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a b s t r a c t

Anomalous diffusion occurring in complex dynamical systems can often be described by

Langevin equations driven by Lévy stable noise. Nonlinear stochastic differential equations

yielding power-law steady state distribution and generating signals with 1/f power spectral

density can be generalized by replacing the Gaussian noise with a more general Lévy stable

noise. These nonlinear equations can generate signals exhibiting anomalous diffusion: either

sub-diffusion or super-diffusion. In a special case when stability index is α = 2, we retain the

equations with the Gaussian noise. We investigate numerically the frequency range where the

spectrum has 1/f form and demonstrate that this frequency range depends on power-law ex-

ponent in steady state distribution as well as on the index of stability α. We expect that this

generalization may be useful for describing 1/f fluctuations in the complex systems exhibiting

anomalous diffusion.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

One of the fundamental aspects of complex systems is the

transport properties. Transport properties in complex sys-

tems are usually characterized by anomalous scaling, that is

by a non-linear time dependency in the growth of the vari-

ance, σ 2(t) ∼ tμ, where t is the elapsed time. This condition is

known as an anomalous diffusion. In contrast to the anoma-

lous diffusion, in a typical diffusion process the variance of

the particle position (or mean squared displacement σ 2
x ) is a

linear function of time. Physically, the variance σ 2(t) can be

considered as the amount of space that the particle has “ex-

plored” in the system. Anomalous diffusion is classified by

its power law exponent μ. If μ > 1, the phenomenon is called

super-diffusion. Super-diffusion has been experimentally ob-

served in a study of tracer particles in a two-dimensional

rotating flow [1]. If μ < 1, the particle undergoes sub-

diffusion. Sub-diffusion has been proposed as a measure of
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macromolecular crowding in the cytoplasm [2]. It has been

theoretically shown that anomalous diffusion can arise in

self-organized criticality (SOC) systems such as sandpile [3]

and play important role to self-organization phenomena in

reaction–diffusion systems [4].

Theoretical models suggest that super-diffusion can be

caused by Lévy flights [5]. Analysis of the relaxation cascade

of a photoexcited electron in graphene showed that the

statistics of the entire cascade is described by Lévy flights

with constant drift leading to anomalous diffusion [6].

Lévy flight is a generalization of the Brownian motion. The

Brownian motion mimics the influence of the “bath” of sur-

rounding molecules in terms of time-dependent stochastic

force which is commonly assumed to be a white Gaussian

noise. This assumption is compatible with the weak inter-

actions between the particle and the bath. On the contrary,

the Lévy flights describe results of strong collisions between

the particle and the surrounding environment. Lévy flights

resulting in a super-diffusion can be modeled by fractional

Fokker–Planck equations [7] or Langevin equations with an

additive Lévy stable noise. Langevin equations have been

used to study the role of thermal and non-Gaussian noise
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on the dynamics of driven short overdamped [8] and long-

overlap Josephson junctions [9]. The resonant activation and

noise enhanced stability has been observed in a metastable

system in the presence of Levy noise. Lévy motions can

lead to anomalous diffusion in many physical systems: as

an example we mention deterministic chaotic dynamics

of Na adparticles on a Cu surface [10], anomalous diffu-

sion of a gold nanocrystal, adsorbed on the basal plane of

graphite [11].

Sub-diffusion can be described with an additional as-

sumption that diffusing particle become trapped for some

times and the waiting time distribution is of a power law

type. For example, assuming anomalously long waiting times

p(t) ∼ 1/t1+m, 0 < m < 1, one arrives at an anomalous, non-

Markovian diffusion which is described by the fractional (in

time) Fokker–Planck–Kolmogorov equation [12]. However, if

it is unreasonable to assume existence of the trapping mech-

anism, alternative approach can be made by using models

with multiplicative Lévy stable noise [13]. Langevin equa-

tions with multiplicative Lévy stable noise have been used for

modeling inhomogeneous media [14] and for the description

of the competition between two competing species in super-

diffusive dynamical regimes. The multiplicative noise, in the

presence of two different dynamical regimes (coexistence

and exclusion) produces the appearance of anticorrelated

oscillations and stochastic resonance phenomenon [15,16].

The relation between Langevin equation with multiplicative

Lévy stable noise and fractional Fokker–Planck equation has

been introduced in [17]. The Langevin equation should be

interpreted in Itô sense [18]. Unfortunately the relation be-

tween these two equations is not known in Stratonovich in-

terpretation, therefore application of Lévy stable noise driven

stochastic differential equations (SDEs) can be problematic.

For equation driven by Gaussian noise we can always write

the corresponding Fokker–Planck equation and vice versa.

However, such statement is not always true for Langevin

equation with Lévy stable noise. For example, particle dif-

fusion on randomly folding heteropolymer can be described

by space fractional Fokker–Planck equation [19], but for such

equation counterpart Langevin equation has not been found

[20] and may not exist [21].

