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Supplementary Figures 
 

 

 

 

Supplementary Figure 1  Transition diagram equivalent to the DT system at θ = 0. It consists of a 

double-Λ system and a two-ground-state system which couple with each other via the ground-state 

coherences. 
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Supplementary Figure 2  Theoretical predictions of the probe energy transmissions versus the 

detuning at different values of θ.  Red and blue lines are the transmissions of A and B, respectively. In all 

the plots we set the calculation parameters to the experimental condition that α = 20, |A1| = |A2| = |B1| = 

|B2| = 0.51Γ, and only the probe pulse A with the e
−2

 full width of 2.5 s or 94Γ
−1

 is present in the input.  

The phase mismatch and ground-state coherence dephasing are not included in the calculation. In a-d, θ = 0, 

π/3, 2π/3 and π, respectively. The two lines completely overlap in a. 
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Supplementary Figure 3  Theoretical predictions of the probe energy transmissions versus θ at the 

zero detuning. Red and blue lines are the transmissions of A and B, respectively. The calculation 

parameters of OD, coupling Rabi frequencies and input probe pulse are the same as those in Supplementary 

Figure 2. a, The phase mismatch and ground-state coherence dephasing are not included. b, We take kL = 

0.6, 1 = 0 and 2 = 3.710
−3

Γ corresponding to the experimental situation. 
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Supplementary Figure 4  Theoretical predictions of the probe energy transmissions versus the 

detuning at θ = π.  Red and blue lines are the transmissions of A and B, respectively. Solid lines are the 

numerical predictions and dashed lines are the analytical results given by Eq. (6) of the main text. The 

calculation parameters of OD and coupling Rabi frequencies are the same as those in Supplementary 

Figure 2. Only probe A is present in the input. In a, A is a continuous wave; in b-f, A is a pulse the same as 

that in Supplementary Figure 2. a,b, kL = 0 and 1 = 2  = 0. c, kL = 0.6 and 1 = 2 = 0. d, kL = 0.6 and 1 

= 2 = 1.8510
−3

Γ. e, kL = 0.6, 1 = 0 and 2 = 3.710
−3

Γ. f, kL = 0, 1 = 0 and 2 = 3.710
−3

Γ. 
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Supplementary Notes 

Supplementary Note 1: Analytical Solution of Continuous-Wave Spinor Slow Light 

We consider the spinor slow light (SSL) forming when two probe beams are coupled with two atomic 

coherences in the double-tripod (DT) scheme of atom-light coupling. The time evolution of the SSL is 

described by the following equations: 
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where A, B, A1, A2, B1 and B2 are the Rabi frequencies of the probe and coupling fields driving the 

atomic transitions depicted in Fig. 1a of the main text, A (or B) is the coherence of the probe transition 

|0|A (or |0|B), 1 (or 2) is the atomic ground-state coherence between |0 and |1 (or |2), Γ is the 

spontaneous decay rate equal to 2π6 MHz in our experiment,  and L are the optical density (OD) and 

length of the medium, δ is the two-photon detuning as illustrated in Fig. 1a of the main text, 1 (or 2) is the 

dephasing rate of the atomic coherence 1 (or 2), and k      ⃗    ⃗    ⃗    ⃗     ̂  describes the effect 

of the phase mismatch. In the definition of ∆k,  ⃗   and  ⃗   are the wave vectors of the probe fields A and 

B, and  ⃗   and  ⃗   are those of the coupling fields A1 and B1 (or A2 and B2).The analytical expressions 

and numerical predictions in the paper and in the supplement are based on the above equations. 

We focus on the case where the complex Rabi frequencies of the four coupling fields have the same 

amplitude of . Thus, the complex Rabi frequency of the nth coupling field is Ωn = Ωe
iθn with n = A1, A2, 

B1 or B2, where θn is the phase of coupling field. We define θ ≡ (A1  A2)  (B1  B2) to be a relative 

phase among the four coupling fields. To simplify the analytical derivation, we take 1 = 0 = 2 and k = 0. 

