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• We obtained equations with Lévy stable noise and power law distribution of the signal.
• Gaussian noise can be replaced with Lévy stable noise preserving scaling of signal.
• For some parameters our equations generate signals having 1/f spectrum.
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a b s t r a c t

Complex dynamical systems which are governed by anomalous diffusion often can be
described by Langevin equations driven by Lévy stable noise. In this article we generalize
nonlinear stochastic differential equations driven by Gaussian noise and generating signals
with 1/f power spectral density by replacing the Gaussian noise with a more general Lévy
stable noise. The equations with the Gaussian noise arise as a special case when the index
of stability α = 2. We expect that this generalization may be useful for describing 1/f
fluctuations in the systems subjected to Lévy stable noise.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Lévy α-stable distributions, characterized by the index of stability 0 < α 6 2, constitute the most general class of
stable processes. The Gaussian distribution is their special case, corresponding to α = 2. If α < 2, then the Lévy stable
distributions have power-law tails ∼1/x1+α . There are many systems exhibiting Lévy α-stable distributions: distribution
function of turbulent magnetized plasma emitters [1] and step-size distribution of photons in hot vapors of atoms [2] have
Lévy tails; theoreticalmodels suggest that velocity distribution of particles in fractal turbulence is Lévy stable distribution [3]
or at least has Lévy tails [4]. If system behavior depends only on large noise fluctuations, such noise intensity distributions
can be approximated by Lévy stable distribution, leading to Lévy flights. Lévy flight is a generalization of the Brownian
motion which describes the motion of small macroscopic particles in liquid or gas experiencing unbalanced bombardments
due to surrounding atoms. The Brownian motion mimics the influence of the ‘‘bath’’ on surrounding molecules in terms of
time-dependent stochastic force which is commonly assumed to be white Gaussian noise. That postulate is compatible with
the assumption of a short correlation time of fluctuations, much shorter than the time scale of the macroscopic motion,
and the assumption of weak interactions with the bath. On the contrary, the Lévy motions describe the results of strong
collisions between the particle and the surrounding environment. Lévy flights can be found in many physical systems: as
an example we can point out anomalous diffusion of Na adatoms on a solid Cu surface [5], anomalous diffusion of a gold
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nanocrystal, adsorbed on the basal plane of graphite [6] and anomalous diffusion in optical lattices [7]. Lévy flights can be
modeled by the fractional Fokker–Planck equations [8] or Langevin equations with additive Lévy stable noise.

Nonlinear stochastic differential equations (SDEs) with additive Lévy stable noise have been explored quite extensively
for the past 15 years [9–12]. Such stochastic differential equations lead to the fractional Fokker–Planck equations with
constant diffusion coefficient. Models with multiplicative Lévy stable noise have been used for modeling inhomogeneous
media [13], ecological population density with fluctuating volume of resources [14]. The relation between the Langevin
equation with multiplicative Lévy stable noise and the fractional Fokker–Planck equation has been introduced in Ref. [15],
where the Langevin equation is interpreted in the Itô sense [16]. The relation between these two equations is not known
in Stratonovich interpretation. Fractional Fokker–Planck equation models have been applied to model enzyme diffusion on
polymer chain [17] and some cases of anomalous diffusion [18]. However, application of SDEs driven by Lévy stable noise
can be problematic. We can always write the Fokker–Planck equation corresponding to the Langevin equation driven by the
Gaussian noise and vice versa, but such statement is not always true for the Langevin equation with Lévy stable noise. For
example, particle (enzyme) dispersion on a rapidly folding random heteropolymer can be described by the space fractional
Fokker–Planck equation [19], but for such an equation the counterpart Langevin equation has not been found [20] andmight
not even exit [21].

One of the characteristics of the signal is the power spectral density (PSD). Signals having the PSD at low frequencies f of
the form S(f ) ∼ 1/f β with β close to 1 are commonly referred to as ‘‘1/f noise’’, ‘‘1/f fluctuations’’, or ‘‘flicker noise’’. Such
signals are often found in physics and in many other fields [22–28]. Since the discovery of 1/f noise, numerous models and
theories have been proposed, for a recent review see Ref. [29]. However, most of thosemodels and theories are not universal
because they contain the assumptions specific to the problem under consideration. Mostly 1/f noise is considered as the
Gaussian process [30,31], but sometimes the signal exhibiting 1/f fluctuations is non-Gaussian [32,33].

