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Abstract—The ubiquitously observable 1/f noise is mostly
Gaussian but sometimes the non-Gaussianity is recognizable, as
well. Here we consider stochastic models of 1/f noise based on
the linear stochastic differential equations with the very slowly
varying coefficients (intensity of the white noise and relaxation
rate) or consisting of a superposition of uncorrelated components
with different distributions of these coefficients. We explore the
conditions in which the modeled signal exhibiting 1/ f7 noise
is Gaussian and when it is non-Gaussian, i.e., the power-law
distributed.

I. INTRODUCTION

Abundance of 1/f distribution of the power spectral den-
sity have been found to be a key feature of a number of
physical, natural, social, and biological phenomena [1], [2].
Mostly 1/f noise is considered as Gaussian process [2], [3],
but in some cases the signals exhibiting 1/f fluctuations are
non-Gaussian [4]-[9].

We have proposed stochastic models of 1/f”noise based
on the nonlinear stochastic differential equations [10]-[14],
starting from the point process model of 1/ f noise [15], [16].
The models generate signals with the power-law distributions
of signal intensity and power-law spectral density. There exist
other models of 1/ f noise, including the renewal point process
with the power-law distribution of the interevent time [17] and
random process represented by random pulses with randomly
varying durations and amplitudes [18]-[21].

Nonetheless, 1/f noise is often modeled as a sum of
independent Lorentzian spectra, resulting from uncorrelated
signals with wide-range distributions of the relaxation times
Trel [16], [22]. Distribution densities P;(x;) of the signal
components x; modeled by the linear stochastic differential
equations

dx; = 7"}/11’dt + o dW; (D)
are Gaussian,
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Here vy = 1 /7'lre1 is the linear relaxation rate, o; is the

white noise intensity, and W; is the standard Wiener process
(Brownian motion). The signal generated by Eq. (1) has the
correlation function

2

o
Cy(s) = —Le ms, s>0 3)
)= 5
and the power spectral density
207
S, =1 — o f. 4
l(f) Pyl2 + w2 ) w 7Tf ( )

ICNF2013 978-1-4799-0671-0/13/$31.00 (©2013 IEEE

The shapes of the probability density function P(z) and
of the power spectral density S(f) of the signal represented
as a sum of uncorrelated components x;(t),

2(t) =Y wi(t), )
l

depend on the distribution of ; and o; [16], [23]. For instance,
the distribution of relaxation rates g(y) ~ y~! together with
the dependence o (7y) ~ 7'/? yields 1/ f noise of the Gaussian
distributed signal (5) [16], while the uniform distribution of ~,
g(y) = const, with o = const, results in 1/f noise with the
power-law distribution of =, P(z) ~ 1/23 [23].

II. MODELING 1/ f% NOISE

In this paper we consider and analyze distributions and
power spectra of signals (5) generated by the linear stochastic
differential equations (1) or by equation

dx = —y(t)zdt + o(t)dW; (6)

with the very slowly fluctuating relaxation rate (t) and
intensity of the white noise o (¢). This model is a generalization
of the model based on the linear stochastic differential equation
with the diffusion-like fluctuations of relaxation rate and
constant intensity of the white noise [23],

dx = —y(t)xdt + odWy. @)

Many non-equilibrium systems exhibit spatial or temporal
fluctuations of some parameter. Usually there are two time
scales. One time scale corresponds to the relaxation dynam-
ics of the system to a stationary state, while another time
scale is related to the fluctuating evolution of parameters. A
particular case is when the relaxation time needed for the
system to reach stationarity is much smaller than the time
scale at which the fluctuating parameter changes. In such a
case, in the long-term the non-equilibrium system is described
by a superposition of different local dynamics at different
time intervals. This framework has been called superstatistics
[24]-[28]. The superstatistical approach has been successfully
applied for a varity of problems, like interactions between
hadrons from cosmic rays [29], fluid turbulence [30]-[33],
granular material [34], electronics [35], and economics [36]—
[41]. Recently the superstatistical approach in combination
with the stochastic model of 1/f noise has been used for
modeling Tsallis distributions with the long-range correlations
[14] and for simulation of the financial observables [42].

