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Abstract. In this paper we consider the motion of a Brownian particle in
an inhomogeneous environment such that the motion can be described by
the equation yielding a 1/f spectrum in a broad range of frequencies. The
inhomogeneous environment can be a result, for example, of a linear potential
affecting the Brownian particle together with the medium where steady state
heat transfer is present due to the difference of temperatures at the ends of
the medium. The correlation of collisions between the Brownian particle and
the surrounding molecules can lead to a situation where the finite correlation
time becomes important, thus we have investigated the effect of colored noise in
our model. The existence of colored noise leads to an additional restriction of
the diffusion and exponential cut-off of the distribution of particle positions. A
narrower power law part in the distribution of the particle positions results in a
narrower range of frequencies where the spectrum has power law behavior.
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1. Introduction

One of the characteristics of noise is power spectral density (PSD). White noise has a
frequency-independent PSD, whereas the PSD of colored noise depends on the frequency;
the characteristic behavior of the PSD is referred to as a ‘color’ of the noise. There are
various applications where the noise in the physical system under investigation has a non-
trivial spatio-temporal structure and where it is not realistic to model it as a white noise
process. For example, for a Brownian particle the driving noise is actually colored, i.e.
it has a characteristic non-zero correlation time τ on a short time-scale of the order of
tens of nanoseconds [1]. Noise color arises due to entrainment of fluid around a diffusing
particle. The particle accelerates the entrained fluid and this acceleration depends on the
past motion of the particle and introduces an inertial memory effect [2].

Theoretical models suggest that a variety of systems affected by colored noise instead
of white noise exhibit new, interesting properties. For example, the correlations in colored
noise are found to be able to enhance or suppress the growth rate of amplification above
or below a critical detuning in the collective scattering of light from a laser with a colored
noise in ultracold and collisionless atomic gas [3]. Investigation of the colored-noise effect
on nonequilibrium phase transitions shows reentrant transitions from ordered into the
disordered phase as the correlation time and the coupling strength increase [4]. The color
and coupling induced disorders are pure colored-noise effects because of the absence of the
white-noise limit. Some of the population growth models subjected to white environmental
noise changes the population-size dependence of the mean time to extinction (MTE) from
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an exponential to a power-law with a large exponent [5]. The introduction of colored
Gaussian noise changes this exponent, reducing it at a fixed noise magnitude. For a
long correlation time of the environmental noise the MTE becomes independent of the
population size for a strong enough noise [6].

Investigation of the effects caused by the presence of a colored noise in physical systems
has some practical implications. Study of colored-noise-induced synchronization in chaotic
systems indicates that the critical amplitude required for synchronization is generally
smaller for the white noise as compared with the colored noise [7]. A practical implication
is that in situations where synchronization is undesirable, a simple control strategy is to
place filters in the system so as to make the noise source as colored as possible. In the
systems exhibiting the phenomenon of stochastic resonance an exponentially correlated
noise (‘red’ noise) leads to a reduction of signal amplification and the peak of stochastic
resonance moves to a larger noise intensity when the correlation time increases [8].
‘Pink noise’ or 1/f noise, as opposed to white noise also leads to a reduction of signal
amplification, but a resonance peak arises for lower noise intensity, if special conditions
are satisfied [9]. This is important for understanding weak signal transmission through
noisy environments.

Signals having a PSD at low frequencies f of the form S(f) ∼ 1/fβ with β close to
1 are commonly referred to as ‘pink noise’ or ‘1/f noise’. Such signals are often found
in physics and in many other fields [10–16]. Since the discovery of 1/f noise, numerous
models and theories have been proposed. For a recent review, see [17]. Mostly 1/f noise
is considered as a Gaussian process [18,19], but sometimes the 1/f fluctuations are non-
Gaussian [20, 21]. The Brownian motion as a source of 1/f noise was first proposed in
the seminal paper by Marinari et al [22], where it was suggested that 1/f noise can result
from a random walk in a random environment. Starting from the model of 1/f noise as
a Brownian motion of inter-pulse durations [23–25], nonlinear SDEs generating signals
with 1/f spectrum have been derived in [26,27]. A special case of this nonlinear SDE has
been obtained using Kirman’s agent model [28]. Such nonlinear SDEs have been used
to describe signals in socio-economical systems [29, 30]. In this paper, we consider the
motion of a Brownian particle in an inhomogeneous environment and described by the
nonlinear SDE yielding 1/f spectrum.

The influence of the colored noise on the dynamics of a Brownian particle
immersed in a fluid where a temperature gradient is present can lead to interesting
phenomena. The particle can exhibit a directed motion in response to the temperature
gradient. Furthermore, the study of stationary particle distribution shows that particles
can accumulate towards the colder (positive thermophoresis) or the hotter (negative
thermophoresis) regions depending on their physical parameters and, in particular, on
the dependence of their mobility on the temperature [31]. The velocity of this motion can
vary both in magnitude and sign, as observed in experiments [32]. However, in this case, no
external force is actually acting on the particles [33]. Theoretical models suggest [31] the
presence of a colored noise, as opposed to a white noise, is crucial for the emergence of such
thermophoretic effects. Analysis of the steady-state dynamics of an overdamped classical
particle in asymmetric multidimensional potential driven by the noise with an arbitrary
correlation function has shown that the correlated noise breaks detailed balance, thereby
exploiting the spatial asymmetries in potential to produce local drifts and rotations [34].
These interesting findings motivated us to investigate the motion of a Brownian particle
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in an inhomogeneous environment and subjected to a colored noise, as opposed to a white
noise.