Often 1/f noise is modeled as the superposition of the Lorentzian spectra with a wide range distribution of relaxation
times [34]. Self-organized criticality (SOC) [35–37] provides another important class of the models of 1/f noise. Yet another
model has been presented in Refs. [38–41]: in this model the signals consist of pulses and it has been shown that a Brownian
motion of the inter-pulse durations can yield 1/f noise. Starting from this model of 1/f noise nonlinear SDEs generating
signals with 1/f spectrum were obtained in Refs. [42,43]. A special case of this nonlinear SDE has been obtained using
Kirman’s agent model [44]. Such nonlinear SDEs have been used to describe signals in socio-economical systems [45,46].

The purpose of this paper is to generalize nonlinear SDEs driven by the Gaussian noise and generate signals with 1/f
PSD by replacing the Gaussian noise with a more general Lévy stable noise. The previously proposed SDEs then arise as a
special casewhen α = 2.We can expect that this generalizationmay be useful for describing 1/f fluctuations in the systems
subject to Lévy stable noise.

The paper is organized as follows: In Section 2we search for the nonlinear SDEwith Lévy stable noise yielding power law
steady state probability density function (PDF) of the generated signal. In Section 3 we estimate when the signal generated
by such an SDE has 1/f PSD in a wide region of frequencies. In Section 4 we numerically solve the obtained equations and
compare the PDF and PSD of the signal with analytical estimations. Section 5 summarizes our findings.

2. Stochastic differential equation with Lévy stable noise generating signals with power law distribution

In this section we search for nonlinear SDEs with Lévy stable noise yielding power law steady state PDF of the generated
signal. We consider the Langevin equation of the form [8,47,48]

dx
dt

= a(x) + b(x)ξ(t), (1)

where a(x) and b(x) are the given functions describing the deterministic drift term and the amplitude of the noise,
respectively. The stochastic force ξ(t) is uncorrelated, ⟨ξ(t)ξ(t ′)⟩ = δ(t − t ′) and is characterized by Lévy α-stable
distribution. In this paper we will restrict our investigation only to symmetric stable distributions, thus the characteristic
function of ξ(t) is

⟨exp(ikξ)⟩ = exp(−σ α
|k|α). (2)

Here α is the index of stability and σ is the scale parameter. We interpret Eq. (1) in the Itô sense. In a mathematically more
formal way Eq. (1) can be written in the form

dx = a(x)dt + b(x)dLα
t , (3)

where dLα
t stands for the increments of Lévy α-stable motion Lα

t [49,50]. For calculating the steady state PDF of the signal
x we will use the fractional Fokker–Planck equation instead of the stochastic differential equation (1). The fractional
Fokker–Planck equation corresponding to the Itô solution of Eq. (1) is [51,15]

∂

∂t
P(x, t) = −

∂

∂x
a(x)P(x, t) + σ α ∂α

∂|x|α
b(x)αP(x, t). (4)
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Here ∂α/∂|x|α is the Riesz–Weyl fractional derivative. The Riesz–Weyl fractional derivative of the function f (x) is defined
by its Fourier transform [52],

F


∂α

∂|x|α
f (x)


= −|k|α f̃ (k). (5)

One can get the following expression for the Riesz–Weyl derivative:

∂α

∂|x|α
f (x) = −

1
2 cos


πα
2

 {D−α
+

f (x) + D−α
−

f (x)}, (6)

where D−α
+ and D−α

− are the left and right Riemann–Liouville derivatives [52]:

D−α
±

= (±1)m
dm

dxm
Dm−α

±
, m − 1 < α < m. (7)

Herem is an integer and

Dα
+
f (x) =

1
Γ (α)

 x

−∞

(x − z)α−1f (z) dz, (8)

Dα
−
f (x) =

1
Γ (α)


+∞

x
(z − x)α−1f (z) dz. (9)

When α = 1 then the definition of the Riesz–Weyl derivative is

d
d|x|

f (x) = −
d
dx

1
π


+∞

−∞

f (z)
x − z

dz. (10)

Eq. (4) leads to the following equation for the steady state PDF:

σ α ∂α

∂|x|α
b(x)αP0(x) −

∂

∂x
a(x)P0(x) = 0. (11)

Eq. (11) can be written as −dJ(x)/dx = 0, where J(x) is the probability current. Reflective boundaries lead to the boundary
condition J(x) = 0.

