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Abstract. Systems with long-range interactions often exhibit power-law distributions and can by described
by the non-extensive statistical mechanics framework proposed by Tsallis. In this contribution we consider
a simple model reproducing continuous transition from the extensive to the non-extensive statistics. The
considered model is composed of agents interacting among themselves on a certain network topology. To
generate the underlying network we propose a new network formation algorithm, in which the mean degree
scales sub-linearly with a number of nodes in the network (the scaling depends on a single parameter). By
changing this parameter we are able to continuously transition from short-range to long-range interactions
in the agent-based model.

1 Introduction

Properties of systems with long-range interactions con-
cern a wide range of problems in physics [1]: gravitational
forces [2] and Coulomb forces in globally charged sys-
tems [3], vortices in two-dimensional fluid mechanics [4],
wave-particles interaction [5], and trapped charged par-
ticles [6]. Such systems are of particular interest because
they violate extensivity and additivity, two basic prop-
erties used to derive the thermodynamics of a system.
Consequently they have been a subject of extensive stud-
ies in the recent years (for reviews see [7,8]). Small sys-
tems, in which the range of interactions is comparable
to the size of the system, are also non-additive and thus
are similar to large systems with truly long-range interac-
tions. These systems can exhibit novel types of behavior –
e.g., inequivalence of the microcanonical and canonical en-
sembles [9] and negative microcanonical specific heat [10].
Models with long-range interactions often possess dynam-
ical features like slow relaxation [1,9] and broken ergodic-
ity [9,11]. Another characteristic feature is the emergence
of long-lived non-equilibrium quasistationary states (QSS)
and violent relaxation into these states [12]. Non-Gaussian
distributions [13] and non-exponential relaxations for au-
tocorrelations [14] have been observed as well.

Non-extensive statistical mechanics is intended to de-
scribe some of the systems with long-range interactions
by generalizing the Boltzmann-Gibbs statistics [15–17].
There are systems that, depending on the initial condi-
tions, are not ergodic in the entire phase space and may
prefer a particular subspace. If that subspace has a scale
invariant geometry, a hierarchical or multifractal struc-
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ture, then the model points toward non-extensive sta-
tistical mechanics. The generalized statistical mechanics
framework is based on a generalized entropy [15], which is
assumed to be given by

Sq =
(
1 − ∫

[p(x)]qdx
)
/(q − 1), (1)

where p(x) is a probability density function of finding
the system in the state characterized by the parameter x,
while q is a parameter describing the non-extensiveness of
the system. In the limit q → 1 the traditional Boltzmann-
Gibbs entropy is recovered from equation (1) [15,16].
Concepts drawn from this generalized framework have
found their applications in a variety of traditional disci-
plines, such as physics [18–20], chemistry, biology or eco-
nomics, and also in an interdisciplinary field of the com-
plex systems [21–23].

Consequences of long-range interactions usually have
been investigated in Hamiltonian systems. In this paper
we explore long-range interactions in agent-based model-
ing instead. Agent-based modeling is one the most promi-
nent contemporary tools used to obtain insights into
the complex socio-economic systems. It is the main tool
used to model opinion dynamics [24,25], explain emer-
gent phenomena in microeconomics [26] and macroeco-
nomics [27,28], reproduce the dynamics observed in the
financial markets [29,30] and solve logistic problems for
the business practitioners [31]. Some approaches starting
from agent-based modeling obtain non-linear stochastic
differential equations (SDEs) as a macroscopic model for
the underlying agent-based dynamics [29,32–34], thus pro-
viding microscoping reasoning for the socio-economic dy-
namics. Another layer of understanding may be provided
by another contemporary tool known as network theory,
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which allows to uncover the intrinsic relationships in ge-
ological [35], biological [36], socio-economic [37,38] and
other complex systems [39,40].

In the context of this contribution the most interesting
approaches are based on the agent-based herding model,
originally proposed and developed in a series of papers
by Kirman and Teyssière [41–43], as these approaches
are able to reproduce both the power-law and Gaussian-
like distributions [37,44]. In reference [37] it was shown
that Kirman’s model reproduces power-law distribution
if the underlying model topology is a random network,
but if the topology is a small-world or a scale-free net-
work, then the Gaussian-like distribution is obtained. This
result can be easily understood by looking into the scal-
ing of each network’s mean degree. The network where the
mean degree 〈d〉 is fixed, 〈d〉 ∼ const., (e.g., small-world or
a scale-free network) represents short-range interactions,
whereas the network where the mean degree scales lin-
early with the number of nodes, 〈d〉 ∼ N , (e.g., a random
network) represents truly long-range interactions and cor-
responds to Hamiltonian mean-field models.

