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We propose a new method of creating solitons in elongated Bose–Einstein condensates (BECs) by sweeping three laser
beams through the BEC. If one of the beams is in the first order (TEM10) Hermite–Gaussian mode, its amplitude has a
transversal π phase slip which can be transferred to the atoms creating a soliton. Using this method it is possible to circumvent
the restriction set by the diffraction limit inherent to conventional methods such as phase imprinting. The method allows one to
create multicomponent (vector) solitons of the dark–bright form as well as the dark–dark combination. In addition it is possible
to create in a controllable way two or more dark solitons with very small velocity and close to each other for studying their
collisional properties.
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1. Introduction

Atomic Bose–Einstein condensates (BECs) have re-
ceived a great deal of interest since they were first
produced a decade ago [1–3]. They can exhibit vari-
ous topological excitations, such as vortices and soli-
tons. The dynamics of solitons in elongated BECs [4]
is the atom-optics version of the nonlinear propagation
of light pulses in optical fibres [5]. The BEC offers a
remarkable freedom in terms of controlling the physi-
cal parameters such as dimensionality and even the sign
of the strength of the atom–atom interaction [4].

Solitons in BECs can be of both dark and bright type.
Dark solitons are formed in BECs with repulsive in-
teraction between the atoms [4]. For completely dark
solitons the condensate wavefunction is zero at the cen-
tre and changes its sign when crossing the central point,
i. e. the condensate wave function has an infinitely steep
π phase slip at the centre [4]. On the other hand, bright
solitons are formed in BECs with repulsive interaction
between the atoms. The wave function of the BEC is
then localised at the centre [4] and goes to zero further
away from this point. Dark solitons which manifest
∗ The report presented at the 37th Lithuanian National Physics Con-
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themselves as a density minimum moving with a con-
stant speed against a uniform background density, as
well as bright solitons which are shape preserving wave
packets, have both been experimentally realised [6–9].
The dynamics of solitons in BECs has been extensively
studied. This has included investigations of the sta-
bility properties [10], as well as soliton dynamics in
inhomogeneous clouds [11], in multicomponent BECs
[12, 13], and in supersonic flow [14]. Solitons can be
created in various ways with a variable degree of con-
trollability, e. g., by colliding clouds of BEC [15–17] or
engineering the density [18, 19].

Traditionally dark solitons in BECs are created us-
ing phase imprinting [6, 7, 20–22], where a part of the
condensate cloud is illuminated by a far detuned laser
pulse in order to induce a sharp π phase slip in the wave
function. The subsequent dynamics can indeed develop
solitons [6, 7]. There are, however, some rather severe
drawbacks with such a method of phase engineering.
The resolution of the required phase slip is naturally
restricted by the diffraction limit, i. e. the width of the
phase slip should be larger than an optical wavelength.
Furthermore, the phase imprinting does not produce a
density minimum characteristic of the dark solitons in
the region of the phase change. Hence completely dark
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Fig. 1. (a) The level scheme for the three laser beams Ωi (i = 1, 2,
3). (b) The sequence of laser beams being swept through the BEC
involves a preparation stage Ω2 → Ω1 and a final stage Ω1 → Ω2

which engineers the phase and density of the BEC to produce a
soliton.

stationary solitons are difficult to achieve, which con-
sequently results in so called grey moving solitons with
a shallow density dip.

It is of a significant interest to be able to create
slowly moving, or even completely stationary solitons
in order to test for instance their scattering properties,
where the shapes of the colliding solitons are preserved.
In addition, a relative spatial shift is expected. This spa-
tial shift, however, can only be detected for extremely
slow solitons due to the inherent logarithmic depen-
dence of the spatial shift on the relative velocity be-
tween the solitons [23, 24]. The standard phase im-
printing also inevitably creates phonons in the trapped
cloud because the constructed initial state is not the ex-
act soliton solution largely due to the missing density
notch [6, 7].