Our model presented in this paper may be considered as
a specific case of the superstatistical approach, when the ob-
servable signal z(¢) in (5) is a superposition of the constituents



generated by subsystems (1) with different parameters or the
signal produced by a system with fluctuating parameters (6).
In the superstatistical approach the distribution P(z) of the
signal x(t) is a superposition of the conditional distribution
P(z|v) and of the local distribution of the relaxation rate + in
the wide interval vy € [y1,v2] with 71 < 9, i.e., the density
of the relaxation rates, g(7),

-

The power spectral density of signal x(¢) can be calculated in
a similar manner [23]

P(z]y)g(v)dy. ®)

V2

S(f) = S(flv)g(y)dy. )
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Here S(f]|y) is the spectral density of signal z(t) for the fixed
relaxation rate value ~.

We go beyond the fluctuation-dissipation theorem and the
equipartition of energy theorem and introduce the relationship
between relaxation rates and the intensity of the white noise
in the most simple power-law way,

o(y) = 00" (10)
Here p is a parameter that depends on the system.

There are some cases where the fluctuation-dissipation
theorem cannot be applied. The violation of the fluctuation-
dissipation theorem has been found in the finite dimensional
spin glasses [43] and in the systems out of equilibrium [44].
The theoretical study of motion of colloidal particles being
confined in a harmonic well and dragged by a shear flow also
shows violation of the fluctuation-dissipation theorem [45].

We analyze Eqgs. (1) and (6) as Ito stochastic differential
equations

dx = a(x)dt + b(x)dWy . (11)

For calculation of the steady state probability density function
of the signal x we use the Fokker-Planck equation. The Fokker-
Planck equation for the probability density function P(x)
corresponding to the Ito equation (11) is [46]
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The steady state solution of Eq. (12) has the form

_ C ¥ 2a(xq)
P(z|a,b) = @) exp ( ; bz(xl)dxl) (13)

For the fixed values of relaxation rate v and white noise inten-
sity o(7y) the steady state distribution of the signal intensity is
simply a Gaussian distribution,

Plal.o) = o5y Lo |-
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7, (14)
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while the power spectral density of the signal x(t) intensity is
simply the Lorentzian distribution,
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Recently we proposed a description of diffusion-like fluctu-
ations of relaxation rate by the stochastic differential equation
(23]

dy = o,y 2dW;. (16)

Here o, determines the rapidity of change of the relaxation rate
driven by the white noise with the factor 7*3, which imposes
the power-law steady state distribution of the relaxation rate -,
g(y) ~ ~". Using Eq. (13) we get the stationary distribution
of the relaxation rates
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From Egs. (9), (10), (15), and (17) we obtain the power spectral
density
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Here ®(z,s,a) is the Lerch’s phi transcendent and C,, is the
normalization constant

9(v) = a7
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In the frequency range 71 < f < 72, the power spectral
density (18) is well approximated by the expression

S(f) = 0'(%(1 + 77)(27T)n+zu
B n+1 n+1 7r(n+2;1,) fl (n+2u)°
2(yg" =) cos

In+ 2u| < 1.

(20)

Therefore, when the condition |7 + 2u| < 1 is satisfied, then
1/f5 noise,
S(F~1/f7 B=1-(n+2p), @

may be observed and the exponent (§ varies between 0 and 2.
For |+ 2u| > 1 the 1/f” noise is not detectable.

From Egs. (8), (10), (14), and (17) we obtain the steady
state probability density function
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Here C' is the normalization constant and A is the exponent of
the power-law,

2(n +2p)

P
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(24)

If inequality xmm <K T K Tmax, Where xnin = 0072 —1/2

and Tpax = 0071 —1/ 2, is satisfied then for u # 1/2 the
distribution P(x) behaves like the power-law,
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Fig. 1. Power spectral density S(f) calculated using Eq. (18) with different
values of parameters p and n presented in the legend. Other parameters are:
1 = 0.001, 2 = 1000, and op = 1.
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Fig. 2. Steady state probability density function P(z) calculated using Eq.
(22) with different parameter values p and 7 presented in the legend. Other
parameters are the same as in Fig. 1

Equation (25) approximates the probability density function
(22) if conditions A > 0 and u # 0.5 are satisfied.