There are some exceptional cases when stochastic dif-

ferential equations with Lévy stable noise have generated

a signal with statistical properties that mimics experiment

data very well, like in a study of Lévy stable noise in-

duced millennial climate changes from an ice-core record

[22]. However, the choice of appropriate model for noisy

system can very difficult. In many experimental studies it

is usually possible only to show that the systems exhibit

Lévy law-tails: for example, distribution function of turbu-

lent magnetized plasma emitters [23] and step-size distri-

bution of photons in hot vapors of atoms [24] have Lévy

tails. Financial data time series analysis show that other

stochastic process can be indistinguishable from Lévy stable

motion [25].

Many complex systems exhibit large fluctuations of

macroscopic quantities having non-Gaussian power law dis-

tributions as well as power law temporal correlations and

scaling [26–28]. The power law distributions, scaling, self-

similarity and fractality can be related with the power law
behavior of the power spectral density (PSD), that is 1/f noise.

“1/f noise” refers to signals having the PSD at low frequencies

f of the form S(f) ∼ 1/fβ with β close to 1. Power-law spectra

of signals with 0.5 < β < 1.5, as well as scaling behavior are

ubiquitous in physics and in many other fields [29–36]. Since

its discovery more than 80 years ago [37,38] many models

and theories have been proposed. Nevertheless, the subject

of 1/f noise remains still open for new discoveries. Most mod-

els and theories of 1/f noise are not universal due to the usage

of assumptions specific to the problem under consideration.

A short categorization of the theories and models of 1/f noise

is presented in the introduction of the paper [39], see also the

review [40]. Mainly 1/f noise is considered as Gaussian pro-

cess [41,42], but sometimes signals exhibiting 1/f spectrum

are clearly non-Gaussian [43,44].

The simplest way to model 1/f noise is to use superposi-

tion of signals with Lorentzian spectra. However a wide range

distribution of signal relaxation times is required [45]. A class

of the models of 1/f noise especially relevant for understand-

ing of complex systems involves the self-organized criticality

[46–48]. Yet another model of 1/f has been presented in [49–

52]: it has been shown that the origin of 1/f noise in a signal

consisting from pulses may be a Brownian motion of the time

between pulses. The nonlinear SDEs generating signals with

1/f noise has been obtained in [53,54] starting from this point

process model of 1/f noise. It has been shown that a special

case of this SDE arises from Kirman’s agent model [55]. This

equation was used to describe signals in socio-economical

systems [56,57].

The nonlinear SDEs generating signals with 1/f PSD have

been generalized in [58] by replacing the Gaussian noise with

a more general Lévy stable noise. The SDEs with the Gaussian

noise then arise as a special case when the index of stability

α = 2. The signals generated by proposed SDEs have 1/fβ PSD

in a wide but finite region of the frequencies. The analytical

estimation of the width of this region, obtained in [58] shows

poor agreement with numerical results.

In this paper we numerically investigate the dependence

of the width of 1/f region in the spectrum on the parame-

ters of the equation. It has been shown that for noisy lin-

ear oscillator the efficiency of the noise energy conversion

process depends only on the correlation time and the band-

width of the noise [59]. We expect that knowledge of the

size of 1/f noise frequency range will be useful for bet-

ter understanding of the non-Gaussian noise energy har-

vesting in monostable piezoelectric transducers [60]. The

power law distributions, scaling, self-similarity and fractal-

ity can be related with the 1/f noise and anomalous diffu-

sion [61]. We use nonlinear SDEs with Lévy stable noise to

study the connection between anomalous diffusion and 1/f

noise.

The paper is organized as follows: In Section 2 we present

the nonlinear SDE with Lévy stable noise yielding power law

steady state probability density function (PDF) of the gener-

ated signal. In Section 3 we discuss the numerical method

of solution. This method we apply in Section 4 to estimate

when the signal generated by such an SDE has 1/f PSD in a

wide region of frequencies. In Section 5 we explore the rela-

tion between our model and anomalous diffusion. Section 6

summarizes our findings.
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2. Stochastic differential equation with Lévy stable noise

generating signals exhibiting 1/f spectrum

We consider the Langevin equation with Lévy stable noise

of the form [7,62,63]

dx

dt
= a(x) + b(x)ξ(t) , (1)

where a(x) describes the deterministic drift term and b(x)

describes the amplitude of the noise. The stochastic force

ξ (t) is uncorrelated white noise, 〈ξ(t)ξ(t ′)〉 = δ(t − t′) and

is characterized by Lévy α-stable distribution. For simplicity

we only use symmetric stable distributions, for this reason

we take the characteristic function of ξ (t) as

〈exp (ikξ)〉 = exp (−σα|k|α) , (2)

