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What is 1/f noise?

1/f noise
a type of noise whose power spectral density S(f) behaves like

S(fy~1/f%,  Biscloseto 1
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What is 1/f noise?

1/f noise
a type of noise whose power spectral density S(f) behaves like

S(fy~1/f%,  Biscloseto 1

@ occasionally called “flicker noise”
@ or “pink noise”
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1/f noise
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Fig. 6. Frequency variation for tube No. 2, coated filament; same data as in Fig. 4
plotted to a frequency scale; curves E and F give Hartmann'’s results for 2 m-a. and
20 m-a.; points G were obtained with less steady measuring circuit.

First observed (in 1925) by Johnson in vacuum tubes.
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1/f noise
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FIG. 8. Final power spectrum density estimate (dealiased). Log Frequency (CPH)

Fluctuations of signals exhibiting 1/f behavior of the power spectral
density at low frequencies have been observed in a wide variety of
physical, geophysical, biological, financial, traffic, Internet,
astrophysical and other systems.
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Many mathematical models:

Superposition of relaxation processes

S(f) = /2 -

N TN . N
2rw2 T 2w 1< w <72
Dynamical systems at the edge of chaos

Xni1 = Xp+ X5 mod 1
Alternating fractal renewal process

Self-Organized Criticallity
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Many mathematical models:
@ Superposition of relaxation processes

2 N N
Sil= | ———dy~~—
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1/f noise

Many mathematical models:
@ Superposition of relaxation processes
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Published items in each year. Topic: 1/f noise, 1/f fluctuations, flicker
noise, pink noise (Web of Science)
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1/f noise

o 1/f noise is intermediate between white noise, S(f) ~ 1/f° and
Brownian motion S(f) ~ 1/f?
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1/f noise

o 1/f noise is intermediate between white noise, S(f) ~ 1/f° and
Brownian motion S(f) ~ 1/f?

o In contrast to the Brownian motion generated by the linear
stochastic equations, the signals and processes with 1/f
spectrum cannot be understood and modeled in such a way.

Goal
to find a simple nonlinear stochastic differential equation (SDE)
generating signals exibiting 1/f noise
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Notes about 1/f noise

o Often 1/f noise is defined by a long-memory process,
characterized by S(f) ~ 1/f% as f — 0.
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Notes about 1/f noise

o Often 1/f noise is defined by a long-memory process,
characterized by S(f) ~ 1/f% as f — 0.

o A pure 1/f power spectrum is physically impossible because
the total power would be infinity.

o We search for a model where the spectrum of signal has 1/f%
behavior only in some intermediate region of frequencies,

fmin < f < fnax, Whereas for small frequencies f < fi, the
spectrum is bounded.
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Heuristic derivation of SDE

o If S(f) ~ =5 then power spectral density has a scaling property

S(af) = a #S(f)
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Heuristic derivation of SDE

o If S(f) ~ =5 then power spectral density has a scaling property

S(af) = a P S(f)

o Wiener-Khintchine theorem

Clt) = /O ™ S(f) cos(2rft) df

@ Autocorrelation function C(t) has scaling property

C(at) ~ @ 'C(t)

Julius Ruseckas (Lithuania) Nonlinear stochastic differential equations August 28, 2012

10/32



Heuristic derivation of SDE

o Autocorrelation function can be written as

C(t) = /dx/dx’xx’Po(x)Px(x’, t|x,0)
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Heuristic derivation of SDE

o Autocorrelation function can be written as

C(t) = /dx/dx’xx’Po(x)Px(x’, t|x,0)

@ Py(x) is the steady state PDF
@ Px(x',t|x,0) is the transition probability
@ The transition probability can be obtained from the solution of the

Fokker-Planck equation with the initial condition
Px(x",0]|x,0) = 6(x" — x).
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o Let us assume that

Steady state PDF has power-law form

Po(x) ~ x%

Trasnsition probability has a scaling property

with

P(ax',t|ax,0) = a~'P(x’, & Vt|x,0)
Then the autocorrelation function will have the required scaling