In this paper we connect those two extreme cases by
proposing a new network formation model, which exhibits
a sub-linear scaling of the mean degree, 〈d〉 ∼ Nα (with
α ∈ [0, 1]). By changing the single network parameter α
we can continuously transition from short-range to long-
range interactions in our agent-based model. This network
formation model connects random and scale-free networks
and can be useful in describing socio-economical systems.

The paper is organized as follows. In Section 2 we
describe an extensive agent-based model corresponding
to short-range interactions between the agents. To inves-
tigate the transition to long-range interactions we con-
sider agent-based model implemented on a network. The
network formation model is discussed in Section 3. This
model is able to produce hybrid networks in between well-
known random and scale-free networks and exhibits sub-
linear scaling of the mean degree with the increasing num-
ber of nodes. In Section 4 we investigate an agent-based
model implemented on this network. For this model the
detailed network structure is not important and mean-
field approximation yields a good result. Section 5 sum-
marizes our findings.

2 Extensive agent-based model

We consider an agent model similar to the model proposed
by Kirman (see [42]). There is a fixed number of agents, N ,
each of them being in state 1 or in state 2. In this model
dynamic evolution is described as a Markov chain, the
agents switch state either due to idiosyncratic factors or
under the influence (e.g., peer pressure) of other agents.
The lack of memory of the agents is the crucial assumption
to formalize the dynamics as a Markov process. Describing
the dynamics as a jump Markov process in a continuous
time, we choose η1 and η2 to represent per-agent transition
rates to the state written in the subscript. Namely, η1 is
a transition rate from state 2 to state 1. By choosing n to
represent a whole number of agents in state 1, it becomes

convenient to obtain a number of agents in state 2 via
N −n. The aforementioned transition rates η1 and η2 can
depend on n, N − n as well as on the total number of
agents N .

We can write the aggregate transition rates for one
agent switching as

p(n → n + 1) ≡ p+(n) = (N − n)η1, (2)

p(n → n − 1) ≡ p−(n) = nη2. (3)

The above probabilities define a one-step stochastic pro-
cess [45]. The transition probabilities imply the Master
equation for the probability Pn(t) to find n agents in the
state 1 at time t [45]:

∂

∂t
Pn = p+(n − 1)Pn−1 + p−(n + 1)Pn+1

− (
p+(n) + p−(n)

)
Pn. (4)

For large enough N we can represent the macroscopic sys-
tem state by using a continuous variable x = n/N . Using
the birth-death process formalism [45], one can obtain a
non-linear Fokker-Planck equation from the Master equa-
tion (4) assuming that N is large and neglecting the terms
of the Taylor expansion of the order of 1/N2:

∂

∂t
Px(x, t) =

∂

∂x
[xη2 − (1 − x)η1]Px(x, t)

+
1

2N

∂2

∂x2
[(1 − x)η1 + xη2]Px(x, t). (5)

Taking into account the diffusion term, the steady state
solution of the Fokker-Planck equation (5) is

P0(x) =
C

(1 − x)η1 + xη2

× exp
[
−2N

∫ x x′η2 − (1 − x′)η1

(1 − x′)η1 + x′η2
dx′

]
. (6)

When the interactions between agents are short-range (in
other words agents interact in their fixed size local neigh-
borhood), the model is extensive and the transition rates
η1 and η2 depend only on the continuous system state
variable x = n/N and do not directly depend on total
number of particles N : η1 = η1(x) and η2 = η2(x). In the
thermodynamic limit, when N → ∞, we can neglect the
diffusion therm in equation (5). In that case we get

∂

∂t
Px =

∂

∂x
[xη2 − (1 − x)η1]Px (7)

with the corresponding steady state solution

P0(x) = δ(x − x0). (8)

Here x0 is the solution of the equation describing the de-
tailed balance:

x0η2(x0) = (1 − x0)η1(x0). (9)

Taking into account the diffusion term the steady state
solution is given by equation (6). When x′ = x0 then the
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expression in the integral in equation (6) is zero. Expand-
ing the expression in the integral around the point x′ = x0

and keeping only first-order term we get

P0(x) ≈ C′ exp
[
−2N

∫ x

A(x′ − x0)dx′
]

=

√
NA

π
exp

[−NA(x − x0)2
]

(10)

where the expansion coefficient A is

A = g′(x0) +
1

2x0(1 − x0)
(11)

with

e2g(x) ≡ η2(x)
η1(x)

. (12)

We obtain that the steady state probability distribution
function (PDF) is approximately Gaussian with the width
proportional to 1/

√
N . This result is in agreement with

the research presented by Traulsen et al. [46–48], who
studied a very similar, yet significantly narrower (fixed
form of ηi), case.