In this paper we show how states which have the re-
quired phase slip and density profile for solitons can be
created by sweeping three laser beams through an elon-
gated BEC as shown in Fig. 1. If one of the beams is
in the first order (TEM10) Hermite–Gaussian mode, its
amplitude has a transversal π phase slip which will be
transferred to atoms thus producing a soliton. More im-
portantly, with a sequence of three laser beams it is pos-
sible to circumvent the restriction set by the diffraction
limit. The laser fields reshape an atomic wave function
so that it acquires a zero-point. This leads to a hole in
the atomic density, the width of which is only limited
by the intensity ratios between the incident laser beams
due to the geometric nature [25] of the process. The
formation of the hole is accompanied by a step-like (in-
finitely sharp) π phase slip in the atomic wave function
when crossing the zero-point. The method is particu-
larly useful for creating multicomponent (vector) soli-

tons of the dark–bright form as well as the dark–dark
combination. In addition it is possible to create in a
controllable way two or more slowly moving dark soli-
tons close to each other for studying their collisional
properties.

2. Formulation

2.1. Outline of the proposed setup

Consider a cigar-shape atomic BEC elongated in the
z direction. To create solitons in the BEC, we propose
to sweep three incident laser beams across the con-
densate. The laser beams interact with the condensate
atoms in a tripod configuration [25, 26], i. e. the atoms
are characterized by three ground states |1〉, |2〉, |3〉 and
an excited state |0〉. The jth laser drives resonantly the
atomic transition between the ground state |j〉 and the
excited state |0〉, see Fig. 1(a). Initially the atoms form-
ing the BEC are prepared in the hyperfine ground state
|1〉. Subsequently the lasers are swept through the BEC
in the x direction, i. e. perpendicular to the longitudinal
axis z of the condensate.

The sweeping process is made of two stages de-
picted in Fig. 1(b). In the first stage the lasers 1 and
2 are applied in a counter-intuitive sequence to trans-
fer adiabatically the atoms from the ground state |1〉 to
another ground state |2〉. If an additional laser 3 is on
during the first stage, a partial transfer of atoms from
the ground states |1〉 to |2〉 is possible [26]. In that
case a coherent superposition of states |1〉 and |2〉 is
created after completing the first stage. In the second
stage, the lasers 1, 2, and 3 are applied once again to
transfer atoms from the state |2〉 back to the state |1〉
and from the state |1〉 to the state |2〉. If the ampli-
tude of one of these lasers Ω1 or Ω2 changes the sign at
z = z0, the BEC picks up a π phase shift at this point
after the sweeping, and a soliton can be formed. This
is the case e. g. if one of the beams is the first order
Hermite–Gaussian beam centred at z = 0.

It is important to realize that at least two laser fields
are needed to complete the adiabatic transfer of pop-
ulation between the ground states. Therefore the adi-
abaticity can be violated in the vicinity of the point
z = z0 where one of the Rabi frequencies Ω1 or Ω2

goes to zero. Inclusion of the third (support) laser
3 helps to avoid such a violation of the adiabaticity.
In fact the atoms would experience absorption in the
vicinity of z = z0 if the support laser 3 was missing
during the second stage.
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It should be mentioned that there are similar previ-
ous proposals for creating vortices in a BEC via the
two-laser Raman processes involving the transfer of an
optical vortex to the atoms [27–29]. In these schemes
the lasers are far detuned from the single-photon res-
onance to avoid the absorption at the vortex core. In
our scheme the lasers are in an exact single-photon res-
onance, so the use of the third (support) laser is es-
sential to avoid the losses. An advantage of the reso-
nant scheme is that an efficient and complete popula-
tion transfer is possible between the hyperfine ground
states, whereas in the non-resonant case only a fraction
of population can be transferred [29].

2.2. Hamiltonian for a tripod atom

Let us now provide a quantitative description of our
scheme. The jth laser beam is characterized by the
complex Rabi frequency Ω̃j = Ωj exp(ikj · r + iSj),
with j = 1, 2, 3, where Ωj is the real amplitude, the
phase being comprised of the local phase kj · r as well
as the global (distance-independent) phase Sj . In what
follows, the Rabi frequencies Ω2 and Ω3 are consid-
ered to be positive: Ω2 > 0, Ω3 > 0. Yet, the Rabi
frequency Ω1 is allowed to be negative. This makes it
possible to include an additional π phase shift in the
spatial profile of the first beam when crossing the zero-
point at z = z0.

