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Abstract—In this paper we consider heterogeneous diffusion
processes with the power-law dependence of the diffusion coef-
ficient on the position and investigate the influence of external
forces on the resulting anomalous diffusion. We obtain analytic
expressions for the transition probability as well as for the
first and the second moments. By using these expression we
demonstrate that the power-law exponent in the dependence of
the mean square displacement on time does not depend on the
external force. When the external force has a power-law exponent
different than the power-law exponent of the noise induced drift,
we can observe anomalous diffusion only in limited time interval.
We expect that the results obtained in this paper may be useful for
a more detailed understanding of anomalous diffusion processes
in heterogeneous media.

I. INTRODUCTION

In many systems we can observe processes exhibiting non-
linear dependence of the mean-square displacement (MSD) on
time [1]. A family of such processes described by deviations
from the linear time dependence of the MSD, typical for
a classical Brownian motion, is called anomalous diffusion.
Anomalous diffusion is characterized by the dependence of
MSD on time in the form of a power-law 〈∆x〉 ∼ tθ. If θ
varies between 1 and 2 we have so called super-diffusion.
Super-diffusion has been experimentally observed in a study
of tracer particles in a two-dimensional rotating flow [2]. If
θ < 1, we have another subclass of anomalous diffusion
processes called the sub-diffusion. Theoretical models suggest
that sub-diffusion can occur in polymer translocation through
a nanopore [3].

Recently [4] it has been suggested that both cases of anoma-
lous diffusion can be a result of a heterogeneous diffusion
process (HDP), where the diffusion coefficient depends on
the position. For example, heterogeneous diffusion processes
has been used model subdiffusion in the study of thermal
Markovian diffusion of tracer particles in a 2D medium with
spatially varying diffusivity [5], mimicking recently measured,
heterogeneous maps of the apparent diffusion coefficient in
biological cells [6].

Here we consider HDPs with the power-law dependence of
the diffusion coefficient on the particle position and analyt-
ically investigate the influence of external potentials on the
resulting anomalous diffusion. The influence of the external
forces on HDPs has not been methodically analyzed. We
assume that introduction of the external potentials leads to
drift terms in the from of power-law function of position.
Such a drift terms appears in Langevin equation describing

overdamped fluctuations of the position of a particle in nonho-
mogeneous medium [7]. As we demonstrate, the external force
having a specific value of the power-law exponent does not
restrict the region of diffusion. Such an external force does not
change the scaling exponent θ, only the anomalous diffusion
coefficient depends on the force. Other values of the power-law
exponent in the deterministic force can cause the exponential
cut-off in the probability density function (PDF) of the particle
positions leading to the restriction of the time interval when
the anomalous diffusion occurs.

II. INFLUENCE OF EXTERNAL POTENTIAL ON HDP

HDPs with the nonlinear dependence of the diffusion coef-
ficient on the position is described by the Langevin equation

dx = σ|x|η ◦ dWt . (1)

Here x is the signal, η is the exponent of the power-law of mul-
tiplicative noise, parameter σ gives the intensity of the noise
and Wt is a standard Wiener process. Eq. (1) is interpreted
in Stratonovich sense. For mathematical convenience, in this
paper we will use the Itô convention:

dx =
1

2
σ2η|x|2(η−1)xdt+ σ|x|ηdWt . (2)

First member of right hand side of Eq. (2) represents noise-
induced drift. It has been shown that Eq. (1) leads to a
nonlinear time dependence of the MSD [4]

〈(x− 〈x〉)2〉 ∼ (σ2t)
1

1−η . (3)

We will generalize the HDP by introducing an external force
via the equation

dx = σ2
(
η − ν

2

)
x2η−1dt+ σxηdWt . (4)

The new parameter ν defines the exponent of the steady-state
PDF of the signal in interval [xmin, xmax], P0(x) ∼ x−ν . Here
xmin, xmax are reflective boundaries at positive small and large
x values, respectively.

Transformation of the variable x to a new variable y =
x1−η (assuming that η 6= 1) leads to the stochastic differential
equation (SDE)

dy = −1

2
σ′2ν′

1

y
dt+ σ′dWt , (5)

where
ν′ =

η − ν
η − 1

, σ′ = |η − 1|σ . (6)ICNF2017 978-1-5090-2760-6/17/$31.00 c©2017 IEEE



Equation (5) has the form of a Bessel process [8]. The known
analytic form of the solution of the Fokker-Planck equation

∂

∂t
Py =

1

2
σ′2ν′

∂

∂y
y−1Py +

1

2
σ′2

∂2

∂y2
Py (7)

corresponding to SDE (5) is [8]

P (y, t|y0, 0) =
y

1−ν′
2 y

1+ν′
2

0

σ′2t
exp

(
−y

2 + y20
2σ′2t

)
I− ν′+1

2

( yy0
σ′2t

)
.

(8)
Here In(z) is the modified Bessel function of the first kind.
This PDF satisfies the initial condition P (y, t = 0|y0, 0) =
δ(y − y0). The PDF (8) can be normalized if ν′ < 1.

