ADIABATIC APPROXIMATION AND VARIOUS BERRY CURVATURES IN SPIN-ORBIT COUPLED SYSTEMS

Julius Ruseckas
February 27, 2017
Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania

OUTLINE

1. Motivation
2. Adiabatic approximation in simple systems

Spin in nonuniform magnetic field
Quantized center of mass motion
3. General equations for adiabatic approximation

Semiclassical approximation
4. Spin-orbit coupling in one dimension
5. Summary

Motivation

QUANTUM SIMULATION

- Classical computer simulation of quantum system takes exponential time
- Hypothetical quantum computer does not
- Universal quantum computer still far away
- Dedicated quantum simulator possible
- Good candidate: Cold atoms

QUANTUM SIMULATION WITH ULTRACOLD ATOMS

- Quantum simulation with ultracold atoms:
- Hubbard model (superfluid-Mott insulator transition)
- synthetic gauge fields (relativistic dispersion)
- strongly-correlated states (quantum Hall, spin liquids)

TRAPPED ATOMS - ELECTRICALLY NEUTRAL SPECIES

- No direct analogy with magnetic phenomena by electrons in solids, such as the Quantum Hall Effect, no Lorentz force
- A method to create an artificial magnetic field or artificial magnetic flux is required

QUANTUM SIMULATION

- For quantum simulation a realization of the dynamics governed by the specified Hamiltonian is needed
- Adiabatic approximation - a way to construct an effective Hamiltonian

AdIABATIC APPROXIMATION IN SIMPLE SYSTEMS

SPIN IN NONUNIFORM MAGNETIC FIELD

Hamiltonian

$$
H(t)=\vec{B}(\boldsymbol{r}(t)) \cdot \vec{\sigma}
$$

\boldsymbol{r} is a parameter, motion $\boldsymbol{r}(t)$ is classical.
Schrödinger equation

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \Psi=H(t) \Psi
$$

ADIABATIC APPROXIMATION

Eigenstates of $\vec{B} \cdot \vec{\sigma}$ are $\chi_{ \pm}$with eigenvalues $\pm|\vec{B}|$.
Adiabatic approximation: $\Psi=\psi \chi_{ \pm}(\boldsymbol{r}(t))$
Resulting dynamics

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi=H_{\mathrm{eff}} \psi
$$

The effective Hamiltonian

$$
H_{\mathrm{eff}}= \pm|\vec{B}|-\mathcal{A}^{(t)}
$$

with

$$
\mathcal{A}^{(t)}=\mathrm{i} \hbar \chi_{ \pm}^{\dagger} \frac{\partial}{\partial t} \chi_{ \pm}
$$

ADIABATIC APPROXIMATION

We can write

$$
\mathcal{A}^{(t)}=\mathcal{A}^{(r)} \cdot \dot{\boldsymbol{r}}, \quad \mathcal{A}^{(r)}=\mathrm{i} \hbar \chi_{ \pm}^{\dagger} \nabla^{(r)} \chi_{ \pm}
$$

If $\boldsymbol{r}(t)$ makes a closed loop, then $\mathcal{A}^{(t)}$ contributes to a phase (Berry's phase)

$$
\phi=\int_{0}^{t} \mathcal{A}^{(r)} \cdot \dot{\boldsymbol{r}} \mathrm{d} t=\oint \mathcal{A}^{(r)} \cdot \mathrm{d} \boldsymbol{r}
$$

Phase is nonzero if $\boldsymbol{\nabla}^{(r)} \times \mathcal{A}^{(r)} \neq 0$

GEOMETRIC PICTURE

QUANTIZED CENTER OF MASS MOTION

Hamiltonian

$$
H=\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+\vec{B}(\boldsymbol{r}) \cdot \vec{\sigma}
$$