2.1. Equation with only positive values of x

We will search for the stochastic differential equation (1) generating signals with power law steady state PDF,

P0(x) ∼ x−λ. (12)

Since the power law PDF cannot be normalized when x can vary from zero to infinity, we will assume that the power law
holds only in some wide regions of x, xmin ≪ x ≪ xmax. One can expect that the power law PDF can be obtained when the
coefficients a(x) and b(x) in Eq. (1) themselves are of the power law form. Thuswewill consider b(x) = xη and a(x) = σ αγ xµ.
Here η is the exponent of the multiplicative noise, µ and γ must be determined. With such a choice of b(x) and power law
form of P0(x) from Eq. (4) it follows that we need to calculate the fractional derivative of the power law function.

Let us consider the function

f (x) =


xρ, xmin < x < xmax,
0 otherwise. (13)

Using Eq. (6) we obtain the following approximate expressions for the fractional derivative of the function (13) when
xmin ≪ x ≪ xmax:

dα

d|x|α
f (x) ≈



sin

π


α
2 − ρ


sin(π(ρ − α))

Γ (1 + ρ)

Γ (1 + ρ − α)
xρ−α, −1 < ρ < α,

x1+ρ

min

2 cos


π
2 α


(1 + ρ)Γ (−α)

x−1−α, ρ < −1

xρ−α
max

2 cos


π
2 α


(α − ρ)Γ (−α)

, ρ > α,

0 < α < 2; α ≠ 1 (14)
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and

d
d|x|

f (x) ≈



−λ cot(πρ)xρ−1, −1 < ρ < 1

−
x1+ρ

min

π(1 + ρ)
x−2, ρ < −1

xρ−1
max

π(1 − ρ)
, ρ > 1

(15)

for α = 1. We see that the approximate expression for the fractional derivative does not depend on the limiting values xmin
and xmax when −1 < ρ < α. Using the power-law forms of the coefficients a(x) and b(x), assuming that −1 < αη − λ < α
and using Eq. (14) for the fractional derivative, from Eq. (11) we get

sin

π


α
2 − αη + λ


sin[π(α(η − 1) − λ)]

Γ (1 + αη − λ)

Γ (1 + α(η − 1) − λ)
xα(η−1)−λ

− γ (µ − λ)xµ−λ−1
= 0. (16)

This equation should be valid for all values of x. This can be only when

µ = α(η − 1) + 1 (17)

and

γ =
sin


π


α
2 − αη + λ


sin[π(α(η − 1) − λ)]

Γ (αη − λ + 1)
Γ (α(η − 1) − λ + 2)

. (18)

Thus we will investigate the nonlinear SDE with Lévy stable noise of the form

dx = σ α
sin


π


α
2 − αη + λ


sin[π(α(η − 1) − λ)]

Γ (αη − λ + 1)
Γ (α(η − 1) − λ + 2)

xα(η−1)+1dt + xηdLα
t . (19)

This equation is a generalization of the nonlinear SDE with Gaussian noise proposed in Refs. [42,43]. Because of the
divergence of the power law distribution and the requirement of the stationarity of the process, SDE (19) should be analyzed
together with the appropriate restrictions of the diffusion in some finite interval. The simplest choice of restriction is the
reflective boundaries at x = xmin and x = xmax. However, other forms of restrictions are possible by introducing additional
terms in the drift term of Eq. (19).

From Eq. (14) it follows that the equation for the fractional derivative is valid when −1 < αη − λ < α. However, the
condition J(x) = 0 for the probability current leads to a stronger restriction than Eq. (11) which ensures only dJ(x)/dx = 0.
Using Eq. (6) and the function (13) we see that the upper limiting value xmax can be neglected in the probability current
when ρ < α − 1. Thus the power law exponent λ of the steady state PDF should be from the interval

α(η − 1) + 1 < λ < αη + 1. (20)

As a particular case when α = 2 from Eq. (19) we get the previously proposed SDE with the Gaussian noise [42,43]

dx = σ 2(2η − λ)x2η−1dt + xηdL2t . (21)

