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One of the models of intermittency is on-off intermittency, arising due to time-dependent forcing

of a bifurcation parameter through a bifurcation point. For on-off intermittency, the power spectral

density (PSD) of the time-dependent deviation from the invariant subspace in a low frequency

region exhibits 1=
ffiffiffi
f
p

power-law noise. Here, we investigate a mechanism of intermittency, similar

to the on-off intermittency, occurring in nonlinear dynamical systems with invariant subspace. In

contrast to the on-off intermittency, we consider the case where the transverse Lyapunov exponent

is zero. We show that for such nonlinear dynamical systems, the power spectral density of

the deviation from the invariant subspace can have 1=f b form in a wide range of frequencies. That

is, such nonlinear systems exhibit 1/f noise. The connection with the stochastic differential

equations generating 1=f b noise is established and analyzed, as well. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4802429]

The phrase “1/f noise” refers to the well-known empirical

fact that in many systems at low frequencies, the noise

spectrum exhibits an approximately 1/f shape.

Generating mechanisms leading to 1=f b noise are still an

open question. Here, we analyze nonlinear dynamical sys-

tems with invariant subspace having the transverse

Lyapunov exponent equal to zero. In particular, we

explore nonlinear maps having power-law dependence on

the deviation from the invariant subspace. We demon-

strate that such maps can generate signals exhibiting1=f b

noise and intermittent behavior. In contrast to known

mechanism of 1/f noise involving Pomeau-Manneville

type maps, coefficients in the maps we consider are not

static, similarly as in the maps describing on-off intermit-

tency. We relate the nonlinear dynamics described by

proposed maps to 1/f noise models based on the nonlinear

stochastic differential equations (SDEs).

I. INTRODUCTION

Intermittency is an apparently random alternation of a

signal between a quiescent state and bursts of activity. In

1949, Batchelor and Townsend used the word intermittency

to describe their observations of the patchiness of the fluctu-

ating velocity field in a fully turbulent fluid.1 Many natural

systems display intermittent behavior, for example, turbulent

bursts in otherwise laminar fluid flows, sunspot activity, and

reversals of the geomagnetic field. Well known models of

intermittency include the three types introduced by Pomeau

and Manneville,2 as well as crisis-induced intermittency.3 A

different variety of intermittency was first reported when

synchronized chaos in a coupled chaotic oscillator system

undergoes the instability as the coupling constant is

changed.4,5 This intermittency is now known as on-off

intermittency.6–8 On-off intermittency appears in nonlinear

dynamical systems with invariant subspaces, where the dy-

namics restricted to the invariant subspace is chaotic and the

system is close to a threshold of transverse stability of

the subspace. The main difference of on-off intermittency

from other types is in the mechanism of the origin: on-off

intermittency relies on the time-dependent forcing of a bifur-

cation parameter through a bifurcation point; in Pomeau-

Manneville intermittency and crisis-induced intermittency,

the parameters are static.

It is known that the on-off intermittency exhibits charac-

teristic statistics:9 (i) the probability density function (PDF)

of the magnitude of deviation q from the invariant subspace

obeys the asymptotic power-law, q�1þg, with a small posi-

tive exponent g, (ii) the power spectral density (PSD) of the

time series fqðtÞg in a low-frequency region exhibits a

power-law 1=
ffiffiffi
f
p

dependence, and (iii) given an appropri-

ately small threshold qth, the PDF of the laminar duration s
takes an asymptotic form s�3=2 in a certain wide range of

s.6,7 Since on-off intermittency generates signals having f�b

PSD with b ¼ 1=2, the question arises whether a mechanism

of intermittency, similar to the on-off intermittency, can

yield signals having other values of the exponent b of PSD,

in particular b ¼ 1. The purpose of this paper is to investi-

gate this question.