The electronic Hamiltonian of a tripod atom reads in
the interaction representation:

Ĥe = −~(Ω̃1|0〉〈1|+Ω̃2|0〉〈2|+Ω̃3|0〉〈3|)+H. c. (1)

The tripod atoms have two degenerate dark states |D1〉
and |D2〉 of zero eigenenergy (Ĥe|Dn〉 = 0) containing
no excited-state contribution [25, 26],

|D1〉=
1

√

1 + ζ2

(

|1〉′ − ζ|2〉′
)

, (2)

|D2〉=
1

√

1 + ζ2

[

ξ3
(

ζ|1〉′ + |2〉′
)

− ξ2(1 + ζ2)|3〉′
]

, (3)

where |j〉′ = |j〉 exp[i(k3 − kj) · r + i(S3 −Sj)] (with
j = 1, 2, 3) are the modified atomic state vectors ac-
commodating the phases of the incident laser fields,
ζ = Ω1/Ω2 is the ratio between the Rabi frequencies
of the first and second fields, and ξj are the normalised
Rabi frequencies (j = 1, 2, 3),

ξj =
Ωj

Ω
, Ω =

√

Ω2
1 + Ω2

2 + Ω2
3 , (4)

with ξ3 > 0 and −∞ < ζ < +∞. The atomic dark
states |D1〉 and |D2〉 depend on the centre of mass co-
ordinate r through the spatial dependence of the Rabi
frequencies Ωj and state vectors |j〉′.

2.3. General equations of motion

The full atomic state vector of a multicomponent
BEC is |Φ(r, t)〉 =

∑4
j=1 |j〉Ψj(r, t), where the con-

stituent wave functions Ψj(r, t) describe the transla-
tional motion of the BEC in the internal state |j〉 of
the tripod scheme. The wave functions Ψj(r, t) obey a
multicomponent Gross–Pitaevski equation of the form

i~
∂

∂t
|Φ(r, t)〉 =

[

1

2M
∇2 + Ĥe + V̂

]

|Φ(r, t)〉 , (5)

where Ĥe from Eq. (1) describes the light-induced tran-
sitions between the different internal states of atoms.
The diagonal operator

V̂ =
3
∑

l>j=0

(Vj + gjl|Ψl|2)|j〉〈j| (6)

accommodates the trapping potential Vj(r) for the jth
internal state, as well as the nonlinear interaction be-
tween the components j and l characterized by the
strength gjl = 4π~

2ajl/m, with ajl being the corre-
sponding scattering length.

3. Time-evolution of the atom–light system

3.1. Adiabatic approximation for the dark states

We shall apply the adiabatic approximation [25, 30,
31] under which atoms evolve within their dark-state
manifold during the sweeping. This is legitimate if
the total Rabi frequency Ω is sufficiently large com-
pared to the inverse sweeping duration τ−1

sweep. The full
atomic state vector can then be expanded as |Φ(r, t)〉 =
∑2

n=1 Ψ
(D)
n (r, t)|Dn(r, t)〉, where a composite wave-

function Ψ
(D)
n (r) describes the translational motion of

an atom in the dark state |Dn(r, t)〉. The atomic centre
of mass motion is thus represented by a two-component
wave function

Ψ =





Ψ
(D)
1

Ψ
(D)
2



 (7)

obeying the following equation of motion [25]:

i~
∂

∂t
Ψ =

[

1

2M
(−i~∇−A)2+V (r)+φ−β

]

Ψ , (8)
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where the effective vector potential A and the matrix
β are the 2 × 2 matrices appearing due to the spatial
and temporal dependence of the dark states, An,m =
i~〈Dn(r, t)|∇|Dm(r, t)〉 and βn,m = i~〈Dn(r, t)|×
×∂/∂t|Dm(r, t)〉. The former A is known as the
Mead–Berry connection [32, 33], whereas the latter
matrix β is responsible for the geometric phase [34].
The 2 × 2 matrix φ is the effective trapping potential
(explicitly presented in Ref. [25]) appearing due to the
spatial dependence of the dark states. Assuming that
all three beams co-propagate (k1 ≈ k2 ≈ k3), the ef-
fective vector potential [25] reduces to

A = ~
ξ3

1 + ζ2
∇ζ

(

0 i

−i 0

)

. (9)

Lastly, the 2×2 matrix V originating from the operator
V̂ , Eq. (6), accommodates the trapping potential for the
dark states [25] as well as the atom–atom coupling.

