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a b s t r a c t

Wepresent a nonlinear stochastic differential equation (SDE)whichmimics the probability
density function (PDF) of the return and the power spectrum of the absolute return in
financial markets. Absolute return as a measure of market volatility is considered in the
proposed model as a long-range memory stochastic variable. The SDE is obtained from
the analogy with an earlier proposed model of trading activity in the financial markets
and generalized within the nonextensive statistical mechanics framework. The proposed
stochastic model generates time series of the return with two power law statistics, i.e., the
PDF and the power spectral density, reproducing the empirical data for the one-minute
trading return in the NYSE.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

High frequency time series of financial data exhibit sophisticated statistical properties. What is the most striking is that
many of these anomalous properties appear to be universal. Vast amounts of historical stock price data around the world
have helped to establish a variety of so-called stylized facts [1–6], which can be seen as statistical signatures of financial
processes. The findings as regards the PDF of the return and other financial variables are successfully generalized within
a nonextensive statistical framework [7]. The return has a distribution that is very well fitted by q-Gaussians, only slowly
becomingGaussian as the time scale approachesmonths, years and longer time horizons. Another interesting statisticwhich
can be modeled within the nonextensive framework is the distribution of volumes, defined as the number of shares traded.
Interesting stochastic models related to the nonextensive statistics include an ARCH process with random noise

distributed according to a q-Gaussian as well as some state-dependent additive–multiplicative processes [8]. These
models do capture the distribution of returns, but not necessarily the empirical temporal dynamics and correlations.
Additive–multiplicative stochastic models of the financial mean-reverting processes provide a rich spectrum of shapes for
the probability distribution function (PDF) depending on the model parameters [9]. Such stochastic processes model the
empirical PDF’s of volatility, volume and price returns with success when the appropriate fitting parameters are selected.
Many other fits are also proposed, including exponential ones [10] applicable for larger time scales.
Nevertheless, there is a necessity to select the most appropriate stochastic models, able to describe volatility as well as

other variables in dynamical aspects and long-range correlation aspects.
There is empirical evidence that trading activity, trading volume, and volatility are stochastic variables with the long-

range correlation [11–13] and this key aspect is not accounted for in somewidely usedmodels. ARCH-like,multiscalemodels
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of volatility, which assume that the volatility is governed by the observed past price changes over different time scales,
have been recently proposed [14,15]. Trading volume and trading activity are positively correlated with market volatility.
Moreover, trading volume and volatility show the same type of long memory behavior [16].
Recently we investigated analytically and numerically the properties of stochastic multiplicative point processes [17,18],

derived a formula for the power spectrum and related the model with the general form of the multiplicative stochastic
differential equation [19,20]. The extensive empirical analysis of the financial market data, supporting the idea that the
long-range volatility correlations arise from trading activity, provides valuable background for further development of
the long-ranged memory stochastic models [12,13]. The power law behavior of the autoregressive conditional duration
process [21] based on the random multiplicative process and its special case the self-modulation process [22], exhibiting
1/f fluctuations, supported the idea of stochastic modeling with a power law PDF and long memory. A stochastic model
of trading activity based on an SDE driven Poisson-like process has been already presented in [23]. We further develop an
approach of modulating the SDE with a closer connection to the nonextensive statistics in order to model the dynamics of
the return in this paper.
Long memory (long-term dependence) has been defined in time domain in terms of autocorrelation power law decay,

or in frequency domains in terms of power law growth of low frequency spectra. Despite statistical methodology being
developed for data with a long-range dependence and the solid mathematical foundations of the area [24], let us consider
behavior of the financial variables only in the frequency domain, analyzing the power spectral density.
In Section 2 we present the nonlinear SDE generating a signal with a q-Gaussian PDF and power law spectral density. In

Section 3 we analyze the tick by tick empirical data for trades on the NYSE for 24 shares and adjust the parameters of the
proposed equations to the empirical data. A short discussion and conclusions are presented in Section 4.

