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Abstract—We analyze a mechanism of intermittecy in non-
linear dynamical systems having the invariant subspace and
zero transverse Lyapunov exponent. Our model is similar to the
on-off intermittency, occurring due the time-dependent forcing
of a bifurcation parameter through a bifurcation point but
with nonzero transverse Lyapunov exponent. We show that our
nonlinear dynamical systems exhibit 1/fβ noise of the deviation
from the invariant subspace. Further, the approximation of
the intermittency generating maps by the nonlinear stochastic
differential equations is presented and the connection with the
equations modeling 1/fβ noise is established.

I. INTRODUCTION

Intermittency is a random alternation of a signal between
a quiescent state and bursts of activity, similar to the flicker
process. Many natural systems display intermittent behavior,
as, e.g., turbulent bursts in otherwise laminar fluid flows,
sunspot activity, and reversals of the geomagnetic field. Well
known models of intermittency include the three types intro-
duced by Pomeau and Manneville [1], as well as crisis-induced
intermittency [2]. A different variety of intermittency was
first reported when synchronized chaos in a coupled chaotic
oscillator system undergoes the instability when changing the
coupling constant [3], [4]. This intermittency is known as the
on-off intermittency [5]–[7]. The on-off intermittency appears
in nonlinear dynamical systems with invariant subspaces, when
the dynamics is restricted to the invariant subspace is chaotic
and the system is close to a threshold of transverse stability of
the subspace. The main difference of the on-off intermittency
from other intermittency types is in the mechanism of the ori-
gin, i.e., the on-off intermittency relies on the time-dependent
forcing of a bifurcation parameter through a bifurcation point,
while in Pomeau-Manneville intermittency and crisis-induced
intermittency the parameters are static.

Processes having the power spectral density (PSD) at low
frequencies f of the form S(f) ∼ 1/fβ with β close to 1
are commonly referred to as 1/f noise, 1/f fluctuations, pink
noise or flicker noise. Power-law distributions of spectra of
signals with 0.5 < β < 1.5 are ubiquitous in physics and
in many other fields, including traffic in computer networks
and financial markets [8]–[14]. Many models of 1/f noise
are not universal because of the assumptions specific to the
problem under consideration. Recently, the nonlinear stochas-
tic differential equations (SDEs) generating signals with 1/f
noise were obtained [15]–[18] starting from the point process
model of 1/f noise [19]–[21].

Another model of 1/f noise involves a class of maps
generating intermittent signals. It is possible to generate power-
law distributions and 1/f noise from simple iterative maps
by fine-tuning the parameters of the system at the edge of
chaos [22], [23] where the sensitivity to initial conditions of

the logistic map is a lot milder than in the chaotic regime, since
the Lyapunov exponent is zero and the sensitivity to changes
in initial conditions follows a power-law [24]. Manneville
[25] showed that, tuned exactly, an iterative function can
produce interesting behavior, power-laws and 1/f PSD. This
mechanism for 1/f noise only works for type-II and type-III
Pomeau-Manneville intermittency [26].

Here we consider a mechanism of intermittency, similar
to the on-off intermittency, occurring in nonlinear dynamical
systems with invariant subspace. In contrast to the on-off inter-
mittency, we consider the case when the transverse Lyapunov
exponent is zero. By relating nonlinear dynamics with the 1/f
noise model based on the nonlinear SDEs we show that for
such nonlinear dynamical systems the PSD of the deviation
from the invariant subspace can have 1/fβ form in a wide
range of frequencies.

II. INTERMITTENCY WITH ZERO TRANSVERSE LYAPUNOV
EXPONENT

We consider the two-dimensional maps [5]:

xn+1 = F (xn) , yn+1 = G(xn, yn) . (1)

Here y is the deviation form the invariant subspace, while the
function G has the property G(x, 0) = 0 and, consequently,
y = 0 is the invariant subspace. We assume that the dynamics
xn+1 = F (xn) in (1) is restricted to the invariant subspace
and it is chaotic. If the transverse Lyapunov exponent

λ⊥ = lim
N→∞

1

N

N−1∑
n=0

ln

∣∣∣∣∂G(xn, 0)

∂y

∣∣∣∣ (2)

along an orbit on the invariant subspace converges and is less
than zero, then the invariant subspace is transversely stable
with respect to this orbit.