where σ is the scale parameter and α is the index of stabil-

ity. Eq. (1) we interpret in Itô sense. The Lévy α-stable dis-

tributions arise form generalized central limit theorem and

constitute the most general class of stable processes. These

distributions are characterized by the index of stability 0 <

α ≤ 2. The Gaussian distribution corresponds to a special

case when α = 2, whereas the Lévy stable distributions have

power-law tails ∼ 1/x1+α for α < 2. There are many sys-

tems exhibiting such power law-tails: for example, distribu-

tion function of turbulent magnetized plasma emitters [23]

and step-size distribution of photons in hot vapors of atoms

[24] have Lévy tails; theoretical models impose that velocity

distribution of particles in fractal turbulence is Lévy stable

distribution [64] or at least has Lévy tails [65]. If properties

of a system subjected to noise depend mainly only on large

noise fluctuations, such noise intensity distributions can by

approximated by Lévy stable distribution, leading to Lévy

flights. Eq. (1) can also be written in the form

dx = a(x)dt + b(x)dLα
t , (3)

where dLα
t stands for the increments of Lévy α-stable motion

Lα
t [25,66]. It is easier to calculate the steady state PDF of the

signal x by using the space fractional Fokker–Planck equation

instead of stochastic differential equation (1). The fractional

Fokker–Planck equation corresponding to Eq. (1) is [17,67]

∂

∂t
P(x, t) = − ∂

∂x
a(x)P(x, t) + σα ∂α

∂|x|α b(x)αP(x, t). (4)

The operator ∂α/∂ |x|α is the Riesz–Weyl fractional derivative.

The Riesz–Weyl fractional derivative acting on the function

f(x) is defined by its Fourier transform [68],

F
[

∂α

∂|x|α f (x)

]
= −|k|α f̃ (k). (5)

The SDE (1) having multiplicative noise with the power-law

dependence of the noise amplitude b(x) on the signal size and

generating signals with the power law steady state PDF

P0(x) ∼ x−λ, (6)

has recently been proposed in Ref. [58]. The proposed equa-

tion has the form

dx = σαγ xα(η−1)+1dt + xηdLα
t , (7)

where the coefficient γ is given by the equation

γ =
sin

[
π

(
α
2

− αη + λ
)]

sin[π(α(η − 1) − λ)]

�(αη − λ + 1)

�(α(η − 1) − λ + 2)
. (8)
The special case of Eq. (7) for free particle (a(x) = 0) with

Lévy stable noise having α < 2 has been derived from coupled

continuous time random walk (CTRW) models [13], when

jumping rate ν of CTRW process depends on signal intensity

as ν(x) = xαη, x > 0. It has been obtained in Ref. [58] that the

power law exponent λ of the steady state PDF should take the

values from the interval

α(η − 1) + 1 < λ < αη + 1. (9)

In fact, this condition assures that the values of the parame-

ters in equation (8) are outside of the poles.

If λ > 1 then the steady state PDF P0(x) diverges as x → 0.

The requirement of the stationarity of the process leads to

the necessity to restrict the diffusion in some finite interval

of values. Thus the SDE (7) should be considered together

with the appropriate restrictions of the diffusion. The sim-

plest choice of restriction is provided by the reflective bound-

aries at x = xmin and x = xmax. Nevertheless, other forms of

restrictions are possible by introducing additional terms in

the drift term of Eq. (7).

Eq. (7) is a generalization of the nonlinear SDE with Gaus-

sian noise proposed in [53,54]. As a particular case, when

α = 2 then the expression (8) for the coefficient γ simplifies

to (2η − λ) and from Eq. (7) we get previously proposed SDE

with the Gaussian noise [53,54]

dx = σ 2(2η − λ)x2η−1dt + xηdL2
t . (10)

According to the definition (2), the scale parameter σ differs

from the standard deviation of the Gaussian noise. Another

simple case is when α = 1. For α = 1 Eq. (7) becomes

dx = σ cot[π(λ − η)]xηdt + xηdL1
t . (11)

Recently it was suggested that the non-homogeneity aris-

ing from the bath not being in an equilibrium can be de-

scribed by the dependence of the diffusion coefficient on the

particle coordinate x [69]. For example, if η = 1/2, Eq. (10)

describes the diffusion of a Brownian particle in a medium

where steady state heat transfer is present due to the differ-

ence of temperatures at the ends of the medium. The appro-

priate choice of γ (Eq. (8)) preserves original scaling proper-

ties of the signal as Lévy stable noise is introduced instead of

Gaussian noise. Therefore, Eq. (7) should apply to Brownian

motion in non-homogeneous media in presence of anoma-

lous scaling.

