡ (1 + (1− q)x)1/(1−q)

J. Ruseckas and B. Kaulakys, Phys. Rev. E 84, 051125 (2011).
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Connection with other equations

For some choces of parameters our SDE takes the form of well-known
equations.

η = 0 and σ = 1 corresponds to the Bessel process

dx =
δ − 1

2
1
x

dt + dWt

of dimension δ = 1− ν
η = 1/2, σ = 2 corresponds to the squared Bessel process

dx = δdt + 2
√

x dWt

of dimension δ = 2(1− ν)
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Connection with other equations

SDE with exponential restriction with η = 1/2, xmin = 0 and m = 1
gives Cox-Ingersoll-Ross (CIR) process

dx = k(θ − x)dt + σ
√

x dWt

where k = σ2/2xmax, θ = xmax(1− ν)
When ν = 2η, xmax =∞ and m = 2η − 2 then we get the
Constant Elasticity of Variance (CEV) process

dx = µxdt + σxηdWt

where µ = σ2(η − 1)x2(η−1)
min
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Numerical example
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1/f spectrum.
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Intermittent behavior of solutions
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Signals generated by proposed SDE exhibit
intemittent behavior: there are bursts corresponding to large
deviations, separated by laminar phases.
Bursts are characterized by power-law distributions of burst size,
burst duration, and interburst time.
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Point processes

The signal of the model consists of pulses or events

I(t) = a
∑

k

δ(t − tk )

Point processes arise in different fields such as physics,
economics, ecology, neurology, seismology, traffic flow, financial
systems and the Internet.
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Point processes

Let us assume that the signal x is the number of pulses per unit time.
How to obtain equation for inter-event time τk = tk − tk−1:

Transform the equation from the variable x to τ = 1/x
Discretize the equation according to Euler-Marujama
approximation
Take time step equal to τk
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Point processes

Example: equation

dx = σ2x4dt + σx5/2dW

leads to
τk+1 = τk + σεk

We obtained a simple random walk of inter-event time

One of possible origins of 1/f noise
Brownian motion in time axis leads to 1/f noise
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Point processes

General case
τk+1 = τk + γτ2µ−1

k + στµk εk

where µ = 5/2− η, γ = σ2(1− η + ν/2).

Used for modeling of the internote interval sequences of the
musical rhythms
D. J. Levitin, P. Chordia, and V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).
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Herding model

Simple model describing heterogeneous interacting agens:
fixed number N of agents
each of them can be in state 1 or in state 2
agents do not have memory, dynamics described as a Markov
chain
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Herding model

Transition probabilities per unit time:

p(n→ n + 1) = (N − n)(σ1 + hn)
p(n→ n − 1) = n(σ2 + h(N − n))

n is the number of agents in state 1
N − n is the number of agents in state 2
σ1 and σ2 are probabilities to change the state spontaneously
h describes herding tendency

non-linear terms represent interaction between agents
connectivity between agents increases with the number of agents
N. The interactions have a global character, the range of the
correlations involves a macroscopic fraction of agents.
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Herding model

Ratio of the number of agents in the state 2 to the number of
agents in the state 1:

y =
N − n

n
For large N we can represent the dynamics by SDE

dy = [(2h − σ1)y + σ2](1 + y)dt +
√

2hy(1 + y)dW

When y � 1 we get our non-linear SDE with parameters η = 3/2,
ν = 1 + σ1/h

If σ1 = 2h, we obtain 1/f spectrum

J. Ruseckas, B. Kaulakys and V. Gontis, EPL 96, 60007 (2011).
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Herding model
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Power spectral density of the ratio of the numbers of agents.
N = 10 000
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Summary

We obtain a class of nonlinear SDEs giving the power-law
behavior of the power spectral density in any desirably wide range
of frequencies
and power-law steady state distribution of the signal intensity.
In special cases we obtain other well-known SDEs.
One of the reasons for the appearance of the 1/f spectrum are
scaling properties of the SDE.
Proposed SDEs can be obtained from

point processes with Brownian motion of inter-event time
a simple agent model describing a herding behavior.
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Thank you for your attention!
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