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Abstract. A well-known fact in the financial markets is the so-called ‘inverse
cubic law’ of the cumulative distributions of the long-range memory fluctuations
of market indicators such as a number of events of trades, trading volume and
the logarithmic price change. We propose the nonlinear stochastic differential
equation (SDE) giving both the power-law behavior of the power spectral density
and the long-range dependent inverse cubic law of the cumulative distribution.
This is achieved using the suggestion that when the market evolves from calm to
violent behavior there is a decrease of the delay time of multiplicative feedback
of the system in comparison to the driving noise correlation time. This results
in a transition from the It6 to the Stratonovich sense of the SDE and yields a
long-range memory process.
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1. Introduction

Many systems show large fluctuations of macroscopic quantities that follow non-Gauss-
ian, heavy-tailed, power-law distributions with power-law temporal correlations [1-3],
scaling and fractal features [4-6]. The power-law distributions are often related both
with the nonextensive statistical mechanics [7-9] and the power-law behavior of the
power spectral density, i.e. 1/f? noise ‘ambiguity’ (see, e.g. [4, 5, 9-12] and references
therein).

One of the principal statistical features characterizing activity in the financial mar-
kets is the distribution of fluctuations of market indicators such as indexes. Frequently,
long-range memory processes with heavy-tailed distributions and characteristic power-
law exponents are observable. Power laws appear for relevant financial fluctuations,
such as fluctuations of number of trades, trading volume and price. The well-known
fact is the so-called ‘inverse cubic law’ of the cumulative distributions [2, 13-20], which
is relevant to developed stock markets, to the commodity one, as well as to the most
traded currency exchange rates. The exponents that characterize these power laws are
similar for different types and sizes of markets, for different market trends and even
for different countries [21-25]—suggesting that a generic theoretical basis may inspire
these long-range memory inverse cubic phenomena. However, a general model of these
phenomena remains an open issue.

One common way for describing all the above-mentioned forms of evolution is by
means of the stochastic differential equations (SDEs) [10, 26-29]. These nondetermin-
istic equations of motion are used in many systems of interest, such as simulating the
Brownian motion in statistical mechanics, field theory models, financial systems, biol-
ogy and many other areas.

Here, by the multiplicative SDEs [10, 29], we model the long memory processes with
inverse cubic cumulative distributions. This is achieved taking into account a trans-
ition from the It6 to Stratonovich convention in noisy systems [30, 31], according to
the Wong-Zakai theorem [32-35], with a decrease of the delay time of multiplicative
feedback of the system, in comparison to the driving noise correlation time, when the
market proceeds from calm to turbulent behavior.
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2. Stochastic differential equations with variable convention parameter
We start from the simple quadratic SDE
dz = z%0,dW, (D

where W; is a Wiener process and « is the interpretation (convention) parameter,
defining the a-dependent stochastic integral in equation (1),

T N-1
| fe@yondwi= lim 3 fat) AW, @
X p=0
Here t,, = ";a T,0< a< 1. Common choices of the parameter « are: (i) @ = 0, pre-point

(Itd convention), (ii) @ = 1/2, mid-point (Stratonovich convention) and (iii) a = 1, post-
point (Hanggi—Klimontovich, kinetic or isothermal convention) [31, 36, 37]. The qua-
dratic SDE (1) is the simplest multiplicative SDE without a drift term and symmetric
for the positive and negative deviations of the observable z.

Note that further in the paper when a = 0, i.e. for the It6 convention, the symbol
o, is skipped in front of the differential dW; of the Wiener process. All further SDEs,
excluding (3) and (4), are the It6 equations. The It version of SDEs is the usual tech-
nique for modeling financial [38], economical, biological and many other systems [27].
This is reasonable since the Itd integral does not look into the future, it corresponds
to the pre-action of the uncorrelated external noise on the nonlinear system. On the
other hand, the Wong—Zakai theorem [32-34] states that the action of non-white noise
with a finite correlation time can be approximated by the Stratonovich SDE version
[30, 31, 35]. In real situations the external perturbation (noise) is always more or less
correlated, particularly when the perturbations are strong. Note that the choice of SDE
convention, Stratonovich or Itd, depends not only on the correlation time 7 of the noise
but also on the delay in the feedback ¢ [31].

The description of real phenomena by SDEs with multiplicative noise implies that
the actual value of the observable influences the intensity of the noise action on the
system and, therefore, the forthcoming state of the system. Similarly, the current value
of the observable is influenced by its previous value. For example, the volatility of stock
price may be the outcome of the influence of its past value [39-43]. More generally,
such a process may be described by the delayed SDE [31]

Here G(z;) is a function representing the deterministic feedback of the system, yielding
the drift of the observable z, F/(z;_s) is the multiplicative feedback (delayed by time 6)
leading to the SDE with multiplicative noise, (; is a sufficiently regular correlated noise
with the correlation time 7 and ¢ is the delay time of multiplicative feedback of the
system under consideration. It may be shown [31] that the limit, when 6 —» 0 and 7— 0
under the condition 6/7 = const, yields

dz; = G(z)dt + F(zy) o0 AW, 4)
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with

a(ﬁ)w __ 1
) 20+ 6/ ©)

Consequently, in the case 7 < 6 or for perturbation by white noise, 7 — 0, even for short
delay in feedback 6 we achieve the It6 outcome, because there is no correlation between
the sign of noise action ¢, and the time derivative of the multiplicative feedback F'(z;).
In contrast, for very short delay and perturbation by the correlated noise, 6 < 7, a cor-
relation emerges between the sign of ¢, and the time derivative of F'(z;). This correlation
yields the Stratonovich outcome [31-34].

