
Solutions of nonlinear stochastic differential
equations with 1/f noise power spectrum

Bronislovas Kaulakys, Julius Ruseckas
Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania

Abstract—The special nonlinear stochastic differential equa-
tions generating power-law distributed signals and 1/f noise are
considered. The models involve the generalized Constant Elasticity
of Variance (CEV) process, the Bessel process, the Squared Bessel
process, and the Cox-Ingersoll-Ross (CIR) process, which are
applied for modeling the financial markets, as well. In the paper,
1/fβ behavior of the power spectral density is derived directly
from the nonlinear stochastic differential equations and the exact
solutions for the particular CEV process are presented.

I. INTRODUCTION

The phrases “1/f noise”, “1/f fluctuations”, and “flicker
noise” refer to the phenomenon, having the power spec-
tral density at low frequencies f of signals of the form
S(f) ∼ f−β , with β being a system-dependent parameter.
1/fβ signals with 0.5 < β < 1.5 are found widely in nature,
occurring in physics, electronics, astrophysics, geophysics,
economics, biology, psychology, language and even music [1]–
[4] (see also references in recent paper [5]). The case of
β = 1, or “pink noise”, is the one of the most interesting.
The widespread occurrence of processes exhibiting 1/f noise
suggests that a generic, at least mathematical explanation of
such phenomena might exist.

Here we model 1/f noise using the nonlinear stochastic
differential equations (SDEs). Nonlinear SDE with the linear
noise and nonlinear drift was considered in Ref. [6]. Recently
the nonlinear SDE, generating signals with 1/f noise was
obtained in Refs. [7], [8] (see also recent paper [5]), starting
from the point process model of 1/f noise [9]–[16]. In this
paper, 1/fβ behavior of the power spectral density is derived
from the nonlinear SDE, using the eigenfunction expansion of
the associated Fokker-Planck equations. The exact solutions
for the special Constant Elasticity of Variance (CEV) process
are presented, as well.

II. STOCHASTIC DIFFERENTIAL EQUATION GENERATING
SIGNAL WITH f−β NOISE

The fluctuations of the intensity of the signals, currents,
flows, etc, consisting of discrete objects (electrons, photons,
packets, vehicles, pulses, events, etc), are primarily and ba-
sically defined in terms of fluctuations of the (average) in-
terevent, interpulse, interarrival, recurrence, or waiting time.
For the process consisting of the discrete objects the intensity
of the signal fluctuates due to the fluctuations of rate, i.e.,
density of the objects in the time axis, which is a consequence
of fluctuations of the interarrival or interevent time.

We start from the point process x(t) = a
∑
k δ(t − tk),

representing the signal, current or flow, x(t), as a sequence

of correlated pulses or series of events. Here δ(t) is the Dirac
δ-function and a is an average contribution to the signal x(t)
of one pulse at the time moment tk. Our model is based on
the generic multiplicative process for the interevent time τk ≡
tk+1 − tk,

τk+1 = τk + γτ2µ−1
k + σττ

µ
k εk , (1)

generating the power-law distributed Pk(τk) ∼ ταk , with α =
2γ/σ2

τ − 2µ, sequence of the interevent times τk and f−β ,
with β = 1 +α/(3−2µ), power spectral density of the signal
[11]–[16]. Some motivations for equation (1) were given in
papers [5], [9]–[19].

Therefore, in our model the (average) interevent time τk
fluctuates due to the random perturbations by a sequence of
uncorrelated normally distributed random variables {εk} with
the zero expectation and unit variance; στ is standard deviation
of the white noise and γ � 1 is a coefficient of the nonlinear
damping. Transition from the occurrence number k to the
actual time t in (1) according to the relation dt = τkdk yields
the Itô SDE for the variable τ(t) as a function of the actual
time,

dτ = γτ2µ−2dt+ σττ
µ−1/2dW , (2)

where W is a standard Wiener process. Equation (2) generates
the stochastic variable τ , power-law distributed, Pt(τ) ∼
τα+1, in the actual time t. The power-law distribution of the
interevent, recurrence, or waiting time is observed in different
systems from physics and seismology to the Internet and
financial markets (see, e.g., [11]–[16], [20]–[23]).