Here $\boldsymbol{k}=-\mathrm{i} \boldsymbol{\nabla}$
Schrödinger equation

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \Psi=H \Psi
$$

ADIABATIC APPROXIMATION

$\vec{B}(\boldsymbol{r}) \cdot \vec{\sigma}$ has eigenvectors $\chi_{ \pm}(\boldsymbol{r})$
Adiabatic approximation: $\Psi(\boldsymbol{r})=\psi(\boldsymbol{r}) \chi_{ \pm}(\boldsymbol{r})$
The effective Hamiltonian

$$
H_{\mathrm{eff}}=\frac{\hbar^{2}}{2 m}\left(\boldsymbol{k}-\mathcal{A}^{(r)}\right)^{2} \pm|\vec{B}|+\mathcal{V}^{(r)}
$$

where

$$
\mathcal{A}^{(r)}=\mathrm{i} \chi_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(r)} \chi_{ \pm}
$$

is the Mead-Berry connection and

$$
\mathcal{V}^{(r)}=-\frac{\hbar^{2}}{2 m} \chi_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(r)} \chi_{\mp} \cdot \chi_{\mp}^{\dagger} \boldsymbol{\nabla}^{(r)} \chi_{ \pm}
$$

is the Born-Huang potential.

ADIABATIC APPROXIMATION

- The vector potential $\mathcal{A}^{(r)}$ appears because the eigenvectors depend on the position
- $\mathcal{A}^{(r)}$ has geometric nature
- The Berry connection $\mathcal{A}^{(r)}$ is related to a curvature $\Theta^{(r, r)}$ as

$$
\Theta_{j l}^{(r, r)}=\nabla_{j}^{(r)} \mathcal{A}_{l}^{(r)}-\nabla_{l}^{(r)} \mathcal{A}_{j}^{(r)}
$$

EXPERIMENTAL REALIZATION

a Geometry

b Level diagram

Dressed state, $\hbar \Omega_{\mathrm{R}}=8.20 E_{\mathrm{L}}$

Y.-J. Lin, R. L. Compton,
K. Jiménez-García, J. V. Porto and
I. B. Spielman, Nature, 462, 628 (2009).

General equations for adiabatic APPROXIMATION

SPIN-ORBIT COUPLING

Hamiltonian with position-dependent spin-orbit coupling

$$
H=\frac{\hbar^{2}}{2 m}(\boldsymbol{k}-\boldsymbol{A}(\boldsymbol{r}))^{2}+V(\boldsymbol{r})
$$

where \boldsymbol{A} and V are 2×2 matrices:

$$
\begin{aligned}
V(\boldsymbol{r}) & =\vec{v}(\boldsymbol{r}) \cdot \vec{\sigma}+v_{0}(\boldsymbol{r}) I \\
A_{j}(\boldsymbol{r}) & =\vec{a}_{j}(\boldsymbol{r}) \cdot \vec{\sigma}
\end{aligned}
$$

POSTION-DEPENDENT SPIN-ORBIT COUPLING FOR ULTRACOLD ATOMS

S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and G. Juzeliūnas, New. J. Phys. 17, 033045 (2015).
(a) Coupling Scheme

(c) Physical level diagram

SPIN-ORBIT COUPLING

We can write

$$
H=\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2}+\vec{B} \cdot \vec{\sigma}+W(\boldsymbol{r}) I
$$

where

$$
B^{j}=-\frac{\hbar^{2}}{2 m} \sum_{l}\left\{k_{l}, a_{l}^{j}\right\}+v^{j}
$$

and

$$
W=\frac{\hbar^{2}}{2 m} \sum_{j, l}\left[a_{l}^{j}\right]^{2}+v_{0}
$$

UNITARY TRANSFORMATION

Let us define a unitary operator U, which diagonalizes the term $\vec{B} \cdot \vec{\sigma}$.

