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Motivation



Quantum simulation

• Classical computer simulation of quantum system takes
exponential time

• Hypothetical quantum computer does not
• Universal quantum computer still far away
• Dedicated quantum simulator possible
• Good candidate: Cold atoms
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Quantum simulation with ultracold atoms

• Quantum simulation with ultracold atoms:
• Hubbard model (superfluid-Mott insulator transition)
• synthetic gauge fields (relativistic dispersion)
• strongly-correlated states (quantum Hall, spin liquids)
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Trapped atoms – electrically neutral species

• No direct analogy with magnetic phenomena by electrons
in solids, such as the Quantum Hall Effect, no Lorentz force

• A method to create an artificial magnetic field or artificial
magnetic flux is required
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Quantum simulation

• For quantum simulation a realization of the dynamics
governed by the specified Hamiltonian is needed

• Adiabatic approximation — a way to construct an effective
Hamiltonian
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Adiabatic approximation in simple
systems



Spin in nonuniform magnetic field

Hamiltonian

H(t) = B⃗(r(t)) · σ⃗

r is a parameter, motion r(t) is
classical.
Schrödinger equation

iℏ ∂
∂tΨ = H(t)Ψ
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Adiabatic approximation

Eigenstates of B⃗ · σ⃗ are χ± with eigenvalues ±|B⃗|.

Adiabatic approximation: Ψ = ψχ±(r(t))

Resulting dynamics
iℏ ∂
∂tψ = Heffψ

The effective Hamiltonian

Heff = ±|B⃗| − A(t)

with
A(t) = iℏχ†

±
∂

∂tχ±

8



Adiabatic approximation

We can write

A(t) = A(r) · ṙ , A(r) = iℏχ†
±∇(r)χ±

If r(t) makes a closed loop, then A(t) contributes to a phase
(Berry’s phase)

ϕ =

∫ t

0
A(r) · ṙ dt =

∮
A(r) · dr

Phase is nonzero if∇(r) ×A(r) ̸= 0
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Geometric picture
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Quantized center of mass motion

Hamiltonian
H =

ℏ2

2mk2 + B⃗(r) · σ⃗

Here k = −i∇

Schrödinger equation

iℏ ∂
∂tΨ = HΨ
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Adiabatic approximation

B⃗(r) · σ⃗ has eigenvectors χ±(r)

Adiabatic approximation: Ψ(r) = ψ(r)χ±(r)

The effective Hamiltonian

Heff =
ℏ2

2m(k −A(r))2 ± |B⃗|+ V(r)

where
A(r) = iχ†

±∇(r)χ±

is the Mead-Berry connection and

V(r) = − ℏ2

2mχ†
±∇(r)χ∓ · χ†

∓∇(r)χ±

is the Born-Huang potential.
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Adiabatic approximation

• The vector potential A(r) appears because the
eigenvectors depend on the position

• A(r) has geometric nature
• The Berry connection A(r) is related to a curvature Θ(r,r)

as
Θ

(r,r)
jl = ∇(r)

j A(r)
l −∇(r)

l A(r)
j
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Experimental realization

Y.-J. Lin, R. L. Compton,
K. Jiménez-García, J. V. Porto and
I. B. Spielman, Nature, 462, 628 (2009).
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General equations for adiabatic
approximation



Spin-orbit coupling

Hamiltonian with position-dependent spin-orbit coupling

H =
ℏ2

2m(k − A(r))2 + V(r)

where A and V are 2 × 2 matrices:

V(r) =v⃗(r) · σ⃗ + v0(r)I
Aj(r) =a⃗j(r) · σ⃗
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Postion-dependent spin-orbit coupling for ultracold atoms

S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and

G. Juzeliūnas, New. J. Phys. 17, 033045 (2015).

f = 1

f = 2 {
{
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Spin-orbit coupling

We can write
H =

ℏ2

2mk2 + B⃗ · σ⃗ + W(r)I

where
B j = − ℏ2

2m
∑

l
{kl, aj

l}+ vj

and
W =

ℏ2

2m
∑
j,l

[aj
l ]

2 + v0
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Unitary transformation

Let us define a unitary operator U, which diagonalizes the
term B⃗ · σ⃗.