We consider a case when ∂G(x, 0)/∂y = 1 and, con-
sequently, the transverse Lyapunov exponent is zero [27].
Furthermore, we will assume that the two terms with the lowest
powers in the expansion of the function G(x, y) in the power
series of y have the form

G(x, y) = y + g(x)yη (3)

with η > 1. This form satisfies the condition ∂G(x, 0)/∂y = 1.

We will consider the case where the function g(x) in (3) is
not constant and can acquire both positive and negative values.
Thus the expansion (3) for small values of yn leads to the the
map

yn+1 = yn + zny
η
n , η > 1 , (4)

with zn ≡ g(xn). It should be noted that when η = 1, the map
(4) becomes a multiplicative map yn+1 = yn(1 + zn), which
is essentially the same as the map considered in Ref. [6] forICNF2013 978-1-4799-0671-0/13/$31.00 c©2013 IEEE



modeling of the on-off intermittency. The map (4) is similar
to Pomeau-Manneville map

yn+1 = yn + ayηn (mod 1) (5)

on the unit interval with one marginally unstable fixed point
located at y = 0 [1]. The main difference from the map (4) is
that in the Pomeau-Manneville map (5) the coefficient in the
second term is static.

Let us consider the situation when yn > 0. If zn < 0
then the map (4) leads to the decrease of the deviation
from the invariant subspace y = 0, whereas for zn > 0
the deviation y grows. In contrast to systems with nonzero
transverse Lyapunov exponent, the growth or decrease of the
deviation is not exponential.

If the average of the variable z is positive, 〈z〉 > 0, and
there is a global mechanism of reinjection, the map (4) leads
to the intermittent behavior. As in the on-off intermittency,
the intermittent behavior appears due to the time-dependent
forcing of a bifurcation parameter through a bifurcation point
z = 0, thus the behavior described by map (4) can be
considered as a kind of the on-off intermittency. However,
the on-off intermittency is usually investigated in dynamical
systems with nonzero transverse Lyapunov exponent.

For small durations of the laminar phase, one can ap-
proximate the map (4) replacing yn in the second term
on the right hand side by the initial value y0. In such a
case Eq. (4) describes a random walk with drift. Since the
average displacement due to the diffusion grows as

√
t and

the displacement due to drift term is proportional to t, for
small enough durations t the diffusion is more important than
the drift. It is known that for the unbiased random walk the
distribution of the first return times has the power-law exponent
−3/2 [28]. Therefore, for small enough durations t one can
expect to observe the power-law form, t−3/2, of the probability
density function (PDF) of the laminar phase durations, the
same as in the on-off intermittency.

The first two terms in the expansion (3) do not allow to
determine uniquely the PDF of the deviation y. In order to
determine PDF of y and PSD of the series {yn}, we need to
take into account more terms in the expansion of the function
G(x, y) in the power series of y. One of the possibilities that
we will consider is for the third term in the expansion to be
equal to γy2η−1 (note, that 2η − 1 > η when η > 1), leading
to the map

yn+1 = yn + zny
η
n + γy2η−1n . (6)

A mechanism of reinjection operates at large values of y and
does not change (6), written for small values of y close to the
invariant subspace.

III. NUMERICAL ANALYSIS

Let us consider a particular case of the map (1) with
the function G(x, y) whose behavior for small values of y
is described by equation (6). We will investigate how the
parameter γ influences PDF of y and PSD of the series {yn}.
Other parameters we keep fixed, choosing the value of the
exponent η = 2, the average of the variable zn, 〈z〉 = 5×10−5,
and the variance 〈(z − 〈z〉)2〉 = 1. The chosen value of the
average 〈z〉 is close to the critical value for the onset of

intermittency 〈z〉 = 0 and is much smaller than the standard
deviation of the variable zn. As a mechanism of reinjection
we use a reflection at y = 0.5, leading to the map

yn+1 = 0.5− |yn + zny
2
n + γy3n − 0.5| . (7)

As a map xn+1 = F (xn) in (1) we take the chaotic driving
by a tent map

xn+1 =

{
2xn , 0 ≤ xn ≤ 1

2

2− 2xn ,
1
2 ≤ xn ≤ 1.