2.1. Estimation of the power spectral density

The power law exponent of the PSD can be estimated by

using the approximate scaling properties of the signals, as it

is done in the Appendix A of Ref. [70] and in Ref. [71]. The PSD

can be obtained from the autocorrelation function C(t) by us-

ing Wiener–Khintchine theorem. The autocorrelation func-

tion can be calculated using the steady state PDF P0(x) and

the transition probability P(x′, t|x, 0) [72]:

C(t) =
∫

dx

∫
dx′ xx′P0(x)P(x′, t|x, 0). (12)

The transition probability (the conditional probability that at

time t the signal has value x′ with the condition that at time

t = 0 the signal had the value x) can be obtained from the so-

lution of the fractional Fokker–Planck equation (4) with the

initial condition P(x′, t = 0|x, 0) = δ(x′ − x).



R. Kazakevičius, J. Ruseckas / Chaos, Solitons and Fractals 81 (2015) 432–442 435

 4

 8

 12

 16

 0  2  4  6  8  10

x

t

(a)

10-4

10-3

10-2

10-1

100

101

102

100 101 102 103 104

S(f)

f

(b)

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104

p(x)

x

(c)

Fig. 1. (a) Signal generated by SDE with Lévy stable noise (11) with reflective boundaries at x = xmin and x = xmax. (b) Steady state PDF P0(x) of the signal. The

gray line shows the slope x−3. (c) Power spectral density S(f) of the signal. The gray line shows the slope 1/f. Parameters used are α = 1, λ = 3, η = 1.8, xmin = 1,

xmax = 104, σ = 1.

Fig. 2. Possible values of the multiplicativity parameter η and the power law exponent λ for a fixed stability index value α = 1.5. Black solid lines represent the

limiting values given by Eq. (21). The black dashed line represents the limit given by Eq. (22). The gray area represent the combination of η and λ values for which

Eq. (7) generates signal with steady state distribution and power spectral density in a form of power laws.

C

The Lévy α-stable motion has the increments dLα
t with

the scaling property dLα
at = a1/αdLα

t [66]. By introducing the

scaled time ts = aα(η−1)t or changing the variable x in Eq. (7)

to the scaled variable xs = ax we get the same resulting equa-

tion. Thus change of the time scale and change of the scale of

the variable x are equivalent, leading to the scaling property

of the transition probability

aP(ax′, t|ax, 0) = P(x′, aμt|x, 0). (13)

The exponent μ is

μ = α(η − 1). (14)

In Ref. [71] it has been shown that the steady state PDF

P0(x) ∼ x−λ and the scaling property of the transition proba-

bility (13) lead to the power law form of the PSD S( f ) ∼ f −β

in a wide range of frequencies. The power law exponent in

the PSD of the signal generated by SDE (7) is

β = 1 + λ − 3

α(η − 1)
. (15)

This equation is valid when the resulting β has values in the

interval 0 < β < 2. Eq. (15) is a generalization of the expres-

sion for the power law exponent in the PSD with α = 2 ob-

tained in Ref. [54]. From Eq. (15) it follows that we get 1/f PSD

when λ = 3.
Due to restrictions of diffusion at x = xmin and x = xmax

the scaling (13) is not exact. This limits the power law part

of the PSD to a finite range of frequencies fmin 	 f 	 fmax.

Note, that pure 1/fβ PSD is physically impossible because the

total power would be infinite. Therefore we consider signals

with PSD having 1/fβ behavior only in some wide intermedi-

ate region of frequencies, fmin 	 f 	 fmax, whereas for small

frequencies f 	 fmin the PSD is bounded. We can estimate

the limiting frequencies similarly as in Ref. [71]. Taking into

consideration the reflective boundaries xmin and xmax the au-

tocorrelation function has the scaling property [71]

(t; axmin, axmax) = a2C(aμt, xmin, xmax). (16)

From this equation it follows that time t in the autocorre-

lation function should enter only in combinations with the

limiting values, xmint1/μ and xmaxt1/μ. One can expect that

the influence of the limiting values is negligible when the

first combination is small and the second large. This lim-

its the time t to the interval σ−αx
α(1−η)
max 	 t 	 σ−αx

α(1−η)
min

.