The wavefunction in the diagonal basis

Ψ̃ = U†Ψ

The Schrödinger equation in the new basis

iℏ ∂
∂tΨ̃ = H̃Ψ̃

where
H̃ = U†HU =

ℏ2

2m k̃2
+ ⃗̃B · ⃗̃σ + W(r̃)I

and
r̃ = U†rU , k̃ = U†kU , ⃗̃σ = U†σ⃗U
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Adiabatic approximation

Adiabatic approximation: Ψ̃ = ψP±, where

P+ =

(
1
0

)
, P− =

(
0
1

)

The effective Hamiltonian

Heff = P†
±H̃P±

In the effective Hamiltonian the following operators appear:

rc =P†
±r̃P± = P†

±U†rUP±

kc =P†
±k̃P± = P†

±U†kUP±

Covariant operators
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Covariant operators

• rc describes the motion of the center of a wavepacket
• kc corresponds the average operator k of a wavepacket
• kc does not correspond to the kinetic momentum,
because in a system with SOC the kinetic momentum
operator is ℏ(k − A)
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Covariant operators

Covariant operators can be written as

rc =r −A(k)

kc =k −A(r)

where

A(k) =− P†
±U†[r,U]P±

A(r) =− P†
±U†[k,U]P±

Operators A(k) and A(r) correspond to Berry connetions
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Effective Hamiltonian

The effective Hamiltonian can be written as

Heff =
ℏ2

2mk2
c + W(rc) + V

where
V = P†

±
⃗̃B · ⃗̃σP± + V(r) + V(k)

with

V(r) =
ℏ2

2mP±U†[k,U]P∓ · P∓U†[k,U]P±

V(k) =
∑
j,l

w(2)
jl P±U†[rj,U]P∓ P∓U†[rl,U]P±

Here we assumed, that the potential W(r) is at most quadratic:

W(r) = w(0) +
∑

j
w(1)

j rj +
∑
j,l

w(2)
jl rjrl
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Berry curvatures

Commutators:

[(rc)j, (rc)l] =iΘ(k,k)
jl

[(kc)j, (kc)l] =iΘ(r,r)
jl

[(rc)j, (kc)l] =iδj,l + iΘ(k,r)
jl

where various Berry curvatures are given by

Θ
(k,k)
jl =i[rj,A(k)

l ]− i[rl,A
(k)
j ]

Θ
(r,r)
jl =i[kj,A(r)

l ]− i[kl,A
(r)
j ]

Θ
(k,r)
jl =i[rj,A(r)

l ]− i[kl,A
(k)
j ]

Θ
(r,k)
jl =i[kj,A(k)

l ]− i[rl,A
(r)
j ]
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Heisenberg equations

Heisenberg equations for the covariant operators
d
dtkc =

1
iℏ [kc,Heff]

d
dtrc =

1
iℏ [rc,Heff]

contain Berry curvature terms:
d
dtkc =− 1

ℏ
∇W(rc) +

1
iℏ [kc,V]

+
ℏ

2m
∑
j,l

ej
{
Θ

(r,r)
jl , (kc)l

}
+

1
2ℏ
∑
j,l

ej
{
Θ

(r,k)
jl ,∇lW(rc)

}
d
dtrc =

ℏ
mkc +

1
iℏ [rc,V]

+
ℏ

2m
∑
j,l

ej
{
Θ

(k,r)
jl , (kc)l

}
+

1
2ℏ
∑
j,l

ej
{
Θ

(k,k)
jl ,∇lW(rc)

}
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Semiclassical approximation

We neglect the commutator between position and momentum:

B j = −ℏ2

m
∑

l
aj

l(r)kl + vj(r)

Eigenvectors χ±(r, k) of the matrix B⃗ · σ⃗ prametrically depend
on the numbers r and k.
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Semiclassical approximation

Berry connections:

A(k) = iχ†
±∇(r)χ± , A(r) = −iχ†

±∇(k)χ±

Berry curvatures:

