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Abstract. A well-known fact in the financial markets is the so-called ‘inverse 
cubic law’ of the cumulative distributions of the long-range memory fluctuations 
of market indicators such as a number of events of trades, trading volume and 
the logarithmic price change. We propose the nonlinear stochastic dierential 
equation (SDE) giving both the power-law behavior of the power spectral density 
and the long-range dependent inverse cubic law of the cumulative distribution. 
This is achieved using the suggestion that when the market evolves from calm to 
violent behavior there is a decrease of the delay time of multiplicative feedback 
of the system in comparison to the driving noise correlation time. This results 
in a transition from the Itô to the Stratonovich sense of the SDE and yields a 
long-range memory process.
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1. Introduction

Many systems show large fluctuations of macroscopic quantities that follow non-Gauss-
ian, heavy-tailed, power-law distributions with power-law temporal correlations [1–3], 
scaling and fractal features [4–6]. The power-law distributions are often related both 
with the nonextensive statistical mechanics [7–9] and the power-law behavior of the 

power spectral density, i.e. βf1/  noise ‘ambiguity’ (see, e.g. [4, 5, 9–12] and references 
therein).

One of the principal statistical features characterizing activity in the financial mar-
kets is the distribution of fluctuations of market indicators such as indexes. Frequently, 
long-range memory processes with heavy-tailed distributions and characteristic power-
law exponents are observable. Power laws appear for relevant financial fluctuations, 
such as fluctuations of number of trades, trading volume and price. The well-known 
fact is the so-called ‘inverse cubic law’ of the cumulative distributions [2, 13–20], which 
is relevant to developed stock markets, to the commodity one, as well as to the most 
traded currency exchange rates. The exponents that characterize these power laws are 
similar for dierent types and sizes of markets, for dierent market trends and even 
for dierent countries [21–25]—suggesting that a generic theoretical basis may inspire 
these long-range memory inverse cubic phenomena. However, a general model of these 
phenomena remains an open issue.

One common way for describing all the above-mentioned forms of evolution is by 
means of the stochastic dierential equations (SDEs) [10, 26–29]. These nondetermin-
istic equations of motion are used in many systems of interest, such as simulating the 
Brownian motion in statistical mechanics, field theory models, financial systems, biol-
ogy and many other areas.

Here, by the multiplicative SDEs [10, 29], we model the long memory processes with 
inverse cubic cumulative distributions. This is achieved taking into account a trans-
ition from the Itô to Stratonovich convention in noisy systems [30, 31], according to 
the Wong–Zakai theorem [32–35], with a decrease of the delay time of multiplicative 
feedback of the system, in comparison to the driving noise correlation time, when the 
market proceeds from calm to turbulent behavior.
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2. Stochastic dierential equations with variable convention parameter

We start from the simple quadratic SDE

�= αx x Wd d t
2  (1)

where Wt is a Wiener process and α is the interpretation (convention) parameter, 
defining the α-dependent stochastic integral in equation (1),

�( ( )) ( ( ))∫ ∑≡ ∆α
→∞ =

−

f x t W f x t Wd lim .
T

t
N n

N

n t
0 0

1

n (2)

Here = α+
t Tn

n

N
, ⩽ ⩽α0 1. Common choices of the parameter α are: (i) α = 0, pre-point 

(Itô convention), (ii) α = 1/2, mid-point (Stratonovich convention) and (iii) α = 1, post-
point (Hänggi–Klimontovich, kinetic or isothermal convention) [31, 36, 37]. The qua-
dratic SDE (1) is the simplest multiplicative SDE without a drift term and symmetric 
for the positive and negative deviations of the observable x.

Note that further in the paper when α = 0, i.e. for the Itô convention, the symbol 
�α is skipped in front of the dierential Wd t of the Wiener process. All further SDEs, 
excluding (3) and (4), are the Itô equations. The Itô version of SDEs is the usual tech-
nique for modeling financial [38], economical, biological and many other systems [27]. 
This is reasonable since the Itô integral does not look into the future, it corresponds 
to the pre-action of the uncorrelated external noise on the nonlinear system. On the 
other hand, the Wong–Zakai theorem [32–34] states that the action of non-white noise 
with a finite correlation time can be approximated by the Stratonovich SDE version 
[30, 31, 35]. In real situations the external perturbation (noise) is always more or less 
correlated, particularly when the perturbations are strong. Note that the choice of SDE 
convention, Stratonovich or Itô, depends not only on the correlation time τ of the noise 
but also on the delay in the feedback δ [31].