The wavefunction in the diagonal basis

$$
\tilde{\Psi}=U^{\dagger} \Psi
$$

The Schrödinger equation in the new basis

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \tilde{\Psi}=\tilde{H} \tilde{\Psi}
$$

where

$$
\tilde{H}=U^{\dagger} H U=\frac{\hbar^{2}}{2 m} \tilde{\boldsymbol{k}}^{2}+\overrightarrow{\tilde{B}} \cdot \overrightarrow{\tilde{\sigma}}+W(\tilde{\boldsymbol{r}}) I
$$

and

$$
\tilde{\boldsymbol{r}}=U^{\dagger} \boldsymbol{r} U, \quad \tilde{\boldsymbol{k}}=U^{\dagger} \boldsymbol{k} U, \quad \overrightarrow{\tilde{\sigma}}=U^{\dagger} \vec{\sigma} U
$$

ADIABATIC APPROXIMATION

Adiabatic approximation: $\tilde{\Psi}=\psi \mathcal{P}_{ \pm}$, where

$$
\mathcal{P}_{+}=\binom{1}{0}, \quad \mathcal{P}_{-}=\binom{0}{1}
$$

The effective Hamiltonian

$$
H_{\mathrm{eff}}=\mathcal{P}_{ \pm}^{\dagger} \tilde{H} \mathcal{P}_{ \pm}
$$

In the effective Hamiltonian the following operators appear:

$$
\begin{aligned}
& \boldsymbol{r}_{\mathrm{c}}=\mathcal{P}_{ \pm}^{\dagger} \tilde{\boldsymbol{r}} \mathcal{P}_{ \pm}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} \boldsymbol{r} U \mathcal{P}_{ \pm} \\
& \boldsymbol{k}_{\mathrm{C}}=\mathcal{P}_{ \pm}^{\dagger} \tilde{\boldsymbol{k}} \mathcal{P}_{ \pm}=\mathcal{P}_{ \pm}^{\dagger} U^{\dagger} \boldsymbol{k} U \mathcal{P}_{ \pm}
\end{aligned}
$$

Covariant operators

COVARIANT OPERATORS

- $\boldsymbol{r}_{\mathrm{c}}$ describes the motion of the center of a wavepacket
- $\boldsymbol{k}_{\mathrm{c}}$ corresponds the average operator \boldsymbol{k} of a wavepacket
- $\boldsymbol{k}_{\mathrm{c}}$ does not correspond to the kinetic momentum, because in a system with SOC the kinetic momentum operator is $\hbar(\boldsymbol{k}-\boldsymbol{A})$

COVARIANT OPERATORS

Covariant operators can be written as

$$
\begin{aligned}
r_{\mathrm{c}} & =r-\mathcal{A}^{(k)} \\
k_{\mathrm{c}} & =k-\mathcal{A}^{(r)}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{A}^{(k)} & =-\mathcal{P}_{ \pm}^{\dagger} U^{\dagger}[r, U] \mathcal{P}_{ \pm} \\
\mathcal{A}^{(r)} & =-\mathcal{P}_{ \pm}^{\dagger} U^{\dagger}[k, U] \mathcal{P}_{ \pm}
\end{aligned}
$$

Operators $\mathcal{A}^{(k)}$ and $\mathcal{A}^{(r)}$ correspond to Berry connetions

Effective Hamiltonian

The effective Hamiltonian can be written as

$$
H_{\mathrm{eff}}=\frac{\hbar^{2}}{2 m} \boldsymbol{k}_{\mathrm{c}}^{2}+W\left(\boldsymbol{r}_{\mathrm{c}}\right)+\mathcal{V}
$$

where

$$
\mathcal{V}=\mathcal{P}_{ \pm}^{\dagger} \overrightarrow{\tilde{B}} \cdot \overrightarrow{\tilde{\sigma}} \mathcal{P}_{ \pm}+\mathcal{V}^{(r)}+\mathcal{V}^{(k)}
$$

with

$$
\begin{aligned}
& \mathcal{V}^{(r)}=\frac{\hbar^{2}}{2 m} \mathcal{P}_{ \pm} U^{\dagger}[\boldsymbol{k}, U] \mathcal{P}_{\mp} \cdot \mathcal{P}_{\mp} U^{\dagger}[\boldsymbol{k}, U] \mathcal{P}_{ \pm} \\
& \mathcal{V}^{(k)}=\sum_{j, l} w_{j l}^{(2)} \mathcal{P}_{ \pm} U^{\dagger}\left[r_{j}, U\right] \mathcal{P}_{\mp} \mathcal{P}_{\mp} U^{\dagger}\left[r_{l}, U\right] \mathcal{P}_{ \pm}
\end{aligned}
$$

