
Modeling Gaussian and non-Gaussian 1/f noise by
the linear stochastic differential equations

Bronislovas Kaulakys, Rytis Kazakevičius, Julius Ruseckas
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Abstract—The ubiquitously observable 1/f noise is mostly
Gaussian but sometimes the non-Gaussianity is recognizable, as
well. Here we consider stochastic models of 1/f noise based on
the linear stochastic differential equations with the very slowly
varying coefficients (intensity of the white noise and relaxation
rate) or consisting of a superposition of uncorrelated components
with different distributions of these coefficients. We explore the
conditions in which the modeled signal exhibiting 1/fβ noise
is Gaussian and when it is non-Gaussian, i.e., the power-law
distributed.

I. INTRODUCTION

Abundance of 1/f distribution of the power spectral den-
sity have been found to be a key feature of a number of
physical, natural, social, and biological phenomena [1], [2].
Mostly 1/f noise is considered as Gaussian process [2], [3],
but in some cases the signals exhibiting 1/f fluctuations are
non-Gaussian [4]–[9].

We have proposed stochastic models of 1/fβnoise based
on the nonlinear stochastic differential equations [10]–[14],
starting from the point process model of 1/f noise [15], [16].
The models generate signals with the power-law distributions
of signal intensity and power-law spectral density. There exist
other models of 1/f noise, including the renewal point process
with the power-law distribution of the interevent time [17] and
random process represented by random pulses with randomly
varying durations and amplitudes [18]–[21].

Nonetheless, 1/f noise is often modeled as a sum of
independent Lorentzian spectra, resulting from uncorrelated
signals with wide-range distributions of the relaxation times
τrel [16], [22]. Distribution densities Pl(xl) of the signal
components xl modeled by the linear stochastic differential
equations

dxl = −γlxdt + σldWt (1)

are Gaussian,

Pl(xl) =
1

σl

√

γl

π
exp

[

− γl

σ2
l

x2
l

]

. (2)

Here γl = 1/τ rel
l is the linear relaxation rate, σl is the

white noise intensity, and Wt is the standard Wiener process
(Brownian motion). The signal generated by Eq. (1) has the
correlation function

Cl(s) =
σ2

l

2γl
e−γls, s ≥ 0 (3)

and the power spectral density

Sl(f) =
2σ2

l

γ2
l + ω2

, ω = 2πf. (4)

The shapes of the probability density function P (x) and
of the power spectral density S(f) of the signal represented
as a sum of uncorrelated components xl(t),

x(t) =
∑

l

xl(t), (5)

depend on the distribution of γl and σl [16], [23]. For instance,
the distribution of relaxation rates g(γ) ∼ γ−1 together with
the dependence σ(γ) ∼ γ1/2 yields 1/f noise of the Gaussian
distributed signal (5) [16], while the uniform distribution of γ,
g(γ) = const, with σ = const, results in 1/f noise with the
power-law distribution of x, P (x) ∼ 1/x3 [23].

II. MODELING 1/fβ NOISE

In this paper we consider and analyze distributions and
power spectra of signals (5) generated by the linear stochastic
differential equations (1) or by equation

dx = −γ(t)xdt + σ(t)dWt (6)

with the very slowly fluctuating relaxation rate γ(t) and
intensity of the white noise σ(t). This model is a generalization
of the model based on the linear stochastic differential equation
with the diffusion-like fluctuations of relaxation rate and
constant intensity of the white noise [23],

dx = −γ(t)xdt + σdWt. (7)

Many non-equilibrium systems exhibit spatial or temporal
fluctuations of some parameter. Usually there are two time
scales. One time scale corresponds to the relaxation dynam-
ics of the system to a stationary state, while another time
scale is related to the fluctuating evolution of parameters. A
particular case is when the relaxation time needed for the
system to reach stationarity is much smaller than the time
scale at which the fluctuating parameter changes. In such a
case, in the long-term the non-equilibrium system is described
by a superposition of different local dynamics at different
time intervals. This framework has been called superstatistics
[24]–[28]. The superstatistical approach has been successfully
applied for a varity of problems, like interactions between
hadrons from cosmic rays [29], fluid turbulence [30]–[33],
granular material [34], electronics [35], and economics [36]–
[41]. Recently the superstatistical approach in combination
with the stochastic model of 1/f noise has been used for
modeling Tsallis distributions with the long-range correlations
[14] and for simulation of the financial observables [42].

Our model presented in this paper may be considered as
a specific case of the superstatistical approach, when the ob-
servable signal x(t) in (5) is a superposition of the constituentsICNF2013 978-1-4799-0671-0/13/$31.00 c©2013 IEEE



generated by subsystems (1) with different parameters or the
signal produced by a system with fluctuating parameters (6).
In the superstatistical approach the distribution P (x) of the
signal x(t) is a superposition of the conditional distribution
P (x|γ) and of the local distribution of the relaxation rate γ in
the wide interval γ ∈ [γ1, γ2] with γ1 ≪ γ2, i.e., the density
of the relaxation rates, g(γ),

P (x) =

∫ γ2

γ1

P (x|γ)g(γ)dγ. (8)

The power spectral density of signal x(t) can be calculated in
a similar manner [23]

S(f) =

∫ γ2

γ1

S(f |γ)g(γ)dγ. (9)

Here S(f |γ) is the spectral density of signal x(t) for the fixed
relaxation rate value γ.