Signals having the PSD at low frequencies f of the form

Sðf Þ � 1=f b with b close to 1 are commonly referred to as

“1/f noise,” “1/f fluctuations,” or “flicker noise.” Power-law

distributions of spectra of signals with 0:5 < b < 1:5, as

well as scaling behavior in general, are ubiquitous in physics

and in many other fields, including natural phenomena,

human activities, traffics in computer networks, and financial

markets.10,11 Many models and theories of 1/f noise are not

universal because of the assumptions specific to the problem

under consideration. Recently, the nonlinear SDEs generat-

ing signals with 1/f noise were obtained in Ref. 12 (see also

recent papers, Refs. 13 and 14), starting from the point pro-

cess model of 1/f noise.15 Yet another model of 1/f noise

involves a class of maps generating intermittent signals. It isa)Electronic mail: julius.ruseckas@tfai.vu.lt. URL: http://www.itpa.lt/~ruseckas
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possible to generate power-laws and 1/f-noise from simple

iterative maps by fine-tuning the parameters of the system at

the edge of chaos16,17 where the sensitivity to initial condi-

tions of the logistic map is a lot milder than in the chaotic re-

gime: The Lyapunov exponent is zero and the sensitivity to

changes in initial conditions follows a power-law.18

Manneville19 first showed that, tuned exactly, an iterative

function can produce interesting behavior, power-laws, and

1/f PSD. This mechanism for 1/f noise only works for types-

II and III Pomeau-Manneville intermittency.20 Intermittency

as a mechanism of 1/f noise continues to attract attention.21

In this paper, we consider a mechanism of intermittency,

similar to the on-off intermittency, occurring in nonlinear

dynamical systems with invariant subspace. In contrast to

the on-off intermittency, we consider the case where the

transverse Lyapunov exponent is zero. In recent years, there

is a growing interest in dynamical systems, which are char-

acterized by zero Lyapunov exponents, namely, which tra-

jectories diverge nonexponentially.22 Chaos in such

dynamical systems is called weak chaos. By relating nonlin-

ear dynamics with the 1/f noise model based on the nonlinear

SDEs we show that for such nonlinear dynamical systems,

the power spectral density of the deviation from the invariant

subspace can have 1=f b form, i.e., 1/f noise in a wide range

of frequencies. Thus, a generalization of the on-off intermit-

tency yields a new mechanism of 1=f b noise with the asymp-

totically power-law PDF, originated from the commonly

known phenomenon of the intermittency and weak chaos.

This paper is organized as follows: in Sec. II, we pro-

pose a model of intermittency with zero transverse

Lyapunov exponent; and in Sec. III, we present some exam-

ples of nonlinear maps exhibiting 1/f noise. To obtain analyt-

ical expressions of the PDF and PSD of the deviation from

the invariant subspace, in Sec. IV, we approximate discrete

maps with SDEs. Section V summarizes our findings.

II. MODEL OF INTERMITTENCY WITH ZERO
TRANSVERSE LYAPUNOV EXPONENT

We consider two-dimensional maps having a skew prod-

uct structure,6

xnþ1 ¼ FðxnÞ ; ynþ1 ¼ Gðxn; ynÞ : (1)

The function G has the property G(x, 0) ¼ 0 and, thus y¼ 0

is the invariant subspace, while y is the deviation form the

invariant subspace. We assume that the dynamics xnþ1

¼ FðxnÞ in (1) restricted to the invariant subspace is chaotic.

If the transverse Lyapunov exponent

k? ¼ lim
N!1

1

N

XN�1

n¼0

ln
@Gðxn; 0Þ

@y

����
���� (2)

along an orbit on the invariant subspace converges and is

less than zero, then the invariant subspace is transversely sta-

ble with respect to this orbit.

In this article, we consider the case when @Gðx; 0Þ=@y
¼ 1 and consequently the transverse Lyapunov exponent is

zero. Furthermore, we will assume that the two terms with

the lowest powers in the expansion of the function G(x, y) in

the power series of y have the form

Gðx; yÞ ¼ yþ gðxÞyg (3)

with g > 1. This form satisfies the condition

@Gðx; 0Þ=@y ¼ 1. Particularly, g ¼ 2, however, generally g
may be fractional, as well.

We will consider the case where the function g(x) in Eq.