Here we assumed, that the potential $W(\boldsymbol{r})$ is at most quadratic:

$$
W(\boldsymbol{r})=w^{(0)}+\sum_{j} w_{j}^{(1)} r_{j}+\sum_{j, l} w_{j l}^{(2)} r_{j} r_{l}
$$

BERRY CURVATURES

Commutators:

$$
\begin{aligned}
{\left[\left(r_{\mathrm{c}}\right)_{j},\left(r_{\mathrm{c}}\right)_{l}\right] } & =\mathrm{i} \Theta_{j l}^{(k, k)} \\
{\left[\left(k_{\mathrm{c}}\right)_{j},\left(k_{\mathrm{c}}\right)_{l}\right] } & =\mathrm{i} \Theta_{j l}^{(r, r)} \\
{\left[\left(r_{\mathrm{c}}\right)_{j},\left(k_{\mathrm{c}}\right)_{l}\right] } & =\mathrm{i} \delta_{j, l}+\mathrm{i} \Theta_{j l}^{(k, r)}
\end{aligned}
$$

where various Berry curvatures are given by

$$
\begin{aligned}
\Theta_{j l}^{(k, k)} & =\mathrm{i}\left[r_{j}, \mathcal{A}_{l}^{(k)}\right]-\mathrm{i}\left[r_{l}, \mathcal{A}_{j}^{(k)}\right] \\
\Theta_{j l}^{(r, r)} & =\mathrm{i}\left[k_{j}, \mathcal{A}_{l}^{(r)}\right]-\mathrm{i}\left[k_{l}, \mathcal{A}_{j}^{(r)}\right] \\
\Theta_{j l}^{(k, r)} & =\mathrm{i}\left[r_{j}, \mathcal{A}_{l}^{(r)}\right]-\mathrm{i}\left[k_{l}, \mathcal{A}_{j}^{(k)}\right] \\
\Theta_{j l}^{(r, k)} & =\mathrm{i}\left[k_{j}, \mathcal{A}_{l}^{(k)}\right]-\mathrm{i}\left[r_{l}, \mathcal{A}_{j}^{(r)}\right]
\end{aligned}
$$

Heisenberg equations

Heisenberg equations for the covariant operators

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}=\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{k}_{\mathrm{c}}, H_{\mathrm{eff}}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}=\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{r}_{\mathrm{c}}, H_{\mathrm{eff}}\right]
\end{gathered}
$$

contain Berry curvature terms:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}= & -\frac{1}{\hbar} \boldsymbol{\nabla} W\left(\boldsymbol{r}_{\mathrm{c}}\right)+\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{k}_{\mathrm{c}}, \mathcal{V}\right] \\
& +\frac{\hbar}{2 m} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(r, r)},\left(k_{\mathrm{c}}\right)_{l}\right\}+\frac{1}{2 \hbar} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(r, k)}, \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)\right\} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}= & \frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}+\frac{1}{\mathrm{i} \hbar}\left[\boldsymbol{r}_{\mathrm{c}}, \mathcal{V}\right] \\
& +\frac{\hbar}{2 m} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(k, r)},\left(k_{\mathrm{c}}\right)_{l}\right\}+\frac{1}{2 \hbar} \sum_{j, l} \boldsymbol{e}_{j}\left\{\Theta_{j l}^{(k, k)}, \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)\right\}
\end{aligned}
$$

SEMICLASSICAL APPROXIMATION

We neglect the commutator between position and momentum:

$$
B^{j}=-\frac{\hbar^{2}}{m} \sum_{l} a_{l}^{j}(\boldsymbol{r}) k_{l}+v^{j}(\boldsymbol{r})
$$

Eigenvectors $\chi_{ \pm}(\boldsymbol{r}, \boldsymbol{k})$ of the matrix $\vec{B} \cdot \vec{\sigma}$ prametrically depend on the numbers \boldsymbol{r} and \boldsymbol{k}.