In order to investigate the effects of long-range inter-
actions and non-extensivity in the agent model we need to
have the transition rates η1 and η2 that explicitly depend
on the total number of agents N . To construct the model
that can have a practical relevance we will consider an
agent-based model implemented on a network. We start
by proposing a new network formation model in the fol-
lowing section.

3 Network formation model exhibiting
sub-linear scaling of the mean degree

In this section we propose a new network formation model
exhibiting sub-linear scaling of the mean degree 〈d〉 with
the increasing number of nodes N in the network. To con-
struct our network formation model we have chosen the
Barabasi-Albert model [49] as our base model. We extend
this model by adding an additional step. This means that
during the first step in our network formation model we
add a new node to the network and connect it to one
old node based on the linear “rich gets richer” scheme.
During the additional step the new node may form addi-
tional links with the immediate neighbors of the old node,
the one it was connected to during the first step, with
probability

p = p0d
−γ , (13)

where p0 is a probability to make a random connection
when γ = 0, d is a degree of the old node, γ is a probabil-
ity scaling exponent, which is related to the mean degree
scaling exponent, α. An exemplary schema of the proposed
formation model is shown in Figure 1.

Note that the additional step is somewhat similar
to the techniques used in the triad formation [50,51],
friends of friends [52] and forest fire [53] network formation
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Fig. 1. Node 5 joins an existing network by making connection
to Node 2 via the “rich gets richer” scheme (dashed line with-
out arrows). After making this initial connection to the net-
work, with a certain probability given by equation (13) Node 5
may connect (dashed arrows) to the neighbors of Node 2
(Node 1 and Node 3). Node 4 remains intact as it is not a
direct neighbor of Node 2.
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Fig. 2. Mean degree scaling for different values of γ: 0
(red squares), 0.3 (magenta circles), 1 (blue triangles). Black
curve shows the mean degree scaling in completely connected
network.

models. As in the works [50–52] the additional links are
formed only with the immediate neighbors of the old node.
Though unlike in reference [52] we use Barabasi-Albert
model as a base model. We also add a random amount
of links during the additional step unlike the models con-
sidered in references [50–52]. The forest fire algorithm [53]
also adds a random number of links, but it considers γ = 0
case. In the forest fire algorithm the mean degree scaling
is achieved not by scaling the probability of forming the
additional links, but by repeating the additional step until
no new links are formed. Note that there are more network
formation models, which exhibit sub-linear scaling of the
mean degree, but mostly they are overly general and lack
connections to the actual processes in the socio-economic
systems [54–56].

Dependence of the mean degree 〈d〉 on the number of
nodes in the network N for various values of the parameter
γ is shown in Figure 2. Our numerical calculations indicate
that

α ≈ (1 − γ)2 (14)

for γ ∈ [0, 1].
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Fig. 3. Random network (topology (a), degree distribution
(b)), scale-free network (topology (e), degree distribution (f))
and hybrid network (topology (c), degree distribution (d)) gen-
erated using the proposed network formation algorithm. Net-
work snapshots (a), (c), (e) were taken at N = 100. Degree
PDFs were obtained on networks with N = 104 (random net-
work) and N = 3×104 (hybrid and scale-free networks). Black
curves in (d) and (f) provide power law fit (with exponent
λ = 3) for the tail of the degree PDF. Following parameters
were used: p0 = 0.3, γ = 0 (random network), 0.3 (hybrid
network), 1 (scale-free network).

In Figure 3 we demonstrate a transition between ran-
dom and scale-free networks obtained using our network
formation algorithm. With small values of γ we observe
a randomly connected clump of nodes, we also observe
Gaussian-like degree distribution in this clump. Slightly
larger γ values allow for large degree hubs to form, while
apparently random links are still present. While from
γ � 1 the probability of forming random links becomes
small, thus random links disappear and only scale-free
structure remains. Mean degree scaling for the same values
of γ is shown in Figure 2.

