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We present nonlinear stochastic differential equations, generating processes with the
q-exponential and q-Gaussian distributions of the observables, i.e. with the long-range
power-law autocorrelations and 1/fβ power spectral density. Similarly, the Tsallis
q-distributions may be obtained in the superstatistical framework as a superposition
of different local dynamics at different time intervals. In such approach, the average of
the stochastic variable is generated by the nonlinear stochastic process, while the local
distribution of the signal is exponential or Gaussian one, conditioned by the slow aver-
age. Further we analyze relevance of the generalized and adapted equations for modeling
the financial processes. We model the inter-trade durations, the trading activity and the
normalized return using the superstatistical approaches with the exponential and normal
distributions of the local signals driven by the nonlinear stochastic process.

Keywords: Stochastic differential equations; Tsallis distributions; superstatistics; finan-
cial systems.

1. Introduction

Time series of financial data exhibit nontrivial statistical properties. Many of these
anomalous properties appear to be universal and a variety of the so-called stylized
facts has been established [43, 11, 45, 12, 44, 26, 15, 7, 66]. The probability density
function (PDF) of the return and other financial variables are successfully described
by the distributions of the nonextensive statistical mechanics [58, 17, 9, 21, 23].
The return has a distribution that is very well fitted by q-Gaussians, only slowly
becoming Gaussian as the time scale approaches months, years and longer time
scale. Another interesting statistics which can be modeled within the nonextensive
framework is the distribution of volumes, defined as the number of shares traded.
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Many complex systems show large fluctuations that follow non-Gaussian, heavy-
tailed distributions with the power-law temporal correlations, scaling and the fractal
features [42, 44, 41]. These distributions, scaling, self-similarity and fractality are
often related with the Tsallis nonextensive statistical mechanics [60, 48, 61, 62, 57]
and with 1/fβ noise (see, e.g. [41, 30, 29, 14, 37, 54], and references herein). Often
nonextensive statistical mechanics represents a consistent theoretical background
for the investigation of complex systems, [61, 62, 57]. On the other hand, a usual
way to describe stochastic evolution and the properties of complex systems is by the
stochastic differential equations (SDE) [16, 52, 13, 64, 65]. Such nondeterministic
equations of motion are used for modeling the financial systems, as well [38, 44, 27,
20, 19, 21, 22].

There are empirically established facts that the trading activity, trading volume,
and volatility are stochastic variables with the long-range correlation [10, 46, 15].
However, these aspects are not accounted for in some widely used models of the
financial systems. Moreover, the trading volume and the trading activity are posi-
tively correlated with the market volatility, while the trading volume and volatility
show the same type of the long memory behavior [40], including 1/fβ noise [21, 22].

The purpose of this article is to model the inter-trade durations, the trading
activity and the normalized return using the superstatistical approaches with the
exponential and normal distributions of the local signals driven by the nonlinear
stochastic process. We present a class of nonlinear stochastic differential equations
giving the power-law behavior of the probability density function (PDF) of the
signal intensity and of the power spectral density (1/fβ noise) in any desirably
wide range of frequency. Modifications of these equations by introducing an addi-
tional parameter yields Tsallis distributions preserving 1/fβ behavior of the power
spectral density. The superstatistical framework [4, 59, 1, 2, 63, 24, 5] using a fast
dynamics with the slowly changing parameter described by nonlinear stochastic
differential equations can yield q-exponential or q-Gaussian long-term stationary
PDF of the signal retaining the long-range correlations, as well.

Further, we apply these approaches for modeling the dynamics of the finan-
cial observables, as far as they are long-range depending and usually may be well
approximated by q-distributions. In contrast to the widely used models of the finan-
cial market dynamics, the present model account for the long-range correlations of
the observables, exhibiting as well in the 1/fβ spectra. The finding that the market
volatility is proportional to the trading activity allows us to describe both appear-
ances using the same parameters of the model, based on the nonlinear SDEs and
superstatistical framework.