The power spectral density and the probability density
function of the signal z(t) intensity with different values of the
parameters 1 and p are represented in Fig. 1 and Fig. 2. The
black curves represent a case when 7 and p satisfy conditions
|n 4 2u| < 1 and A > 0. In this case we observe 1/f” noise
with 0 < § < 2 and the power-law distribution of the signal,
P(x) ~ 1/, The black dashed curves represent a case when
A > 0, but |[p+2p| > 1. In such a case we detect the Brownian
noise with S(f) ~ 1/f2. However, the probability density is
non-Gaussian and we observe the power-law unless = 1/2.
Just in a special case when p = 1/2 and |n+ 1| < 1 we have
the Gaussian 1/ f? noise (gray dashed curves).

III. VALUES OF PARAMETERS pt AND 77 FOR GENERATION
OF 1/f” NOISE WITH THE POWER-LAW DISTRIBUTION OF
SIGNAL INTENSITY

Our models (1) and (6) generate probability density func-
tion of signal intensity in the range between xp,i, and Ty ax
as power-law, P(z) ~ x~*, for different parameters except
p = 0.5. From Fig. 1 and Fig. 2 (black dashed curve) it is
evident that for signals with the power-law probability density
function, 1/f” noise is not always observable. For some
parameters the spectrum has S(f) ~ 1/f? tails (Fig. 1 black

Fig. 3. The power-law exponent A(u), (24), dependence on the parameters
w and 1. A1(p) according to (27) (black curve) and A2(u) according to
(28) (gray curve) restrict an area A(u) where the condition | + 2u| < 1
is satisfied. Only in the parts of A(u,n = const) between dashed curves
A1(p) and Ao (p) the condition |1 + 2| < 1 is satisfied and the power-law
distribution is evident.

dashed curve). We now explore how to choose the values of the
parameters 77 and p in order to generate signals with the non-
Gaussian 1/ % noise and the possible values of the parameter
A. As it was shown above, 1/ fﬁ noise with the power-law
distribution of the signal may be generated when the condition
|n—+2u| < 1 is satisfied, i.e., forn > —1—2porn < 1—2pu.
Thus we have 1/f” noise with the power-law distribution if
the parameter n belongs to the interval n € (11 (), n2(n)),
where

mp) =—1-2u, (26)
n2(p) =1—2p.

From relations (24) and (26) we obtain that 1/ f? noise with
the power-law distribution of the signal is generated if the
parameter A belongs to the interval A € (A1, A2), where

M =3— 27)
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2
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Ay =3+ (28)
Functions A;(u) and Aa(p) are plotted in Fig. 3. These
functions restrict an area where the exponent \(y:) satisfies the
condition |n + 2u| < 1. Using curves A(p, n = const) we can
plot the area between A\;(u) and Ao(u) where the exponent
A can have values between 0 and oo for the special choice
of the parameters 7 and p. Equations (21) and (24) yield the
relationship

B=1+(u—1/2)(A-3), 29

similar to that obtained in the nonlinear models [12]-[14].

IV. PURE 1/f NOISE

From relation (20) it is obvious that the pure 1/f noise
is generated when the condition 7 4+ 2y = 0 is satisfied, i.e.,
when

n=—2u. (30)



In the frequency range v; < f < 72 Egs. (22) and (30) yield
signal with pure 1/f noise,
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In the interval between Tmin = 007y /2 and Zpax =
—(1+n)/2

007, the probability density function (32) can be
approximated as

odsgn(l+mn) 1
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V. CONCLUSION

We show that only in a special case, when (z?) =
0%(v)/(2y) = const, ie., when all fluctuators get equal
average energy, we can obtain the Gaussian 1/f% noise. In
all other cases 1/f” noise can be generated by the power-law
distributed signal, P(x) ~ 1/z*, with A = 3 corresponding to
the pure 1/f noise, as in the nonlinear case [12]-[14]. Beyond
the the equipartition theorem, the non-Gaussian 1/f” noise
may be observed.

The proposed model of 1/ £ noise extends our understand-
ing of conditions for appearance of the phenomena in the
complex systems with distinguishing long-range correlations
and power-law distributions.
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