4 Agent-based model executed
on the network structure

In this section we consider Kirman’s agent-based model
implemented on a network generated using algorithm de-
scribed in the previous section. There is a fixed number
of agents, N , located on the nodes of the network, each of
them being in state 1 or in state 2. Note, as the compar-
ison of mean-field approximation with the exact solution
shows, that the detailed network structure for this model

is not important. The main influence of the network is
via the scaling of the mean degree 〈d〉 with the number
of nodes N in the network. Describing the dynamics as a
jump Markov process in a continuous time, the transition
probabilities per unit time for agent i being in the state X
(X = 1, 2) to switch state to the other state Y (Y �= X)
are given by:

pi(X → Y ) = σ + hni(Y ), (15)

where σ is the idiosyncratic switching rate, h describes the
herding tendency and ni(Y ) is the number of neighbors in
the state Y .

4.1 Mean-field approximation

The mean-field approach for the model yields the follow-
ing mean per-agent transition (from state X to state Y )
rates [37]:

〈pi(X → Y )〉 = σ + h〈d〉NY

N
, (16)

where NY is a total number of agents in the state Y .
Using the notation introduced in Section 2 we would have
η1 = 〈pi(2 → 1)〉 and η2 = 〈pi(1 → 2)〉.

Note that in the infinitely large system limit, N → ∞,
the herding behavior term disappears if 〈d〉 ∼ const., while
it remains constant if 〈d〉 ∼ N . If the herding term disap-
pears, or becomes negligible, then the mean behavior of
system becomes deterministic and only a small Gaussian-
like fluctuations occur (see Sect. 2), while otherwise the
power-law distribution is obtained [37,44].

The Fokker-Planck equation (5) for the model now
becomes

∂

∂t
Px(x, t) = − ∂

∂x
σ(1 − 2x)Px(x, t)

+
1

2N

∂2

∂x2
(2h〈d〉x(1 − x) + σ)Px(x, t). (17)

The dynamics of the continuous macroscopic system state
variable x can be modeled by the SDE corresponding to
the Fokker-Planck equation (17):

dx = σ(1 − 2x)dt +

√
1
N

(2h〈d〉x(1 − x) + σ)dWt, (18)

where Wt is a Wiener process. In reference [57] it has been
shown that in the case when 〈d〉 ∼ N the fluctuations of
the ratio N2/N1, exhibit 1/fβ power spectral density in a
wide region of frequencies growing with N . In particular,
we have 1/f noise when σ/(d0h) = 2. This is not the case
when α < 1 because for α < 1 in the limit of N → ∞ the
macroscopic fluctuations of x vanish.

4.2 Steady state distribution of agents

Now let us consider the steady state of this system of
agents and investigate the probability density function
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Fig. 4. Simulated steady state probability density function
P0(x) for agent-based model with different values of mean de-
gree exponent α: red squares α = 0, green circles α = 0.5, blue
triangles α = 1. Solid lines show the mean-field approximation
of the steady state probability density function provided by
equation (19). The parameter values of the model were σ = 1.5,
h = 1, N = 3000, p0 = 0.75, Δt = 2 × 10−5. The parameter γ
values were γ = 1 (α = 0), γ = 0.3 (α = 0.5), γ = 0 (α = 1).
From the scaling of the mean degree 〈d〉 with changing N the
following d0 values were obtained: d0 = 3.2 (α = 0), d0 = 1.24
(α = 0.5) and d0 = 0.6 (α = 1).

P0(x). If the mean degree 〈d〉 scales as Nα, that is 〈d〉 =
d0N

α, the steady state PDF obtained from equation (17)
according to equation (6) is

P0(x) = C[ε + 2Nαx(1 − x)]εN1−α−1 , (19)

where
ε ≡ σ

d0h
(20)

and C is the normalization constant. The steady state
PDF obtained from numerical simulation of the agent-
based model described by equation (15) and comparison
with the mean-field approximation (19) is shown in Fig-
ures 4 and 5. In the numerical simulations we choose a
fixed time step Δt and consider transition probabilities
equal to pi(X → Y )Δt. The time step must be chosen
such that all transition probabilities should be between 0
and 1. For a given network structure, we synchronously
update the state of each agent according to the transition
probabilities. In the mean-field steady state PDF we use
the parameter d0 extracted from the scaling of the mean
degree 〈d〉 of the network with the number of nodes N .
We see a good agreement of the simulated PDF with the
mean-field approximation. The width of the steady state
PDF increases with increase of α, as is shown in Figure 4
and decreases with increase of the number of agents N , as
is evident from Figure 5. In the limit of N → ∞ the PDF
P0(x) becomes very narrow if α < 1.