2. The stochastic model with a q-Gaussian PDF and long memory

Earlier we investigated stochastic processes with long-range memory properties. Starting from the stochastic point pro-
cess model, which reproduced a variety of self-affine time series exhibiting the power spectral density S(f ) ∼ 1/f β scaling
as power β of the frequency f [18], later we introduced a Poisson-like process driven by the stochastic differential equa-
tion. The latter served as an appropriate model of trading activity in the financial markets [23]. In this section we generalize
an earlier proposed nonlinear SDE within the nonextensive statistical mechanics framework to reproduce the long-range
memory statistics with a q-Gaussian PDF. The q-Gaussian PDF of stochastic variable r with variance σ 2q can be written as

P(r) = Aq expq

(
−

r2

(3− q)σ 2q

)
, (1)

where Aq is a constant of normalization and q defines the power law part of the distribution. P(r) is introduced through the
variational principle applied to the generalized entropy [8]

Sq = k
1−

∫
[p(r)]qdr
1− q

.

Here the q-exponential of variable x is defined as

expq(x) = (1+ (1− q)x)
1
1−q (2)

and we assume that the q-mean µq = 0. With some transformation of parameters σq and q

λ =
2
q− 1

, r0 = σq

√
3− q
q− 1

we can rewrite the q-Gaussian in a more transparent form:

Pr0,λ(r) =
Γ (λ/2)

√
πr0Γ (λ/2− 1/2)

(
r20

r20 + r2

) λ
2

. (3)

Looking for the appropriate form of the SDEwe start from the general case of a multiplicative equation in the Ito convention
with Wiener processW :

dr = a(r)dt + b(r)dW . (4)

If the stationary distribution of SDE (4) is the q-Gaussian (3), then the coefficients of SDE are related as follows [25]:

a(r) = −
λ

2
r

r20 + r2
b(r)2 + b(r)

db(r)
dr

. (5)
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From our previous experience modeling one-over-f noise and trading activity in financial markets [17,18], building nonlin-
ear stochastic differential equations exhibiting power law statistics [19,20], we know that processes with power spectrum
S(f ) ∼ 1/f β can be obtained using the multiplicative term b(r) ∼ rη or even a slightly modified form (r20 + r

2)
η
2 . Therefore,

we choose the term b(r) as

b(r) = σ(r20 + r
2)

η
2 (6)

and, consequently, by Eq. (5) we have the related relaxation

a(r) = σ 2
(
η −

λ

2

)
(r20 + r

2)η−1r. (7)

Then one gets the stochastic differential equation

dr = σ 2
(
η −

λ

2

)
(r20 + r

2)η−1rdt + σ(r20 + r
2)

η
2 dW . (8)

Note that in the simple case η = 1, Eq. (8) coincides with the model presented in the article by Queiros et al. [26] with

b(r) =

√
θ

P(r)
2
λ

, a(r) = −
θ

r20

(
λ

2
− 1

)
r. (9)

We will investigate higher values of η in order to cache long-range memory properties of the absolute return in the
financial markets. We can scale our variables

x =
r
r0
, ts = σ 2r

2(η−1)
0 t (10)

to reduce the number of parameters and to get simplified equations. Then SDE

dx =
(
η −

λ

2

)
(1+ x2)η−1xdts + (1+ x2)

η
2 dWs (11)

describes a stochastic process with a stationary q-Gaussian distribution

Pλ(x) =
1
√
π

Γ (λ/2)
Γ (λ/2− 1/2)

(
1

1+ x2

) λ
2

(12)

and the power spectral density of the signal S(f )

S(f ) =
A
f β
, β = 1+

λ− 3
2(η − 1)

(13)

A =
(λ− 1)Γ (β − 1/2)
2
√
π(η − 1) sin(πβ/2)