Then the frequency range where the PSD has 1/fβ behavior

can be estimated as

σαx
α(η−1)
min

	 2π f 	 σαx
α(η−1)
max . (17)

Eq. (17) shows that the frequency range grows with increas-

ing of the difference of the exponent η from 1. The frequency
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Fig. 3. (a,c) Power spectral density of signal generated by SDE with Lévy stable noise (7) and (b,d) the steady state PDF. The dashed lines show the power law

dependence 1/fβ in (a,c) and x−λ in (b,d). The parameters are as follows: (a,b) λ = 3.8 black dots, λ = 3.6 gray dots corresponding to numerically estimated power

law exponents β = 1.53 and β = 1.4. (c,d) λ = 3.5 black dots and λ = 3.3 gray dots corresponding to numerically estimated power law exponents β = 1.2 and

β = 1.2. Other parameters are xmin = 1, xmax = 103, σ = 1, η = 2.0, α = 1.5.
range becomes zero when η = 1. One can get arbitrarily wide

range of the frequencies where the PSD has 1/fβ behavior by

increasing the ratio xmax/xmin . Unfortunately, the numerical

calculation shows that the estimation of the frequency range

given by Eq. (17) is too wide. In order to give a better es-

timation we numerically investigate the dependence of the

1/fβ frequency range on the parameters of the equation in

Section 4.

3. Method of numerical solution

It was rigorously proven by numerical simulations and

algorithm convergence analysis that Euler’s scheme can be

used for stochastic differential equations with Lévy α stable

process [66,73] and even for more complicated case when

both time and space derivatives are fractional in the corre-

sponding Fokker–Planck equation [74]. Therefore, we trans-

form differential equations to difference equation by using

Euler’s approximation scheme. The difference equation

xk+1 = xk + σαγ x
α(η−1)+1

k
hk + x

η
k

h1/α
k

ξα
k , (18)

corresponding to Eq. (7). We interpret the stochastic integral

in Itô sense, because the relation between the Langevin equa-

tion Eq. (1) and the Fokker–Planck equation is known only in

Itô interpretation. However an attempt to use Stratonovich
interpretation also has been made [18]. Here hk = tk+1 − tk is

the discrete time step and ξα
k

is a random variable having α-

stable Lévy distribution with the characteristic function (2).

The Eq. (18) could be solved numerically with the constant

step hk = const. When η > 1 the coefficients in the equation

become large at large values of x, thus a very small time step

is needed. It is more efficient to use a variable time step, as

has been done solving SDE with Gaussian noise in Ref. [53].

We choose the time step in such a way that the change of the

variable xk in one step is proportional to the value of the vari-

able x. If we consider the variable step of integration such as

hk = κα

σα
x

−α(η−1)
k

, (19)

Eq. (18) simplifies to

xk+1 = xk + καγ xk + κ

σ
xkξ

α
k . (20)

Here κ 	 1 must be a small parameter. We get very similar

numerical results by using the Milstein approximation.

We introduce the reflective boundaries at x = xmin and

x = xmax using the projection method [75,76]. The projection

method is realized as follows, if the variable xk+1 acquires the

value outside of the interval [xmin, xmax] then the value of the

nearest reflective boundary is assigned to xk+1.
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Fig. 4. (a,c) Power spectral density of signal generated by SDE with Lévy stable noise (7) and (b,d) the steady state PDF. The dashed lines show the power law

dependence 1/fβ in (a,c) and x−λ in (b,d). The parameters are as follows: (a,b) λ = 3 black dots, λ = 2.8 gray dots corresponding to numerically estimated power

law exponents β = 1 and β = 0.83. (c,d) λ = 2.5 black dots and λ = 2.4 gray dots corresponding to numerically estimated power law exponents β = 0.54 and

β = 0.4. Parameters used are xmax = 104, η = 1.8, other parameters are the same as used in Fig. 3.
When λ = 3, we get that β = 1 and SDEs (7), (10), and

(11) should give a signal exhibiting 1/f fluctuations. As an ex-

ample, we will solve numerically the SDE (7) with the index

of stability of Lévy stable noise α = 1.5 and the exponent of

the steady state PDF λ = 3. In addition, we include the re-

flective boundaries at x = xmin and x = xmax. The numerical

results are presented in Fig. 1. We use a variable step inte-

gration sampled on constant time step equal to 10−5. The

generated signal is shown in Fig. 1a. In the signal we can see

large peaks or bursts corresponding to the large deviations of

the variable x. Comparison of the steady state PDF P0(x) with

the analytical power law estimation ∼x−3 is shown in Fig. 1b.

The steady state PDF deviates from the power law prediction

near reflecting boundaries. Such increase of the steady state

PDF near boundaries is typical for equations with Lévy stable

noise having α < 2 [77] and is similar to the behavior of the

analytical expression obtained in Ref. [77] for the simplest

stochastic differential equation Lévy stable noise having con-

stant noise amplitude and zero drift.

Comparison of the PSD S(f) with the analytical estimation

S(f) ∼ 1/f is shown in Fig. 1c. This comparison confirms the

presence of the frequency region for which the PSD has 1/f

dependence. The width of this region increases as increase
the ratio between the minimum and the maximum values

of the stochastic variable x. Furthermore, the region in the

PSD with the power law behavior depends on α and the ex-

ponent η: the width increases with increasing the difference

η − 1 and increasing α; when η = 1 then this width is zero.