For the continuous waves, Eqs. (1)-(3) reduce to 
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Here we set the phases of individual coupling fields (A1, A2, B1, B2) = (π/2, 0, 0, π/2) such that their 

relative phase is θ = π. Other combinations, such as (π/2, −π/2, 0, 0), (π, 0, 0, 0), (0, 0, 0, π), etc., can also 

achieve the same result shown at the end of this section. To derive the solution of the above equations, we 

first make use of Eqs. (5) and (6) to eliminate (1, 2), subsequently expressing (A, B) in terms of (A, B): 
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Consequently Eq. (4) becomes 

 































B

A

B

A

Lz 















1

1

1

1

2 2
.      (9) 

The matrix on the right-hand side of the above equation can be diagonalized by transforming the two probe 

fields (A, B) to new variables (a, b) via a unitary transformation 
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Based on Eq. (9), the propagation equation for (a, b) and its solution are 
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and 
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respectively. The transformed fields a and b represent the two normal modes inside the medium. Using the 

transformation Eq. (10), we obtain the output probe fields A and B as a function of their inputs: 
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For β   1 or Ω
2
   δΓ, the solution simplifies to 
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The above two equations represent Eqs. (4) and (5) of the main text. 

Supplementary Note 2: Double-Tripod System Equivalent to Two Coupled Λ Systems 

Considering that the four coupling fields having the same amplitude, their relative phase θ equal to π, the 

dephasing rates and phase mismatch being negligible, Eqs. (2) and (3) become 
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For convenience here we set (A1, A2, B1, B2) = (0, 0, 0, π). Other combinations, such as (π/2, 0, 0, π/2), 

(π/2, −π/2, 0, 0), (π, 0, 0, 0), etc., can also achieve the same conclusion shown at the end of this section. We 

introduce a unitary transformation U given by 













11

11

2

1
U .        (18) 
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It is convenient to define two new variables 1 and 2 as 
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The new variable 1 (or 2) represents the ground-state coherence between the states |1 (or |2) and |0, 

where |1 and |2 are the following superpositions of the original ground states |1 and |2: 
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Finally, Eqs. (19) and (20) become 
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According to the above equations, there are two EIT systems. One consists of A, A and 1, the other being 

made of B, B and 2. The coupling fields in both systems have the same Rabi frequency of √ Ω. In 

Eqs. (24) and (25), the only matrix with non-zero off-diagonal terms is 










0

0





i

i
. 

It indicates that the interaction between the two ground-state coherences 1 and 2  (i.e. the coupling 

between the two EIT systems) is induced by the detuning δ. Therefore, the DT system is equivalent to the 

two coupled EIT systems as depicted in Fig. 1b of the main text. 

Supplementary Note 3: Degenerate Double-Tripod System 

The DT system becomes degenerate as the pair of the coupling fields in each tripod have the same complex 

Rabi frequency, i.e. the relative phase θ = 0. Under this special condition, the DT system will be shown to 

be equivalent to a double-Λ system and no oscillation can occur between the two probe fields. For 

convenience but without loss of generality, the four coupling fields have the same complex Rabi frequency 

of Ω. Considering the dephasing rates and phase mismatch to be negligible, Eqs. (2) and (3) become 
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Using the two variables 1 and 2 defined in Eq. (21), we rewrite the above equations as 
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In Eq. (28), both A and B (or A and B) couple to the same ground-state coherence 1 as indicated by the 

term 
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In Eq. (29), the ground-state coherence 2 does not interact with A and B directly as indicated by the term 
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but the two ground-states  coherences are coupled via the detuning δ as indicated by the term 
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Therefore, the DT system at θ = 0 can be decomposed into two coupled subsystems. One is the double-Λ 

system in which the two probe fields share the common coherence 1. The other is the system only 

consisting of two ground states in which no light appears but the coherence 2 exists. Supplementary 

Figure 1 depicts the transition diagram equivalent to the DT system at θ = 0. Because the two probe fields 

share the common ground-state coherence and interact with the medium in a similar way, their outputs 

always behave the same which will be demonstrated in the next section. 

Supplementary Note 4: Oscillation Behaviors at Different Relative Phases of the Coupling Fields 

The SSL oscillations can also be observed for the relative phase θ of the coupling fields other than π. 