(
2+ λ− 2η
2π

)β−1
(14)

with 0.5 < β < 2, 4 − η < λ < 1 + 2η and η > 1. Eqs. (13) and (14) were first derived for the multiplicative point
process in [17,18] and generalized for the nonlinear SDE (8) in [19,20]. Although Eq. (8) coincides with Eq. (15) in Ref. [20]
only for high values of the variable r � r0, these values are responsible for the power spectrum. Note that the frequency
f in Eq. (13) is the scaled frequency matching the scaled time ts (10). The scaled Eqs. (10)–(14) define a stochastic model
with two parameters λ and η responsible for the power law behavior of the signal PDF and power spectrum. Numerical
calculations with Eq. (11) confirm analytical formulas (12)–(14) (see Ref. [20]).
Wewill need amore sophisticated version of the SDE to reproduce a stochastic process with a fractured power spectrum

of the absolute return observable in financial markets. Having in mind the statistics of the stochastic model (11) defined
by (12)–(14) and numerical modeling with more sophisticated versions of the SDE, we propose an equation combining two
powers of multiplicativity:

dx =
(
η −

λ

2
− (xεη)2

)
(1+ x2)η−1

((1+ x2)
1
2 ε + 1)2

xdts +
(1+ x2)

η
2

(1+ x2)
1
2 ε + 1

dWs. (15)

Here ε divides area of x diffusion into two different power law regions to ensure the spectral density of |x|with two power
law exponents. A similar procedure has been introduced in the model of trading activity [23]. The proposed new form of the
continuous stochastic differential equation enables us to reproduce the main statistical properties of the return observed
in the financial markets. This provides an approach to the market with behavior dependent on the level of activity and
exhibiting two stages: calm and excited. Eq. (15) models the stochastic return x with two power law statistics, i.e., the PDF
and power spectral density, reproducing the empirical power law exponents of the trading return in the financialmarkets. At
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Fig. 1. (a) The numerically calculated PDF of |X | = |
∫ t+τ
t x(t)/τ dts| from Eq. (17) (black thin line), in comparison with the theoretical distribution 2P(x)

Eq. (12) (gray thick line), and (b) the numerically calculated power spectrum of |X |. Parameters η = 5/2, λ = 3.6, τ = 0.0001 and ε = 0.01 are selected
to reproduce statistics for the absolute return in financial markets.

the same time, via the term (xεη)2 we introduce the exponential diffusion restriction for the high values of x as the markets
in the excited stage operate on the limit of nonstationarity.We solve Eq. (15) numerically using themethod of discretization.
Introducing the variable step of integration

hk = κ2
((x2k + 1)

1
2 ε + 1)2

(x2k + 1)η−1
,

the differential equation (15) transforms to the difference equation

xk+1 = xk + κ2
(
η −

λ

2
− (xεη)2

)
xk + κ(x2k + 1)

1
2 εk (16)

tk+1 = tk + κ2
((x2k + 1)

1
2 ε + 1)2

(x2k + 1)η−1
. (17)

The continuous stochastic variable x does not include any time scale as the return defined in a time window τ should.
Having in mind that the return is an additive variable and depends on the number of transactions in a similar way to
trading activity, we define the scaled return X in the time period τ as the integral of the continuous stochastic variable
X =

∫ t+τ
t x(ts)/τ dts. Note that τ here is measured in scaled time units Eq. (10) and will coincide with a one-minute interval

of empirical data. This serves as an procedure of adjustment to the real time scale for scaled equations.
It is worth recalling that integration of the signal in the time interval τ does not change the behavior of the power

spectrum for the frequencies f � 1
τ
. This is just the casewe are interested in for the long-rangememory analysis of financial

variables and we can expect Eqs. (13) and (14) to work for the stochastic variable X as well. We analyzed the influence of
signal integration on the PDF in previous modeling of trading activity; see Ref. [17]. Integration of the nonlinear stochastic
signal increases the exponent of the power law tails in the area of the highest values of the integrated signal. This hides
fractured behavior of the X PDF, which arises for x as a consequence of the two powers in themultiplicative term of Eq. (15).
In Fig. 1 we demonstrate (a) the numerically calculated PDF of |X | in comparison with the theoretical distribution 2P(x)

Eq. (12) and (b) the numerically calculated power spectrum of |X | with parameters appropriate for reproducing statistics
for the absolute return in financial markets.

