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Abstract—Nonextensive statistical mechanics represents a con-
sistent theoretical framework for investigation of complex sys-
tems. We propose the nonlinear stochastic differenctial equations
yielding q-Gaussian distribution of signal intensity, featured in
the nonextensive statistical mechanics. In addition, the proposed
equations generate signals with 1/f behavior of the power
spectral density. The joint reproduction of the distributions of
the nonextensive statistical mechanics and 1/f noise extends the
understanding of complex systems.

I. INTRODUCTION

There are systems exibiting anomalous properties in view
of traditional Boltzmann-Gibbs statistical mechanics, such as
long-range interactions, long-term memory, and anomalous
diffusion. Nonextensive statistical mechanics represents a con-
sistent theoretical framework for the investigation of such com-
plex systems [1]–[3]. Nonextensive statistical mechanics have
found applications in a variety of disciplines such as physics,
chemistry, biology, mathematics, economics, informatics, and
the interdisciplinary field of complex systems [4]–[6].

The nonextensive statistical mechanics is based on the
following entropic form [1], [7],

Sq =
1−

∫ +∞
−∞ [p(z)]qdz

q − 1
, (1)

where p(z) is the probability density function to find the
system with the parameter z. The entropy (1) is an extension of
the Boltzmann-Gibbs entropy SBG = −

∫ +∞
−∞ p(z) ln p(z)dz,

which yields from Eq. (1) at q = 1.

Applying the standard variational principle on entropy
(1) with the normalization and the definite q-dispersion con-
straints,

∫ +∞
−∞ p(z)dz = 1 and∫ +∞

−∞ z2[p(z)]qdz∫ +∞
−∞ [p(z)]qdz

= σ2
q , (2)

where σ2
q is the generalized second-order moment (variance)

[8]–[10], one obtains the q-Gaussian distribution probability
density

p(z) = A expq(−Bz2) . (3)

Here expq(·) is the q-exponential function defined as

expq(x) ≡ [1 + (1− q)x]
1

1−q
+ , (4)

with [(. . .)]+ = (. . .) if (. . .) > 0, and zero otherwise.

For the theoretical modeling of the nonextensive statistical
mechanics distributions, the nonlinear Fokker-Planck equations

and nonlinear stochastic differential equations (SDEs) [11],
[12], SDEs with additive and multiplicative noises [13], [14],
with multiplicative noise [15], and with the fluctuating friction
forces [16] have been proposed.

Signals having power spectral densities (PSD) at low
frequencies f of the form S(f) ∼ 1/fβ with β close to 1 are
commonly referred to as “1/f noise”, “1/f fluctuations”, or
“flicker noise.” Power-law distributions of spectra of signals
with 0.5 < β < 1.5 are ubiquitous in physics and in many
other fields, including natural phenomena, human activities,
traffics in computer networks, and financial markets [17]–[23].
Many models and theories of 1/f noise are not universal
because of the assumptions specific to the problem under con-
sideration. Recently, nonlinear stochastic differential equations
generating signals with 1/f noise were obtained [24]–[27],
starting from a point process model of 1/f noise [28]–[30].

Here we propose nonlinear SDEs yielding both the Tsallis
distributions and 1/f noise. We start from a class of nonlinear
SDEs generating signals with the power-law behavior of the
probability density function (PDF) of the signal intensity and
with power-law behavior of the power spectral density (PSD)
in any desirably wide range of frequencies. The proposed
modifications of these equations yield Brownian-like motion
for small values of the signal avoiding power-law divergence
of the signal distribution, at the same time preserving 1/fβ

behavior of the power spectral density. The PDF of the signal
generated by these modified SDEs may be q-exponential or
q-Gaussian distribution defined in the nonextensive statistical
mechanics.

II. NONLINEAR STOCHASTIC DIFFERENTIAL EQUATION
GENERATING SIGNALS WITH 1/fβ NOISE

Power spectral density having 1/fβ form for all fre-
quencies up to f = 0 is physically impossible because the
total power would be infinity. Thus we will consider signals
with PSD having power-law behavior only in some wide
intermediate region of frequencies, fmin � f � fmax. For
small frequencies f � fmin PSD of the signals is bounded.
We can obtain nonlinear SDE generating signals with 1/f
noise in a wide region of frequencies using the following
considerations. Wiener-Khintchine theorem relates PSD S(f)
to the autocorrelation function C(t),

C(t) =

∫ +∞

0

S(f) cos(2πft)dt . (5)

If S(f) ∼ f−β in a wide region of frequencies, then for the
frequencies in this region the PSD has a property of scaling

S(af) ∼ a−βS(f) (6)ICNF2013 978-1-4799-0671-0/13/$31.00 c©2013 IEEE



when the influence of the limiting frequencies fmin and fmax

can be neglected. From the Wiener-Khintchine theorem (5) it
follows that the autocorrelation function has the property of
scaling

C(at) ∼ aβ−1C(t) (7)

in the time range 1/fmax � t� 1/fmin. The autocorrelation
function can be written as [27], [31], [32]