(3) is not constant and can acquire both positive and negative

values. Thus, the expansion (3) leads to the map for small

values of yn

ynþ1 ¼ yn þ znyg
n ; g > 1 ; (4)

where zn � gðxnÞ. It should be noted that when g ¼ 1, the

map (4) becomes a multiplicative map ynþ1 ¼ ynð1þ znÞ,
which is essentially the same as the map considered in Ref. 7

for modeling of on-off intermittency. The map (4) is similar

to Pomeau-Manneville map

ynþ1 ¼ yn þ ayg
n ðmod 1Þ (5)

on the unit interval with one marginally unstable fixed point

located at y¼ 0.2 The main difference from the map (4) is

that in the Pomeau-Manneville map (5), the coefficient in the

second term is static.

Let us consider the situation when yn > 0. If zn < 0,

then the map (4) leads to the decrease of the deviation from

the invariant subspace y¼ 0, whereas for zn > 0, the devia-

tion y grows. In contrast to systems with nonzero transverse

Lyapunov exponent, the growth or decrease of the deviation

is not exponential. In fact, if the second term on the

right-hand side of Eq. (4) is much smaller than the first and,

consequently, Eq. (4) can be approximately replaced by the

differential equation dy=dt ¼ ygz, the growth or decrease of

the deviation y can be described by a q-exponential function

with q ¼ g. The q-exponential function, used in the frame-

work of nonextensive statistical mechanics,23–25 is defined as

expqðxÞ � ½1þ ð1� qÞx�
1

1�q
þ ; (6)

where ½x�þ � maxfx; 0g. Thus, although the Lyapunov expo-

nent is zero, the map can be characterized by a nonzero

q-generalized Lyapunov coefficient.18,25

If the average of the variable z is positive, hzi > 0, and

there is a global mechanism of reinjection, the map (4) leads

to the intermittent behavior. As in on-off intermittency, the

intermittent behavior appears due to the time-dependent

forcing of a bifurcation parameter through a bifurcation point

z¼ 0, thus the behavior described by map (4) can be consid-

ered as a kind of on-off intermittency. However, on-off inter-

mittency is usually investigated in dynamical systems with

nonzero transverse Lyapunov exponent.

For small durations of the laminar phase, one can approx-

imate the map (4) replacing yn in the second term on the right

hand side with initial value y0. In this case, Eq. (4) describes a

random walk with drift. Since the average displacement due

to the diffusion grows as
ffiffi
t
p

and the displacement due to drift
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term is proportional to t, for small enough durations t, the dif-

fusion is more important than the drift. It is known that for the

unbiased random walk, the distribution of the first return times

has the power-law exponent �3/2.26 Therefore, for small

enough durations t, one can expect to observe the power-law

form, t�3=2, of the PDF of the laminar phase durations, the

same as in on-off intermittency.

The first two terms in the expansion (3) do not allow to

determine uniquely the PDF of the deviation y. In order to

determine PDF of y and PSD of the series fyng, we need to

take into account more terms in the expansion of the function

G(x, y) in the power series of y. One of the possibilities that

we will consider is for the third term in the expansion to be

equal to cy2g�1 (note that 2g� 1 > g when g > 1), leading

to the map

ynþ1 ¼ yn þ znyg
n þ cy2g�1

n : (7)

Particularly, for g ¼ 2; 2g� 1 ¼ 3, and Eqs. (3) and (7) dis-

play simple Taylor expansions. Note that a mechanism of

reinjection operates at large values of y and does not change

Eq. (7), written for small values of y close to the invariant

subspace.