3. Empirical analysis and model adjustment

In this section we analyze the tick by tick trades of 24 stocks, ABT, ADM, BMY, C, CVX, DOW, FNM, GE, GM, HD, IBM,
JNJ, JPM, KO, LLY, MMM, MO, MOT, MRK, SLE, PFE, T, WMT, XOM, traded on the NYSE for 27 months from January, 2005,
recorded in the Trades and Quotes database. We sum empirical tick by tick returns into one-minute returns to adjust the
continuous stochastic model presented. There is a problem in the use of a straightforward procedure to determine η from
empirical data. One expects to have η ' 1when the return is assumed as a simple stochastic variable [26]. From our point of
view the straightforward SDE recovery procedures do not work, as the return in real financial markets is at least double the
stochastic process influenced by long memory stochastic trading activity and rapid price fluctuations. On the other hand,
if one assumed η = 1, then long-range memory features of the process would be lost [20]. Earlier we investigated the
nonlinear stochastic equations with η ≥ 3/2, exhibiting the long-range memory properties [19], and proposed one as an
appropriate stochastic model of trading activity in the financial markets [23]. Detailed analysis of the empirical data from
the NYSE provides evidence that long-range memory properties of the return strongly depend on fluctuations of trading
activity. In Fig. 2 we demonstrate strong correlation of the moving average of absolute returns per minute with the moving
average of trading activities (number of trades perminute). Here for the empirical sequences of one-minute returns {rt}Tt=1 or
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Fig. 2. An example of amoving average for 60min of empirical absolute returns perminute (gray thick line) in comparisonwith the correspondingmoving
average of trading activity, number of trades per minute (black thin line). Scales are adjusted.

trading activities {Nt}Tt=1 we calculate moving averages MA defined as the centeredmeans for a selected number of minutes
n; for example, MA(rt) is

MA(rt) =
1
n

t+n/2−1∑
j=t−n/2

rj. (18)

The best correlation can be achieved when the moving averages are calculated in the period from 60 to 100 min.
There are a lot of researchers investigating the power law distribution of returns and trading activity in the financial

markets [27]. The q-Gaussian PDF is a reasonable approximation to the empirical data [7]. The power law exponents for the
extreme values of returns and trading activity are nearly the same: λ ' 4 [23]. Furthermore, fascinating statistical similarity
of two financial variables occurs in the power spectral density exhibiting long-range memory properties with two scaling
exponents [23]. All these extraordinary sophisticated statistical properties are reproducible using the SDE (15) introduced
in the previous section.
Many non-equilibrium systems exhibit spatial or temporal fluctuations of some parameter. There are two time scales:

the scale onwhich the dynamics is able to reach a stationary state, and the scale forwhich the fluctuating parameter evolves.
A particular case is when the time needed for the system to reach stationarity is much smaller than the scale at which the
fluctuating parameter changes. In the long term, the non-equilibrium system is described by the superposition of different
local dynamics at different time intervals, which has been called superstatistics [28,29].
In order to account for the double stochastic nature of return fluctuations— a hidden slowly diffusing long-rangememory

process and rapid fluctuations of the instantaneous price changes — we decompose the empirical one-minute return series
into two processes: the background fluctuations and the high amplitude rapid fluctuations dependent on the first one
modulating. To perform this decomposition we assume that the empirical return rt can be written as instantaneous q-
Gaussian fluctuations with a slowly diffusing parameter r0 dependent on the moving average of the return rt :

r = ξ{r0(MA(rt)), λ2}, (19)

where ξ{r0, λ2} is a q-Gaussian stochastic variable with the PDF defined by Eq. (3) (the parameter q is q = 1 + 2/λ2). In
Eq. (19) the parameter r0 depends on the modulating moving average of returns, MA(rt), and the empirically defined power
law exponent λ2. From the empirical time series of the one-minute returns rt one can draw histograms of ξ corresponding
to defined values of the moving average MA(rt). The q-Gaussian PDF is a good approximation to these histograms and the
adjusted set of r0 for selected values of MA(rt) gives an empirical definition of the function

r0(MA(rt)) = 1+ 2.5× |MA(rt)|. (20)