The paper is organized as follows: In section 2 we review nonlinear SDEs driven by a
white noise and yielding power-law steady state probability density function (PDF) of the
generated signal. We estimate when the signal generated by such an SDE has 1/f PSD in
a wide region of frequencies. In section 3 we show that nonlinear SDEs generating power-
law distributed precesses with 1/fβ spectrum can result from diffusive particle motion
in inhomogeneous medium. In section 4 we present methods that we use to study the
influence of colored noise and in section 5 we investigate the effect of colored noise in our
model, numerically solve obtained equations and compare the PDF and PSD of the signal
with analytical estimations. Section 6 summarizes our findings.

2. Nonlinear stochastic differential equations generating signals with 1/f spectrum

Nonlinear SDEs generating power-law distributed precesses with 1/fβ noise have been
derived in papers [26, 27, 35] starting from the point process model [23–25]. The general
expression for the proposed class of Itô SDEs is

dx = σ2
(

η − 1
2
λ

)
x2η−1dt + σxηdWt. (1)

Here x is the signal, η �= 1 is the exponent of the power-law multiplicative noise, λ defines
the exponent of the power-law steady-state PDF of the signal, Wt is a standard Wiener
process (the Brownian motion) and σ is a scaling constant determining the intensity of
the noise. The Fokker–Planck equation corresponding to SDE (1) gives the power-law
probability density function (PDF) of the signal intensity P0(x) ∼ x−λ with the exponent
λ. The non-linear SDE (1) has the simplest form of the multiplicative noise term, σxηdWt.
In papers [28,36] the nonlinear SDE of type (1) has been obtained starting from a simple
agent-based model describing the herding behavior.

Itô SDEs are typically used in economics [37] and biology [38]. On the other hand,
Stratonovich SDEs are more suitable for real systems with correlated, non-white noise,
for example, for noise-driven electrical circuits [39]. The Stratonovich SDE corresponding
to Itô SDE (1) is [40]

dx =
1
2
σ2(η − λ)x2η−1dt + σxη ◦ dWt. (2)

Note that the choice of Stratonovich or Itô convention depends not only on the correlation
time of the noise but also on the delay in the feedback [41].

For λ > 1 the distribution P0(x) diverges as x → 0, therefore the diffusion of the
stochastic variable x should be restricted at least from the side of small values, or
equation (1) should be modified. The simplest choice of the restriction is the reflective
boundary conditions at x = xmin and x = xmax. Another choice would be modification of
equation (1) to get rapidly decreasing steady state PDF when the stochastic variable x
acquires values outside of the interval [xmin, xmax]. For example, the steady state PDF

P0(x) ∼ 1
xλ

exp
(

−xm
min

xm
− xm

xm
max

)
(3)
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with m > 0 has a power-law form when xmin � x � xmax and exponential cut-offs when
x is outside of the interval [xmin, xmax]. Such exponentially restricted diffusion is generated
by the SDE

dx = σ2
[
η − 1

2
λ +

m

2

(
xm

min

xm
− xm

xm
max

)]
x2η−1dt + σxηdWt (4)

obtained from equation (1) by introducing the additional terms in the drift.
The PSD of the signals generated by the SDE (1) can be estimated using the

(approximate) scaling properties of the signals, as it is done in [42]. Since the Wiener
process has the scaling property dWat = a1/2dWt, changing the variable x in equation (1)
to the scaled variable xs = ax or introducing the scaled time ts = a2(η−1)t one gets the
same resulting equation. Thus a change in the scale of the variable x and change of time
scale are equivalent, leading to the following scaling property of the transition probability
(the conditional probability that at time t the signal has value x′ with the condition that
at time t = 0 the signal had the value x):

aP (ax′, t|ax, 0) = P (x′, aµt|x, 0) , (5)

with the exponent µ being µ = 2(η −1). As has been shown in [42], the power-law steady
state PDF P0(x) ∼ x−λ and the scaling property of the transition probability (5) lead to
the power-law behavior of the PSD

S(f) ∼ 1
fβ

, β = 1 +
λ − 3

2(η − 1)
(6)

in a wide range of frequencies.
The presence of the restrictions of diffusion at x = xmin and x = xmax makes the

scaling (5) not exact and this limits the power-law part of the PSD to a finite range of
frequencies fmin � f � fmax. The frequency range where the PSD has 1/fβ behavior is
estimated in [42] as

σ2x
2(η−1)
min � 2πf � σ2x2(η−1)

max , η > 1, (7)

σ2x−2(1−η)
max � 2πf � σ2x

−2(1−η)
min , η < 1.