Equation (19) can be rewritten in a q-Gaussian form

P0(x) = C′ expq

[

−Aq

(
x − 1

2

)2
]

(21)
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Fig. 5. Scaling of the simulated steady state probability den-
sity function P0(x) with the increasing number of agents in
the model: red squares N = 100, green circles N = 500, blue
triangles N = 3000. Solid lines show mean-field approximation
of the steady state probability density function provided by
equation (19). The remaining parameters of the model were
σ = 1.5, h = 1, p0 = 0.75, γ = 0.15, Δt = 2 × 10−5. The value
of d0 = 0.9 was obtained from the scaling of the mean degree
〈d〉 with changing N .

with

q = 1 − 1
εN1−α − 1

, Aq = 2N1−α 1 − 1
εNα−1

1
2ε + N−α

. (22)

The q-Gaussian PDF can be obtained by applying the
standard variational principle on the generalized en-
tropy (1) (see [15]). In the above expq(·) is the q-
exponential function, defined as:

expq(x) ≡ [1 + (1 − q)x]
1

1−q

+ , (23)

here [x]+ = x if x > 0, and [x]+ = 0 otherwise. The q-
Gaussian steady state solution of the Fokker-Planck equa-
tion (17) can be explained by noting that equation (17)
satisfies the condition given by equation (11) of refer-
ence [58]. The steady state PDF (21) having q-Gaussian
form for finite values of N is in agreement with known
results that Tsallis generalized canonical distribution de-
scribes systems in contact with a finite heath bath [59,60].
Equation (21) also confirms the similarity of small systems
to large systems with truly long-range interactions.

If the interactions are long-range, α = 1 and 〈d〉 ∼ N ,
and the system is infinitely large, N → ∞, then the
steady-state PDF (19) has a power-law form

P0(x) =
Γ (2ε)
Γ (ε)2

[x(1 − x)]ε−1 . (24)

This corresponds to non-extensivity parameter

q = 1 − 1
ε − 1

. (25)

On the other hand, if interactions are short-range, α = 0
and 〈d〉 ∼ const., and the system infinitely large, N → ∞,
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then according to equation (9), the steady-state PDF is
Dirac delta function centered on x0 = 1/2. As real systems
are never infinite, for large N the steady-state PDF has a
Gaussian-like form. If α < 1 and N is large then q tends
to 1 and from the properties of the q-exponential function
we get that the steady state PDF (21) is approximately
Gaussian

P0(x) ∼ exp

[

−N1−αA

(
x − 1

2

)2
]

(26)

with

A =

{
2

1
2ε +1

, α = 0

4ε , 0 < α < 1.
(27)

In this equation the coefficient A for α = 0 is the same as
given by equation (11). Thus the steady-state PDF retains
its form in the N → ∞ limit only if α = 1, while in
all other cases the N -dependence problem, considered by
Alfarano and Milakovic [37], is obtained: namely the shape
and variance of the distribution is lost with the increasing
size of the system. It should be noted, that when 0 < α <
1, the fluctuations in the system decay not as 1/

√
N , as it

is usual in the statistics of extensive systems, but slower as
1/

√
N1−α. The fluctuations decay slower with increasing

N when α is closer to 1. In the limiting non-extensive
case of α = 1 the fluctuations do not decay at all with
increasing the system size and are always macroscopic.

5 Conclusions

In summary, we have demonstrated a simple agent-based
model that by changing the single parameter α can contin-
uously transition from extensive to non-extensive statis-
tics. Transition from extensive to non-extensive statistics
in the agent-based model with changing the parameter α
and the number of agents N is shown in Figure 6. As
we can see, the extensive region becomes wider as N in-
creases. However, for α = 1 the behavior is non-extensive
for all values of N .

The steady state distribution of agents for a finite sys-
tem size is described by q-Gaussian (21) with q ≤ 1. For
α < 1 and increasingly large system size (e.q. N → ∞) the
steady state distribution of the model tends to a Gaussian
form with the width depending on α: as α increases the
width decreases more slowly with increasing N . This sim-
ple model allows us to deepen the understanding of the
effects of long-range interactions and observe the emer-
gence of non-extensivity.
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