3.2. Time-evolution during the sweeping

Suppose the incident laser beams are swept through
a trapped BEC along the x axis with a velocity v, as
shown in Fig. 1(b). This can be done either by shifting
in the transversal (x) direction the laser beams prop-
agating along the y axis or by applying a set of laser
pulses of the appropriate shape and sequence propagat-
ing in the x direction. In the latter case, the sweep-
ing velocity v will coincide with the speed of light.
In both cases the adiabatic dark states depend on time
in the following way: |Dn(r, t)〉 ≡ |Dn(r′)〉, where
r
′ = (x′, y, z) ≡ (x− vt, y, z) is the atomic coordinate

in the frame of the moving laser fields. Let us assume
that the time τsweep = d/v it takes to sweep the laser
beams through a BEC of the width d, is small compared
to the time associated with the BEC chemical potential
τµ = ~/µ which is typically of the order of 10−5 s. In
that case one can neglect the dynamics of the atomic
centre of mass during the sweeping. Consequently the
time evolution of the multicomponent wave function
during the sweeping is governed by the matrix-term
β = −vAx featured in Eq. (8), giving

i~∂tΨ = vAxΨ , (10)

where Ax is the effective vector potential along the
sweeping direction.

In passing we note that the subsequent time evolu-
tion of the BEC after the two-stage sweeping will be
described by the general Gross–Pitaevski equation (5)
with the light fields off (Ĥe = 0), as we shall do in
Section 4.

Returning to Eq. (10), since vAx commutes with it-
self at different times, one can relate the wave function
Ψ(t) at a final time t = tf to the one at the initial time
t = ti as

Ψ(r, tf ) = exp (−iΘ) Ψ(r, ti) , (11)

where the exponent Θ is a 2 × 2 Hermitian matrix

Θ =
1

~

tf
∫

ti

Ax(r − vt)v dt =
1

~

xi
∫

xf

Ax(r′) dx′ (12)

and the integration is over the sweeping path r
′ =

(x − vt, y, z) from xf = x − vtf to xi = x − vti. In
most cases of interest the initial and final times can be
considered to be sufficiently remote, so that the spatial
integration can be from xf = −∞ to xi = +∞.

3.2.1. The first stage
Let us now analyse the proposed two-stage setup in

more details. In the first stage both Rabi frequencies Ω1

and Ω2 are positive. The lasers 1 and 2 are applied in
a counterintuitive order (see Fig. 1(b)), where the ratio
ζ = Ω1/Ω2 changes from ζ(t′i) = 0 to ζ(t′f ) = +∞.
On the other hand, the laser 3 is dominant for both
the initial and final times where ξ3 = Ω3/Ω = 1.
Initially the BEC has the wave function Ψ(r) and is
in the internal atomic ground state |1〉 which coin-
cides with the first dark state at the initial time t′i, i. e.
|D1(r, t

′

i)〉 = |1〉. The full initial atomic state vector is
therefore |Φ(r, t′i)〉 = Ψ(r)|D1(r, t

′

i)〉. This provides
the following initial condition for the multicomponent
wave function:

Ψ(r, t′i) =

(

Ψ(r)

0

)

. (13)

Equations (9) and (11)–(13) yield the multicomponent
wave function after the first stage

Ψ(r, t′f ) = Ψ(r)

(

cos β

− sin β

)

, (14)

where

β =

+∞
∫

−∞

ξ3
∂ arctan ζ

∂x′
dx′ (15)

is the mixing angle between the dark states acquired in
the first stage.

Suppose we have the following laser beams. The
second beam Ω2 is a Gaussian beam characterized by
a waist σz in the z direction. The beam is centred at
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Fig. 2. Dependence of the mixing angle β on the relative amplitude
of the third beam κ. The spatial separation between the first and the
second beams is taken to be 2∆ = 1.2 σx where σx is the width of

the beams in the sweeping direction.

x′ = x̄ + ∆ in the sweeping direction and at z = 0 in
the z direction,

Ω2 = Ae−z2/σ2
z−(x′

−x̄−∆)2/σ2
x . (16)

The first beam Ω1 is characterized by the same ampli-
tude A, the same waist σz , and the same width σx.
Yet it is centred at x′ = x̄ − ∆ in the sweeping di-
rection, where 2∆ is the separation between the two
beams. The beam waists should be of the order of the
condensate length (or larger) in the z direction, so that
the whole condensate is illuminated by the beams.