Note, that according to the definition (2), the scale parameter σ differs from the standard deviation of the Gaussian noise.
Eq. (19) has a simple form when α = 1:

dx = σ cot[π(λ − η)]xηdt + xηdL1t . (22)

2.2. Equations allowing both positive and negative values of x

In Eq. (19) the stochastic variable x can acquire only positive values. Similarly as in Ref. [53] we can get the equations
allowing x to be negative.Wewill search for the stochastic differential equation (1) generating signalswith power law steady
state PDF

P0(x) ∼ |x|−λ. (23)

To have a normalizable PDF we will assume that the power law holds only in some wide regions of x, xmin ≪ |x| ≪ xmax. In
order to obtain such an equationwewill consider Eq. (1)with the coefficients having the power law form a(x) = σ αγ |x|µ−1x
and b(x) = |x|η when |x| ≫ xmin. Similarly as in the case of the positive x we investigate the fractional derivative of the
function

f (x) =


|x|ρ, xmin < |x| < xmax,

xρ

min, −xmin < x < xmin,
0 otherwise.

(24)
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Using Eq. (6) we obtain the following approximate expressions for the fractional derivative of the function (13) when
xmin ≪ x ≪ xmax:

dα

d|x|α
f (x) ≈

sin


π
2 ρ


sin


π
2 (α − ρ)

 Γ (1 + ρ)

Γ (1 + ρ − α)
xρ−α, −1 < ρ < α. (25)

Using Eq. (25) for the fractional derivative in Eq. (11), we obtain µ = α(η − 1) + 1 and

γ =
sin


π
2 (αη − λ)


sin


π
2 (λ − α(η − 1))

 Γ (αη − λ + 1)
Γ (α(η − 1) − λ + 2)

. (26)

In addition, from Eq. (25) it follows that the power law exponent λ of the steady state PDF should be from the interval

α(η − 1) < λ < αη + 1. (27)

When α = 2, Eq. (26) simplifies to

γ = 2η − λ. (28)

This expression is the same as the one for the SDE with only positive values of x and α = 2. However, when α < 2, the
coefficient γ given by Eq. (26) is different from γ given by Eq. (18), in contrast to the Gaussian case (α = 2). This can be
understood by noticing that the Lévy stable noise for α < 2 has large jumps. Jumps from the regions with negative values of
the stochastic variable x to the regions with positive values influence the PDF P0(x) for the positive values of x. The situation
is the same with the jumps from positive to negative regions. Eq. (26) also has a simple form

γ = tan
π

2
(η − λ)


(29)

for α = 1.
The required form of the coefficients α(x) and b(x) has the equation

dx = σ αγ (x20 + x2)
α
2 (η−1)xdt + (x20 + x2)

η
2 dLα

t (30)

and the equation

dx = σ αγ (xα
0 + |x|α)η−1xdt + (xα

0 + |x|α)
η
α dLα

t . (31)

Here parameter x0 plays the role of xmin. The restriction of the diffusion at the large absolute values of x can be achieved
by reflective boundaries at ±xmax or by additional terms in the equations. Eq. (30) is a generalization of SDE with Gaussian
noise from Ref. [53]. The addition of the parameter x0 restricts the divergence of the power law distribution of x at x → 0.
Eqs. (30) and (31) for |x| ≪ x0 represent SDEs with additive Lévy stable noise and linear relaxation.

3. Power spectral density of the generated signals

In this section we estimate the PSD of the signals generated by the SDE with Lévy stable noise

dx = σ αγ xα(η−1)+1dt + xηdLα
t , (32)

proposed in the previous section. Here γ is given by Eq. (18). For this estimationwe use the (approximate) scaling properties
of the signals, as it is done in Appendix A of Ref. [54] and in Ref. [55]. Using the Wiener–Khintchine theorem the PSD can
be related to the autocorrelation function C(t), which can be calculated using the steady state PDF P0(x) and the transition
probability P(x′, t|x, 0) (the conditional probability that at time t the signal has value x′ with the condition that at time t = 0
the signal had the value x) [56]:

C(t) =


dx


dx′ xx′P0(x)P(x′, t|x, 0). (33)

The transition probability can be obtained from the solution of the fractional Fokker–Planck equation (4) with the initial
condition P(x′, t = 0|x, 0) = δ(x′