3. Stochastic differential equations in financial systems

Equation (1) is a particular case of the more general equations. In order to obtain a
stationary process and avoid divergence of the steady-state probability density function
at £ =0, the diffusion of the stochastic variable z should be restricted, or equation (1)
should be modified. Generalizations of this equation for different prefactors in front of
the multiplicative noise and by introducing an additional parameter 1z, are presented in
[9, 10]. The probability density function of the signal generated by modified I1t6 SDEs

dz = (77 — %)\)(xo + )7 1dt + (zo + 2)1d W, (6)

do= (- gA)h + a0 ade + @ + 2P/ )

is the g¢-exponential and the ¢-Gaussian distribution of the nonextensive statistical
mechanics [7-9], respectively. Here 1= 1 is the exponent of the prefactor in front of the
multiplicative noise and \ is the exponent of the asymptotic power-law, P(z)~ =,
steady-state probability density function of the stochastic variable z. SDEs (6) and (7)
for small fluctuations, |z| < |zo|, represent the linear additive stochastic process generat-
ing Brownian motion with steady drift or linear relaxation, respectively, and avoiding
the divergence of the signal distribution when z— 0, while for |z| > |z| they reduce to
the multiplicative SDE and preserve 1/f7 behavior of the power spectral density. In
[9, 10] it was shown that SDEs (6) and (7) generate signals with power spectral density

1 A—3
S(f)fvﬁ, =14 _"—+ )

2(n—1)

in a wide interval of frequencies. These equations have been used for modeling financial
long memory observables with power-law and ¢-distributions [44]. Special options and
generalizations of equations (6) and (7) take well-known forms in econophysics and
finance [38, 45], modeling the familiar geometric Brownian motion (GBM), Bessel,
squared Bessel, Cox—Ingersoll-Ross (CIR), constant elasticity of variance (CEV) pro-
cesses and Marsh—Rosenfeld model [46, 47]. It should be noted that these models do
not reproduce the long-range memory inverse cubic phenomena.
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4. Inverse cubic law for long-range correlated processes

Equation (1) is a particular case of SDEs (6) and (7) at 2y = 0 and 1 = 2. More gener-
ally, the value of o in equation (1) may be variable and may depend on coordinate x
and/or the system’ parameters. Equation (1) with a = 0 may be transformed to the Itd
equation

dz = 2az3dt + z2dW,. 9)
Equation (9) is a particular case with 7 = 2 of the general 1t6 equation [9, 10, 29],

dx:(n—-%)fm”dt+x%ﬂﬁ,n¢1a (10)

yielding the power-law steady-state, P(z) ~ =%, distribution of signal with power-law
spectrum (8). The relations between the parameters a and A in equations (9) and (10)
for n = 2 are:

A=41—-0a), a=1-)\4 (11)

Equation (10) and other similar random walk models are used for analysis of the Euro/
Swiss franc exchange rate [48].

Figure 1 demonstrates statistics of solutions of equation (9) for different values of
the parameter a = 0; 1/4; 1/2 and 1, i.e. for A = 4; 3; 2 and 0. We see that the inverse
cubic cumulative distribution, R.(z) ~ z~**1, corresponding to A = 4 yields the power
spectral density 1/f? distribution with 8~ 1.5, i.e. not a long-range correlated process.

It should be noted that for the cumulative inverse cubic distribution P.(z) ~ 273, i.e.
for A = 4, according to equation (8) the exponent (3 is more than 1, 3> 1, for all n > 1,
therefore, the modeled processes (6), (7) and (10) are not long-range dependent. Note
that the definition of the long-range correlated process corresponds to the power-law
autocorrelation function C'(¢) ~ 1/t” with 0 <y < 1, which takes place for 0 < 5 < 1 and
y=1-5[49].

Theoretically, in the range of validity of equations (8), 0.5 < < 2 [10, 29], the long-
range correlated process with inverse cubic distribution may be obtained for n <0, e.g.
n = —1/2 yields § = 2/3. However, the corresponding SDE

5 1
der= ———=dt+ —dW,
2.’132 \/E ¢ (12)

as well as other equations with 17 < 0 can hardly be reasonable. The questions emerge:
(i) why is the influence of the noise inversely proportional to the intensity of the process
in some exponent, z~ ", and (ii) wherefore emerges the drift term —(2 — n)z~ 1271l with
a very particular dependence on the intensity of the process z~127~1 and the specific
coefficient —(2 — 1)? In contrast, the quadratic SDE (1) is without the poorly justified
drift term and it is the simplest symmetric equation for the positive and negative devia-
tions of the observable z.