The third beam is considered to change little along
the sweeping direction x. Furthermore, it has the same
width σz in the z direction as the first two beams,

Ω3 = A κ e−z2/σ2
z . (17)

The first stage is aimed at creating a superposition
of states |1〉 and |2〉. Since we take all the beams to
be Gaussian beams characterized by the same widths
σz , the Rabi frequency ratios Ω2/Ω1 and Ω3/Ω1 have
no z dependence. As a result the acquired mixing an-
gle β has no z dependence, i. e. it is uniform along
the BEC. The magnitude of β depends on the rela-
tive intensity of the third laser. If the third laser is
weak (ξ3 = Ω3/Ω → 0 at the crossing point where
ζ = Ω1/Ω2 = 1), the mixing between the states |1〉
and |2〉 is small: β ¿ 1. On the other hand, if the
Rabi frequency Ω3 is comparable with Ω1 and Ω2 at
the crossing point where ζ = Ω1/Ω2 = 1, the mixing
can be close to its maximum: β ≈ π/4. In this way,
one can control the mixing angle by changing the in-
tensity of the third beam, as one can see from Fig. 2.

3.2.2. The second stage
In the second stage the Rabi frequency Ω1 can be

both positive and negative depending on the transversal
coordinate z. The laser 1 is now applied first, so that the
ratio ζ = Ω1/Ω2 changes from ζ(ti) = ±∞ to ζ(tf ) =
0 in the second stage. Again the third laser dominates
for the initial and final times: Ω3/Ω = 1. The second
stage takes place immediately after completing the first
stage, so the multicomponent wave function of the first
stage (14) serves as an initial condition for the second
stage.

Equations (11), (12), and (14) together with (2) and
(3) yield the total state vector after the second stage:

|Φ(r, tf )〉 =

|1〉Ψ(r)
(

sin γ cosβ − eiν12 cos γ sin β
)

− |2〉Ψ(r)
(

cos γ cosβ + eiν12 sin γ sin β
)

, (18)

where ν12 = S1 −S2 + S′

2 −S′

1 is the phase mismatch
between the Rabi frequencies Ω1 and Ω2 in the first and
second stages. The resulting mixing angle acquired in
the second stage is

γ ≡ γz =

+∞
∫

−∞

(1 − ξ3)
∂ arctan ζ

∂x′
dx′ . (19)

If the first and second lasers are weak (Ω3/Ω → 1 at
the crossing point where ζ = Ω1/Ω2 = 1), the mixing
angle is small: γz ¿ 1. On the other hand, if first and
second lasers are strong at this point, we have γz →
∓π/2. The change in sign of γz will introduce a phase
shift which is needed to create solitons.

In the second stage the first beam Ω1 is a first-order
(in the z direction) Hermite–Gaussian beam centred at
z = 0 and x′ = x̃ + ∆̃:

Ω1 = A
z

B
e−z2/σ2

z−(x′
−x̃−∆̃)2/σ2

x , (20)

where z = ±B represents a distance where Ω1 = ±Ω2

for x′ = x̃. In most cases of interest the distance B is
much smaller than the waist of the beams: B ¿ σz .
The second beam Ω2 is the ordinary Gaussian beam
centred at z = 0 along the BEC and x′ = x̃ − ∆̃ in the
sweeping direction:

Ω2 = Ae−z2/σ2
z−(x′

−x̃+∆̃)2/σ2
x , (21)

where 2∆̃ is the separation between the two beams.
The ratio between the Rabi frequencies reads then:

ζ =
Ω1

Ω2
=

z

B
e4∆̃(x′

−x̃)/σ2
x . (22)
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Equation (22) provides the following limiting cases:

ζ ≡ ζ(z, x′) =







0, for x′ → +∞ ,

±∞, for x′ → −∞ .
(23)

Finally let us determine the crossing point where Ω1 =
Ω2. Using Eq. (22), the condition |ζ| = 1 yields the
crossing point x′ = x′

cr for a fixed z coordinate:

x′

cr = x̃ +
σ2

4∆̃
ln

z

B
. (24)

Specifically, if z = B, the crossing point is x′

cr = x̃.
Since B ¿ σ, the Rabi frequencies at z = B and
x′ = x̃ are

Ω1 = Ω2 ≈ Ae−∆̃2/σ2
x . (25)

In the next subsection we shall analyse in more detail
the multicomponent wave function after completing the
second stage.