The Itô transformation in (2) of the variable from τ to
the intensity (averaged over the time interval τ ) of the signal
x(t) = a/τ(t) [7], [8] yields the class of Itô SDE generating
signals with f−β power spectral density:

dx = σ2(η − ν/2)x2η−1dt+ σxηdW . (3)

Here the new parameters η = 5/2 − µ, ν = 3 + α and σ =
στ/a

3/2−µ have been introduced. The exponent β of the power
spectral density S(f) ∼ f−β in the new parameters is

β = 1 +
ν − 3

2(η − 1)
. (4)

The nonlinear SDE (3) has the simplest form of the multiplica-
tive noise term, σxηdW . Multiplicative equations with the drift
coefficient proportional to the Stratonovich drift correction
for transformation from the Stratonovich to the Itô stochastic
equation [24] generate signals with the power-law distributions
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[5]. Equation (3) is of such a type and has the stationary
probability distribution of the power-law form, P0(x) ∼ x−ν .

Nonlinear SDE, corresponding to a particular case of (3)
with η = 0, i.e., with linear noise and non-linear drift, was
considered in Ref. [6]. It has been found that if the damping
decrease with increasing of |x|, then the solution of such a
nonlinear SDE has long correlation time.

Because of the divergence of the power-law distribution and
the requirement of the stationarity of the process, the SDE (3)
should be analyzed together with the appropriate restrictions
of the diffusion in some finite interval. The simplest choice is
the reflective boundary conditions at x = xmin and x = xmax.
However, other forms of restrictions are possible. For example,
the exponential restriction of diffusion can be obtained by
introducing the additional terms in (3),

dx =σ2

(
η − ν

2
+
m

2

(xmin

x

)m
− m

2

(
x

xmax

)m)
x2η−1dt

+ σxηdW . (5)

Here m is a parameter. Modified SDE

dx = σ2(η − ν/2)(x+ x0)2η−1dt+ σ(x+ x0)ηdW (6)

with the reflective boundary condition at x = 0 was considered
in [5]. The associated Fokker-Planck equation gives distribu-
tion density P0(x) ∼ exp1+1/ν(−νx/x0), where expq(·) is
the q-exponential function defined as

expq(x) ≡ (1 + (1− q)x)
1

1−q . (7)

The probability distributions containing q-exponential are
important in the framework of the nonextensive statistical
mechanics [25]–[28].

Stochastic differential equation, analyzed in [29]–[31]

dx = σ2(η− ν/2)(x2 +x2
0)η−1xdt+σ(x2 +x2

0)η/2dW, (8)

in contrast to all other equations allows negative values of
x. The associated Fokker-Planck equation gives the steady-
state distribution density P0(x) ∼ exp1+2/ν(−νx2/2x2

0). The
addition of parameter x0 in (6), (8) restricts the divergence
of the power-law distribution of x at x → 0. For small
|x| � x0 equations (6), (8) represent the linear additive
stochastic processes generating the Brownian motion with the
steady drift, while for x� x0 they reduce to the multiplicative
equation (3).

A. Special cases
For some choices of parameters, SDE (3) or its variant

(5) takes the form of the well-known SDEs considered in
econopysics and finance.

In case when the exponent of multiplicative noise η = 0 and
σ = 1, (3) takes the form of the SDE for the Bessel process
[32],

dx =
δ − 1

2

1

x
dt+ dW, (9)

of dimension δ = 1 − ν, while η = 1/2, σ = 2 corresponds
to the squared Bessel process [32],

dx = δdt+ 2
√
xdW, (10)

of dimension δ = 2(1− ν).
SDE with exponential restriction (5) for η = 1/2, xmin = 0

and m = 1 gives the Cox-Ingersoll-Ross (CIR) process [32],

dx = k(θ − x)dt+ σ
√
xdW, (11)

where k = σ2/2xmax, θ = xmax(1− ν).
When ν = 2η, xmax = ∞ and m = 2η − 2 then (5) takes

the form of the Constant Elasticity of Variance (CEV) process
[32],

dx = µxdt+ σxηdW, (12)

where µ = σ2(η − 1)x
2(η−1)
min .