SEMICLASSICAL APPROXIMATION

Berry connections:

$$
\mathcal{A}^{(k)}=\mathrm{i} \chi_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(r)} \chi_{ \pm}, \quad \mathcal{A}^{(r)}=-\mathrm{i} \chi_{ \pm}^{\dagger} \boldsymbol{\nabla}^{(k)} \chi_{ \pm}
$$

Berry curvatures:

$$
\begin{aligned}
& \Theta_{j l}^{(k, k)}=-\nabla_{j}^{(k)} \mathcal{A}_{l}^{(k)}+\nabla_{l}^{(k)} \mathcal{A}_{j}^{(k)} \\
& \Theta_{j l}^{(r, r)}=\nabla_{j}^{(r)} \mathcal{A}_{l}^{(r)}-\nabla_{l}^{(r)} \mathcal{A}_{j}^{(r)} \\
& \Theta_{j l}^{(k, r)}=-\nabla_{j}^{(k)} \mathcal{A}_{l}^{(r)}-\nabla_{l}^{(r)} \mathcal{A}_{j}^{(k)} \\
& \Theta_{j l}^{(r, k)}=\nabla_{j}^{(r)} \mathcal{A}_{l}^{(k)}+\nabla_{l}^{(k)} \mathcal{A}_{j}^{(r)}
\end{aligned}
$$

Scalar potentials:

$$
\begin{aligned}
\mathcal{V}^{(r)} & =-\frac{\hbar^{2}}{2 m} \chi_{ \pm}^{\dagger} \nabla^{(r)} \chi_{\mp} \cdot \chi_{\mp}^{\dagger} \nabla^{(r)} \chi_{ \pm} \\
\mathcal{V}^{(k)} & =-\sum_{j, l} w_{j l}^{(2)} \chi_{ \pm}^{\dagger} \nabla_{j}^{(k)} \chi_{\mp} \chi_{\mp}^{\dagger} \nabla_{l}^{(k)} \chi_{ \pm}
\end{aligned}
$$

Equations of motion

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}= & -\frac{1}{\hbar} \boldsymbol{\nabla} W\left(\boldsymbol{r}_{\mathrm{c}}\right)-\frac{1}{\hbar} \boldsymbol{\nabla}^{(r)} \mathcal{V} \\
& +\frac{\hbar}{m} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(r, r)}\left(k_{\mathrm{c}}\right)_{l}+\frac{1}{\hbar} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(r, k)} \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}= & \frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}+\frac{1}{\hbar} \boldsymbol{\nabla}^{(k)} \mathcal{V} \\
& +\frac{\hbar}{m} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(k, r)}\left(k_{\mathrm{c}}\right)_{l}+\frac{1}{\hbar} \sum_{j, l} \boldsymbol{e}_{j} \Theta_{j l}^{(k, k)} \nabla_{l} W\left(\boldsymbol{r}_{\mathrm{c}}\right)
\end{aligned}
$$

ANOTHER FORM OF EQUATIONS

In semiclassical approximation the terms containing the Berry curvatures Θ and scalar potentials \mathcal{V} are small compared to the first term. In the zeroth-order approximation
$\mathrm{d} \boldsymbol{k}_{\mathrm{c}} / \mathrm{d} t \approx \boldsymbol{\nabla} W\left(\boldsymbol{r}_{\mathrm{c}}\right) / \hbar$ and $\mathrm{d} \boldsymbol{r}_{\mathrm{c}} / \mathrm{d} t \approx \hbar \boldsymbol{k}_{\mathrm{c}} / m$.
In the first-order approxmation

