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Abstract—In this short paper, we propose a technique for AI-
based identification of modulation and coding schemes (MCS) in
surrounding cellular signals. Based on the created MCS map, we
evaluate the performance of indoor localization techniques.

Index Terms—AI, MCS, indoor localization

I. INTRODUCTION

Indoor localization belongs to one of the important research
domains in the context of contemporary wireless networks and
signal processing. Typically, the solutions based on Global
Navigation Satellite Systems (GNSS) work very well outdoors,
yet they do not offer enough accuracy and reliability for indoor
applications. Thus, various methods for indoor positioning
have been proposed including fingerprinting, pre-stored maps
of certain parameters, or received signal strength from many
sources, [1], [2]. In this paper, we consider the application
of supervised learning to detect the location of indoor users.
Intentionally, we assume that no GNSS signals can be used
and there is access only to the legacy signals (like 4G or
5G) from the nearby base stations. In particular, we assume
that the detection of the so-called modulation and coding
schemes (MCS) could be used to specify the user’s location.
We propose to train the neural network (NN) in such a way that
it will be able to detect the MCS values in the legacy 4G/5G
signals. Once detected, the pre-stored map of MCSes can be
used to specify the true location of the user by comparing
the measured/detected MCS with those stored in the map.
Such an approach allows us to decide on the location of the
users just by observing the signal and without decoding it.
Here we assume that no additional sources of information
are used; however, achieved results are the basis for future
extensions, where we foresee the usage of Reconfigurable
Intelligent Surfaces (RISes) to improve signal detection and
localization.

II. DETECTION OF MODULATION AND CODING SCHEME

In the experiments that were conducted, we assume the
usage of NN for MCS detection. In practice, the value of MCS
is selected dynamically based on the observed and measured
quality of the transmission channel. As the transmission envi-
ronment is typically time-varying, and the users (UE) are often
moving, the values of MCS may vary frequently. According

to the 5G standards, it can take a value between 0 to 31,
and these numbers are translated to various signal modulation
and coding setups, thus - to different achievable throughputs.
Based on the channel observation between the UE and base
stations (BS), the proper value of MCS is selected. Thus, in our
supervised approach, we have to label the signal for various
MCS values.

For that purse, we have built the experimentation setup
consisting of the legacy 4G/5G BS provided by the Amarisoft
company and off-the-shelf smartphones. To train the NN, in
the repeatable scenario (i.e., for the known and fixed location
of the UE and the base station receiver), we have gathered
I-Q samples of the received signal from the UE at the BS
for different MCS values. The Amarisoft BS allows us to
enforce (by adjusting the software) the fixed value of MCS for
a certain transmission. In our experiment, the uplink direction
was considered. In reality, the received signal strength at the
BS will vary, mainly depending on the distance between the
UE and BS. To properly train the NN, the I-Q samples for each
considered MCS have been collected for various signal-to-
interference-plus-noise ratios (SINRs), with the approximate
step of 1 dB. The samples were gathered by the FSL6 spectrum
analyzer by Rohde & Schwarz, whose antenna was collocated
with that of the smartphone. The sampling frequency has been
set to 5 MHz, and at each signal run 523776 samples have been
detected and saved in a file with a single precision format.
Ten files were created for each combination of MCS and
SINR. The Amarisoft BS operated at the 2.68 GHz central
frequency, with the 1.4 MHz channel bandwidth (equivalent to
six resource blocks). In order to reflect the real signal (i.e., the
data frames filled with user data), at the UE side, the dedicated
commercial application for testing the maximum throughput
of the connection was set. Such collected data have been
post-processed in Python while training the specified network
configuration. Finally, we used the signals with MCS from 8
to 16. As mentioned, for each MCS-SINR tuple, there are ten
files, which have been split into one signal for the validation
dataset and the remaining nine signals for the training dataset.
From each signal, we randomly select 1000 samples with a
length of 2048 for experiments.

In detail, for signal classification, we use a model similar to
the temporal convolution network (TCN). The neural network
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uses 1D fully-convolutional architecture. However, since for
classification, there is no need to ensure that the future does
not influence the past, we do not use causal convolutions. Each
hidden layer is the same length as the input layer; zero padding
is added to keep subsequent layers the same length as previous
ones. The neural network uses dilated convolutions to achieve
an exponentially large receptive field. The dilation factor d is
increased exponentially with the depth of the network: d = 2i
at level i of the network. As in the TCN model, we use residual
blocks where the output of a block is formed as a sum of
the block input and non-linear transformations of the input.
Such a residual block allows layers to learn modifications
to the identity mapping rather than the entire transformation,
leading to easier training of very deep networks. Within a
residual block, the neural network has two layers of dilated
convolution and rectified linear unit (ReLU) non-linearities.
We also use an additional 1x1 convolution to transform the
input of the residual block before element-wise addition. For
the classification task, we take the output of the last residual
block and perform global average pooling, the output of which
is transformed by the densely connected hidden layer with
ReLU nonlinearity and the output densely connected layer
with softmax activation. Categorical cross-entropy is used as
a loss function of the network. We use the neural network
with kernel size k = 5, number of filters in the hidden layers
N = 64, and n = 8 residual blocks (leading to the dilation
factor of the last block d = 28 = 256). Such a neural network
has 355854 trainable parameters. We train the model using the
AdamW optimizer with the weight decay 10−2. The learning
rate was changed using a 1cycle learning rate schedule with
the maximum learning rate of 10−2. The neural network was
trained for 50 epochs.

The true experiment has been prepared to test the detection
ability of the trained network. The same setup has been used
(i.e., the Amarisoft BS, off-the-shelf smartphone, and the
collocated spectrum analyzer R&S FSL6) to collect the I-Q
samples of the real signal transmitted between the UE and
BS, where the selection of MCS has been made dynamically,
following the standard procedures. However, at the same time,
we were able to record the true values of the chosen MCS
based on analysis of the logs. The trained network has been
used to detect the MCS values of the recorded signal. The
achieved accuracy was at the level of 81%.

III. EXPERIMENT RESULTS FOR INDOOR LOCALIZATION

In the main experiment, we used the analogous setup as
previously; mainly, the same Amaisoft legacy base station
has been used inside the room at the premises of Poznan
University of Technology. The whole room has been split into
54 tiles (6 × 9) of 1 m size, and for each tile, the averaged
MCS value for typical transmission has been measured. These
measurements have been used to create the map of the average
MCS inside the room, as shown in Fig. 2, where axes indicate
the tile indexes and colors of the MCS value. In the main
experiment, the same trained NN was used to detect the MCS
and, finally, after postprocessing - to indicate the location

Fig. 1. MCS map covering the area of one laboratory

inside the room. The achieved results are shown in the form of
the confusion matrix in Fig. 3. One can see that the results are
fine, yet to guarantee precise localization, more processing will
be needed in the future, for example, by applying advanced
dead-reckoning techniques or to consider the usage of RISes.

Fig. 2. Confusion matrix for indoor localization
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