Θ
(k,k)
jl =−∇(k)

j A(k)
l +∇(k)

l A(k)
j

Θ
(r,r)
jl =∇(r)

j A(r)
l −∇(r)

l A(r)
j

Θ
(k,r)
jl =−∇(k)

j A(r)
l −∇(r)

l A(k)
j

Θ
(r,k)
jl =∇(r)

j A(k)
l +∇(k)

l A(r)
j

Scalar potentials:

V(r) =− ℏ2

2mχ†
±∇(r)χ∓ · χ†

∓∇(r)χ±

V(k) =−
∑
j,l

w(2)
jl χ

†
±∇

(k)
j χ∓ χ

†
∓∇

(k)
l χ±
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Equations of motion

d
dtkc =− 1

ℏ
∇W(rc)−

1
ℏ
∇(r)V

+
ℏ
m
∑
j,l

ejΘ
(r,r)
jl (kc)l +

1
ℏ
∑
j,l

ejΘ
(r,k)
jl ∇lW(rc)

d
dtrc =

ℏ
mkc +

1
ℏ
∇(k)V

+
ℏ
m
∑
j,l

ejΘ
(k,r)
jl (kc)l +

1
ℏ
∑
j,l

ejΘ
(k,k)
jl ∇lW(rc)
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Another form of equations

In semiclassical approximation the terms containing the Berry
curvatures Θ and scalar potentials V are small compared to
the first term. In the zeroth-order approximation
dkc/dt ≈ ∇W(rc)/ℏ and drc/dt ≈ ℏkc/m.

In the first-order approxmation
d
dtkc =− 1

ℏ
∇W(rc)−

1
ℏ
∇(r)V

+
∑
j,l

ej

(
Θ

(r,r)
jl

d
dt(rc)l +Θ

(r,k)
jl

d
dt(kc)l

)
d
dtrc =

ℏ
mkc +

1
ℏ
∇(k)V

−
∑
j,l

ej

(
Θ

(k,r)
jl

d
dt(rc)l +Θ

(k,k)
jl

d
dt(kc)l

)
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Spin-orbit coupling in one
dimension



One-dimensional spiral

Let us consider the system with the Hamiltonian

H = H0 − Fx

where

H0 =
ℏ2

2m(k − aσ3)
2 +

ℏΩ
2 [cos(x/λ)σ1 + sin(x/λ)σ2]
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Experimental realization

Hamiltonian H0 has been realized experimentally

Y.-J. Lin, K. Jiménez-García and I. B. Spielman, Nature 471, 83–86 (2011).

H =
1

2m(p − χσy)
2 +

Ω

2 σz
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Response to a force: effective mass
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Exact solution

Dispersion

Ek,± =
ℏ2

m

(
k2

2 +
k2

0
2 ±

√
(k0k)2 + (κa)2

)
where

k0 = a +
1

2λ , κ =
Ω

2a
m
ℏ

Effective mass

m
m∗

±
= 1 ±

k2
0
κa ≈ 1 ± 1

κ

(
a +

1
λ

)
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Adiabatic approximation

Semiclassical dynamics follows the equations
d
dtkc =

F
ℏ
(1 −Θ(r,k))

d
dtxc =

ℏ
mkc(1 +Θ(k,r)) +

1
ℏ
∇(k)V

In the limit 1/λa ≪ 1 and |k| ≪ κ the equations become
d
dtkc =

F
ℏ

(
1 ± 1

2λκ

)
d
dtxc =

ℏ
mkc

(
1 ± 1

2λκ ± a
κ

)
Closed equation for the center of mass motion

d2

dt2 xc =
F
m

(
1 ± 1

κ

(
a +

1
λ

))
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Summary



Summary

• In general, adiabatic approximation results in
position-space, momentum-space and phase-space Berry
curvatures.

• The the phase-space Berry curvature is directly related to
the effective mass.

• The measurement of the effective mass is a direct probe
of the phase-space Berry curvature in the system.

• J. Armaitis, J. Ruseckas, E. Anisimovas, Phase space
curvature in spin-orbit coupled ultracold atom systems,
arXiv:1702.03298 [cond-mat.quant-gas] (2017).
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Thank you for your attention!
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