2. Modeling Power-Law Processes by the Nonlinear
Stochastic Differential Equations

The nonlinear SDEs generating power-law distributed processes with 1/fβ noise
have been derived in papers [33, 32, 29] starting from the point process model
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[31, 34, 35, 30]. The general expression of Itô SDEs is

dx = σ2

(
η − 1

2
λ

)
x2η−1dt + σxηdW. (1)

Here x is the signal, η �= 1 is the exponent of the power-law multiplicative noise,
λ defines the exponent of the steady-state PDF of the signal in some interval,
P (x) ∼ x−λ, and W is a standard Wiener process. Some motivations of Eq. (1)
have been given in [33, 30, 32, 29, 28, 54]. In papers [53, 36] the nonlinear SDE
of type (1) has been obtained starting from a simple agent-based model describing
the herding behavior.

In order to obtain a stationary process and avoid the divergence of steady-state
PDF the diffusion of stochastic variable x should be restricted at least from the
side of small values, or Eq. (1) should be modified. Modifications of these equations
by introducing of an additional parameter x0 are presented in [54]. The PDF of the
signal generated by modified SDEs

dx = σ2

(
η − 1

2
λ

)
(x + x0)2η−1dt + σ(x + x0)ηdW (2)

and

dx = σ2

(
η − 1

2
λ

)
(x2 + x2

0)
η−1xdt + σ(x2 + x2

0)
η/2dW (3)

is q-exponential and q-Gaussian distribution of the nonextensive statistical mechan-
ics, respectively. Stochastic differential Eqs. (2) and (3) for small x � x0 represent
the linear additive stochastic process generating the Brownian motion with the
steady drift or linear relaxation, respectively, avoiding the power-law divergence
of the signal distribution when x → 0, while for x � x0 they reduce to the mul-
tiplicative SDE (1) and preserve 1/fβ behavior of the power spectral density. In
[32, 29, 54] it was shown that SDEs (1)–(3) generate signals with the power spectral
density

S(f) ∼ 1
fβ

, β = 1 +
λ − 3

2(η − 1)
(4)

in a wide interval of frequencies.

3. Superstatistical Framework

Many nonequilibrium systems exhibit fluctuations of some parameters. The actual
value of the signal x may be random variable with the distribution depending
on the parameters and, consequently, on the slowly varying average x̄. In such
superstatistical approach [4, 59, 1, 24, 5, 64, 55, 65] the distribution P (x) of the
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signal x is a superposition of the conditional distribution ϕ(x|x̄) and the local
stationary distribution p(x̄) of the parameter x̄,

P (x) =
∫ ∞

0

ϕ(x|x̄)p(x̄)dx̄ . (5)

The superstatistical framework has successfully been applied on a widespread
of problems, including economics [3, 49, 51, 50, 8, 2, 63].

We consider the model when the fluctuating parameter x̄ evolves according
to SDE (1) with the exponential restriction of diffusion. Using the superstatistical
approach, it is possible in such a case to obtain the Tsallis probability distributions.

In order to obtain q-exponential PDF of the signal x we consider exponential
PDF conditioned to the local average value of the parameter x̄,

ϕ(x|x̄) = x̄−1 exp(−x/x̄). (6)

A Poissonian-like process with slowly diffusing time-dependent average interevent
time was considered in [28]. The mean x̄ of the distribution ϕ(x|x̄) obeys SDE with
exponential restriction of diffusion,

dx̄ = σ2

[
η − λ

2
+

1
2

x0

x̄

]
x̄2η−1dt + σx̄ηdW. (7)

Here x0 is a parameter describing exponential cut-off of the steady-state PDF of
x̄ at small values of x̄. The steady-state PDF obtained from the Fokker–Planck
equation corresponding to Eq. (7) is

p(x̄) =
1

x0Γ(λ − 1)

(x0

x̄

)λ

exp
(
−x0

x̄

)
. (8)

Using Eqs. (5), (6) and (8), we get that the long-term stationary PDF of the signal
x is q-exponential function,

P (x) =
λ − 1
x0

(
x0

x + x0

)λ

=
λ − 1
x0

expq(−λx/x0), q = 1 + 1/λ. (9)

Here expq(·) is the q-exponential function defined as

expq(x) ≡ [(1 + (1 − q)x)]
1

1−q

+ , (10)

with [(. . .)]+ = (. . .) if (. . .) > 0, and zero otherwise. Asymptotically, as x → ∞,
expq(x) ∼ x−λ.