C(t) =

∫
dx

∫
dx′ xx′P0(x)Px(x′, t|x, 0) , (8)

where P0(x) is the steady-state PDF and Px(x′, t|x, 0) is the
conditional probability density that at time t the signal has
value x′ with the condition that at time t = 0 the signal had
the value x, i.e., the notation Px(x′, t|x, 0) means the transition
probability. The transition probability can be obtained from
the solution of the Fokker-Planck equation with the initial
condition Px(x′, 0|x, 0) = δ(x′ − x). The required scaling
property (7) can be fulfilled [27] when the steady-state PDF
has the power-law form

P0(x) ∼ x−λ (9)

and the transition probability has the property

Px(ax′, t|ax, 0) = a−1Px(x′, a2(η−1)t|x, 0) . (10)

The parameter η is defined below. This property of the transi-
tion probability means that the change of the magnitude of the
stochastic variable x is equivalent to the change of time scale.
Then from Eq. (8) it follows that the autocorrelation function
has the required property (7) with β given by equation

β = 1 +
λ− 3

2(η − 1)
. (11)

In order to avoid divergence of the steady state PDF (9) the
region of diffusion of the stochastic variable x cannot include
a point x = 0 and should be restricted from below. Then
Eq. (9) holds only in some region of the variable x, xmin �
x � xmax. When the diffusion of the stochastic variable x
is restricted, Eq. (10) cannot be exact, as well. Nevertheless,
if the influence of the limiting values xmin and xmax can be
neglected for time t in some region tmin � t� tmax, Eq. (7)
in this time region approximately holds.

The transition probability has the required scaling (10)
when the SDE contains only the powers of stochastic variable
x and the coefficient in the noise term is proportional to xη .
The drift term is then fixed by the requirement (9) for the
steady-state PDF. Therefore we consider SDE

dx = σ2

(
η − 1

2
λ

)
x2η−1dt+ σxηdW . (12)

To obtain a stationary process and to avoid the divergence
of steady state PDF the diffusion of stochastic variable x
should be restricted by modifying the equation (12). One of the
choices is the reflective boundary conditions at x = xmin and
x = xmax. Exponentially restricted diffusion with the steady
state PDF

P0(x) ∼ 1

xλ
exp

{
−
(xmin

x

)m
−
(

x

xmax

)m}
(13)

is generated by the SDE

dx = σ2

[
η − 1

2
λ+

m

2

(
xmmin

xm
− xm

xmmax

)]
x2η−1dt+σxηdW

(14)
obtained from Eq. (12) by introducing the additional terms.

The restrictions at x = xmin and x = xmax make the
scaling (10) not exact and limit the power-law part of the
PSD to a finite range of frequencies fmin � f � fmax.
We will estimate the limiting frequencies. Taking into account
the limiting values xmin and xmax, the transition probability
corresponding to SDE (12) obeys the equation

Px(ax′, t|ax, 0; axmin, axmax) =

a−1Px(x′, a2(η−1)t|x, 0;xmin, xmax) . (15)

instead of Eq. (10). The steady-state distribution
P0(x;xmin, xmax) has the property of scaling

P0(ax; axmin, axmax) = a−1P0(x;xmin, xmax) . (16)

Substituting Eqs. (15) and (16) into Eq. (8) we get

C(t; axmin, axmax) = a2C(a2(η−1)t, xmin, xmax) . (17)

From this equation it follows that time t in the autocorrelation
function should enter only in combinations with the limiting
values, xmint

1
2(η−1) and xmaxt

1
2(η−1) . The influence of the

limiting values can be neglected and Eq. (10) holds when the
first combination is small and the second large for η > 1 and
vice versa for η < 1. Using Eq. (5) the frequency range where
the PSD has 1/fβ behavior can be estimated as

σ2x
2(η−1)
min � 2πf � σ2x2(η−1)max , η > 1 . (18)

However, numerical solutions of proposed nonlinear SDEs
show that this estimation is too broad, the numerically obtained
frequency region with the power-law behavior of PSD is
narrower than according to Eq. (18). Note, that for η = 1
the width of the frequency region (18) is zero, and we do not
have 1/fβ power spectral density.

III. MODIFICATION OF NONLINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS

The power-law behavior of the coefficients of SDEs (12)
and (14) at large values of x, x � xmin, is the main reason
of the 1/fβ behavior of the PSD. Changing the coefficients
at small x, the PSD preserves the power-law behavior. The
q-exponential function for large values of x has indeed the
power-law dependence on x. Since the steady state PDF of the
signal generated by SDEs (12) and (14) also has the power-law
behavior, SDE (12) can be modified to yield q-distributions of
the nonextensive statistical mechanics.