A. q-exponential transformation of random walk

Another example of the function G(x, y) having the

expansion in the power series of y as in Eq. (4) can be

obtained according to the following consideration: In Ref. 7,

a map of the form

ynþ1 ¼ wnyn (8)

was considered as a model of on-off intermittency. In the log

domain, this map transforms to

snþ1 ¼ sn þ zn ; (9)

where sn ¼ ln yn and zn ¼ ln wn. The critical condition for

the onset of on-off intermittency is the condition for

unbiased random walk, hzi ¼ 0. One of the reasons for inter-

mittent behavior is highly non-linear relation yn ¼ esn

between sn and yn. We can expect intermittent behavior also

using other nonlinear functions instead of the exponential

function. One of the generalizations of the exponential func-

tion, which corresponds to the differential equation dy/ds
¼ y, is the q-exponential function (6) obeying the equation

dy=ds ¼ yg. Thus, instead of yn ¼ esn , we will consider a

relation yn ¼ expgðsnÞ, leading to a map of the form

ynþ1 ¼ expgðlngðynÞ þ znÞ ¼ ðy1�g
n þ ð1� gÞznÞ

1
1�g ; (10)

where the q-logarithm, defined as24

lnqðxÞ ¼
x1�q � 1

1� q
; (11)

is a function inverse to q-exponential function. Expanding

the map (10) in power series of y, we get Eq. (4).

The q-exponential function expgðsnÞ tends to infinity as

sn approaches 1=ðg� 1Þ, and the variable yn ¼ expgðsnÞ can

be introduced only when sn does not reach 1=ðg� 1Þ. This

can be achieved by modifying the map (9) for the values of

sn close to 1=ðg� 1Þ in order to avoid reaching this value.

The modification of the map (9) changes also the map (10)

for large values of yn, not allowing for the value of the

expression y1�g
n þ ð1� gÞzn to become zero.

III. NUMERICAL EXAMPLES

In this section, we present some examples of the map

(1) with the function G(x, y) whose behavior for small values

of y is described by Eq. (7) or (10). Let us consider the map

(7) with g ¼ 2; c ¼ 0:5 when the variable zn has the average

hzi ¼ 5� 10�5 and the variance hðz� hziÞ2i ¼ 1. The pa-

rameters of the map are chosen taking into account equations

from Sec. IV. The chosen value of the average hzi is close to

the critical value for the onset of intermittency hzi ¼ 0 and is

much smaller than the standard deviation of the variable zn.

As a mechanism of reinjection, we use a reflection at y¼ 0.5,

leading to the map

ynþ1 ¼ 0:5� jyn þ zny2
n þ 0:5y3

n � 0:5j : (12)

As a map xnþ1 ¼ FðxnÞ in Eq. (1), we take the chaotic driv-

ing by a tent map

xnþ1 ¼
2xn ; 0 � xn �

1

2

2� 2xn ;
1

2
� xn � 1:

8><
>: (13)

The variable zn with given average hzi and variance

hðz� hziÞ2i can be obtained from xn using the equation

zn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i
hðx� hxiÞ2i

s
ðxn � hxiÞ þ hzi : (14)

For the tent map (13), the average and the variance are hxi
¼ 0:5 and hðx� hxiÞ2i ¼ 1=12, respectively.

Another example is when the variable zn acquires only

two values 6f, with the probabilities pþ and p�;
pþ þ p� ¼ 1. In this case, the average and the variance of zn

are given by the equations hzi ¼ fðpþ � p�Þ and hðz� hziÞ2i
¼ 4f2pþp�. Expressing the probabilities, we get

p6 ¼
1

2
6

hzi

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i þ hzi2

q (15)

and

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i þ hzi2

q
: (16)

In particular, if hðz� hziÞ2i ¼ 1; hzi ¼ 5� 10�5 then pþ
� 0:500025; p� � 0:499975; and f � 1:00000000125. Such

two-valued variable zn can be implemented by the following

map:

ynþ1 ¼
yn � y2

nfþ 0:5y3
n ; 0 � xn � p�;

0:5� jyn þ y2
nfþ 0:5y3

n � 0:5j ; p� < xn � 1:

�
(17)
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Note that also in the map (17), we use a reflection at y¼ 0.5

as a mechanism of reinjection.

The numerical results for maps described by Eqs.

(12)–(14) and by Eqs. (13) and (15)–(17) are shown in Figs.