For modeling the long-range dependent inverse cubic cumulative distribution with
power spectral exponent §< 1 we take advantage of the characteristic features of the
signal. Note that 1/f” noise emerges due to large deviations of the signal, e.g. the flicker

doi:10.1088/1742-5468/2016/05/054035 )
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Figure 1. The steady-state probability distribution function P(z), cumulative
distribution P-(z), power spectral density S(f), and autocorrelation function C(?),
of the variable x generated by equation (9) with restriction between xp;, = 1 and
Tmax = 10%; patterns from below are for different parameters a =0, 1/4, 1/2 and
1, respectively.

phenomena, while finite time studies reveal the main magnitudes of the observable
(e.g. ‘the inverse cubic law’ in some finite interval). The very rare large deviations are
hardly quantifiable and the tail-index estimation is challenging [50, 51].

Moreover, small fluctuations corresponding to the quiet market are relatively slow,
the average delay time of system’s feedback is relatively large in comparison to correla-
tion time of the external weakly correlated rare influences, which can be represented by
almost white noise. This process can be modeled by the (familiar in financial systems)
[t6 equations. On the other hand, the large rapid fluctuations of the violent market
arise due to strong correlated influences (the herd behavior [47, 52-55]), the processes
of such a market are fast, and all durations including the delay time of feedback are
short in comparison to the herding correlation time. Consequently, the market should
be modeled by the Stratonovich SDE.

To model these phenomena we generalize equations (1) and (9) with z-dependent
parameter a(z),

dz = 2a(z)2*dt + 22d W, (13)
with, e.g.

doi:10.1088/1742-5468/2016/05/054035 6
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Figure 2. The steady-state probability distribution function P(z), cumulative
distribution P-(x), power spectral density S(f), and autocorrelation function C(?),
generated by equations (13)-(16) with crossover value z.= 100 and restrictions
between Ty, = 1 and Tyax = 10%

1 z 2
a(r) = 5 1- eXp{_(x_c) } ) (14)

where z. is the Itd to Stratonovich interpretation crossover parameter. Equations (13)
and (14) represent the transition from the Itd to Stratonovich convention with increas-
ing variable z and decreasing delay time of multiplicative feedback for larger z, accord-
ing to the Wong—Zakai theorem [31-35].

The calculations are performed with the variable step of integration

Aty = K2z} (15)
with k < 1, yielding the difference equation
Tp1 = T + 2R%(Tp) T, + KTRE- (16)

Here ¢; is a set of uncorrelated normally distributed random variables with zero expec-
tation and unit variance.

Figure 2 demonstrates the results of the numerical calculations. Here we see the
inverse cubic cumulative distribution, P.(z) ~ 1/z3, for 2< 50, the power spectral den-
sity 1/f% distribution with 3~ 0.7 for f>10 and approximately 1/f noise for lower
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frequencies, similar to empirical data [14, 15, 25, 44]. The range of the inverse cubic
distribution, R.(z) ~ 1/z*, and that of the 1/f” spectrum with 3< 1 may be increased
to any desirable interval by increasing the crossover parameter z. and the upper bound
Tmax, Fespectively. Estimation of the tail index of very large and rare deviations is tricky
[50, 51] and it cannot be deduced correctly. Therefore, these remote deviations can
influence the spectrum but they are hardly observable and barely explorable directly.
Different investigations result in different asymptotics of the heavy-tailed distributions,
including log-normal, stretched-exponential, Weibull, incomplete Gamma and other
distributions [17, 48, 56—59]. Therefore, the distribution P(z) ~ z? in some finite inter-
val of the relatively large fluctuations as in our model, yielding <1 and long-range
memory, does not contradict the known investigation outcomes.

5. Conclusions

We have modeled the long-range memory process with inverse cubic law of the cumula-
tive distribution by a simple nonlinear SDE (1) with convention parameter a(z) depen-
dent on the stochastic variable . We have suggested that when the market evolves
from calm to violent behavior there is a decrease of the delay time of multiplicative
feedback of the system in comparison to the driving noise correlation time. This results
in a transition from the It6 to the Stratonovich sense of the SDE (according to the
Wong-Zakai theorem) and yields a long-range memory process. The transition from
one to other sense of equation (13) is modeled by the dependence (14) of the conven-
tion parameter a(z) on the stochastic variable . We have shown theoretically and
numerically that SDE (1) with convention parameter a(z) (14) may reproduce the long
memory inverse cubic phenomena.

It can be noted that equation (1) is very simple. All dependences on the parameters
of the systems may be included by the appropriate scaling of the dimensionless variable
z, dimensionless time ¢ and the dimensionless crossover parameter z.. The form of the
dependence of the convention parameter a(x) on the stochastic variable z is not very
essential and may differ from that represented by equation (14). Only the transition
from « close to 0 for a calm market to a~ 0.5 for violent behavior is important.

In summary, the proposed simple stochastic model reproduces the well-known fact
of the financial markets, i.e. the inverse cubic law of the cumulative distributions of the
long-range memory fluctuations.
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