− x).
The increments of Lévy α-stable motion dLα

t have the scaling property dLα
at = a1/αdLα

t [49]. Changing the variable x in
Eq. (32) to the scaled variable xs = ax or introducing the scaled time ts = aα(η−1)t one gets the same resulting equation. Thus
the change of the scale of the variable x and change of time scale are equivalent, leading to the following scaling property of
the transition probability:

aP(ax′, t|ax, 0) = P(x′, aµt|x, 0), (34)

with the exponent µ being

µ = α(η − 1). (35)
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As has been shown in Ref. [55], the power law steady state PDF P0(x) ∼ x−λ and the scaling property of the transition
probability (34) lead to the power law form PSD S(f ) ∼ f −β in a wide range of frequencies. From the equation

β = 1 + (λ − 3)/µ, (36)

obtained in Ref. [55], it follows that the power-law exponent in the PSD of the signal generated by SDE with Lévy stable
noise (32) is

β = 1 +
λ − 3

α(η − 1)
. (37)

This expression is the generalization of the expression for the power-law exponent in the PSD with α = 2, obtained in
Ref. [43]. As Eq. (37) shows, we get 1/f PSD when λ = 3.

The presence of the restrictions at x = xmin and x = xmax makes the scaling (34) not exact and this limits the power
law part of the PSD to a finite range of frequencies fmin ≪ f ≪ fmax. Similarly as in Ref. [55] we can estimate the limiting
frequencies. Taking into account xmin and xmax the autocorrelation function has the scaling property [55]

C(t; axmin, axmax) = a2C(aµt, xmin, xmax).

This equation means that time t in the autocorrelation function should enter only in combinations with the limiting values,
xmint1/µ and xmaxt1/µ. We can expect that the influence of the limiting values can be neglected when the first combination
is small and the second large, that is when time t is in the interval σ−αxα(1−η)

max ≪ t ≪ σ−αxα(1−η)

min . Then the frequency range
where the PSD has 1/f β behavior can be estimated as

σ αxα(η−1)
min ≪ 2π f ≪ σ αxα(η−1)

max . (38)

This equation shows that the frequency range grows with increasing of the exponent η, the frequency range becomes zero
when η = 1. By increasing the ratio xmax/xmin one can get arbitrarily wide range of the frequencies where the PSD has
1/f β behavior. Note, that pure 1/f β PSD is physically impossible because the total power would be infinite. Therefore, we
consider signals with PSD having 1/f β behavior only in some wide intermediate regions of frequencies, fmin ≪ f ≪ fmax,
whereas for small frequencies f ≪ fmin PSD is bounded.

The numerical solution of the SDEs with Lévy noise shows that the frequency range where the PSD has 1/f β behavior
falls within the interval determined by Eq. (38) and this equation gives qualitatively correct dependence of the limiting
frequencies on the parameters. However, the limiting frequencies obtained from numerical solution indicate a narrower
frequency range: the minimum limiting frequency fmin differs from that given by Eq. (38) not more than by a factor of 10,
whereas the maximum limiting frequency fmax is much smaller than in Eq. (38). In addition, numerically obtained limiting
frequencies depend also on the parameter λ. This discrepancy arises because the reasoning leading to Eq. (38) is not strict
and hasmore heuristic nature. To obtainmore correct limiting frequencies it is insufficient to consider only the approximate
scaling properties of the nonlinear SDE.

The power spectral density of the form 1/f β is determined mainly by the power law behavior of the coefficients of SDE
(32) at large values of x ≫ xmin. Changing the coefficients at small x, the spectrum preserves the power law behavior.
The modifications of SDE (30), (31) and the introduction of negative values of the stochastic variable x should not destroy
the frequency region with 1/f β behavior of the power spectral density. This is confirmed by the numerical solution of the
equations.