1 and 2, respectively. We calculate the power spectral den-

sity directly, according to the definition, as the normalized

squared modulus of the Fourier transform of the signal,

Sðf Þ ¼ 2

N

XN

n¼1

yne�i2pfn

�����
�����
2* +
; (18)

where the angle brackets h	i denote averaging over realiza-

tions. We used the time series fyng of the length N ¼ 109

and averaged over 100 realizations with randomly chosen

initial value y0.

From Figs. 1(a) and 2(a), we can see that these maps

indeed lead to intermittent behavior, where the laminar

phases are changed by bursts of activity corresponding to the

large deviations of the variable y from the average value.

The laminar phases of the first map appear smoother than

laminar phases of the second. The PDF of the variable y,

shown in Figs. 1(b) and 2(b), has in both cases a power-law

form with the exponent �3 for larger values of y, whereas

for small values of y, the PDF decreases exponentially. The

PSD of the time series fyng, shown in Figs. 1(c) and 2(c),

has 1/f behavior for a wide range of frequencies. The 1/f
interval in the PSD in Figs. 1(c) and 2(c) is 10�8 � f � 10�4.

For the map (10), we consider the case with g ¼ 3. To

avoid reaching of the limiting value s ¼ 1=ðg� 1Þ ¼ 0:5, we

modify the map (9) by introducing the reflection from the

boundary sn ¼ 0:5:

snþ1 ¼ 0:5� jsn þ zn � 0:5j : (19)

Then, the map (10) for the transformed variable yn

¼ expgðsnÞ takes the form

ynþ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j 1
y2

n
� 2znj

q : (20)

For the variable xn, we again use the tent map (13) and calcu-

late zn according to Eq. (14) with the average hzi ¼ 9� 10�4

and the variancehðz� hziÞ2i ¼ 1.

The numerical results for the map described by Eqs.

(13), (14), and (20) are shown in Fig. 3. From Fig. 3(a), we

can see that this map leads to the intermittent behavior. Due

to larger average hzi and larger exponent g, the durations of

laminar phases are shorter than in Figs. 1(a) and 2(a). The

PDF of the variable y, shown in Fig. 3(b), has a power-law

form with the exponent �3 for larger values of y, whereas

for small values of y, the PDF decreases exponentially. The

PSD of the time series fyng, shown in Fig. 3(c), has 1/f
behavior for a wide range of frequencies. The 1/f interval in

the PSD is 10�6 � f � 10�3.

As the numerical examples show both maps (7) and (10)

for some values of the parameters can yield time series with

1/f PSD in a wide range of frequencies. In addition, the PDF

of the deviation from the invariant subspace y for these val-

ues of parameters has a power-law part with the exponent

�3, in contrast to on-off intermittency where the exponent in

the PDF is close to �1 and 1=
ffiffiffi
f
p

PSD. The explanation of

the observed behavior of PDF and PSD will be provided in

Sec. IV.

FIG. 1. (a) Time series of map described by Eqs. (12)–(14). (b) PDF of the variable y. The dashed (green) line is the analytical expression (29). (c) Power spec-

tral density S(f) of time series. The dashed (green) line shows the slope 1/f. Parameters used are hzi ¼ 5� 10�5; hðz� hziÞ2i ¼ 1.

FIG. 2. (a) Time series of map described by Eqs. (13) and (15)–(17). (b) PDF of the variable y. The dashed (green) line is the analytical expression (29). (c)

Power spectral density S(f) of time series. The dashed (green) line shows the slope 1/f. Parameters used are the same as in Fig. 1.
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IV. APPROXIMATION OF DISCRETE MAPS BY
STOCHASTIC DIFFERENTIAL EQUATIONS

To obtain analytical expressions for the PDF and PSD

of the deviation y, we approximate the maps (7) and (10) by

a SDE. To obtain the SDE corresponding to the map (7) we

proceed as follows: we replace the variable zn by a random

Gaussian variable having the same average and variance as

zn and interpret Eq. (7) as Euler-Marujama approximation of

a SDE. In this way, we get the following SDE:

dy ¼ r2 g� �
2
þ g� 1

2

ymin

y

� �g�1
 !

y2g�1dtþ rygdW :

(21)

Here, W is a standard Wiener process (the Brownian motion)

and the parameters r, ymin, and � are given by the equations

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i

q
; (22)

ymin ¼
2hzi

ðg� 1Þhðz� hziÞ2i

" # 1
g�1

; (23)

� ¼ 2g� 2c

hðz� hziÞ2i
: (24)

SDE approximating the map (10) can be obtained in the fol-

lowing way: we approximate a random walk described by Eq.