3.3. Multicomponent wave function alter the sweeping

Suppose that there is no phase mismatch between the
lasers of the first and second stages: ν12 = 0. In that
case Eq. (18) yields

|Φ(r, tf )〉 = Ψ(r)[− sin(γz −β)|1〉+cos(γz −β)|2〉] .
(26)

If β = 0, the second component is populated after the
first stage. After the whole sweeping the state vector
then takes the form

|Φ(r, tf )〉 = Ψ(r)[− sin γz|1〉 + cos γz|2〉] . (27)

In this case the first component alters the sign at z = z0

where the Rabi frequency Ω1 or Ω2 (and hence γz)
crosses the zero-point. On the other hand, the second
component is maximum at this point and symmetrically
decays to zero away from this point. Such a multicom-
ponent wave function has a shape close to that of a soli-
ton of the dark–bright form (see Fig. 3). This will in-
deed lead to the formation of such a soliton, as we shall
see from the analysis of the subsequent time-evolution
presented in the next Section.

On the other hand, β = π/4 corresponds to the case
where both components are initially populated with
equal probabilities. Thus we have after the sweeping:

|Φ(r, tf )〉= −Ψ(r) [− sin(γz − π/4)|1〉

+ sin(γz + π/4)|2〉] . (28)

In that case both components of the wave function ac-
quire a π phase shift in a vicinity of z = z0 where

Fig. 3. Multicomponent wave function after completing the second
stage in the case where the second component is populated after
the first stage (β = 0) and there is no phase mismatch between the
lasers of the first and second stages (ν12 = 0). The second and
third laser beams are taken to be the Gaussian beams with equal
widths σz . The first laser beam is the first order Hermite–Gaussian
beam with same width σz . The parameters used are 2∆̃/σx = 1.2,
B/σz = 0.1, and κ = 0.1. The wave function of the first (second)

component is plotted in a solid (dashed) line.

Fig. 4. Multicomponent wave function after completing the second
stage in the case where both components are initially populated
after the first stage (β = π/4) and there is no phase mismatch be-
tween the lasers of the first and second stages (ν12 = 0). The sec-
ond and third laser beams are taken to be the Gaussian beams with
equal widths σz . The first laser beam is the first order Hermite–
Gaussian beam with same width σz . The parameters used are
2∆̃/σx = 1.2, B/σz = 0.1, and κ = 0.1. The wave function
of the first (second) component is plotted in a solid (dashed) line.

Ω1 = 0, as one can see clearly in the Fig. 4. Note that
the zero-points of each component are slightly shifted
with respect to each other. This makes it possible to
produce two-component dark–dark solitons oscillating
around each other, as we shall see in the following Sec-
tion.
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If β = π/4 , yet there is a π/2 phase mismatch
(ν12 = π/2), Eq. (18) reduces to

|Φ(r, tf )〉 = −Ψ(r)eiγz
1√
2

[|2〉 − i|1〉] . (29)

In that case both components are characterized by the
same spatial modulation exp (iγz) and have a relative
phase π/2 after the sweeping. Therefore both compo-
nents initially have the same velocity distribution pro-
portional to ∇γz . Furthermore, there is no hole in the
atomic density of neither component after the sweep-
ing, like is the case in the phase imprinting techniques.

In this way, the creation of solitons can be controlled
by changing the mixing angle β and the phase mis-
match ν12

4. Subsequent dynamics and soliton formation

The optical preparation of the initial state of the two-
component Bose–Einstein condensate described in the
previous section, is fast compared to any characteris-
tic dynamics in the Bose–Einstein condensate. This
is the case if the time τsweep = d/v it takes to sweep
the laser beams through a BEC of the width d is small
compared to the time associated with the BEC chemi-
cal potential τµ = ~/µ which is typically of the order
of 10−5 s. With the prepared initial state and for suffi-
ciently low temperatures we can therefore describe the
subsequent dynamics using a two-component Gross–
Pitaevskii equation [12]

i~
∂

∂t
Ψ1 = (30)

=

[

− ~
2

2m
∇2 + V (z) + g11|Ψ1|2 + g12|Ψ2|2

]

Ψ1 ,

i~
∂

∂t
Ψ2 = (31)

=

[

− ~
2

2m
∇2 + V (z) + g22|Ψ2|2 + g12|Ψ1|2

]

Ψ2 .