4. Numerical examples

When λ = 3, we get that β = 1 and SDEs (19), (30), (31) should give a signal exhibiting 1/f noise. We will solve
numerically two cases, corresponding to Eqs. (19) and (30), with the index of stability of Lévy stable noise α = 1 and the
power law exponent of the steady state PDF λ = 3. Note, that for this value of α the Lévy α-stable distribution is the same as
the Cauchy distribution. For simplicity we choose the exponent in the noise amplitude η such that the coefficient γ , given
by Eq. (18) or (26), becomes equal to−1. For the numerical solution we use Euler’s approximation, transforming differential
equations to difference equations. Eq. (32) leads to the following difference equation:

xk+1 = xk + σ αγ xα(η−1)+1
k hk + xη

kh
1/α
k ξα

k , (39)

where hk = tk+1 − tk is the time step and ξα
k is a random variable having α-stable Lévy distribution with the characteristic

function (2). We can solve Eq. (39) numerically with the constant step hk = const. However, a more effective method of the
solution of Eq. (39) is when the change of the variable xk in one step is proportional to the value of the variable, as has been
done solving SDE with Gaussian noise in Ref. [42]. The variable step of integration

hk =
κα

σ α
x−α(η−1)
k (40)

results in the equation

xk+1 = xk + καγ xk +
κ

σ
xkξα

k . (41)
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a b c

Fig. 1. (a) Signal generated by SDE with Lévy stable noise (42) with reflective boundaries at x = xmin and x = xmax . (b) Steady state PDF P0(x) of the signal.
The dashed green line shows the slope x−3 . (c) Power spectral density S(f ) of the signal. The dashed green line shows the slope 1/f . Parameters used are
xmin = 1, xmax = 104 , σ = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here κ ≪ 1 is a small parameter. We include the reflective boundaries at x = xmin and x = xmax using the projection
method [57,58]. According to the projection method, if the variable xk+1 acquires the value outside the interval [xmin, xmax],
then the value of the nearest reflective boundary is assigned to xk+1.

When α = 1, λ = 3 and η = 9/4, SDE (19) is

dx = σ x9/4dt + x9/4dL1t . (42)

The results obtained numerically solving this equation with reflective boundaries at x = xmin and x = xmax are shown
in Fig. 1. A sample of the generated signal is shown in Fig. 1(a). The signal exhibits peaks or bursts, corresponding to the
large deviations of the variable x. Comparison of the steady state PDF P0(x) and the PSD S(f ) with the analytical estimations
is presented in Fig. 1(b) and (c). There is quite good agreement of the numerical results with the analytical expressions. In
Fig. 1(b)we see that near the reflecting boundaries the steady state PDFdeviates from the power lawprediction. This increase
of the steady state PDF near boundaries is typical for equations with Lévy stable noise having α < 2 [12]. The behavior of the
steady state PDF near the reflecting boundaries is similar to the behavior of the analytical expression obtained in Ref. [12]
for the simplest stochastic differential equation Lévy stable noise having constant noise amplitude and zero drift.

A numerical solution of the equations confirms the presence of the frequency region for which the PSD has 1/f
dependence. The width of this region can be increased by increasing the ratio between the minimum and the maximum
values of the stochastic variable x. In addition, the region in the PSD with the power law behavior depends on α and the
exponent η: the width increases with increasing the difference η − 1 and increasing α; when η = 1 then this width is zero.
Such behavior is correctly predicted by Eq. (38).

We use similar schemes of numerical solution also for SDEs (30) and (31). Euler’s approximation with variable step of
integration

hk =
κα

σ α
(x20 + x2k)

−
α
2 (η−1) (43)

transforms SDE (30) to the difference equation

xk+1 = xk + καγ xk +
κ

σ


x20 + x2kξ

α
k . (44)

For SDE (31) we use the variable step of integration

hk =
κα

σ α
(xα

0 + |xk|α)−(η−1) (45)

resulting in the difference equation

xk+1 = xk + καγ xk +
κ

σ
(xα

0 + |xk|α)
1
α ξα

k . (46)

Here κ ≪ 1 is a small parameter. We include reflective boundaries at x = ±xmax using the projection method.
When α = 1, λ = 3 and η = 5/2, the SDE (30) with the coefficient γ given by Eq. (26) is

dx = −σ(x20 + x2)3/4xdt + (x20 + x2)5/4dL1t . (47)

The results obtained numerically solving this equationwith reflective boundaries at x = ±xmax are shown in Fig. 2. A sample
of the generated signal is shown in Fig. 2(a). Comparison of the steady state PDF P0(x) and the PSD S(f ) with the analytical
estimations is presented in Fig. 2(b) and (c). There is quite good agreement of the numerical results with the analytical
expressions. As in the case with only positive values of x, we see in Fig. 1(b) we see the increase of the steady state PDF near
the reflecting boundaries x = ±xmax in comparison to the power law prediction. Numerical solution of Eq. (47) confirms
the presence of the frequency region where the PSD has 1/f β dependence.
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a b c