This equation shows that the frequency range grows with increasing of the exponent η
and the frequency range becomes zero when η = 1. By increasing the ratio xmax/xmin one
can get an arbitrarily wide range of the frequencies where the PSD has 1/fβ behavior.
Note that a pure 1/fβ PSD is physically impossible because the total power would be
infinite. Therefore, we consider signals with PSD having 1/fβ behavior only in some
wide intermediate region of frequencies, fmin � f � fmax, whereas for small frequencies
f � fmin the PSD is bounded.

For λ = 3 we get that β = 1 and SDE (1) gives a signal exhibiting 1/f
noise. Comparison of the numerically obtained steady state PDF and the PSD with
analytical expressions for SDE (1) with η = 2 and λ = 3 is presented in figure 1. For
the numerical solution we use the Euler–Maruyama approximation, transforming the
differential equations to difference equations. We use a variable time step, decreasing with
the increase of x. As in [26,27] we choose the time step in such a way that the coefficient
before noise becomes proportional to the first power of x. Very similar numerical results
one gets also by using the Milstein approximation [35]. We see a good agreement of
the numerical results with analytical expressions. A numerical solution of the equations
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Figure 1. (a) The steady-state PDF of the signal generated by equation (1) with
reflective boundaries at xmin and xmax. The dashed line shows the power-law
with the exponent −3. (b) The PSD of such a signal. The gray line shows the
slope f−1. Used parameters are η = 2, λ = 3, xmin = 1, xmax = 1000, and σ = 1.

confirms the presence of the frequency region for which the power spectral density has 1/fβ

dependence. The 1/f interval in the PSD in figure 1 is approximately between fmin ≈ 100

and fmax ≈ 103 and is much narrower than the width of the region 1 � f � 106 predicted
by equation (7). The width of this region can be increased by increasing the ratio between
the minimum and the maximum values of the stochastic variable x. In addition, the region
in the power spectral density with the power-law behavior depends on the exponent
η: if η = 1 then this width is zero; the width increases with increasing the difference
|η − 1| [43].

3. Nonlinear SDE resulting from motion in inhomogeneous medium

The nonlinear SDE (1) generating signals with 1/f spectrum in a wide range of frequencies
has been used so far to describe socio-economical systems [29,30]. The derivation of the
equations has been quite abstract and physical interpretation of assumptions made in
the derivation is not very clear. In this section we present a physical model where such
equation can be relevant. We expect that this derivation leads to a better understanding
which systems can be described using equation (1) or equation (2).

We will consider the Brownian motion of a small macroscopic particle in an
inhomogeneous medium. We assume that this medium has reached local thermodynamical
equilibrium but not the global one and the temperature can be considered as a function
of the coordinate. Schematically such a medium is shown in figure 2. Brownian motion of
small macroscopic particles in a liquid or a gas results from unbalanced bombardments
due to surrounding molecules. Usually the Brownian motion is described by a Langevin
equation that includes the influence of the ‘bath’ of surrounding molecules as a time-
dependent stochastic force that is commonly assumed to be a white Gaussian noise. This
assumption is valid when the correlation time of fluctuations is short, much shorter than
the time scale of the macroscopic motion, and the interactions with the bath are weak.
The effect of large correlation time of fluctuations will be considered in the next section.
In the case of strong collisions between the particle and the surrounding environment the
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Figure 2. The schematic representation of an inhomogeneous medium. The
non-equilibrium system is described as a large number N of regions at local
equilibrium, each region having different inverse temperature βi. When the
number of regions is sufficient large we can use approximation (28).

noise is non-Gaussian and we have so called Lévy flights [44]. Nonlinear SDEs Lévy noise
and generating signals with 1/f spectrum are proposed in [45].

Langevin equations for one-dimensional motion of a Brownian particle are [46]

d
dt

v(t) = −γv(t) +
1
m

F (x) +

√
2γ
m

1
β(x)

ξ(t) , (8)

d
dt

x(t) = v(t) (9)

Here x is the coordinate and v is the velocity of the Brownian particle, m is the mass of
the particle, γ is the relaxation rate and ξ(t) is the δ-correlated white noise. In general,
equations similar to (8) and (9) can be used to describe a variety of systems: noisy
electronic circuits, laser light intensity fluctuations [46] and others. We assume that there
is temperature gradient in the medium, therefore the inverse temperature β(x) depends
on coordinate x. In the case when β(x) ≡ β = const, equations (8) and (9) describe
Brownian motion in the medium with constant temperature T = k−1

B /β, where kB is
Boltzmann constant.

In high friction (also called overdamped) limit [40] the relaxation rate is large,
γ � |dv/dt|. Performing adiabatic elimination of the velocity as in [47], we obtain
the equation

d
dt

x(t) =
1

γm
F (x) +

1
2γm

β′(x)
β(x)2 +

√
2

γm

1
β(x)

ξ(t) . (10)

Here β′(x) ≡ dβ(x)/dx. This SDE should be interpreted according to the Stratonovich
convention. Note, that the second term in the right hand side of equation (10) arises
due to position dependence of the stochastic force in equation (8) [47]. The Itô SDE
corresponding to (10) is

dx =
1

γm
F (x)dt +

√
2

γm

1
β(x)

dWt . (11)
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For calculating stationary distribution of position x in high friction limit we will use a
Fokker–Planck equation instead of SDE (10). The Fokker–Planck equation corresponding
to (10) can be written as