We go beyond the fluctuation-dissipation theorem and the
equipartition of energy theorem and introduce the relationship
between relaxation rates and the intensity of the white noise
in the most simple power-law way,

σ(γ) = σ0γ
µ. (10)

Here µ is a parameter that depends on the system.

There are some cases where the fluctuation-dissipation
theorem cannot be applied. The violation of the fluctuation-
dissipation theorem has been found in the finite dimensional
spin glasses [43] and in the systems out of equilibrium [44].
The theoretical study of motion of colloidal particles being
confined in a harmonic well and dragged by a shear flow also
shows violation of the fluctuation-dissipation theorem [45].

We analyze Eqs. (1) and (6) as Ito stochastic differential
equations

dx = a(x)dt + b(x)dWt . (11)

For calculation of the steady state probability density function
of the signal x we use the Fokker-Planck equation. The Fokker-
Planck equation for the probability density function P (x)
corresponding to the Ito equation (11) is [46]

∂

∂t
P = − ∂

∂x
a(x)P +

1

2

∂2

∂x2
b2(x)P. (12)

The steady state solution of Eq. (12) has the form

P (x|a, b) =
C

b2(x)
exp

(
∫ x

0

2a(x1)

b2(x1)
dx1

)

. (13)

For the fixed values of relaxation rate γ and white noise inten-
sity σ(γ) the steady state distribution of the signal intensity is
simply a Gaussian distribution,

P (x|γ, σ) =
1

σ(γ)

√

γ

π
exp

[

− γ

σ2(γ)
x2

]

, (14)

while the power spectral density of the signal x(t) intensity is
simply the Lorentzian distribution,

S(f |γ) =
2σ2(γ)

γ2 + ω2
. (15)

Recently we proposed a description of diffusion-like fluctu-
ations of relaxation rate by the stochastic differential equation
[23]

dγ = σγγ−
η

2 dWt. (16)

Here σγ determines the rapidity of change of the relaxation rate

driven by the white noise with the factor γ−
η

2 , which imposes
the power-law steady state distribution of the relaxation rate γ,
g(γ) ∼ γη. Using Eq. (13) we get the stationary distribution
of the relaxation rates

g(γ) =







(1+η)
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2
−γ1+η

1

γη, η 6= −1,
[
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(

γ2

γ1

)

γ
]

−1

, η = −1.
(17)

From Eqs. (9), (10), (15), and (17) we obtain the power spectral
density

S(f) =
Cη

ω1−(η+2µ)
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ω
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Φ

(
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1

ω2
, 1,
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2

)

}

. (18)

Here Φ(z, s, a) is the Lerch’s phi transcendent and Cη is the
normalization constant

Cη =
σ2

0(1 + η)

(γη+1
2 − γη+1

1 )
. (19)

In the frequency range γ1 ≪ f ≪ γ2, the power spectral
density (18) is well approximated by the expression

S(f) =
σ2

0(1 + η)(2π)η+2µ

2(γη+1
2 − γη+1

1 ) cos
(

π(η+2µ)
2

)

1

f1−(η+2µ)
, (20)

|η + 2µ| < 1.

Therefore, when the condition |η + 2µ| < 1 is satisfied, then
1/fβ noise,

S(f) ∼ 1/fβ , β = 1 − (η + 2µ), (21)

may be observed and the exponent β varies between 0 and 2.
For |η + 2µ| > 1 the 1/fβ noise is not detectable.

From Eqs. (8), (10), (14), and (17) we obtain the steady
state probability density function

P (x) =















C 1
xλ

[

Γ
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2 , γ1−2µx2

σ2
0
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∣

∣

∣

∣
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2 ,

1
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π
e
−
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2 ,

(22)

C =
(1 + η)

γη+1
2 − γη+1

1

σλ−1
0√

π(1 − 2µ)
. (23)

Here C is the normalization constant and λ is the exponent of
the power-law,

λ = 3 +
2(η + 2µ)

1 − 2µ
. (24)

If inequality xmin ≪ x ≪ xmax, where xmin = σ0γ
µ−1/2
2

and xmax = σ0γ
µ−1/2
1 , is satisfied then for µ 6= 1/2 the

distribution P (x) behaves like the power-law,

P (x) =
(1 + η)

√
π(γη+1

2 − γη+1
1 )

σλ−1
0 Γ(λ

2 )

|1 − 2µ|
1

xλ
. (25)
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Fig. 1. Power spectral density S(f) calculated using Eq. (18) with different
values of parameters µ and η presented in the legend. Other parameters are:
γ1 = 0.001, γ2 = 1000, and σ0 = 1.
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Fig. 2. Steady state probability density function P (x) calculated using Eq.
(22) with different parameter values µ and η presented in the legend. Other
parameters are the same as in Fig. 1

Equation (25) approximates the probability density function
(22) if conditions λ > 0 and µ 6= 0.5 are satisfied.