Such behavior is quantitatively predicted by Eq. (17). How-

ever, Eq. (17) predicts too wide frequency range. We inves-

tigate the power law frequency range dependence on model

parameters in the next section.

4. Dependence of the power law region in the spectrum

on the parameters of the equation

In order to investigate the dependence of the power law

region in the PSD of the generated signal on the parameters

of the SDE (7) we perform numerical solutions of SDEs with

different power law exponents λ of steady state PDF. Exten-

sive study of various empirical data [78] shows that power

law distributions are found with power law exponent vary-

ing in interval 1.7 ≤ λ ≤ 3.7, except some exotic cases such

as the distributions numbers of papers authored by mathe-

maticians where λ = 4.3. Therefore, we choose to vary the

exponent λ in the interval 2.4 ≤ λ ≤ 3.8.
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Fig. 5. (a,c) Power spectral density of signal generated by SDE with Lévy stable noise (7) and (b,d) the steady state PDF. The dashed lines show the power law

dependence 1/fβ in (a,c) and x−λ in (b,d). The parameters are as follows: (a,b) λ = 3.8 black dots, λ = 3.6 gray dots corresponding to numerically estimated power

law exponents β = 1.37 and β = 1.25. (c,d) λ = 3.5 black dots and λ = 3.3 gray dots corresponding to numerically estimated power law exponents β = 1.18 and

β = 1.02. Other parameters are xmin = 1, xmax = 400, σ = 1, η = 3.0, α = 1.
According to Eq. (9), the parameter η can acquire values

from the interval

λ − 1

α
< η <

λ − 1

α
+ 1 (21)

assuming that η > 1. On the other hand, Eq. (15) together

with the condition 0 < β < 2 yield

η > 1 + |λ − 3|
α

. (22)

Fig. 2 shows the possible values of η and λ for fixed stabil-

ity index α. The inequalities given by Eqs. (21) and (22) can

be simultaneously satisfied only when λ > 2. Therefore, we

expect that Eq. (15) should be valid only for λ > 2. It can be

shown that for large power law exponent λ > (4 + α)/2 it is

enough to only check the first condition Eq. (21). For smaller

λ < (4 + α)/2 we have the interplay between limiting condi-

tions and η can acquire values from interval

1 + 3 − λ

α
< η < 1 + λ − 1

α
(23)

This limiting range for η vanishes as λ → 2. As an example,

the PSD and the steady state PDF of the signal generated by

the nonlinear SDE with Lévy stable noise and different val-

ues of the power law exponent of the steady state PDF λ are

presented in Figs. 3 and 4. The index of stability is the same
and equal to α = 1.5. We see a good agreement of the steady

state PDF with the analytical estimation x−λ, except near the

reflecting boundaries. Numerical solution of Eq. (7) confirms

the presence of the frequency region where the PSD has 1/fβ

dependence. From the condition Eq. (9) and Eq. (15) it follows

that Eq. (7) should yield power law PSD with the exponent β
having values from the interval

2 − 2

α(η − 1)
< β < 2 − 2 − α

α(η − 1)
(24)

when η > 1. However, numerical calculation shows that for

2 < λ < 2.5 Eq. (15) does not hold precisely. For example,

Eq. (15) with the parameters corresponding to Fig. 4c gives

β = 0.5, but numerical simulation yields β = 0.41. We can

conclude, that Eq. (15) is only approximate, the difference

from the actual value of β becomes large when η is close to

the limiting values. This is true for all λ values if η is cho-

sen close to its limiting value. When λ is close to 2, the noise

multiplicativity parameter η is always close to its limiting

values and it is not possible to choose otherwise (see Fig. 2

and Eq. (23)). For larger λ > 2.5 we choose η sufficiently far

from limiting values. Therefore for λ > 2.5 the agreement

of the numerical results with the analytical expressions is

quite good. The analytical predictions fails close to limiting

values because normalization constant γ in Eq. (7) is only
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Fig. 6. (a,c) Power spectral density of signal generated by SDE with Lévy stable noise (7) and (b,d) the steady state PDF. The dashed lines show the power law

dependence 1/fβ in (a,c) and x−λ in (b,d). The parameters are as follows: (a,b) η = 2.4, xmax = 5 × 103, λ = 3 black dots, λ = 2.8 gray dots. The corresponding nu-

merically estimated power law exponents are β = 1 and β = 0.8. (c,d) η = 2.2, η = 2.2, xmax = 104, λ = 2.5 black dots and λ = 2.3 gray dots. The corresponding

numerically estimated power law exponents are β = 0.51 and β = 0.3. Other parameters are the same as used in Fig. 5.
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power law exponent of the steady state PDF λ. The index of stability α = 1.5.

Black dots are obtained using frequency ranges from data presented in Figs. 3

and 4. Gray line shows quadratic dependence on λ.