In order to obtain the q-Gaussian PDF of the signal x we consider the local
Gaussian stationary PDF of x conditioned of the parameter x̄ in Gaussian form,

ϕ(x|x̄) =
1√
πx̄

exp(−x2/x̄2). (11)
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The fluctuating parameter x̄ obeys SDE

dx̄ = σ2

[
η − λ

2
+

x2
0

x̄2

]
x̄2η−1dt + σx̄ηdW (12)

with exponential restriction of diffusion. The steady-state PDF from the Fokker–
Planck equation corresponding to Eq. (12) is

p(x̄) =
1

x0Γ(λ−1
2 )

(x0

x̄

)λ

exp
(
−x2

0

x̄2

)
. (13)

From Eqs. (5), (11) and (13) we obtain that the long-term stationary PDF of the
signal x is q-Gaussian, i.e.

P (x) =
Γ(λ

2 )√
πx0Γ(λ−1

2 )

(
x2

0

x2
0 + x2

)λ
2

=
Γ(λ

2 )√
πx0Γ(λ−1

2 )
expq

(
−λ

x2

2x2
0

)
, q = 1 + 2/λ. (14)

4. Application for Trading Modeling

Now we analyze the tick by tick trades of 24 stocks, ABT, ADM, BMY, C, CVX,
DOW, FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY, MMM, MO, MOT, MRK,
SLE, PFE, T, WMT, and XOM, traded on the NYSE for 27 months from January,
2005, and recorded in the Trades and Quotes database. PDF of intertrade durations
τ for large values of τ are close to the stretched exponential distribution. In Fig. 1(a)
we show the PDF of the intertrade durations for ABT stock. For other stocks
this PDF exhibits similar shape. In order to show the stretching exponent more
clearly we also plotted in Fig. 1(b) the logarithm of the PDF, as well. The obtained
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Fig. 1. PDF of intertrade durations for large values of duration τ for ABT stock (a) and the
logarithm of the PDF weighted by intertrade duration τ (b). The slope of the gray line is 2/3 ≈
0.67.
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empirical values of the stretching exponent are similar for all stocks and close to
0.7. Note that PDF P (τ) of the intertrade durations weighted by τ , as used in
Fig. 1, gives the distribution of intertrade durations “in real time” [30, 19], i.e.
if we consider intertrade durations as a continuous function of time t then this
function retains the value equal to τ during the time interval of the length τ .

We model the trading activity using superstatistical approach. Each individ-
ual intertrade duration τ is distributed according to exponential, Poissonian-like,
distribution [20, 19]

ϕ(τ |n) = n exp(−nτ). (15)

Here, n = 1/τ̄ being the inverse of the average intertrade duration τ̄ is the slowly
changing in time parameter. The meaning of the parameter n is the trading activity
defined as number of trades in unit time. The model should be self-consistent: the
trading activity n(t) depends on time t, whereas time t is equal to the sum of
intertrade durations, t =

∑
k τk. We assume that PDF of n has power-law form for

large n and has exponential cut-off for small n. Therefore, we choose PDF of n as

Pn(n) =
2

n0Γ(λ−1
2 )

(n0

n

)λ

exp
(
−n2

0

n2

)
. (16)

PDF of this form can be obtained from our SDE (12) with exponential restrictions
at minimal, n = n0, and maximal, n = nmax, values of the trading activity

dn = σ2

[
η − λ

2
+

n2
0

n2
− n2

n2
max

]
n2η−1dt + σnηdW. (17)

The parameter nmax � n0 leads to the exponential cut-off at very large values of
the trading activity n. When n � nmax the influence of this cut-off is vanishing
small.