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}}= & -\frac{1}{\hbar} \boldsymbol{\nabla} W\left(\boldsymbol{r}_{\mathrm{c}}\right)-\frac{1}{\hbar} \boldsymbol{\nabla}^{(r)} \mathcal{V} \\
& +\sum_{j, l} \boldsymbol{e}_{j}\left(\Theta_{j l}^{(r, r)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(r_{\mathrm{c}}\right)_{l}+\Theta_{j l}^{(r, k)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(k_{\mathrm{c}}\right)_{l}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{r}_{\mathrm{c}}= & \frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}+\frac{1}{\hbar} \boldsymbol{\nabla}^{(k)} \mathcal{V} \\
& -\sum_{j, l} \boldsymbol{e}_{j}\left(\Theta_{j l}^{(k, r)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(r_{\mathrm{c}}\right)_{l}+\Theta_{j l}^{(k, k)} \frac{\mathrm{d}}{\mathrm{~d} t}\left(k_{\mathrm{c}}\right)_{l}\right)
\end{aligned}
$$

SpIn-ORBIT COUPLING IN ONE DIMENSION

ONE-DIMENSIONAL SPIRAL

Let us consider the system with the Hamiltonian

$$
H=H_{0}-F x
$$

where

$$
H_{0}=\frac{\hbar^{2}}{2 m}\left(k-a \sigma_{3}\right)^{2}+\frac{\hbar \Omega}{2}\left[\cos (x / \lambda) \sigma_{1}+\sin (x / \lambda) \sigma_{2}\right]
$$

EXPERIMENTAL REALIZATION

Hamiltonian H_{0} has been realized experimentally
Y.-J. Lin, K. Jiménez-García and I. B. Spielman, Nature 471, 83-86 (2011).

$$
H=\frac{1}{2 m}\left(p-\chi \sigma_{y}\right)^{2}+\frac{\Omega}{2} \sigma_{z}
$$

RESPONSE TO A FORCE: EFFECTIVE MASS

EXACT SOLUTION

Dispersion

$$
E_{k, \pm}=\frac{\hbar^{2}}{m}\left(\frac{k^{2}}{2}+\frac{k_{0}^{2}}{2} \pm \sqrt{\left(k_{0} k\right)^{2}+(\kappa a)^{2}}\right)
$$

where

$$
k_{0}=a+\frac{1}{2 \lambda}, \quad \kappa=\frac{\Omega}{2 a} \frac{m}{\hbar}
$$

Effective mass

$$
\frac{m}{m_{ \pm}^{*}}=1 \pm \frac{k_{0}^{2}}{\kappa a} \approx 1 \pm \frac{1}{\kappa}\left(a+\frac{1}{\lambda}\right)
$$

ADIABATIC APPROXIMATION

Semiclassical dynamics follows the equations

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}} & =\frac{F}{\hbar}\left(1-\Theta^{(r, k)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} x_{\mathrm{c}} & =\frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}\left(1+\Theta^{(k, r)}\right)+\frac{1}{\hbar} \nabla^{(k)} \mathcal{V}
\end{aligned}
$$

In the limit $1 / \lambda a \ll 1$ and $|k| \ll \kappa$ the equations become

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{k}_{\mathrm{c}} & =\frac{F}{\hbar}\left(1 \pm \frac{1}{2 \lambda \kappa}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}_{\mathrm{c}} & =\frac{\hbar}{m} \boldsymbol{k}_{\mathrm{c}}\left(1 \pm \frac{1}{2 \lambda \kappa} \pm \frac{a}{\kappa}\right)
\end{aligned}
$$

Closed equation for the center of mass motion

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \boldsymbol{x}_{\mathrm{c}}=\frac{F}{m}\left(1 \pm \frac{1}{\kappa}\left(a+\frac{1}{\lambda}\right)\right)
$$

Summary

SUMMARY

- In general, adiabatic approximation results in position-space, momentum-space and phase-space Berry curvatures.
- The the phase-space Berry curvature is directly related to the effective mass.
- The measurement of the effective mass is a direct probe of the phase-space Berry curvature in the system.
- J. Armaitis, J. Ruseckas, E. Anisimovas, Phase space curvature in spin-orbit coupled ultracold atom systems, arXiv:1702.03298 [cond-mat.quant-gas] (2017).

THANK YOU FOR YOUR ATTENTION!