The external potential is here chosen to be quadratic in
the z direction,

V (z) =
1

2
mω2z2 , (32)

where ω is the trap frequency and m the atomic mass.
The two-body interactions are described by

gij =
4π~

2aij

mS
, i, j = {1, 2} , (33)

with the scattering lengths aij which represent the
intra- and inter-collisional interactions between the
atoms in the states 1 and 2. In Eq. (33) we have
introduced the effective cross-section S of the elon-
gated cloud. Strictly speaking the elongated Bose–
Einstein condensate is three-dimensional. If, however,
the transversal trapping is sufficiently strong, the dy-
namics can be considered effectively one-dimensional,
as in Eqs. (31) and (32). This requires that the corre-
sponding transversal ground state energy is much larger
than the chemical potential of the condensate. We
choose the normalisation as

∫

dz|Ψi(z)|2 = Ni, where
Ni is the particle number in condensate i (i = 1, 2).

With the initial states from the previous section
we can simulate the dynamics of the Bose–Einstein

(a) (b)
Fig. 5. The dark–bright soliton. The two figures show the one-dimensional density as a function of time for component 1 and 2. The lighter

(darker) colours correspond to higher (lower) atomic densities.
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(a) (b)
Fig. 6. The bound state dark–dark soliton. For sufficiently low initial soliton velocities the two dark solitons perform an oscillatory motion
around each other. The figures show the one-dimensional atomic density as a function of time for component 1 and 2. The lighter (darker)

colours correspond to higher (lower) densities.

(a) (b)
Fig. 7. The co-propagating dark–dark solitons. If the initial phase gradients of the two soliton solutions are chosen to be the same, the dark
solitons propagate in unison. The two figures show the one-dimensional density as a function of time for component 1 and 2. The lighter

(darker) colours correspond to higher (lower) atomic densities.

condensate. We consider a condensate with g11 : g12 :
g22 = 1.0 : 0.97 : 1.03, where g12N1 = 286 and N1 =
N2. The unit of length is

√

~/(mω) and time is in units
of ω−1. In Fig. 5 we show the dark–bright soliton dy-
namics whose initial state is prepared by choosing β =
0 and ν12 = 0. The two-component system which has
one dark soliton in component 1 and a bright soliton
in component 2 is stable, i. e. the solitons are station-
ary. This shows that the initial state is indeed close to
the exact soliton solution. If the initial state is prepared
with β = π/4 and ν12 = 0, on the other hand, the dy-
namics is strikingly different, see Fig. 6. In this case
we create two dark solitons with opposite phase gradi-

ents, hence there is an oscillatory motion, sometimes
referred to as a soliton molecule. Such a bound state is
only stable if the soliton velocities are low [12] which
is indeed the case here. Alternatively, with β = π/4
and ν12 = π/2, the solitons move in unison as shown
in Fig. 7. The large oscillatory motion appearing in
Fig. 7 stems from the fact that the condensate density
is not homogeneous, hence the solitons experience an
effective trap [11].
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5. Conclusions

In summary, we have proposed a new method of
creating solitons in elongated Bose–Einstein conden-
sates (BECs) by sweeping three laser beams through
the BEC. If one of the beams is the first order (TEM10)
Hermite–Gaussian mode, its amplitude has a transver-
sal π phase slip which will be transferred to the atoms
thus creating a soliton. Using this method it is possi-
ble to circumvent the restriction set by the diffraction
limit. The method allows one to create multicompo-
nent (vector) solitons of the dark–bright form as well as
the dark–dark combination. In addition it is possible to
create in a controllable way two or more slowly mov-
ing dark solitons close to each other for studying the
collisional properties. For this the first beam Ω1 should
represent a superposition of the zero and second order
Hermite–Gaussian modes in the second stage. The soli-
ton collisions will be considered in more detail else-
where.

Acknowledgements

This work was supported by the Alexander-von-
Humboldt Foundation through the institutional collab-
orative grant between the University of Kaiserslautern
and the Institute of Theoretical Physics and Astronomy
of Vilnius University. P. Ö. acknowledges support from
the EPSRC and the Royal Society of Edinburgh.