Transforming back to x we obtain the time-dependent PDF

P (x, t|x0, 0) =
x

1−2η−ν
2 x

1−2η+ν
2

0

|η − 1|σ2t
exp

(
−x

2(1−η) + x
2(1−η)
0

2(η − 1)2σ2t

)

× I ν+1−2η
2(η−1)

(
x(1−η)x

(1−η)
0

(η − 1)2σ2t

)
. (9)

This PDF satisfies the initial condition P (x, t = 0|x0, 0) =
δ(x− x0). Using the PDF (9) the time-dependent average of
a power of x can be calculated:

〈xa〉x0
=

∫ ∞
0

xaP (x, t|x0, 0)dx

=
Γ
(
ν−1−a
2(η−1)

)
Γ
(

ν−1
2(η−1)

) (2(η − 1)2σ2t
) a

2(1−η)

× 1F1

(
a

2(η − 1)
;
ν − 1

2(η − 1)
;− x

2(1−η)
0

2(η − 1)2σ2t

)
(10)

Here 1F1(a; b; z) is the Kummer confluent hypergeometric
function. For large time the hypergeometric function is ap-
proximately equal to 1, thus

〈xa〉x0
≈

Γ
(
ν−1−a
2(η−1)

)
Γ
(

ν−1
2(η−1)

) (2(η − 1)2σ2t
) a

2(1−η) . (11)

From Eq. (11) we can see that the average of the square of x
depends on time as 〈x2〉x0 ∼ t1/(1−η) for large time t, that is
when

x
2(1−η)
0

2(η − 1)2σ2t
� 1 . (12)

The average of the x depends on time as t1/2(1−η). Therefore
the MSD 〈(x−〈x〉)2〉 = 〈x2〉−〈x〉2 has the same dependence
on time

〈(x− 〈x〉)2〉 ∼ t1/(1−η) (13)

as the original HDP equation (1).

III. EXPONENTIAL RESTRICTION OF DIFFUSION

Here we introduce an external deterministic force that is no
longer proportional to the noise induced drift, but has a power-
law dependence on x with the power-law exponent different
than 2η − 1. In particular, the external force can linearly
dependence on x,

dx =
(
µx+ σ2

(
η − ν

2

)
x2η−1

)
dt+ σxηdWt . (14)

Analytical expression of time-dependent PDF for SDE (14)
can also be obtained by performing the same steps as in
previous section. If µ has the same sign as η − 1 and t→∞
then the time-dependent PDF reaches the steady-state

P0(x) =
2|η − 1|xν−1m

Γ
(

ν−1
2(η−1)

) x−ν exp

(
−
(xm
x

)2(η−1))
, (15)

where xm is defined via the equation

µ = σ2(η − 1)x2(η−1)m . (16)

The time-dependent average of a power of x reads

〈xa〉x0
=

Γ
(
ν−1−a
2(η−1)

)
Γ
(

ν−1
2(η−1)

) xam

(1− e−2(η−1)µt)
a

2(η−1)

× 1F1

(
a

2(η − 1)
;
ν − 1

2(η − 1)
;−x

2(η−1)
m x

2(1−η)
0

e2(η−1)µt − 1

)
(17)

The growth of the second moment 〈x2〉x0 can be separated
into three parts. For small times

t� x
2(1−η)
0

2(η − 1)2σ2

the diffusion is approximately normal, 〈x2〉x0
depends linearly

on time t. For the intermediate times

x
2(1−η)
0

2(η − 1)2σ2
� t� 1

2(η − 1)µ
=

x
2(1−η)
m

2(η − 1)2σ2

〈x2〉x0
remains power-law function on time 〈x2〉x0

∼ t1/(1−η)
For large times we cannot observe anomalous diffusion, be-
cause the cut-off position xm starts to influence the diffusion
and 〈x2〉x0

relax to the steady-state value

IV. CONCLUSION

We found that the power-law exponent in the dependence of
the mean square displacement on time does not depend on the
external force; this force changes only the anomalous diffusion
coefficient (see Fig. 1 (d) and (e)). Anomalous diffusion occur
only for specific parameters values if ν < 3 and η < 1 (or
ν < 1 and η < 1). As we can see in Fig. 1 (c) and (f), in
other cases anomalous diffusion does not occur due to the
localization of particles. We obtained analytic expressions for
the transition probability and moments in two cases: when
external force is proportional to noise induced drift and when
additional external force (besides the noise induced drift) has
a linear dependence on the position. Introduction of such a
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Fig. 1. Dependence of the mean (a,b,c) and variance (d,e,f) on time for various values of the parameters η and ν when the position of the diffusing particle
changes according to Eq. (4). Solid gray lines show numerical result, dashed black lines are calculated using Eq. (10), black dotted lines show the power-law
dependence on time ∼ t1/[2(1−η)] for (a,b,c) and ∼ t1/(1−η) for (d,e,f). The solid black line in (e,d) shows mean squared displacement (MSD) linear
dependence on time. In (d) we see subdiffusion and supper diffusion in (e). The parameters are σ = 1 and η = − 1

2
, ν = −1 for (a,d); η = 1

2
, ν = 0 for

(b,c); η = 3
2

, ν = 5 for (c,f). The initial position is x0 = 1.

force leads to the restriction of the time interval when the
anomalous diffusion occurs. (see Fig. 2 (d) and (e)).
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Fig. 2. Dependence of the mean (a,b,c) and variance (d,e,f) on time for various values of the parameters η and ν when the position of the diffusing particle
changes according to Eq. (14). Solid gray lines show numerical result, dashed black lines are calculated using (17), dotted lines show the power-law dependence
on time ∼ t1/[2(1−η)] for (a,b,c) and ∼ t1/(1−η) for (d,e,f). The parameters are σ = 1 and η = − 1
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