(9) by a Brownian motion with constant drift

ds ¼ adtþ rdW, where r is given by Eq. (22) and a ¼ hzi.
After transformation of the variable s to the variable

y ¼ expgðsÞ, we get a particular case of Eq. (21) with � ¼ g,

the other parameters r and ymin are given by Eqs. (22) and

(23). Thus, both maps (7) and (10) correspond to the same

SDE (21). The SDE (21) has the same form as that considered

in Ref. 12]. It is possible to obtain the non-linear SDE of the

form (21) starting from the agent-based herding model.27 In

Ref. 28, modifications of these equations by introducing addi-

tional parameters are presented. These equations may generate

signals with q-exponential and q-Gaussian distributions of the

nonextensive statistical mechanics.

The approximation of the map (7) by the SDE (21) is

valid when the value of y is sufficiently small. The maximum

value of y can be determined from the condition that the sec-

ond term in Eq. (7) should be much smaller than the first.

We can estimate this condition as

yg
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i

q

 ymax (25)

giving

ymax � hðz� hziÞ2i�
1

2ðg�1Þ : (26)

For the map (10), the approximation by the SDE (21) is valid

as long as the variable sn is far from 1=ðg� 1Þ where the

q-exponential function expgðsnÞ becomes infinite. Assuming

that the presence of the limiting value 1=ðg� 1Þ does not

influence the random walk (9) when the distance to this lim-

iting value is larger than the standard deviation of zn (that is,

sn < 1=ðg� 1Þ � r), we can estimate the maximum value of

y as ymax � expgð1=ðg� 1Þ � rÞ. This estimation coincides

with Eq. (26).

Using Eqs. (23) and (26) we get the expression for the

ratio ymax=ymin,

ymax

ymin

�
ðg� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz� hziÞ2i

q
2hzi

2
4

3
5

1
g�1

: (27)

As it was shown in Ref. 12, the SDE (21) generates signals

with power-law PSD in a wide range of frequencies when

the variable y can vary in a wide region, ymax � ymin. The

condition ymax=ymin � 1 is obeyed when

hðz� hziÞ2i � hzi2 ; (28)

that is, the standard deviation of the variable zn should be

much larger than the average.

The SDE (21) leads to the steady state PDF

P0ðyÞ ¼
ðg� 1Þy��1

min

C ��1
g�1

� �
y�

exp � ymin

y

� �g�1
" #

: (29)

Thus, the parameter � gives the exponent of the power-law

part of the PDF and the parameter ymin gives the position of

the exponential cut-off at small values of y. From Eq. (23), it

follows that ymin grows with the growing average hzi. As can

be seen in Figs. 1(b), 2(b), and 3(b), there is a good agree-

ment of the numerically obtained PDF with the analytical

expression (29). Similarly as in the case of on-off intermit-

tency, we obtain PDF of the deviation from the invariant

FIG. 3. (a) Time series of map described by Eqs. (13), (14), and (20). (b) PDF of the variable y. The dashed (green) line is the analytical expression (29). (c)

Power spectral density S(f) of time series. The dashed (green) line shows the slope 1/f. Parameters used are hzi ¼ 9� 10�4; hðz� hziÞ2i ¼ 1.
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subspace having power-law form, however, the power expo-

nent � can assume values significantly different from 1.

Numerical analysis, performed in Ref. 13 indicates that

the stochastic variable y, described by a SDE similar to (21)

exhibits intermittent behavior: there are peaks, bursts or

extreme events, corresponding to the large deviations of the

variable from the appropriate average value, separated by

laminar phases with a wide range distribution of the laminar

durations. The exponent �3/2 in the PDF of the interburst

durations has been numerically obtained.