(8)

The variable zn with given average 〈z〉 and variance 〈(z −
〈z〉)2〉 can be obtained from xn using the equation

zn =

√
〈(z − 〈z〉)2〉
〈(x− 〈x〉)2〉

(xn − 〈x〉) + 〈z〉 . (9)

For the tent map (8) the average and the variance are 〈x〉 = 0.5
and 〈(x− 〈x〉)2〉 = 1/12, respectively.

The numerical results for maps described by Eqs. (7), (8),
and (9) for different values of the parameter γ are shown
in Fig. 1. We calculate the power spectral density directly,
according to the definition, as the normalized squared modulus
of the Fourier transform of the signal,

S(f) =

〈
2

N

∣∣∣∣∣
N∑
n=1

yne
−i2πfn

∣∣∣∣∣
2〉

, (10)

where the angle brackets 〈·〉 denote averaging over realizations.
We used the time series {yn} of the length N = 109 and
averaged over 100 realizations with randomly chosen initial
value y0.

From Figs. 1(a), (d), and (g) we see that these maps
indeed lead to intermittent behavior, where the laminar phases
are changed by bursts of activity corresponding to the large
deviations of the variable y from the average value. Also
we can see that the duration of the laminar phase increases
with decreasing γ. The PDF of the variable y, shown in
Figs. 1(b), (e), and (h), has a power-law form for larger
values of y, whereas for small values of y the PDF decreases
exponentially. The exponent of the power-law part of the PDF
increases with decreasing of the parameter γ. The PSD of the
time series {yn}, shown in Figs. 1(c), (f), and (i), has a power-
law behavior for a wide range of frequencies. In particular,
PSD has 1/f behavior in Fig. 1(f). The power-law interval in
the PSD in Figs. 1(c), (f), and (i) is 10−8 . f . 10−4.

As the numerical examples show, map (6) for some values
of the parameters yields time series with power-law PSD.
The exponent of the power-law part of PSD is close to 1. In
addition, the PDF of the deviation from the invariant subspace
y for these values of parameters has a power-law part, in
contrast to the on-off intermittency where the exponent in the
PDF is close to −1 and 1/

√
f PSD.

IV. APPROXIMATION MAPS BY THE NONLINEAR
STOCHASTIC DIFFERENTIAL EQUATIONS

For obtaining analytical expressions of the PDF and PSD
of the deviation y, we approximate the map (6) by a SDE. To
obtain the SDE corresponding to the map (6) we replace the
variable zn by a random Gaussian variable, having the same
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Fig. 1. Time series of map described by (7), (8), and (9) (a), (d), and (g), PDF of the variable y (b), (e), and (h), and PSD S(f) of the time series of y (c),
(f), and (i) for different values of the parameter γ. The parameter γ has the value γ = 0.75 in (a), (b),and (c), γ = 0.5 in (d), (e), and (f), and γ = 0.25
in (g), (h), and (i). The dashed line in (b), (e), and (h) is the analytical result (19) with the exponent ν = 2.5 in (b), ν = 3 in (e), and ν = 3.5 in (h). The
smooth gray line in (c), (f), and (i) shows the slope 1/fβ with β = 0.85 in (c), β = 1 in (f), and β = 1.25 in (i). Other parameters are 〈z〉 = 5× 10−5 and
〈(z − 〈z〉)2〉 = 1.

average and variance as zn, and interpret Eq. (6) as Euler-
Marujama approximation of a SDE. In this way we get the
following SDE

dy = σ2

(
η − ν

2
+
η − 1

2

(
ymin

y

)η−1)
y2η−1dt+ σyηdW .

(11)
Here W is a standard Wiener process (the Brownian motion)
and the parameters σ, ymin, and ν are given by the equations

σ =
√
〈(z − 〈z〉)2〉 , (12)

ymin =

[
2〈z〉

(η − 1)〈(z − 〈z〉)2〉

] 1
η−1

, (13)

ν = 2η − 2γ

〈(z − 〈z〉)2〉
. (14)

The SDE (11) has the same form as that considered in
Refs. [15], [16]. The support for the nonlinear SDE of the form
(11) starting from the agent-based herding model is presented

in Ref. [29]. By introducing the additional parameters we can
obtain the modified equations [30] modeling processes with q-
exponential and q-Gaussian distributions of the nonextensive
statistical mechanics.