III. CONNECTION OF f−β BEHAVIOR WITH EIGENVALUES
OF THE FOKKER-PLANCK EQUATION

According to Wiener-Khintchine relations, the power spec-
tral density is

S(f) = 2

∫ ∞
−∞

C(t)eiωtdt = 4

∫ ∞
0

C(t) cos(ωt)dt , (13)

where ω = 2πf . C(t) is the autocorrelation function. For
the stationary process the autocorrelation function can be
expressed as an average over the realizations of the stochastic
process, i.e., C(t) = 〈x(t′)x(t′ + t)〉. This average can be
written as

C(t) =

∫
dx

∫
dx′ xx′P0(x)Px(x′, t|x, 0) , (14)

where P0(x) is the steady-state probability distribution func-
tion and Px(x′, t|x, 0) is the transition probability (the condi-
tional probability that at time t the signal has value x′ with the
condition that at time t = 0 the signal has the value x). The
transition probability can be obtained from the solution of the
associated Fokker-Planck equation with the initial condition
Px(x′, 0|x, 0) = δ(x′ − x).

The solutions of the Fokker-Planck equation of the form
P (x, t) = Pλ(x)e−λt determine the eigenvalues λ and cor-
responding eigenfunctions Pλ(x). It should be noted that the
restriction of diffusion of the variable x by xmin and xmax

ensures that the eigenvalue spectrum is discrete. Expansion of
the transition probability density in a series of the eigenfunc-
tions has the form [33]

Px(x′, t|x, 0) =
∑
λ

Pλ(x′)eΦ(x)Pλ(x)e−λt , (15)

where Φ(x) is the potential, associated with the Fokker-Planck
equation, Φ(x) = − lnP0(x). Substituting (15) into (14) we
obtain the autocorrelation function

C(t) =
∑
λ

e−λtX2
λ . (16)

Here
Xλ =

∫ xmax

xmin

xPλ(x)dx (17)

is the first moment of the stochastic variable x evaluated
with the λ-th eigenfunction Pλ(x). Such an expression for
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the autocorrelation function has been obtained in Ref. [34].
From (13) and (16) we obtain the power spectral density

S(f) = 4
∑
λ

λ

λ2 + ω2
X2
λ . (18)

This expression for the power spectral density resembles
the models of 1/f noise using the sum of the Lorentzian
spectra [13], [35]–[40]. Here we see that the Lorentzians can
arise from the single nonlinear SDE. Replacing in (18) the
summation by the integration we obtain the power spectral
density as

S(f) ≈ 4

∫
λ

λ2 + ω2
X2
λD(λ)dλ . (19)

Here D(λ) is the density of eigenvalues. Equation, similar to
(19) has been obtained in Ref. [41] by considering a relaxing
linear system driven by the white noise. Similar equation has
been obtained also in Ref. [42] where the reversible Markov
chains on finite state spaces were considered. In both Ref. [41]
and Ref. [42], the power spectral density is expressed as a
sum or an integral over the eigenvalues of a matrix describing
transitions in the system.

In Ref. [43] it has been shown that the largest contribution
to the sum in (18) makes the terms corresponding to the
eigenvalues λ obeying the condition λmin � λ � λmax,
where

λmin =σ2x
2(η−1)
min , λmax = σ2x2(η−1)

max , η > 1, (20)

λmin =σ2x2(η−1)
max , λmax = σ2x

2(η−1)
min , η < 1. (21)

One of the reasons for the appearance of the 1/fβ spectrum
is the scaling property of the SDE (3): changing the stochastic
variable from x to x′ = ax changes the time-scale of the
equation to t′ = a2(1−η)t , leaving the form of the equation
invariant. From this property it follows that it is possible
to eliminate λ in the eigenvalue equation by changing the
variable from x to z = λ1/2(1−η)x. The dependence of the
eigenfunction on the eigenvalue λ then enters only via the
boundary conditions. Such scaling properties were used in [43]
estimating the expression X2

λD(λ) being proportional to λ−β ,
with β given by (4). Thus the power spectral density of SDE
(3) can be approximated as [43]

S(f) ∼
∫ λmax

λmin

1

λβ−1

1

λ2 + ω2
dλ . (22)

When λmin � ω � λmax, the leading term in the expansion of
the approximate expression (22) for the power spectral density
in the power series of ω is

S(f) ∼ ω−β , β < 2 . (23)

The second term in the expansion is proportional to ω−2. In
the case of β < 2, the term with ω−β becomes larger than the
term with ω−2 when λmin � ω.