The long-term PDF of intertrade durations is

P (τ) =
∫ ∞

0

n

〈n〉ϕ(τ |n)Pn(n)dn. (18)

Here

〈n〉 =
∫ ∞

0

Pn(n)ndn (19)

is the average trading activity. Note, that in Eq. (18) the distribution of individual
intertrade duration ϕ(τ |n) should be weighted by a number of trades, proportional
to n. At large τ � τ0 = 1/n0, from Eqs. (15), (16) and (18) we have the asymptotic
form of the integral (18)

P (τ) −→
τ→∞

(
τ

τ0

)λ−4
3

exp

[
−3

(
τ

2τ0

) 2
3
]

. (20)
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Therefore, we obtain that Eq. (18) automatically yields the stretching exponent
equal to 2/3, which is close to the empirically determined values (see Fig. 1). It
should be noted, that the stretching exponent is a sufficiently good approximation
of the Weibull distribution, widely used distribution for modeling extreme events in
long-term memory processes [6, 18, 47]. On the other hand, the power laws can be
approximated by the Weibull distribution in arbitrary intervals to any prescribed
accuracy [56, 6].

Comparison of the proposed PDF of the intertrade duration with empirical PDF
for ABT stock is shown in Fig. 2. Using the appropriate parameters λ and τ0 we
obtain good agreement for all stocks.

The return r̃ over a time interval τd is defined as

r̃(t, τd) = ln p(t + τd) − ln p(t), (21)

where p(t) is the stock price. Instead of unnormalized return r̃ we will use the
normalized return

r =
r̃ − 〈r̃〉√〈(r̃ − 〈r̃〉)2〉 . (22)

The PDF of the normalized return per 1 min is close to q-Gaussian, as is shown
in Fig. 3. In order to account for the double stochastic nature of the return fluctua-
tions — a hidden slowly diffusing long-range memory process and rapid fluctuations
of the instantaneous price changes [20, 19, 21] — we use a superstatistical approach
for the return. Detailed analysis of the empirical data from the NYSE provides
evidence that the long-range memory properties of the return strongly depend on
the fluctuations of the trading activity. Therefore, in our model we will assume that
standard deviation of the local PDF of return is proportional to n. We will take a
normal distribution with mean equal to zero and variance (an)2 as the local PDF
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Fig. 2. PDF of intertrade duration for large values of duration τ for ABT stock. Gray line is
calculated according to Eqs. (15), (16) and (18). Used parameters are λ = 3.4, τ0 = 7.3 s.
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Fig. 3. PDF of normalized return per 1min for ABT stock. The dashed line is q-Gaussian dis-
tribution according to Eq. (25) with parameters λ = 3.4 (q = 1.59).

of return conditioned to value of the parameter n,

ϕ(r|n) =
1√
πan

exp
(
− r2

a2n2

)
. (23)

Here a is a coefficient of proportionality.
The long-term PDF of return is given by the equation

P (r) =
∫ ∞

0

ϕ(r|n)Pn(n)dn. (24)

Using the same distribution (16) as in modeling PDF of the intertrade duration,
we get PDF of return

P (r) =
Γ(λ

2 )√
πr0Γ(λ−1

2 )

(
r2
0

r2
0 + r2

)λ
2

=
Γ(λ

2 )√
πr0Γ(λ−1

2 )
expq

(
−λ

r2

2r2
0

)
, q = 1 +

2
λ

. (25)

Here r0 = an0. Since the return r defined according to Eq. (22) is normalized to the
variance equal 1, the variance and the standard deviation of r in Eq. (25) should
be equal to 1, as well. From this condition it follows

r0 =
√

λ − 3. (26)