The description of real phenomena by SDEs with multiplicative noise implies that 
the actual value of the observable influences the intensity of the noise action on the 
system and, therefore, the forthcoming state of the system. Similarly, the current value 
of the observable is influenced by its previous value. For example, the volatility of stock 
price may be the outcome of the influence of its past value [39–43]. More generally, 
such a process may be described by the delayed SDE [31]

( ) ( )ζ= + δ
τ

−x G x t F x td d d .t t t t (3)

Here ( )G xt  is a function representing the deterministic feedback of the system, yielding 
the drift of the observable x, ( )δ−F xt  is the multiplicative feedback (delayed by time δ ) 
leading to the SDE with multiplicative noise, ζτt  is a suciently regular correlated noise 
with the correlation time τ and δ is the delay time of multiplicative feedback of the 
system under consideration. It may be shown [31] that the limit, when →δ 0 and →τ 0 
under the condition δ τ =/ const, yields

�( ) ( )= + αx G x t F x Wd d dt t t t (4)
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with

( )
⎜ ⎟
⎛
⎝

⎞
⎠α
δ
τ δ τ+
�

1

2 1 /
. (5)

Consequently, in the case τ δ�  or for perturbation by white noise, →τ 0, even for short 
delay in feedback δ we achieve the Itô outcome, because there is no correlation between 
the sign of noise action ζt and the time derivative of the multiplicative feedback ( )F xt . 
In contrast, for very short delay and perturbation by the correlated noise, δ τ� , a cor-
relation emerges between the sign of ζt and the time derivative of ( )F xt . This correlation 
yields the Stratonovich outcome [31–34].

3. Stochastic dierential equations in financial systems

Equation (1) is a particular case of the more general equations. In order to obtain a 
stationary process and avoid divergence of the steady-state probability density function 
at x  =  0, the diusion of the stochastic variable x should be restricted, or equation (1) 
should be modified. Generalizations of this equation for dierent prefactors in front of 
the multiplicative noise and by introducing an additional parameter x0 are presented in 
[9, 10]. The probability density function of the signal generated by modified Itô SDEs

( ) ( )η λ= − + + +η η−⎜ ⎟
⎛
⎝

⎞
⎠x x x t x x Wd

1

2
d d ,t0

2 1
0 (6)

( ) ( )η λ= − + + +η η−⎜ ⎟
⎛
⎝

⎞
⎠x x x x t x x Wd

1

2
d d t0

2 2 1
0
2 2 /2

 (7)

is the q-exponential and the q-Gaussian distribution of the nonextensive statistical 
mechanics [7–9], respectively. Here η≠ 1 is the exponent of the prefactor in front of the 

multiplicative noise and λ is the exponent of the asymptotic power-law, ( )∼ λ−P x x , 
steady-state probability density function of the stochastic variable x. SDEs (6) and (7) 
for small fluctuations, | | | |�x x0 , represent the linear additive stochastic process generat-
ing Brownian motion with steady drift or linear relaxation, respectively, and avoiding 
the divergence of the signal distribution when →x 0, while for | | | |�x x0  they reduce to 

the multiplicative SDE and preserve βf1/  behavior of the power spectral density. In  

[9, 10] it was shown that SDEs (6) and (7) generate signals with power spectral density

( )
( )

β
λ
η

∼ = +
−
−β

S f
f

1
, 1

3

2 1 (8)

in a wide interval of frequencies. These equations have been used for modeling financial 
long memory observables with power-law and q-distributions [44]. Special options and 
generalizations of equations (6) and (7) take well-known forms in econophysics and 
finance [38, 45], modeling the familiar geometric Brownian motion (GBM), Bessel, 
squared Bessel, Cox–Ingersoll–Ross (CIR), constant elasticity of variance (CEV) pro-
cesses and Marsh–Rosenfeld model [46, 47]. It should be noted that these models do 
not reproduce the long-range memory inverse cubic phenomena.