∂

∂t
P (x, t) = − 1

γm

∂

∂x
F (x)P (x, t) +

1
γm

∂2

∂x2

P (x, t)
β(x)

. (12)

By setting the time derivative to zero we obtain an analytical expression for the steady
state distribution P0(x):

P0(x) = Cβ(x) exp
(∫ x

F (x′)β(x′)dx′
)

. (13)

Let us consider the situation when the dependence of the inverse temperature on the
coordinate is described by a power law,

β(x) = bx−θ. (14)

Here θ is a power law exponent and b is a constant. This is quite reasonable assumption.
For example, if θ = 1 equation (14) represents a case where we have steady state heat
transfer due to temperature difference T2 − T1 between the beginning and the end of the
system. We assume that there are reflective boundaries at xmin and xmax and the motion
is limited to values of x between xmin and xmax. When θ = 1 then the temperatures should
obey the relation T2/T1 = xmax/xmin and the coefficient b is b = (xmax −xmin)/kB(T2 −T1).
This case is presented in figure 2.

The external force affecting the particle F (x) we express via the gradient of the
potential V (x):

F (x) = − d
dx

V (x). (15)

We choose the subharmonic potential proportional to the temperature:

V (x) =
(ν

θ
− 1

) 1
β(x)

. (16)

For convenience we write the coefficient of proportionality as ν/θ − 1. As we will see
in equation (19), the parameter ν gives the power law exponent in the steady state
distribution of x. Taking into account equation (14) we see that the potential has the
power law form with the same exponent θ. The expression for the external force then is

F (x) =
θ

b
xθ−1

(
1 − ν

θ

)
. (17)

Using inverse temperature (14) and force (17) the equation (10) for the particle coordinate
becomes

d
dt

x(t) =
θ

γmb

(
1
2

− ν

θ

)
xθ−1 + x

θ
2

√
2

γmb
ξ(t). (18)

By using equations (13), (14) and (17) we obtain distribution of particles in high friction
limit

P0(x) =
ν − 1

x1−ν
min − x1−ν

max
x−ν . (19)

Calculating distribution of particles we assumed that there are reflective boundaries
at xmin and xmax and the motion is limited to values of x between xmin and xmax.
Equation (18) has the same form as Stratonovich SDE (2).
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3.1. Numerical solution

To check the validity of the adiabatic elimination of the velocity, we solve the Langevin
equations (8) and (9) numerically. For a numerical solution it is convenient to introduce
dimensionless time t̃, position x̃ and velocity ṽ. When the inverse temperature β(x) and
the force F (x) are given by equations (14) and (17), we can use t̃ = γt and

x̃ = (γ2mb)
1

2−θ x, (20)

ṽ = γ−1(γ2mb)
1

2−θ v. (21)

The equations (8), (9) in the dimensionless variables have the form
d
dt̃

ṽ = −ṽ + (θ − ν)x̃θ−1 +
√

2x̃θξ(t̃), (22)

d
dt̃

x̃ = ṽ. (23)

The reflective boundaries at xmin and xmax become

x̃min = (γ2mb)
1

2−θ xmin , (24)

x̃max = (γ2mb)
1

2−θ xmax . (25)

The requirement of large friction γ, necessary for the adiabatic elimination of the velocity,
leads to the requirement x̃min, x̃max � 1 when θ < 2.

Applying the Euler scheme with the step h to (22), (23) yields the following equations:

ṽk+1 = ṽk − ṽkh + (θ − ν)x̃θ−1
k h +

√
2x̃θ

khξk, (26)

x̃k+1 = x̃k + ṽkh. (27)

Here ξk are independent Gaussian random variables with zero mean and unit variance.
As an example we solve the Langevin equations (22) and (23) with reflective boundaries

at x̃min, x̃max and the parameters ν = 3, θ = 1 or θ = 0. The value of the parameter θ = 0
means that the temperature is constant. The steady state PDF of the particle position
P0(x̃) and the power spectral density S(f̃) are presented in figure 3. In figure 3(a) we
see a good agreement with the distribution of particles in high friction limit (19). This
confirms the validity of the adiabatic elimination of the velocity. Figure 3(c) confirms the
presence of the frequency region with 1/f behavior of the power spectral density. The 1/f
interval in the PSD is approximately between f̃min ≈ 10−4 and f̃max ≈ 10−2. The width of
this interval can be increased by increasing the ratio x̃max/x̃min. The width of 1/fβ region
in the PSD also increases with increasing of |θ/2 − 1|.

Not only coordinate fluctuations yield power law PSD. The Langevin equation with
postion dependent temperature (14) and external force (17) can also lead to the power
law PSD of the absolute velocity fluctuations.