The power spectral density and the probability density
function of the signal x(t) intensity with different values of the
parameters η and µ are represented in Fig. 1 and Fig. 2. The
black curves represent a case when η and µ satisfy conditions
|η + 2µ| < 1 and λ > 0. In this case we observe 1/fβ noise
with 0 < β < 2 and the power-law distribution of the signal,
P (x) ∼ 1/xλ. The black dashed curves represent a case when
λ > 0, but |η+2µ| > 1. In such a case we detect the Brownian
noise with S(f) ∼ 1/f2. However, the probability density is
non-Gaussian and we observe the power-law unless µ = 1/2.
Just in a special case when µ = 1/2 and |η + 1| < 1 we have
the Gaussian 1/fβ noise (gray dashed curves).

III. VALUES OF PARAMETERS µ AND η FOR GENERATION

OF 1/fβ NOISE WITH THE POWER-LAW DISTRIBUTION OF

SIGNAL INTENSITY

Our models (1) and (6) generate probability density func-
tion of signal intensity in the range between xmin and xmax

as power-law, P (x) ∼ x−λ, for different parameters except
µ = 0.5. From Fig. 1 and Fig. 2 (black dashed curve) it is
evident that for signals with the power-law probability density
function, 1/fβ noise is not always observable. For some
parameters the spectrum has S(f) ∼ 1/f2 tails (Fig. 1 black
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Fig. 3. The power-law exponent λ(µ), (24), dependence on the parameters
µ and η. λ1(µ) according to (27) (black curve) and λ2(µ) according to
(28) (gray curve) restrict an area λ(µ) where the condition |η + 2µ| < 1
is satisfied. Only in the parts of λ(µ, η = const) between dashed curves
λ1(µ) and λ2(µ) the condition |η + 2µ| < 1 is satisfied and the power-law
distribution is evident.

dashed curve). We now explore how to choose the values of the
parameters η and µ in order to generate signals with the non-
Gaussian 1/fβ noise and the possible values of the parameter
λ. As it was shown above, 1/fβ noise with the power-law
distribution of the signal may be generated when the condition
|η + 2µ| < 1 is satisfied, i.e., for η > −1− 2µ or η < 1− 2µ.
Thus we have 1/fβ noise with the power-law distribution if
the parameter η belongs to the interval η ∈ (η1(µ), η2(µ)),
where

η1(µ) = −1 − 2µ, (26)

η2(µ) = 1 − 2µ.

From relations (24) and (26) we obtain that 1/fβ noise with
the power-law distribution of the signal is generated if the
parameter λ belongs to the interval λ ∈ (λ1, λ2), where

λ1 = 3 − 2

1 − 2µ
, (27)

λ2 = 3 +
2

1 − 2µ
. (28)

Functions λ1(µ) and λ2(µ) are plotted in Fig. 3. These
functions restrict an area where the exponent λ(µ) satisfies the
condition |η + 2µ| < 1. Using curves λ(µ, η = const) we can
plot the area between λ1(µ) and λ2(µ) where the exponent
λ can have values between 0 and ∞ for the special choice
of the parameters η and µ. Equations (21) and (24) yield the
relationship

β = 1 + (µ − 1/2)(λ − 3), (29)

similar to that obtained in the nonlinear models [12]–[14].

IV. PURE 1/f NOISE

From relation (20) it is obvious that the pure 1/f noise
is generated when the condition η + 2µ = 0 is satisfied, i.e.,
when

η = −2µ. (30)



In the frequency range γ1 ≪ f ≪ γ2 Eqs. (22) and (30) yield
signal with pure 1/f noise,

S(f) =
σ2

0(1 + η)

2(γη+1
2 − γη+1

1 )

1

f
, η = −2µ, (31)

and the probability density function

P (x) =
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(32)

In the interval between xmin = σ0γ
−(1+η)/2
2 and xmax =

σ0γ
−(1+η)/2
1 the probability density function (32) can be

approximated as

P (x) =
σ2

0sgn(1 + η)

π(γ1+η
2 − γ1+η

1 )

1

x3
. (33)

V. CONCLUSION

We show that only in a special case, when 〈x2〉 =
σ2(γ)/(2γ) = const, i.e., when all fluctuators get equal
average energy, we can obtain the Gaussian 1/fβ noise. In
all other cases 1/fβ noise can be generated by the power-law
distributed signal, P (x) ∼ 1/xλ, with λ = 3 corresponding to
the pure 1/f noise, as in the nonlinear case [12]–[14]. Beyond
the the equipartition theorem, the non-Gaussian 1/fβ noise
may be observed.

The proposed model of 1/fβ noise extends our understand-
ing of conditions for appearance of the phenomena in the
complex systems with distinguishing long-range correlations
and power-law distributions.
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