The approximation of the map (6) by the SDE (11) is valid
when the value of y is sufficiently small. The greatest value of
y can be determined from the condition that the second term
in Eq. (6) should be much smaller than the first one,

yηmax

√
〈(z − 〈z〉)2〉 � ymax . (15)

giving
ymax . 〈(z − 〈z〉)2〉−

1
2(η−1) . (16)

Using Eqs. (13) and (16) we get the expression for the ratio
ymax/ymin :

ymax

ymin
.

[
(η − 1)

√
〈(z − 〈z〉)2〉

2〈z〉

] 1
η−1

. (17)



As it was shown in Refs. [15], [16] SDE (11) generates signals
with power-law PSD in a wide range of frequencies when
the variable y can vary in a wide region, ymax � ymin. The
condition ymax/ymin � 1 is obeyed when

〈(z − 〈z〉)2〉 � 〈z〉2 , (18)

that is, the standard deviation of the variable zn should be
much larger than the average.

SDE (11) leads to the steady state PDF

P0(y) =
(η − 1)yν−1min

Γ
(
ν−1
η−1

)
yν

exp

[
−
(
ymin

y

)η−1]
. (19)

Thus, the parameter ν gives the exponent of the power-law
part of the PDF and the parameter ymin gives the position of
the exponential cut-off at small values of y. From Eq. (13) it
follows that ymin grows with the growing average 〈z〉. As can
be seen in Figs. 1(b), (e), and (h), there is a good agreement of
the numerically obtained PDF with the analytical expression
(19). Similarly as in the case of the on-off intermittency we
obtain PDF of the deviation from the invariant subspace having
power-law form, but the power exponent ν can assume values
significantly large then 1.

Numerical analysis indicates that the stochastic variable
y, described by a SDE similar to (11) exhibits intermittent
behavior, i.e., there are peaks or extreme events, corresponding
to the large deviations of the variable from the average value,
separated by laminar phases with a wide range distribution of
the laminar durations. The exponent −3/2 in the PDF of the
interburst durations has been obtained numerically [17] and
analytically [31], as well.

In Refs. [15], [16] it was shown that SDE (11) generates
signals with PSD having the form S(f) ∼ f−β in a wide range
of frequencies with the exponent

β = 1 +
ν − 3

2(η − 1)
. (20)

The connection of the PSD of the signal generated by SDE
(11) with the behavior of the eigenvalues of the corresponding
Fokker-Planck equation was analyzed in Ref. [18]. The power-
law part of the numerically obtained PSD shown in Figs. 1
(c), (f), and (i) qualitatively agrees with (20). Eq. (20) gives
correct exponent β for the parameters used in Figs. 1 (f),
and (i), whereas for Fig. 1(c) it yields β = 0.75 instead of
β = 0.85 obtained from numerical calculation. As long as the
approximation of the map (6) by the SDE (11) is valid, the
PSD of the time series {yn} exhibits a power-law behavior,
including 1/f noise.

The range of frequencies where PSD has power-law be-
havior is limited by the minimum and maximum values ymin

and ymax. The limiting frequencies have been estimated in
Ref. [18]. Using (12), (13) and (16), we can write the range
of frequencies where PSD has the power-law form as(

ymin

ymax

)2(η−1)

� 2πf � 1 . (21)

Equation (21) demonstrates that the frequency region where
PSD has 1/fβ dependence increases with raising of the
ratio between minimum and maximum values of y and with

increase of the difference η − 1 [18]. If ymax/ymin � 1, this
frequency range can span many orders of magnitude. However,
the estimation (21) of the frequency range is too broad and
numerical solution of (11) gives narrower interval.

V. CONCLUSIONS

We revealed that the nonlinear maps having invariant
subspace and the expansion in the powers of the deviation
from the invariant subspace can generate signals with 1/fβ

noise in wide range of frequencies. In contrast to Pomeau-
Manneville type mechanism of 1/f noise, the exponent β of
the PSD in our case depends on two parameters, thus 1/fβ

noise can be obtained with various values of the exponent β.
The width of the frequency region of such effect depends the
average value of the variable zn. The width increases when
〈z〉 approaches the threshold value 〈z〉 = 0.
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