A. q-exponential distribution

The modified SDE

dx = σ2

(
η − 1

2
λ

)
(x+ x0)2η−1dt+ σ(x+ x0)ηdW (19)

with the reflective boundary condition at x = 0 was considered
in Ref. [26]. The Fokker-Planck equation corresponding to
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Fig. 1. (a) Typical signal generated by Eq. (19). (b) Steady state PDF P (x) of the signal. The dashed line is the analytical q-exponential expression (20) for
the steady state PDF. (c) Power spectral density S(f) of the same signal. The smooth gray line shows the 1/f slope. The parameters used are λ = 3, η = 2,
x0 = 1, and σ = 1.

SDE (19) for x ≥ 0 gives indeed the q-exponential steady
state PDF

P (x) =
λ− 1

x0

(
x0

x+ x0

)λ
=
λ− 1

x0
expq(−λx/x0) ,

q = 1 + 1/λ . (20)

The addition of the parameter x0 to the stochastic variable x
eliminates the divergence of the power-law distribution of x
at x→ 0. For small x, x� x0, Eq. (19) represents the linear
additive stochastic process generating the Brownian motion
with the steady drift. For large x, ,x � x0, this equation
reduces to the multiplicative SDE (12). This modification of
the SDE retains the frequency region with 1/fβ behavior of
the PSD.

Results of the numerical solution of SDE (19) are shown in
Fig. 1. We see a good agreement of the numerically obtained
steady state PDF (20) with the analytical expression. As is
evident from Fig. 1(c), the numerical solution confirms the
presence of the frequency region with 1/f PSD. The lower
bound of this frequency region depends on the parameter x0.

B. q-Gaussian distribution

Another proposed modification of SDE is

dx = σ2

(
η − 1

2
λ

)
(x2 + x20)η−1xdt+ σ(x2 + x20)η/2dW .

(21)
This nonlinear SDE was introduced in Refs. [33]–[36]. The
simple case η = 1 is used in the model of return in Ref. [15].
Eq. (21) allows negative values of the stochastic variable x.
The Fokker-Planck equation corresponding to SDE (21) gives
q-Gaussian steady state PDF

P (x) =
Γ
(
λ
2

)
√
πx0Γ

(
λ−1
2

) ( x20
x20 + x2

)λ
2

=
Γ
(
λ
2

)
√
πx0Γ

(
λ−1
2

) expq

(
−λ x

2

2x20

)
,

q = 1 + 2/λ . (22)

Introduction of the parameter x0 restricts the divergence of the
power-law distribution of x at x→ 0. For small |x| � x0 Eq.
(21) represents the linear additive stochastic process generating
the Brownian motion with the linear relaxation. For large

|x| � x0 this equation reduces to the multiplicative SDE (12).
This modification of the SDE, even introduction of the negative
values of the stochastic variable x, does not destroy the
frequency region with 1/fβ behavior of the PSD.

Results of the numerical solution of SDE (21) are shown in
Fig. 2. We see a good agreement of the numerically obtained
steady state PDF with the analytical expression (22). As is
evident from Figs. 2(c) and (f), numerical solution confirms
the presence of the frequency region with 1/f PSD.

An interesting particular case of the Eq. (21) is equation

dx = σ(x2 + x20)dW (23)

corresponding to the parameters η = 2 and λ = 4. This
equation does not have a drift term and yields the steady state
PDF P (x) ∼ x−4 for large absolute values of |x| � x0.
The complementary cumulative distribution corresponding to
P (x) for x � x0 has the form of the inverse cubic law,
P>(x) ∼ x−3. The inverse cubic power-law of the cumulative
distributions is one of the stylized facts obtained form the
statistical analysis of financial markets. This law is applicable
to the developed stock markets, commodity markets and to
the most traded currency exchange rates. The exponents that
characterize these power laws are similar for different types
and sizes of markets, for different market trends and for
different countries [37]–[42]. According to Eq. (11), the power
spectral density of the signal generated by Eq. (23) has 1/f1.5

form in a wide region of frequencies. This is confirmed by
numerical calculation, shown in Fig. 2(f), as well.

IV. CONCLUSIONS

Many complex systems exhibit long-range interactions,
long-range correlations, multifractality, non-Gaussian distribu-
tions with asymptotic power-law behavior. A possible theoreti-
cal framework for describing these systems is the nonextensive
statistical mechanics that generalizes the Boltzmann-Gibbs
theory. An important example of systems featuring q-Gaussian
distributions and long-range temporal correlations are financial
systems. Proposed equations yielding both the distributions of
the nonextensive statistical mechanics and 1/f noise extend
understanding of the complex systems and allow to model
long-range correlated processes.
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Fig. 2. Typical signal generated by Eqs. (21), (a), and (23), (d); the corresponding steady state PDF P (x) of the signal, (b) and (e), and the power spectral
density S(f), (c) and (f). The parameter λ has the value λ = 3 in (a), (b), and (c) and λ = 4 in (d), (e), and (f). The dashed line in (b) and (e) is the analytical
q-Gaussian expression (22) for the steady state PDF. The smooth gray lines in (c) and (f) show the 1/fβ slope with β = 1 in (c) and β = 1.5 in (f). Other
parameters are η = 2, x0 = 1, and σ = 1.
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