Fig. 2. (a) Signal generated by SDE with Lévy stable noise (47). (b) Steady state PDF P0(x) of the signal. The dashed green line shows the dependence on
x proportional to |x|−3 . (c) Power spectral density S(f ) of the signal. The dashed green line shows the slope 1/f . Parameters used are x0 = 1, xmax = 104 ,
σ = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Discussion

Lévy flights have been modeled using the Langevin equation with various subharmonic potentials and additive Lévy
stable noise [9,20,10,21]. Proposed SDE (19) contains multiplicative Lévy stable noise and is a generalization of previous
attempts to model Lévy flights. This SDE can be used to investigate Lévy flights in non-equilibrium and non-homogeneous
environments, like porous media and some cases of polymer chains [19,17]. If specific conditions given by Eq. (20) are
satisfied, our model generates Lévy flights exhibiting 1/f noise. The drift term a(x) in Eq. (19) represents a subharmonic
external force effecting the particle. Lévy flights in subharmonic potentials lead to various interesting phenomena such
as stochastic resonance in single well potential [59]. The power law dependence of the diffusion coefficient b2(x) on the
stochastic variable x can be traced to the existence of the energy flux due to temperature gradient in a bath. Long jumps
leading to Lévy stable noise can arise from a complex scale free structure of the bath as is in the case of enzyme diffusion
on a polymer [19]. There are suggestions that the non-homogeneity of the bath can be described by the dependence of the
diffusion coefficient on the particle coordinate x [13] and Lévy stable noise arises from the bath not being in an equilibrium.

In the case of Gaussian noise (α = 2) the nonlinear SDE (19) that generates the signal with 1/f spectrum can be obtained
from various models. One of those models is a signal consisting from a sequence of pulses with a Brownian motion of the
inter-pulse durations [42,43]. This suggests that ourmore general form of the SDE could be obtained from some kind of Lévy
motion of the inter-pulse durations. However, we were unable to show this due to the complexity of the Itô formula in case
of equations driven by Lévy process [60]. The special case of Eq. (19) for a free particle (a(x) = 0) with Lévy stable noise
having α < 2 has been derived from coupled continuous time random walk (CTRW) models [18], when the jumping rate
ν of CTRW process depends on signal intensity as ν(x) = xαη , x > 0. However, such derivation is quite complex and does
little to help understandingwhat kind of physical phenomena can be approximated bymultiplicative Lévy stable noise. Thus
instead of searching for underlying models in this article we have chosen a simpler approach: we have derived nonlinear
SDEs using a simple reasoning about scaling properties of the steady state PDF.

Taking into account the scaling properties of the signal is one of the advantages of our model, in many theoretical
models, such as diffusion of the particle in a fractal turbulence [3], ecological population density with fluctuating volume of
resources [14], dynamics of two competing species [61] and tumor growth [62], the existence of Lévy stable noise instead
of Gaussian noise is simply assumed. Such an assumption might be incorrect, because the change of statistical properties of
the noise changes the scaling properties of the signal. In order to preserve original scaling properties of the signal the drift
a(x) or diffusion b2(x) coefficients must be changed as well. The required drift coefficient a(x) can be found similarly as in
Section 2. The scaling properties can be extracted from time series using fluctuation analysis methods [50].

In summary, we have proposed nonlinear SDEs with Lévy stable noise and generating signals exhibiting 1/f noise in
any desirably wide range of frequency. Proposed SDEs (19), (30) and (31) are a generalization of nonlinear SDEs driven by
Gaussian noise and generating signals with 1/f PSD. The generalized equations can be obtained by replacing the Gaussian
noise with the Lévy stable noise and changing the drift term to preserve statistical properties of the generated signal. We
have investigated two cases: in the first case the stochastic variable can acquire only positive values (SDE (19)), in the second
case the stochastic variable can also be negative (SDEs (30) and (31)). In contrast to the SDEs with the Gaussian noise, the
constant in the drift term, given by Eqs. (18) and (26), is different in those two cases and becomes the same only for α = 2.
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