The q-Gaussians with λ2 = 5 and linear function r0(|MA(rt)|) (20) give a good approximation of ξ fluctuations for all stocks
and values of modulating MA(rt). The long-term PDF of moving average MA(rt) can be approximated by a q-Gaussian with
r̄0 = 0.2 and λ = 3.6. All these empirically defined parameters form the background for the stochastic model of the return
in the financial market.
We propose to model the long-range memory modulating stochastic return MA(rt) by X = r̄0

∫ t+τ
t x(t)/τ dt , where x

is a continuous stochastic variable defined by Eq. (15). The remaining parameters ε and τ can be adjusted to the empirical
data and have values ε = 0.01 and τ = 0.0001/σ 2 = 60 s. In Fig. 3 we provide a comparison of the empirical PDF, averaged
over 24 stocks of the NYSE, of one-minute returns normalized to the standard deviation and the power spectrum with the
corresponding statistics of the proposed double stochastic model. This serves as evidence of possibility of modeling the
financial variables using nonlinear stochastic equations with elements of nonextensive statistics. Noticeable difference in
theoretical and empirical PDFs for small values of X are related with the prevailing prices of trades expressed in integer
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Fig. 3. Comparison of empirical and model (15)–(20) statistics of one-minute returns traded on the NYSE, (a) the empirical (black thin line) and model
(gray thick line) PDF of normalized returns and (b) the empirical (black thin line) power spectrum averaged over 24 stocks and the model power spectrum
(gray thick line) averaged over 24 realizations. All parameters are as follows: λ2 = 5; r̄0 = 0.2; τ = 0.0001/σ 2 = 60s; λ = 3.6; ε = 0.01 and η = 5/2.

values of cents. Obviously we do not account for this discreteness in our continuous description. In the empirical power
spectrum one-day resonance – the largest spike with higher harmonics – is present. This seasonality – an intraday activity
pattern of the signal – is not included in the model either and this leads to the explicable difference from observed power
spectrum.

4. Discussion and conclusions

In the previous work [23] we provided evidence that long-range memory fluctuations of trading activity in the financial
markets may be considered as the background stochastic process responsible for the fractal properties of other financial
variables. This background stochastic process can be reproduced using a nonlinear SDE (15) with multiplicative noise
composed of two powers of a stochastic variable. The two powers in the SDE reveal different behaviors of the market in the
periods of different trading activity. In this paper we generalized the form of the background SDE within the nonextensive
statistical mechanics framework to reproduce fascinating statistical properties of the financial variables with a q-Gaussian
PDF and fractured behavior of the power spectrum.
In the prevailing relatively calm periods, with x < 1/ε and multiplicativity specified by η = 5/2, markets behave as sta-

tionary stochastic processes with a q-Gaussian PDF, q ∼ 1+ 2/5 = 1.4. In the periods of excited behavior, when x > 1/ε,
the PDF approaches a nonstationary regime, λ ∼ 2. This leads to the excess values of financial variables, which have to
be restricted by the additional limits in the SDE, term (xεη)2 giving the exponential restriction of diffusion at the excess
value x ∼ 1/εη . These rare escapes of a continuous stochastic variable smoothed by an integration procedure do not very
considerably contribute to the main PDF of a financial variable. However, these escapes condition the behavior of the power
spectrum, reducing the exponentβ of the power law distribution S(f ) ∼ 1/f β in the region of higher frequencies. In the case
of the return, the background stochastic process defined by Eq. (15) is hidden by the secondary high amplitude q-Gaussian
stochastic process ξ{r0, λ2}. Though the background fluctuations are considerably lower than the secondary ones, this drives
the whole process through the empirically defined Eqs. (19) and (20).
The generalized new form of the continuous stochastic differential, equation (15), enables us to reproduce the main

statistical properties of the return, observed in the financial markets. All parameters introduced are recoverable from the
empirical data and are responsible for the specific statistical features of realmarkets. Themodel does capture the distribution
of the return, the empirical temporal dynamics and correlations evaluated through the power spectral density of absolute
return. The model definition with two powers of multiplicative noise enables us to reproduce the power spectral density
with two different scaling exponents, as observed in the empirical data. Stochastic modeling of the financial variables with
the nonlinear SDE is consistent with the nonextensive statistical mechanics and provides new opportunities to capture
empirical statistics in detail.
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