 0

 0.02

 0.04

 0.06

 0.08

 2.4  2.6  2.8  3  3.2  3.4  3.6  3.8

Δf/Δfmax

λ
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retical �fmax frequency ranges where the PSD has power law behavior on the

power law exponent of the steady state PDF λ. The index of stability α = 1.

Black dots are obtained using frequency ranges from data presented in Figs. 5

and 6. Gray line shows quadratic dependence on λ.
approximate when model parameters are close to the limit-

ing values. We suspect that this happens due simplifications

made in order to obtain steady state solution of fractional

Fokker–Planck equation [58].
The PSD and the steady state PDF of the signal generated

by the nonlinear SDE with Lévy stable noise having index of

stability α = 1 are presented in Figs. 5 and 6. The numerical

solution of Eq. (11) also confirms the presence of 1/fβ spec-
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Fig. 10. Dependence of the variance σ 2(t) of the signal generated by Eq. (11) on time t. The stability index of Lévy noise α = 1. Gray and black strait lines show

the power law dependence of the variance on time, σ 2 ∼ tμ . (a) Black curve corresponds to η = 2.8, gray curve to η = 2.9. The numerically determined values

of the index μ are μ = 1.35 and μ = 0.9, respectively. (b) Black curve corresponds to η = 2.4, gray curve to η = 2.1. The numerically determined values of the

index μ are μ = 0.5. Other parameters of the equation are same as in Fig. 9.
trum. However, as we can see from Figs. 5 and 6, the dif-

ference between the numerically obtained values of the ex-

ponent β and the values calculated using Eq. (15) is larger

compared to α = 1.5 case. The value given by Eq. (15) exactly

coincides with the numerical value only in the case of pure

1/f noise, when λ = 3. The agreement of the steady state PDF

with the power law form x−λ is much better, in all cases the

power law exponent λ of the steady state PDF is equal to its

theoretical value.

We numerically investigate also the width �fnum of 1/fβ

region in the PSD. Due to restrictions Eq. (9) the parame-

ter η must be changed slightly by changing λ. We eliminate

the dependence of �fnum on the noise multiplicativity expo-

nent η by dividing the width �fnum by the width � fmax =
fmax − fmin, where the limiting frequencies fmin and fmax are

given by Eq. (17). The dependence of the ratio �fnum/�fmax

on the power law exponent of the steady state PDF λ are pre-

sented in Fig. 7 for α = 1.5 and in Fig. 8 for α = 1. As the

numerical results show, the actual width of the power law
region in the PSD depends on the exponent λ of the steady

state PDF, in contrast to the estimation given by Eq. (17). For

the noise stability index α = 1.5 the ratio �fnum/�fmax has

a quadratic dependence on the exponent λ. For α = 1 the

points are dispersed in Fig. 8, but the quadratic dependence

still can be seen.

5. Connection to anomalous diffusion

In this Section we numerically investigate the depen-

dence of the variance σ 2(t) on time t. In this paper we are

only concerned about case when 1/f noise and anomalous

diffusion occur together. Anomalous scaling can appear for

similar SDEs that do not exhibit 1/f noise if the steady state

PDF has a power law tail [14]. Numerical solution of SDEs (7)

show that for small enough times the dependence of the vari-

ance on time can be described by a power law tμ. According

to the most common definition of anomalous diffusion [5],

anomalous diffusion is a diffusion process with non-linear
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time dependency in the growth of the variance.

σ 2(t) = 〈[x(t) − 〈x(t)〉]2〉 ∼ tμ. (25)

Unfortunately the second moment of the Lévy process is di-

vergent 〈x2
Levy

〉 = ∞ for all times and even the mean is di-

vergent for some cases. It has been proposed [5] to use frac-

tional moments to analyze anomalous diffusion caused by

Lévy flights, Therefore a fractional moments 〈|x|δ〉 was in-

troduced to describe diffusion. These fractional moments are

finite for all times if condition 0 < δ < α is satisfied. How-

ever, first and second moments are divergent only for an

unbounded Lévy flight. The SDE driven by Lévy process can

generate signals with finite moments if an external potential

is introduced or some appropriate boundary conditions are

assumed.

A general analytical expression for steady state PDF in

the case of fractional Fokker–Planck equation is not known.

Therefore it is hard to find such an additional drift term that

limits the size of the jumps, but does not change the power

law dependence of the steady state PDF in some bounded re-

gion x ∈ [xmin, xmax]. Thus instead of an external potential

we choose to use reflective boundary conditions at xmin and

xmax.