3.2. Superstatistics and velocity fluctuations

In the motion of the particle there are two time scales: the scale at which the particle
is able to reach a local equilibrium and the scale at which the fluctuating temperature
changes. We assume that temperature fluctuations are slow, that is, the time scale at
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Figure 3. The steady-state PDF of the signal generated by the Langevin
equations (22) and (23) with reflective boundaries at x̃min and x̃max and the
parameters: (a) θ = 1, ν = 3, x̃min = 1, x̃max = 1000, (b) θ = 0, ν = 3,
x̃min = 1, x̃max = 100. The dashed line shows the power-law with the exponent
−3. (c) The PSD of the signal corresponding to the parameters in case (b). The
gray line shows the slope f−1.

which observable change of temperature happens is much larger that relaxation time of
the particle 1/γ. This assumption empowers us to derive simpler equations for particle
velocity and apply the superstaticlical approach [48–52] to obtain statistical properties of
particle velocity fluctuations. The superstatistical framework has been successfully applied
to a wide range of problems, such as interactions between hadrons from cosmic rays [53],
fluid turbulence [54–57], granular material [58] and electronics [59]. In the long-term,
the nonequilibrium system is described by the superposition of different local dynamics
at different time intervals. Superstatistics is a description of the complex system under
consideration by a superposition of two statistics, one corresponding to ordinary statistical
mechanics (Langevin equation) and the other one corresponding to a slowly varying
parameter, in this case the inverse temperature β(x). In the superstatistical approach
the distribution of the velocity of the particle is

P (v) =
N∑

i=1

f(βi)P (v|βi) ≈
βmax∫

βmin

f(β)P (v|β)dβ , (28)

where P (v|β) is a local velocity distribution for the particle near the position x when the
temperature can be assumed to be constant and equal to β(x) = β. For the Langevin
equation in the form of equation (8) the local velocity distribution is

P (v|β) =

√
mβ

2π
exp

(
−1

2
mβv2

)
. (29)

The function f(β) is the distribution of the inverse temperature. The distribution of the
inverse temperature f(β) can be found from the stationary distribution P0(x) of coordinate
x by using the relation [60]

f(β) =
(

dβ

dx

)−1

P0(x(β)). (30)

The parameters

βmax = bx−θ
min , βmin = bx−θ

max (31)
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are maximal and minimal inverse temperatures. From equations (30), (19) and (14) we
obtain the distribution of inverse temperature

f(β) =
ν − 1

θ
(
β

ν−1
θ

max − β
ν−1

θ
min

)β
ν−1

θ
−1 . (32)

Now we will describe fluctuations of particle velocity. For this purpose, we introduce the
local average of the absolute value of the velocity

v̄ ≡
∞∫

−∞

|v|P (v|β)dv . (33)

Keeping the assumption that the local distribution of the velocity remains Gaussian (29),
we have

v̄ =

√
2

πmβ(x)
= x

θ
2

√
2

πmb
. (34)

By using equation (34) and changing the variable from x to v̄ in Stratonovich SDE
(18) [40], we obtain an SDE for the average velocity

d
dt

v̄ =
1
2
σ2(η − λ)v̄2η−1 + σv̄ηξ(t) . (35)

Here we introduced the new parameters

η = 2
(

1 − 1
θ

)
, λ =

2
θ
(ν − 1) + 1 (36)

and noise intensity

σ = θ

√
π

4γ

(
2

πmb

) 1
θ

. (37)

The equation (35) for the average absolute velocity is identical to SDE (2) generating
power-law distributed signals with 1/fα spectrum. The multiplicity of noise η in
equation (35) depends only on power-law exponent θ, whereas the exponent λ of the
power law part of distribution of v̄ depends on both parameters θ and ν. According to
equation (6) we have 1/f noise when λ = 3 or ν = θ+1. One can expect that fast velocity
fluctuations do not influence the spectrum at small frequencies and 1/f noise is visible
not only in the spectrum of the local average v̄ but also in the spectrum of the absolute
value of the velocity |v|. Numerical calculation confirms this expectation.

From equations (28) and (32) we get

P (v) =
λ − 1

2
√

π
(
β

λ−1
2

max − β
λ−1

2
min

) (
2
m

)λ−1
2

|v|−λ

[
Γ

(
λ

2
,
1
2
mv2βmin

)
− Γ

(
λ

2
,
1
2
mv2βmax

)]

(38)

Here Γ(a, z) =
∫ ∞

z
ta−1e−tdt is the incomplete gamma function. When 1

2mv2βmin � 1 and
1
2mv2βmax � 1 then from equation (38) it follows that the distribution of velocities has a
power law form P (v) ∼ |v|−λ.

Thus we obtain 1/f noise in the fluctuations of the absolute value of the velocity when
the velocity distribution has a power-law part P (v) ∼ v−3 and temperature distribution is
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Figure 4. (a) The steady-state PDF of the absolute velocity obtained by
numerically solving the Langevin equations (22), (23) with reflective boundaries
at x̃min and x̃max. The gray line shows the PDF from equation (38) multiplied
by 2. (b) The PSD of the absolute velocity fluctuations. The gray line shows the
slope f−1.1. The parameters used are: θ = 1, ν = 2, x̃min = 1, x̃max = 104.

flat, f(β) = const. When θ = 1 we have a simple system exhibiting 1/f fluctuations: the
system consists of a Brownian particle affected by a linear potential V (x) and moving
in the medium where steady state heat transfer is present due to the difference of
temperatures at the ends of the medium.