Increasing the deviation of θ from π makes the oscillation less prominent, as the temporal profile of the 

probe field is a pulse. Finally, for a maximum deviation at θ = 0, the DT system becomes equivalent to the 

double-Λ system as discussed in the previous section, and no oscillation can occur between the probe fields. 

Supplementary Figures 2a-2d show the theoretical predictions of the probe energy transmission as a 

function of the detuning δ at different values of θ. The predictions were numerically calculated from 

Eqs. (1)-(3) by taking the parameters of input probe pulse width, optical density and coupling Rabi 

frequencies used in the experiment. The phase mismatch ∆k and the ground-state dephasing rates 1 and 2 

are set to zero in the calculation. The prediction in Supplementary Figure 2a shows the two probe pulses 

always have the same output energy (also temporal shape) at θ = 0. This is the expected outcome of the 

double-Λ system with the same coupling Rabi frequency in each of the two constituent Λ systems. As 

demonstrated by Supplementary Figures 2b-2d, the condition of θ = π gives the maximum contrast or 

difference between two output probe fields around δ = 0. For this reason, θ = π was chosen in the 

experiment. 
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Supplementary Note 5: Method of Setting the Relative Phase of the Coupling Fields to π 

The relative phase of the coupling fields θ can be made equal to π directly, when the probe field is a pulse 

instead of a continuous wave. The theoretical predictions of the two output probe energy transmissions 

versus θ at the detuning δ = 0 shown in Supplementary Figures 3a and 3b illustrate the idea. They were 

numerically calculated from Eqs. (1)-(3) with the parameters of input probe pulse width, optical density and 

coupling Rabi frequencies used in the experiment. As only the probe A is present at the input of the 

medium, the probe B will not be generated at the output if θ = π. A larger deviation from π in θ causes 

larger output energy of B. The inclusion of the phase mismatch and ground-state coherence dephasing 

existing in the experimental system do not change the behavior of B’s output energy versus θ. 

Experimentally, we moved the position of the prism shown in Fig. 1c of the main text and measured B’s 

output energy at δ = 0. According to its definition, θ is the phase difference between the beat note of A1 

plus A2 and that of B1 plus B2. The frequency difference between A1 and A2 (or between B1 and B2) 

is about 6.8 GHz, corresponding to the beat-note wavelength of 4.4 cm. The prism position can change the 

optical path length of A1 plus A2 and, thus, adjust θ. By minimizing B’s output, we were able to properly 

set θ = π. 

Supplementary Note 6: Nonzero Minima and Asymmetry in the Oscillation Phenomenon 

Let us now discuss the discrepancy between the observed SSL output and the oscillation phenomenon 

predicted by Eq. (6) of the main text. There are two major features in the discrepancy. The minima of the 

probe field A are not completely zero, and the probe transmissions are asymmetric at the positive and 

negative detunings. Supplementary Figure 4a shows the predictions numerically calculated from Eqs. (1)-(3) 

for a continuous-wave input  probe. The numerical predictions are in a good agreement with the analytical 

expression given by Eq. (6) of the main text except at large |δ| where the condition Ω
2
   δΓ is not held. 

When the input probe is a Gaussian pulse with the width used in the experiment, Supplementary Figure 4b 

clearly shows A’s minima become about 3%. Supplementary Figures 4c-4f all consider the input probe is a 

pulse. When the amount of kL existing in the experiment is added to the calculation, the total output energy 

is affected very little but A’s minima further increase to 10% as shown in Supplementary Figure 4c. Hence, 

the nonzero minima are caused by the existence of the phase mismatch k and the finite frequency 

bandwidth of the input probe pulse. 

We further include the ground-state coherence dephasing in the calculation. As the two dephasing rates 1 

and 2 of the coherences 1 and 2 are the same, Supplementary Figure 4d shows the total output energy is 

significantly decreased. So far, the spectra are all symmetric with respect to δ = 0. By setting 1  2, we can 

clearly see that B’s spectrum is still symmetric but A’s spectrum becomes asymmetric as shown in 

Supplementary Figure 4e. By setting ∆k = 0 and 1  2, A’s spectrum becomes symmetric again as shown in 

Supplementary Figure 4f. Therefore, the asymmetry is caused by the combination of ∆k  0 and 1  2. 