51 v—3

2(n—1)
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Heuristic derivation of SDE

@ Let us assume that
o Steady state PDF has power-law form

Po(x) ~ x7
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Heuristic derivation of SDE

@ Let us assume that
o Steady state PDF has power-law form

Po(x) ~ x7

o Trasnsition probability has a scaling property
P(ax',tlax,0) = a 'P(x’, & Vt|x,0)

@ Then the autocorrelation function will have the required scaling
with 3
y_
B=1+ =
2(n—1)
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Heuristic derivation of SDE

To get the required scaling of transition probability:

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).
B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).
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Heuristic derivation of SDE

To get the required scaling of transition probability:
@ SDE should contain only powers of x

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).
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Heuristic derivation of SDE

To get the required scaling of transition probability:
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o The diffusion coefficient should be of the form x27
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Heuristic derivation of SDE

To get the required scaling of transition probability:
@ SDE should contain only powers of x
o The diffusion coefficient should be of the form x27

o The drift term is fixed by the requirement that the steady-state
PDF should be x—¥

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).
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Heuristic derivation of SDE

To get the required scaling of transition probability:
@ SDE should contain only powers of x
o The diffusion coefficient should be of the form x27
o The drift term is fixed by the requirement that the steady-state
PDF should be x—¥

Proposed SDE

dx = o?(n — v/2)x>"1dt + ox"dW;

B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).
B. Kaulakys and J. Ruseckas, V. Gontis, and M. Alaburda, Physica A 365, 217 (2006).
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Transformation property

Introducing
z=x“

we get the equation of the same type
dz = (g — /' /2)2%" 'dt + o' 27 AW,
only with different parameters

od=ac, n=0n-1)/a+1, V=w-1)/a+1
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Restriction of diffusion

@ Because of the divergence of the power-law distribution and the
requirement of the stationarity of the process, the SDE should be
analyzed together with the appropriate restrictions of the
diffusion in some finite interval.
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Restriction of diffusion

@ Because of the divergence of the power-law distribution and the
requirement of the stationarity of the process, the SDE should be
analyzed together with the appropriate restrictions of the
diffusion in some finite interval.

@ When diffusion is restricted, scaling properties are only
approximate, but 1/f spectrum remains in a wide interval of
frequencies.
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Possible forms of restriction:

Reflective boundary conditions at x = Xpin and X = Xiax
Exponential restriction of the diffusion

Ix 2 v n m <Xmin>m m X
dx =0 - =+ — - —
=575

m
B szlx) > x2171dt 4+ ox"dW;
Steady state PDF:
Po(X) ~ XY eXp < <Xmin

)" ()
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Restriction of diffusion

Possible forms of restriction:
o Reflective boundary conditions at x = Xuin and X = Xmax
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Restriction of diffusion

Possible forms of restriction:
o Reflective boundary conditions at x = Xuin and X = Xmax
o Exponential restriction of the diffusion

voom Xp\™ m/{ x \"
dx = o2 _v.m ( m1n> . m 2n—1 n
X=o0 <77 5 + 5\ 2 \ xoms X dt + ox"TdW;

Steady state PDF:

Po(x) ~ x~" exp (— (XI;in>m a (x;(>m>
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Restriction of diffusion

@ g-exponential steady-state PDF
dx = o2(n — v/2)(x + x0)?"'dt + o (x + Xo)"dW;
Po(x) ~ expy,1,,(—vX/Xo)

Reflective boundary condition at x = 0

o g-exponential function: exp,(x) = (1+ (1 — g)x)"/(1-9

J. Ruseckas and B. Kaulakys, Phys. Rev. E 84, 051125 (2011).
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Restriction of diffusion

@ g-exponential steady-state PDF
dx = o2(n — v/2)(x + x0)?"'dt + o (x + Xo)"dW;
Po(x) ~ expy,1,,(—vX/Xo)

Reflective boundary condition at x = 0
@ g-Gaussian steady-state PDF

dx = o?(n — v/2)(x2 + x§)" " xdt + o (x® + x§)"2dW,
Po(X) ~ €xpy 2/, (—vX?/2x5)

o g-exponential function: exp,(x) = (1+ (1 — g)x)"/(1-9

J. Ruseckas and B. Kaulakys, Phys. Rev. E 84, 051125 (2011).
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Connection with other equations

For some choces of parameters our SDE takes the form of well-known
equations.
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Connection with other equations

For some choces of parameters our SDE takes the form of well-known
equations.