http://dx.doi.org/10.1088/1742-5468/2016/05/054035
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4. Inverse cubic law for long-range correlated processes

Equation (1) is a particular case of SDEs (6) and (7) at x0  =  0 and η = 2. More gener-
ally, the value of α in equation (1) may be variable and may depend on coordinate x 
and/or the system’ parameters. Equation (1) with α≠ 0 may be transformed to the Itô 
equation

α= +x x t x Wd 2 d d .t
3 2 (9)

Equation (9) is a particular case with η = 2 of the general Itô equation [9, 10, 29],

⎜ ⎟
⎛
⎝

⎞
⎠η
λ

η= − + ≠η η−x x t x Wd
2

d d , 1,t
2 1

 (10)

yielding the power-law steady-state, ( )∼ λ−P x x , distribution of signal with power-law 
spectrum (8). The relations between the parameters α and λ in equations (9) and (10) 
for η = 2 are:

( )λ α α λ= − = −4 1 , 1 /4. (11)
Equation (10) and other similar random walk models are used for analysis of the Euro/
Swiss franc exchange rate [48].

Figure 1 demonstrates statistics of solutions of equation (9) for dierent values of 
the parameter α = 0; 1/4; 1/2 and 1, i.e. for λ = 4; 3; 2 and 0. We see that the inverse 

cubic cumulative distribution, ( )∼ λ
>

− +P x x 1, corresponding to λ = 4 yields the power 

spectral density βf1/  distribution with β≈ 1.5, i.e. not a long-range correlated process.
It should be noted that for the cumulative inverse cubic distribution ( )∼>

−P x x 3, i.e. 
for λ = 4, according to equation (8) the exponent β is more than 1, β> 1, for all η> 1, 
therefore, the modeled processes (6), (7) and (10) are not long-range dependent. Note 
that the definition of the long-range correlated process corresponds to the power-law 
autocorrelation function ( )∼ γC t t1/  with γ< <0 1, which takes place for β< <0 1 and 
γ β= −1  [49].

Theoretically, in the range of validity of equations (8), β< <0.5 2 [10, 29], the long-
range correlated process with inverse cubic distribution may be obtained for η< 0, e.g. 
η = −1/2 yields β = 2/3. However, the corresponding SDE

= − +x
x

t
x

Wd
5

2
d

1
d ,t2 (12)

as well as other equations with η< 0 can hardly be reasonable. The questions emerge: 
(i) why is the influence of the noise inversely proportional to the intensity of the process 

in some exponent, η−x , and (ii) wherefore emerges the drift term ( )η− − η− −x2 2 1  with 
a very particular dependence on the intensity of the process η− −x 2 1  and the specific 
coecient ( )η− −2 ? In contrast, the quadratic SDE (1) is without the poorly justified 
drift term and it is the simplest symmetric equation for the positive and negative devia-
tions of the observable x.

For modeling the long-range dependent inverse cubic cumulative distribution with 
power spectral exponent β< 1 we take advantage of the characteristic features of the 

signal. Note that βf1/  noise emerges due to large deviations of the signal, e.g. the flicker 

http://dx.doi.org/10.1088/1742-5468/2016/05/054035
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phenomena, while finite time studies reveal the main magnitudes of the observable 
(e.g. ‘the inverse cubic law’ in some finite interval). The very rare large deviations are 
hardly quantifiable and the tail-index estimation is challenging [50, 51].

Moreover, small fluctuations corresponding to the quiet market are relatively slow, 
the average delay time of system’s feedback is relatively large in comparison to correla-
tion time of the external weakly correlated rare influences, which can be represented by 
almost white noise. This process can be modeled by the (familiar in financial systems) 
Itô equations. On the other hand, the large rapid fluctuations of the violent market 
arise due to strong correlated influences (the herd behavior [47, 52–55]), the processes 
of such a market are fast, and all durations including the delay time of feedback are 
short in comparison to the herding correlation time. Consequently, the market should 
be modeled by the Stratonovich SDE.