Equation (25) shows that our model gives q-Gaussian long-term PDF of return.
Comparison of the empirical distribution of normalized return per 1 min for ABT
stock with the q-Gaussian distribution is shown in Fig. 3. We obtain a good agree-
ment with the empirical PDF. We used the same parameter λ for both PDFs of the
intertrade durations and of the trading activity. Thus PDF of intertrade duration
and PDF of return can be obtained using superstatistical approach from trading
activity, whereas trading activity may be modeled by proposed nonlinear SDE.
Such approach readily gives power-law spectra of the sequence of trades and of the
absolute return.
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Now, as an example, we will consider SDE (17) with the exponent η = 5/2 as
the equation for trading activity n. From the empirical data for ABT stock we get
the parameters of the equation λ = 3.4 and τ0 = 1/n0 = 7.3 s. From Eq. (4) it
follows that the chosen parameters yield the exponent of the power spectral density
β = 1.13. Comparison of the empirically obtained PDFs of intertrade duration and
of normalized one-minute return with the ones from superstatistical model as well
as comparison of empirical power spectral density of the sequence of trades and
of absolute return with respective spectral densities from superstatistical model
are is shown in Fig. 4. We see that this simple approach gives good agreement of
distributions, whereas there is bigger discrepancy between spectra. Although our
model reproduces the power-law behavior of the spectrum, the exponent of the
power spectral density β is larger than 1, whereas the empirical data yield β < 1.
More complicated equation investigated in [19, 21] corresponds to the empirical
power spectral density of the sequence of trades more properly.

10-6

10-4

10-2

100

0  40  80  120

P(τ)

τ [s]

 100
10-1

100

101

102

103

104

10-5 10-4 10-3 10-2 10-1 100

S(f)

f [Hz]

(a) (b)

10-4

10-2

100

 0.001  0.01  0.1 1  10  100

P(r)

r

100

102

104

10-7 10-6 10-5 10-4 10-3 10-2

S(f)

f [Hz]

(c) (d)

Fig. 4. PDF of intertrade duration (a), power spectral density of a sequence of trades (b), PDF (c)
and power spectral density (d) of the absolute value of the normalized one-minute return for ABT
stock. Both empirical and obtained from superstatistical model with SDE (17) and η = 5/2

(smooth gray curves) PDFs and spectra are shown. The parameters used for the model are τ0 =
7.3 s, λ = 3.4, σ/τ0 = 0.001, nmax/n0 = 103.
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5. Conclusion

The complete description of a macroscopic system would consist of solving all the
microscopic deterministic equations of the system. As it generally cannot be done,
we use a stochastic description instead, i.e. we describe the system by macroscopic
variables which fluctuate in a stochastic way [52, 16]. In nature, almost as a rule,
most systems behave as the open ones, interacting with an environment. The evo-
lution of these systems must then be nonunitary, i.e. interactions with the environ-
ment must lead to dissipation as well as in the stochastic effects, which is the way
the environment back-reacts on the system. One common way for describing the
above-mentioned forms of evolution is by means of generalized stochastic differential
equations of motion [39, 13, 25].

In this paper we considered a class of nonlinear stochastic differential equa-
tions, giving asymptotically the power-law behavior of the distribution and of the
power spectral density (1/fβ noise). Modifications of the equations by introducing
the additional parameter, which make the Brownian-like motion of the small vari-
able and preserve from the divergence the power-law distribution at small signals,
give q-probability distribution functions from the nonextensive statistical mechan-
ics, preserving the exhibition of 1/fβ noise, as well. The superstatistical concept,
consisting of the superposition of exponential or Gaussian distributions with the
slow stochastically behaving and power-law distributed means of the process, yields
the q-exponential and q-Gaussian distributions, respectively, with 1/fβ noise of the
generated signal, as well.

Further we used such framework for modeling the financial systems. We showed
that the inter-trade durations, the trading activity and the normalized return may
be replicated using the superstatistical approaches with the exponential and normal
distributions of the local signals driven by the nonlinear stochastic process of the
means, i.e. as a nonlinear double stochastic process.

Summarizing, we have demonstrated that starting from the nonlinear stochastic
differential equations it is possible to model the long-range processes with the power-
law distributions, including q-distributions, which preserve the power-law diver-
gence of the signal distribution when x → 0. Combination of the superstatistical
framework with the stochastic processes generated using the nonlinear SDEs yields
the long-range nonlinear double stochastic processes with the rapid stochastic local
variable and slow stochastic mean. Such an approach may be used for simulation of
the dynamics of some financial observables. Analysis of the basis and universality
of the nonextensive statistical mechanics itself is beyond the scope of this paper.
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