In Refs. 12, it was shown that SDE (21) generates sig-

nals with PSD having the form Sðf Þ � f�b in a wide range of

frequencies with the exponent

b ¼ 1þ � � 3

2ðg� 1Þ : (30)

The connection of the PSD of the signal generated by SDE

(21) with the behavior of the eigenvalues of the correspond-

ing Fokker-Planck equation was analyzed in Ref. 14. An

additional argument based on scaling properties showing

that PSD of the signal generated by SDE (21) has the power-

law behavior in some range of frequencies we present in

Appendix A. For the parameters used in Figs. 1–3, Eq. (30)

gives b ¼ 1. Numerically obtained PSD shown in Figs. 1(c),

2(c), 3(c) confirms this prediction. Thus, as long as the

approximation of the map (7) or (10) by the SDE (21) is

valid, the PSD of the time series fyng exhibits a power-law

behavior, including 1/f noise.

The range of frequencies where PSD has power-law

behavior is limited by the minimum and maximum values

ymin and ymax. The limiting frequencies are estimated in Ref.

14 and also in Appendix B. Using Eqs. (22), (23), and (26),

we can write the range of frequencies (B4) where the PSD

has the power-law form as

ymin

ymax

� �2ðg�1Þ

 2pf 
 1 : (31)

If ymax=ymin � 1, this frequency range can span many orders

of magnitude. However, this estimation of the frequency

range is too broad and the numerical solution of Eq. (21)

gives much narrower range. Nevertheless, Eq. (31) correctly

reflects the following properties of the frequency region

where PSD has 1=f b dependence: the width of this frequency

region increases with increase of the ratio between minimum

and maximum values, ymin and ymax, and with increase of the

difference g� 1.14

V. CONCLUSIONS

We demonstrate that the nonlinear maps having invari-

ant subspace and the expansion in the powers of the devia-

tion from the invariant subspace having the form of Eq. (4)

can generate signals with 1/f noise. In contrast to known

mechanism of 1/f noise involving Pomeau-Manneville type

maps, the parameter zn in the map Eq. (4) is not static.

Another difference is that the exponent b in the PSD, as Eq.

(30) shows, depends on two parameters g and �, thus 1=f b

noise can be obtained for various values of the exponent b.

The width of the frequency region where the PSD has

f�b behavior is limited by the average value of the variable

zn: this width increases as hzi approaches the threshold value

hzi ¼ 0. In addition, the width of the power-law region in the

PSD increases with increasing the difference g� 1.

APPENDIX A: NONLINEAR STOCHASTIC
DIFFERENTIAL EQUATION GENERATING
SIGNALS WITH 1=f b NOISE

Pure 1=f b PSD is physically impossible because the total

power would be infinity. Therefore, we will consider signals

with PSD having 1=f b behavior only in some wide interme-

diate region of frequencies, fmin 
 f 
 fmax, whereas for

small frequencies f 
 fmin, PSD is bounded. We can obtain

nonlinear SDE generating signals exhibiting 1/f noise using

the following considerations. Wiener-Khintchine theorem

relates PSD S(f) to the autocorrelation function C(t),

CðtÞ ¼
ðþ1

0

Sðf Þcosð2pftÞdt : (A1)

If Sðf Þ � f�b in a wide region of frequencies, then for the

frequencies in this region, the PSD has a scaling property

Sðaf Þ � a�bSðf Þ (A2)

when the influence of the limiting frequencies fmin an fmax is

neglected. From the Wiener-Khintchine theorem (A1), it fol-

lows that the autocorrelation function has the scaling

property

CðatÞ � ab�1CðtÞ (A3)

in the time range 1=fmax 
 t
 1=fmin. The autocorrelation

function can be written as14,29,30

CðtÞ ¼
ð

dy

ð
dy0 yy0P0ðyÞPyðy0; tjy; 0Þ ; (A4)