To model these phenomena we generalize equations (1) and (9) with x-dependent 
parameter ( )α x ,

α= +x x x t x Wd 2 d d .t
3 2( ) (13)

with, e.g.

Figure 1. The steady-state probability distribution function P (x), cumulative 
distribution P>(x), power spectral density S( f  ), and autocorrelation function C (t), 
of the variable x generated by equation (9) with restriction between =x 1min  and 

=x 10max
4; patterns from below are for dierent parameters α = 0, 1/4, 1/2 and 

1, respectively.
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⎞
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⎦
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α = − −x
x

x

1

2
1 exp ,

c

2

 (14)

where xc is the Itô to Stratonovich interpretation crossover parameter. Equations (13) 
and (14) represent the transition from the Itô to Stratonovich convention with increas-
ing variable x and decreasing delay time of multiplicative feedback for larger x, accord-
ing to the Wong–Zakai theorem [31–35].

The calculations are performed with the variable step of integration

κ∆ =t x/k k
2 2

 (15)

with κ� 1, yielding the dierence equation

( )κ α κ ε= + ++x x x x x2 .k k k k k k1
2

 (16)

Here εk is a set of uncorrelated normally distributed random variables with zero expec-
tation and unit variance.

Figure 2 demonstrates the results of the numerical calculations. Here we see the 

inverse cubic cumulative distribution, ( )∼>P x x1/ 3, for ⩽x 50, the power spectral den-
sity βf1/  distribution with β≈ 0.7 for ⩾f 10 and approximately 1/f noise for lower 

Figure 2. The steady-state probability distribution function P (x), cumulative 
distribution P>(x), power spectral density S( f  ), and autocorrelation function C (t), 
generated by equations (13)–(16) with crossover value xc  =  100 and restrictions 
between =x 1min  and =x 10max

4.
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frequencies, similar to empirical data [14, 15, 25, 44]. The range of the inverse cubic 

distribution, ( )∼>P x x1/ 3, and that of the βf1/  spectrum with β< 1 may be increased 
to any desirable interval by increasing the crossover parameter xc and the upper bound 
xmax, respectively. Estimation of the tail index of very large and rare deviations is tricky 
[50, 51] and it cannot be deduced correctly. Therefore, these remote deviations can 
influence the spectrum but they are hardly observable and barely explorable directly. 
Dierent investigations result in dierent asymptotics of the heavy-tailed distributions, 
including log-normal, stretched-exponential, Weibull, incomplete Gamma and other 
distributions [17, 48, 56–59]. Therefore, the distribution ( )∼P x x 2 in some finite inter-
val of the relatively large fluctuations as in our model, yielding β< 1 and long-range 
memory, does not contradict the known investigation outcomes.

5. Conclusions

We have modeled the long-range memory process with inverse cubic law of the cumula-
tive distribution by a simple nonlinear SDE (1) with convention parameter ( )α x  depen-
dent on the stochastic variable x. We have suggested that when the market evolves 
from calm to violent behavior there is a decrease of the delay time of multiplicative 
feedback of the system in comparison to the driving noise correlation time. This results 
in a transition from the Itô to the Stratonovich sense of the SDE (according to the 
Wong–Zakai theorem) and yields a long-range memory process. The transition from 
one to other sense of equation (13) is modeled by the dependence (14) of the conven-
tion parameter ( )α x  on the stochastic variable x. We have shown theoretically and 
numerically that SDE (1) with convention parameter ( )α x  (14) may reproduce the long 
memory inverse cubic phenomena.

It can be noted that equation (1) is very simple. All dependences on the parameters 
of the systems may be included by the appropriate scaling of the dimensionless variable 
x, dimensionless time t and the dimensionless crossover parameter xc. The form of the 
dependence of the convention parameter ( )α x  on the stochastic variable x is not very 
essential and may dier from that represented by equation (14). Only the transition 
from α close to 0 for a calm market to α≈ 0.5 for violent behavior is important.

In summary, the proposed simple stochastic model reproduces the well-known fact 
of the financial markets, i.e. the inverse cubic law of the cumulative distributions of the 
long-range memory fluctuations.
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