@ n=0and o =1 corresponds to the Bessel process

o—11
dx = ———dt +dW;
2 X

of dimensiond =1 —v
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Connection with other equations

For some choces of parameters our SDE takes the form of well-known

equations.
@ n=0and o =1 corresponds to the Bessel process

o—11
dx = —— —dt +dW;
2 X

of dimensiond =1 —v
o n=1/2, 0 = 2 corresponds to the squared Bessel process

dx = §dt +2v/xdW;

of dimension § = 2(1 —v)
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Connection with other equations

@ SDE with exponential restriction with n = 1/2, Xuin = 0and m =1
gives Cox-Ingersoll-Ross (CIR) process

dx = k(6 — x)dt + ov/x dW;

where k = 02 /2Xmax, 0 = Xmax(1 — V)
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Connection with other equations

@ SDE with exponential restriction with n = 1/2, Xuin = 0and m =1

gives Cox-Ingersoll-Ross (CIR) process
dx = k(6 — x)dt + ov/x dW;

where k = 02 /2Xmax, 0 = Xmax(1 — V)

@ When v = 21, Xmax = oo and m = 2n — 2 then we get the
Constant Elasticity of Variance (CEV) process

dx = puxdt + ox"dW;
where u = o?(n — 1)X2(7771)

min
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Numerical example
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Intermittent behavior of solutions

1(t)
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@ Signals generated by proposed SDE exhibit

intemittent behavior: there are bursts corresponding to large

deviations, separated by laminar phases.
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Intermittent behavior of solutions
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@ Signals generated by proposed SDE exhibit
intemittent behavior: there are bursts corresponding to large
deviations, separated by laminar phases.

o Bursts are characterized by power-law distributions of burst size,
burst duration, and interburst time.
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1) Introduction: 1/f noise

2) Stochastic differential equations giving 1/f noise

0 Some models resulting in proposed SDE
Point processes

Simple model of herding behavior
4) Summary
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Point processes

I(t)

t

o The signal of the model consists of pulses or events

I(t)y=ad o(t—t)
k
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Point processes

I(t)

t

@ The signal of the model consists of pulses or events

I(t)y=ad o(t—t)
k

o Point processes arise in different fields such as physics,
economics, ecology, neurology, seismology, traffic flow, financial
systems and the Internet.
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Point processes

Let us assume that the signal x is the number of pulses per unit time.
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Point processes

Let us assume that the signal x is the number of pulses per unit time.
How to obtain equation for inter-event time 7, = t, — t_1:

o Transform the equation from the variable x to 7 = 1/x
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Point processes

Let us assume that the signal x is the number of pulses per unit time.
How to obtain equation for inter-event time 7, = t, — t_1:

o Transform the equation from the variable x to 7 = 1/x

o Discretize the equation according to Euler-Marujama
approximation
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Point processes

Let us assume that the signal x is the number of pulses per unit time.

How to obtain equation for inter-event time 7, = t, — t_1:
o Transform the equation from the variable x to 7 = 1/x

o Discretize the equation according to Euler-Marujama
approximation

o Take time step equal to 74
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Example: equation

dx = o?x*dt + ox®/2dW
leads to

Tk+1 = Tk + Ok
We obtained a simple random walk of inter-event time
One of possible origins of 1/f noise

Brownian motion in time axis leads to 1/f noise
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Point processes

Example: equation
dx = o?x*dt 4+ ox3/2dW

leads to
Th+1 = Tk + 0€k

We obtained a simple random walk of inter-event time
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Point processes

Example: equation
dx = o?x*dt 4+ ox3/2dW

leads to
Th+1 = Tk + 0€k

We obtained a simple random walk of inter-event time

One of possible origins of 1/f noise
Brownian motion in time axis leads to 1/f noise
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Point processes

o General case
_ 2p—1 B
Thk+1 = Tk + YTk + 0T €k

where u=5/2 —n, v = 0?(1 —n +v/2).
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Point processes

o General case
_ 2p—1 B
Thk+1 = Tk + YTk + 0T €k

where u=5/2 —n, v = 0?(1 —n +v/2).