Therefore, we obtain 1/fβ spectrum in the frequency inter-
val σ2x

2(η−1)
min � ω � σ2x

2(η−1)
max if η > 1 and the frequency

interval σ2x
−2(1−η)
max � ω � σ2x

−2(1−η)
min if η < 1.

Equation (19) shows that the shape of the power spectrum
depends on the behavior of the eigenfunctions and eigenvalues
in terms of function X2

λD(λ). The SDE (3) considered in
this article gives the density of eigenvalues D(λ) proportional
to 1/

√
λ. One obtains 1/fβ behavior of the power spectrum

when the function X2
λD(λ) is proportional to λ−β for a wide

range of eigenvalues λ, as is the case for SDE (3). Similar
condition has been obtained in Ref. [42].

IV. ANALYTICALLY SOLVABLE CASE

As an example we present the analytically solvable model,
i.e., the particular CEV process. The choice of parameters η =
3
2 , ν = 3 and xmax =∞ in (5) leads to the equation

dx = µxdt+ σx
3
2 dW. (24)

Here µ = σ2xmin/2. The analytical expression for the transi-
tion probability Px(x′, t|x, 0) of the CEV process (24) is [32]

Px(x′, t|x, 0) =
xmin

(1− e−µt)

√
x

x′5

× exp

(
1

2
µt− xmin

(1− e−µt)

(
1

x′
+

1

x
e−µt

))
× I1

(
xmin

sinh
(

1
2µt
) 1√

xx′

)
. (25)

Here In is the modified Bessel function with index n. The
steady-state probability distribution has the form

P0(x) = x2
minx

−3 exp(−xmin/x). (26)

The average of the signal is 〈x〉 =
∫∞

0
xP0(x)dx = xmin.

From (14) using (25) we obtain the autocorrelation function

C(t) = −x2
mine

µt ln
(
1− e−µt

)
. (27)

When µt� 1 we get

C(t) ≈ −x2
min ln(µt). (28)

Similar expansions have been obtained for the autocorrelation
function in the case of 1/f spectrum [5], [43]. From the
Wiener-Khintchine relation (13), using (27) for the autocorre-
lation function, we get the following expression for the power
spectral density

S(f) = 2x2
min

−γ − ψ
(
−iωµ

)
µ+ iω

+
−γ − ψ

(
iωµ

)
µ− iω

 , (29)

where γ ≈ 0.577216 is the Euler’s constant and ψ(z) =
Γ′(z)/Γ(z) is the digamma function. When ω � µ then the
power spectral density is

S(f) ≈ x2
min/f. (30)

We compare the analytical expressions for the steady-state
probability distribution (26) and power spectral density (29)
with those obtained from the numerical solution of (24). For
the numerical solution we use the Euler-Marujama approxi-
mation, transforming differential equations to the difference
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Fig. 1. Probability distribution function P (x) (left) and power spectral density S(f) (right) for the stochastic process defined by the SDE (24). Dashed
green lines are analytical expressions (26) and (29) for the steady-state distribution function P0(x) and power spectral density S(f), respectively. Parameters
used are σ = 1 and xmin = 1.

equations. The equation was solved using a variable step
of integration, ∆tk = κ2/xk, with κ � 1 being a small
parameter. The comparison of the analytical expressions with
the numerical calculations is presented in Fig. 1. We see
an excellent agreement between the analytical and numerical
results.

Note, that in Ref. [44] asymptotic expansions of option
prices for another CEV model, using the perturbation theory
for the partial differential equations, are presented.

V. CONCLUSIONS

We considered a class of nonlinear SDEs, giving the power-
law behavior of the power spectral density in any desirably
wide range of frequency. The equations, as special cases,
contain the well-known SDEs in economics and finance. The
analysis reveals that the power spectrum may be represented as
a sum of the Lorentzian spectra and provides further insights
into the origin of 1/f noise.
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