where P0ðyÞ is the steady-state PDF and Pyðy0; tjy; 0Þ is the

transition probability (the conditional probability that at time

t, the signal has value y0 with the condition, that at time t¼ 0,

the signal had the value y). The transition probability can be

obtained from the solution of the Fokker-Planck equation

with the initial condition Pyðy0; tjy; 0Þ ¼ dðy0 � yÞ. The

required property (A3) can be obtained when the steady-state

PDF has the power-law form

P0ðyÞ � y�� (A5)

and the transition probability has the scaling property

Pyðay0; tjay; 0Þ ¼ a�1Pyðy0; a2ðg�1Þtjy; 0Þ ; (A6)

that is, change of the magnitude of the stochastic variable y
is equivalent to the change of time scale. In this case from

Eq. (A4), it follows that the autocorrelation function has the

required property (A3) with b given by Eq. (30). In order to

avoid the divergence of steady state PDF (A5), the diffusion

of stochastic variable y should be restricted at least from the
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side of small values and, therefore, Eq. (A5) holds only in

some region of the variable y, ymin 
 y
 ymax. When the

diffusion of stochastic variable y is restricted, Eq. (A6) also

cannot be exact. However, if the influence of the limiting

values ymin and ymax can be neglected for time t in some

region tmin 
 t
 tmax, we can expect that Eq. (A3) approxi-

mately holds for this time region.

To get the required scaling (A6) of the transition proba-

bility, the SDE should contain only powers of the stochastic

variable y and the coefficient in the noise term should be pro-

portional to yg. The drift term then is fixed by the require-

ment (A5) for the steady-state PDF. Thus, we consider SDE

dy ¼ r2 g� 1

2
�

� �
y2g�1dtþ rygdW : (A7)

In order to obtain a stationary process and avoid the diver-

gence of steady state PDF, the diffusion of stochastic vari-

able y should be restricted or Eq. (A7) should be modified.

The simplest choice of the restriction is the reflective bound-

ary conditions at y ¼ ymin and y ¼ ymax. Exponentially re-

stricted diffusion with the steady state PDF

P0ðyÞ �
1

y�
exp � ymin

y

� �m

� y

ymax

� �m� 	
(A8)

is generated by the SDE

dy ¼ r2 g� 1

2
� þ m

2

ym
min

ym
� ym

ym
max

� �
 �
y2g�1dtþ rygdW

(A9)

obtained from Eq. (A7) by introducing the additional terms.

APPENDIX B: ESTIMATION OF THE RANGE OF THE
FREQUENCIES WHERE PSD HAS THE POWER-LAW
BEHAVIOR

The presence of the restrictions at y ¼ ymin and y ¼ ymax

makes the scaling (A6) not exact, and this limits the power-

law part of the PSD to a finite range of frequencies

fmin 
 f 
 fmax. Let us estimate the limiting frequencies.

Taking into account the limiting values ymin and ymax, Eq.

(A6) for the transition probability corresponding to SDE

(A7) becomes

Pyðay0;tjay;0;aymin;aymaxÞ¼a�1Pyðy0;a2ðg�1Þtjy;0;ymin;ymaxÞ:
(B1)

The steady-state distribution P0ðy; ymin; ymaxÞ has the scaling

property

P0ðay; aymin; aymaxÞ ¼ a�1P0ðy; ymin; ymaxÞ : (B2)

Inserting Eqs. (B1) and (B2) into Eq. (A4), we obtain

Cðt; aymin; aymaxÞ ¼ a2Cða2ðg�1Þt; ymin; ymaxÞ : (B3)

This equation means that time t in the autocorrelation func-

tion should enter only in combinations with the limiting val-

ues, ymint
1

2ðg�1Þ and ymaxt
1

2ðg�1Þ. We can expect that the influence

of the limiting values can be neglected and Eq. (A6) holds

when the first combination is small and the second large, that

is, when time t is in the interval r�2y
2ð1�gÞ
max 
 t


 r�2y
2ð1�gÞ
min . Then, using Eq. (A1), the frequency range

where the PSD has 1=f b behavior can be estimated as

r2y
2ðg�1Þ
min 
 2pf 
 r2y2ðg�1Þ

max : (B4)
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