As an example we solve the Langevin equations (22) and (23) with reflective boundaries
at x̃min, x̃max and the parameters ν = 2, θ = 1. The steady state PDF of the absolute
velocity P (|ṽ|) and the power spectral density S(f̃) of the absolute velocity fluctuations
are presented in figure 4. The steady state PDF P (|v|) is twice as large as the PDF
given by equation (38) because both positive and negative velocities with the same
absolute value occur with equal probabilities. The PDF of the dimensionless velocity
ṽ can be obtained by setting m = 1, b = 1. In figure 4(a) we see a good agreement with
the analytical expression for the steady state PDF. Figure 4(b) confirms the presence of
the frequency region with the power law behavior of the PSD. The power law region in the
PSD is approximately between f̃min ≈ 10−4 and f̃max ≈ 10−2. However, there is a slight
difference between the power law exponent equal to 1 predicted by analytical expressions
and the numerically obtained power law exponent 1.1. This disagreement arises because
the analytical prediction of the power law exponent in the spectrum is only approximate.

4. Stochastic differential equations with colored noise

A system subjected to colored noise is described by the Langevin equation with a
time-dependent stochastic force that includes the influence of the ‘bath’ of surrounding
molecules:

dx

dt
= f(x) + g(x)ε(t) . (39)

It is a well known result that if we approximate white noise by a smooth, colored
process, then at the limit as the correlation time of the approximation tends to zero,
the smoothed stochastic integral converges to the Stratonovich stochastic integral [61].
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We assume that the stochastic force in equation (39) is a Gaussian noise having correlation
time comparable with time scale of the macroscopic motion and that ε(t) is Markovian
process. In such a case the noise ε satisfies Ornstein–Uhlenbeck process with exponential
correlation function [62]. Thus we describe the system perturbed by a colored noise as
2D Markovian flow:

dx

dt
= f(x) + g(x)ε , (40)

dε

dt
= −1

τ
ε +

√
2D
τ

ξ(t) . (41)

Here ξ(t) is the white noise, 〈ξ(t)ξ(s)〉 = δ(t − s), the parameter τ is the correlation
time of the colored noise and D is the noise intensity. The autocorrelation function of the
colored noise is

〈ε(t)ε(s)〉 =
D

τ
exp

(
−|t − s|

τ

)
. (42)

It is possible to write a two dimensional Fokker–Planck equation for equations (40), (41)
and obtain a two dimensional P (x, ε) density as its solution. However, usually it is enough
to know the distribution P (x) of the signal x, which can be formally obtained by averaging
P (x, ε) over the noise ε. It is problematic even get approximate analytical solutions for
P (x, ε) [63]. A more convenient way is to get P (x) from an approximate Fokker–Planck
equation just for one variable. Such an equation can be obtained by using the unified
colored noise approximation [64], which is a form of adiabatic approximation. To make
this approximation, we eliminate the variable ε and get the equation

d2x

dt2
=

g′(x)
g(x)

(
dx

dt

)2

−
(

1
τ

− f ′(x) + f(x)
g′(x)
g(x)

)
dx

dt
+

1
τ
f(x) +

√
2D
τ

g(x)ξ(t) . (43)

We assume that the variable x changes slowly and drop small terms containing d2x/dt2

and (dx/dt)2, obtaining the approximate equation

dx

dt
=

f(x)

1 − τ
(
f ′(x) − f(x)g′(x)

g(x)

) +
√

2Dg(x)

1 − τ
(
f ′(x) − f(x)g′(x)

g(x)

)ξ(t) . (44)

This equation should be interpreted in the Stratonovich sense. In the more general case,
when we cannot neglect inertia and drop the second derivative d2x/dt2, the question
of whether the equation obtained using adiabatic approximation should be interpreted
in the Itô or Stratonovich sense still remains an open question, the so called Itô–
Stratonovich problem [65]. However, at least for specific systems in white noise limit,
it can be determined which interpretation is correct. For example, it has been shown for
a simplified model of the preferential concentration of inertial particles in a turbulent
velocity field [66], that the equation obtained using adiabatic elimination in white noise
limit became the Stratonovich equation [67]. The Stratonovich interpretation should be
used if the correlation time of the noise is much larger than the relaxation rate of the
system. In an opposite case, the equation should be interpreted in Itô sense. If relaxation
rates are of the similar magnitude as the correlation time, we get an equation with noise
induced drift that is different from Stratonovich drift.
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The Fokker–Planck equation corresponding to the Stratonovich equation dx/dt =
fc(x) + gc(x)ξ(t) is [40]

∂

∂t
P (x, t) = − ∂

∂x
fc(x)P (x, t) +

1
2

∂

∂x
gc(x)

∂

∂x
gc(x)P (x, t) . (45)

The applicability of equations (44) and (45) has limitation due to neglect of higher order
derivatives in equation (43). These equations describe the dynamics correctly [64] for
times t obeying

t � τ

1 − τ
(
f ′(x) − f(x)g′(x)

g(x)

) (46)

and in the space regions obeying√
2Dτg(x)

1 − τ
(
f ′(x) − f(x)g′(x)

g(x)

) ∣∣∣∣f ′(x)
f(x)

∣∣∣∣ � 1 . (47)