We have calculated the variance taking the signal of 105

realizations generated by SDEs (7) and (11). For computing

the variance we use an incremental algorithm [79]. The de-

pendence of the variance σ 2 on time t for various choices

of parameters is shown in Figs. 9 and 10. As we can see

the power-law growth of variance is observable only for

short times (approximately for 10−2–10−1). Due to reflective

boundary conditions the variance stops growing and relax

to its steady value. We determine the exponent μ describ-

ing the growth of the variance with time by fitting the ini-

tial part of time dependence to a straight line in a double

logarithmic plot. We see that the power law exponent μ de-

scribing the growth of the variance with time depends on the

stability index of Lévy noise α and on the noise multiplicativ-

ity exponent η. The exponent μ increases with increasing of

the noise multiplicativity exponent η. For large values of η
super-diffusion occurs (μ > 1), for smaller values of η the

sub-diffusion takes place. The value of η corresponding to

the normal diffusion and thus making the boundary between

the two regimes depends on the stability index α.

This dependence of the exponent μ on the noise multi-

plicativity exponent η we show in more detail in Fig. 10. As

can be seen in Fig. 10a, the super-diffusion can be obtained

for 2.8 ≤ η < 3. For 2.5 ≤ η < 2.8 we have the sub-diffusion

with the exponent μ proportional to η. For η < 2.5 the ex-

ponent μ is almost independent from η and varies around

μ = 0.5, as can be seen in Fig. 10b.

6. Conclusions

We have proposed nonlinear stochastic differential equa-

tions driven by Lévy noise that generate signals exhibiting

power law statistical properties: power law steady state PDF

and power law spectrum in a wide range of frequencies.

In addition, such nonlinear SDEs can lead to Lévy flights

with anomalous diffusion, both sub-diffusion and super-

diffusion. However, we were unable to find an analytical re-

lation between the parameters of the SDE η and α and the
exponent of the anomalous diffusion μ, introduced by

Eq. (25). Therefore we have used numerical solution of the

SDE to estimate this exponent. The numerical results show

that due to presence of the multiplicative noise in SDEs both

sub-diffusion and super-diffusion can occur. This is in con-

trast to the equations with additive noise, when only sub-

diffusion is possible unless more complex non-Markovian

models are used [5]. Anomalous scaling can appear for sim-

ilar SDEs that do not exhibit 1/f noise if steady state distri-

bution still has power law tails [14]. In this paper we investi-

gated the situation when 1/fβ noise and anomalous diffusion

occur together.

The analytical estimation (17) of the frequency range

where the spectrum has 1/fβ behavior does not coincide with

the numerical calculations. In this paper we numerically in-

vestigate how this frequency range depends on the param-

eters of the SDE. We show that, in contrast to Eq. (17), the

width of this frequency range depends not only on the expo-

nent of the multiplicative noise η but also on the power law

exponent of the steady state distribution λ.

Nonlinear SDEs with Lévy noise similar to Eq. (10) have

been used to investigate the wide-spectrum energy harvest-

ing out of colored fluctuations in monostable piezoelectric

transducers [60]. The system has been modeled as a linear

oscillator disturbed by 1/fβ noise. It has been shown that for

noisy linear oscillator the efficiency of the noise energy con-

version process depends only on the correlation time and the

bandwidth of the noise and not on the noise amplitude [59].

We expect that knowledge of the size of 1/f noise frequency

range bandwidth can be useful for various applications for

such noisy electronic circuits.
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[58] Kazakevičius R, Ruseckas J. Lévy flights in inhomogeneous environ-

ments and 1/f noise. Physica A 2014;411:95.
[59] Méndez V, Campos D, Horsthemke W. Efficiency of harvesting energy

from colored noise by linear oscillators. Phys Rev E 2013;88:022124.

[60] Deza JI, Deza RR, Wio HS. Wide-spectrum energy harvesting out of col-
ored Lévy-like fluctuations, by monostable piezoelectric transducers.

EPL 2012;100:38001.
[61] Sornette D. Critical phenomena in natural sciences, chaos, fractals, self

organization and disorder: concepts and tools. Berlin: Springer-Verlag;
2006.

[62] Fogedby HC. Langevin equations for continuous time Lévy flights. Phys

Rev E 1994;50:1657.
[63] Fogedby HC. Lévy flights in quenched random force fields. Phys Rev E

1998;58:1690.
[64] Takayasu H. Stable distribution and Lévy process in fractal turbulence.

Prog Theor Phys 1984;72:471.
[65] Min IA, Mezic I, Leonard A. Lévy stable distributions for velocity

and velocity difference in systems of vortex elements. Phys Fluids

1996;8:1169.
[66] Janicki A, Weron A. Simulation and chaotic behaviour of α - stable

stochastic processes. New York: Marcel Dekker; 1994.
[67] Ditlevsen PD. Anomalous jumping in a double-well potential. Phys Rev

E 1999;60:172.
[68] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives:

theory and applications. New York: Gordon and Breach; 1993.
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