References

[1] M.H. Anderson, J.R. Ensher, M.R. Matthews,
C.E. Wieman, and E.A. Cornell, Science 269, 198
(1995).

[2] C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet,
Phys. Rev. Lett. 75, 1687 (1995).

[3] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van
Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle,
Phys. Rev. Lett. 75, 3969 (1995).

[4] See, e. g., S. Stringari and L. Pitaevskii, Bose–Einstein
Condensation (Clarendon Press, Oxford, 2003).

[5] Y.S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81
(1998).

[6] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Seng-
stock, A. Sanpera, G.V. Shlyapnikov, and M. Lewen-
stein, Phys. Rev. Lett. 83, 5198 (1999).

[7] J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark,
L.A. Collins, J. Cubizolles, L. Deng, E.W. Ha-
gley, K. Helmerson, W.P. Reinhardt, S.L. Rolston,
B.I. Schneider, and W.D. Phillips, Science 287, 97
(2000).

[8] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel,
J. Cubizolles, L.D. Carr, Y. Castin, and C. Salomon,
Science 296, 1290 (2002).

[9] K.E. Strecker, G.B. Partridge, A.G. Truscott, and
R.G. Hulet, Nature 417, 150 (2002).

[10] A.E. Muryshev, H.B. van Linden van den Heuvell, and
G.V. Shlyapnikov, Phys. Rev. A 60, R2665 (1999).

[11] Th. Busch and J.R. Anglin, Phys. Rev. Lett. 84, 2298
(2000).

[12] P. Öhberg and L. Santos, Phys. Rev. Lett. 86, 2918
(2001).

[13] Th. Busch and J.R. Anglin, Phys. Rev. Lett. 87, 010401
(2001).

[14] G.A. El, A. Gammal, and A.M. Kamchatnov, Phys.
Rev. Lett. 97, 180405 (2006).

[15] W.P. Reinhardt and C.W. Clark, J. Phys. B 30, L785
(1997).

[16] T.F. Scott, R.J. Ballagh, and K. Burnett, J. Phys. B 31,
L329 (1998).

[17] V.A. Brazhnyi and A.M. Kamchatnov, Phys. Rev. A 68,
043614 (2003).

[18] Z. Dutton, M. Budde, C. Slowe, and L.V. Hau, Science
293, 663 (2001).

[19] N.S. Ginsberg, J. Brand, and L.V. Hau, Phys. Rev. Lett.
94, 040403 (2005).

[20] Ł. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock,
G. Birkl, and W. Ertmer, Phys. Rev. A 60, R3381
(1999).

[21] L.D. Carr, J. Brand, S. Burger, and A. Sanpera, Phys.
Rev. A 63, 051601 (2001).

[22] B. Wu, J. Liu, and Q. Niu, Phys. Rev. Lett. 88, 034101
(2002).

[23] V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz.
64, 1627 (1973) [Sov. Phys. JETP 37, 823 (1973)].

[24] S. Burger, L.D. Carr, P. Öhberg, K. Sengstock, and
A. Sanpera, Phys. Rev. A 63, 043611 (2002).
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Santrauka
Pasiūlytas naujas būdas solitonams sukurti pailguose Bozė ir

Einšteino kondensatuose. Solitonai sukuriami braukiant trimis la-
zerių pluoštais per kondensatą. Jei vienas iš pluoštų aprašomas pir-
mos eilės (TEM10) Ermito ir Gauso moda, elektrinio lauko amp-
litudė pluošto centre turi skersinį π dydžio fazės šuolį, kuris gali
būti perkeltas atomams, taip sukuriant solitoną. Naudojant mūsų

būdą, galima išvengti difrakcijos apribojimo fazės šuoliui, pasi-
reiškiančio įprastame solitonų sukūrimo metode, apšviečiant dalį
kondensato ir taip užrašant fazę. Mūsų metodas leidžia sukurti
daugiakomponenčius (vektorinius) tamsaus–tamsaus bei tamsaus–
šviesaus pavidalo solitonus. Be to, galima kontroliuojamai sukurti
du ar daugiau lėtai judančius solitonus, esančius arti vienas kito, ir
taip tirti jų susidūrimus.