5. Influence of colored noise on the stochastic differential equation generating
signals with 1/f spectrum

If the nonlinear SDE generating signals with 1/f spectrum is a result of a Brownian
motion in an inhomogeneous medium then the finite correlation time of the ‘bath’ can
become important. In this section we use the results presented in section 4 to investigate
the influence of the colored noise. Instead of white noise we add colored noise ε(t) to the
Stratonovich equation (2) obtaining the equations

dx

dt
=

1
2
σ2(η − λ)x2η−1 + σxηε(t) , (48)

dε

dt
= −1

τ
ε +

1
τ
ξ(t) . (49)

After unified colored noise approximation (44) we get
dx

dt
=

1
2σ

2(η − λ)x2η−1

1 − 1
2τσ2(η − 1)(η − λ)x2(η−1)

+
σxη

1 − 1
2τσ2(η − 1)(η − λ)x2(η−1)

ξ(t) . (50)

If τ is large then equation (50) has a simpler form
dx

dt
= − x

τ(η − 1)
+

2x2−η

τσ(η − 1)(λ − η)
ξ(t) . (51)

Equation (50) should be interpreted in the Stratonovich sense. Converting to Itô
interpretation [40] we have

dx =
1
2

σ2x2η−1

γ(x)

[
η − λ +

2 − η

γ(x)
+

2(η − 1)
γ(x)2

]
dt +

σxη

γ(x)
dWt , (52)

where

γ(x) ≡ 1 − 1
2
τσ2(η − 1)(η − λ)x2(η−1) (53)

According to equation (47), approximation (50) is valid when√
τσ|2η − 1|xη−1

1 − 1
2τσ2(η − 1)(η − λ)x2(η−1)

� 1 (54)
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Steady state PDF corresponding to equation (50) is

P0(x) ∼ x−λ

(
1 − 1

2
τσ2(η − 1)(η − λ)x2(η−1)

)
exp

[
−1

4
τσ2(η − λ)2x2(η−1)

]
(55)

We see that the colored noise introduces an exponential cut-off in the steady state
PDF P0(x) and naturally limits the range of diffusion of the stochastic variable x. The
exponential cut-off is at large values of x when η > 1 and at small values of x when η < 1.

Comparing equation (50) with (2) we see that the influence of the finite correlation
time τ of the noise can be neglected when

1
2
τσ2|η − 1||η − λ|x2(η−1) � 1 . (56)

Let us consider the case η > 1. Then according to equation (56), the influence of the finite
correlation time τ of the noise can be neglected when x � xτ , where

xτ ≡
[

2
τσ2(η − 1)|η − λ|

] 1
2(η−1)

(57)

If the diffusion is restricted to the region xmin < x < xmax then the spectrum has a
power-law part in the frequency range given by (7). If xτ > xmax we expect no change in
the power-law part of the spectrum. If xτ < xmax then replacing the maximum value of
x by xτ , we get that the replacement of the white noise by the colored noise leaves the
power-law part of the spectrum in the frequency range

σ2x
2(η−1)
min � 2πf � 2

τ(η − 1)|η − λ| . (58)

If η < 1 then the influence of the finite correlation time τ of the noise can be neglected
when x � xτ , where xτ is given by (57). When the diffusion is restricted to the region
xmin < x < xmax, we expect no change in the power-law part of the spectrum when
xτ < xmin. If xτ > xmin then replacing the minimum value of x by xτ in equation (7) we
can estimate that the power-law part of the spectrum should be in the frequency range

σ2x−2(1−η)
max � 2πf � 2

τ(1 − η)|η − λ| . (59)

Thus, the introduction of the colored noise into equation (2) can narrow the range of
frequencies where the PSD behaves as 1/fβ by decreasing the upper limiting frequency.

5.1. Numerical solution

To check the validity of the approximations we performed numerical solution of
equations (48) and (49). For the numerical solution we used the Euler scheme [68, 69].
Applying the Euler scheme with the step h to (48) and (49) yields the following equations:

xk+1 = xk +
(

1
2
σ2(η − λ)x2η−1

k + σxη
kzk

)
h , (60)

zk+1 = zk − 1
τ
zkh +

1
τ

√
hξk . (61)

Here ξk are independent Gaussian random variables with zero mean and unit variance.
For η < 1 and for negative η it is convenient to use the Euler scheme with a constant time
step h. However, in the case of η > 1 at large values of x the coefficient in equation (60)
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Figure 5. (a) Typical signal generated by equations (48), (49) with τ = 0.01.
(b) Typical signal generated by equation (2) corresponding to τ = 0 (white noise).
We used reflective boundaries at xmin = 1 and xmax = 1000. Other parameters
of equations are η = 2, λ = 3, and σ = 1.

becomes large and thus requires a very small time step. A more effective solution is to
use a variable time step, decreasing with the increase of x, as has been done in [26, 27].
Variable time step hk = κτ/(σxη

k) leads to the equations

xk+1 = xk + κτ

(
1
2
σ(η − λ)xη−1

k + zk

)
, (62)

zk+1 = zk − κ

σxη
k

zk +
√

κ

στxη
k

ξk , (63)

tk+1 = tk +
κτ

σxη
k

. (64)