@ Used for modeling of the internote interval sequences of the
musical rhythms
D. J. Levitin, P. Chordia, and V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).
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Herding model

Simple model describing heterogeneous interacting agens:
o fixed number N of agents
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Simple model describing heterogeneous interacting agens:
o fixed number N of agents
o each of them can be in state 1 or in state 2
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Herding model

Simple model describing heterogeneous interacting agens:
o fixed number N of agents
o each of them can be in state 1 or in state 2

@ agents do not have memory, dynamics described as a Markov
chain
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Herding model

o Transition probabilities per unit time:

h
p(n— n+1) = (N - n)(o1 + hn) o1 02
p(n— n—1) = n(oz + h(N — n)) >
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Herding model

o Transition probabilities per unit time:

h
p(n— n+1) = (N - n)(o1 + hn) o1 02
p(n— n—1) = n(oz + h(N — n)) >

o nis the number of agents in state 1
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Herding model

o Transition probabilities per unit time:

h
p(n— n+1) = (N - n)(o1 + hn) o1 02
p(n— n—1) = n(oz + h(N — n)) >

o nis the number of agents in state 1
o N — nis the number of agents in state 2
o o1 and o> are probabilities to change the state spontaneously
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Herding model
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nis the number of agents in state 1

N — nis the number of agents in state 2

o1 and o are probabilities to change the state spontaneously
h describes herding tendency
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@ non-linear terms represent interaction between agents

@ connectivity between agents increases with the number of agents
N. The interactions have a global character, the range of the
correlations involves a macroscopic fraction of agents.
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Herding model

@ Ratio of the number of agents in the state 2 to the number of
agents in the state 1:
~N-n
n

J. Ruseckas, B. Kaulakys and V. Gontis, EPL 96, 60007 (2011).
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@ Ratio of the number of agents in the state 2 to the number of
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n
o For large N we can represent the dynamics by SDE

dy = [(2h —o1)y + o2)(1 + y)dt + \/2hy(1 + y)dW
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Herding model

@ Ratio of the number of agents in the state 2 to the number of

agents in the state 1:
N-—n

T n
o For large N we can represent the dynamics by SDE

dy = [(2h —o1)y + o2)(1 + y)dt + \/2hy(1 + y)dW

@ When y > 1 we get our non-linear SDE with parameters n = 3/2,
v=1+4o01/h
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Herding model

@ Ratio of the number of agents in the state 2 to the number of

agents in the state 1:
N-—n

T n
o For large N we can represent the dynamics by SDE

dy = [(2h —o1)y + o2)(1 + y)dt + \/2hy(1 + y)dW

@ When y > 1 we get our non-linear SDE with parameters n = 3/2,
v=1+4o01/h

If o1 = 2h, we obtain 1/f spectrum ]

J. Ruseckas, B. Kaulakys and V. Gontis, EPL 96, 60007 (2011).
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Herding model

S 107 ¢

Power spectral density of the ratio of the numbers of agents.
N =10000
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Summary

@ We obtain a class of nonlinear SDEs giving the power-law
behavior of the power spectral density in any desirably wide range
of frequencies
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Summary

@ We obtain a class of nonlinear SDEs giving the power-law
behavior of the power spectral density in any desirably wide range
of frequencies

@ and power-law steady state distribution of the signal intensity.

o In special cases we obtain other well-known SDEs.

@ One of the reasons for the appearance of the 1/f spectrum are
scaling properties of the SDE.

o Proposed SDEs can be obtained from

o point processes with Brownian motion of inter-event time
o a simple agent model describing a herding behavior.
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Thank you for your attention!
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