Here κ � 1 is a small parameter.
As an example, we solve equations (48) and (49) with the parameters η = 2, λ = 3,

σ = 1 and reflective boundaries at xmin = 1, xmax = 1000. From equations (62)–(64)
we get

xk+1 = xk + κτ

(
zk − 1

2
xk

)
, (65)

zk+1 = zk − κ

x2
k

zk +
1
xk

√
κ

τ
ξk , (66)

tk+1 = tk +
κτ

x2
k

. (67)

The generated signal is shown in figure 5. We see that the finite correlation time τ of the
noise leads to a smoother signal compared to the equation with τ = 0. The steady state
PDF P0(x) and the power spectral density S(f) for two different values of τ are presented
in figure 6. From figure 6(a) we see that the unified colored noise approximation correctly
predicts the exponential cut-off in the steady state PDF at large values of x, although the
actual position of the cut-off slightly differs from the cut-off predicted by equation (55). As
figure 6(b) shows, the presence of the finite correlation time τ makes the power-law part in
the spectrum narrower. The upper limiting frequency of the power-law region grows with
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Figure 6. (a, c) The steady-state PDF of the signal generated by equations (65))–
(67) with reflective boundaries at xmin and xmax. The dashed line shows
analytical approximation (55). (b, d) The PSD of such a signal. The gray line
shows the PSD of the signal generated by equation (2). The correlation time is
(a, b) τ = 10−3, (c, d) τ = 10−5. Other parameters are η = 2, λ = 3, xmin = 1,
xmax = 1000, and σ = 1.

decreasing of τ , as is qualitatively predicted by equation (58). The steady state PDF and
the PSD of the generated signal corresponding to much smaller value of the correlation
time τ are shown in figures 6(b) and (d). For this value of τ the exponential cut-off due
to finite correlation time is larger than the upper boundary xmax, thus we see almost no
differences from the case of uncorrelated noise, τ = 0.

6. Discussion

The nonlinear SDE (1) generating signals with 1/f spectrum in a wide range of frequencies
has been used so far to describe socio-economical systems [29,30]. The derivation of the
equations has been quite abstract and physical interpretation of assumptions made in
the derivation is not very clear. In this paper, we propose a physical model where such
equations can be relevant. This model is described by Stratonovich (2) instead of Itô (1)
SDE and provides insights which physical systems can be described by such nonlinear
SDEs.

We have shown that nonlinear SDEs generating power-law distributed processes with
1/fβ spectrum can result from diffusive particle motion in an inhomogeneous medium.
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The SDE (35) for velocity fluctuations or SDE (18) for particle coordinate are simplified
versions of Langevin equations (8) and (9) for one-dimensional motion of a Brownian
particle. We neglected viscosity dependence on temperature and inertia of particle. In
general, equations similar to these can be used to describe a variety of systems: noisy
electronic circuits, laser light intensity fluctuations [46] and others. We assumed that the
inverse temperature β(x) depends on coordinate x and this dependence is of a power law
form. Such a description is valid for a medium that has reached local thermodynamical
equilibrium but not the global one, and the temperature can be considered as a function of
coordinate. The power law dependence of the inverse temperature β(x) on the stochastic
variable x can be caused by non-homogeneity of a bath. This non-homogeneity can arise
from a complex scale free structure of the bath as is in the case of porous media [70] or
from the bath not being in an equilibrium.

In the high friction limit, if the particle is affected by a subharmonic potential
proportional to the local temperature, the motion of the particle can be described by
the equation similar to equation (2). For example, we can consider a Brownian particle
affected by a linear potential V (x) and moving in the medium where steady state heat
transfer is present due to the difference of temperatures at the ends of the medium. From
the properties of equation (2), presented in section 2, it follows that the spectrum of the
fluctuations of the particle position x(t) in such a system can have a frequency region where
the spectrum has a power-law behavior. The width of this frequency region increases with
the increase of the length of the medium in which the particle moves (2) can also describe
the fluctuations of the local average of the absolute value of the velocity, if temperature
fluctuations are slow and the superstatistical approach can be used. We obtain 1/f noise
in the fluctuations of the absolute value of the velocity when the velocity distribution has
a power-law part P (v) ∼ v−3 and temperature distribution is flat, f(β) = const.

The correlation of collisions between the Brownian particle and the surrounding
molecules can lead to the situation where the finite correlation time becomes important,
thus we have investigated the effect of colored noise in our model. Using the unified
colored noise approximation we get that the finite correlation time leads to the additional
restriction of the diffusion. Existence of colored noise leads to an exponential cut-off of the
PDF of particle positions either from large values when η > 1, or from small values when
η < 1. Such a restriction of the diffusion is a result of the multiplicative colored noise in
equation (48). A narrower power law part in the PDF of the particle positions results in
a narrower range of frequencies where the spectrum has 1/fβ behavior. When η > 1 , the
end of the power-law part of the spectrum at large frequencies is inversely proportional
to the correlation time τ of the noise. However, for a sufficiently small correlation time,
when the restriction of the diffusion due to colored noise is larger than the upper boundary
xmax of the medium, the effects of the colored noise are negligible (see figure 6) and the
properties of the signal do not differ significantly from the white noise case.
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