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a b s t r a c t

Subdiffusive behavior of one-dimensional stochastic systems can be described by time-
subordinated Langevin equations. The corresponding probability density satisfies the time-
fractional Fokker–Planck equations. In the homogeneous systems the power spectral
density of the signals generated by such Langevin equations has power-law dependency
on the frequency with the exponent smaller than 1. In this paper we consider nonhomoge-
neous systems and show that in such systems the power spectral density can have power-
law behavior with the exponent equal to or larger than 1 in a wide range of intermediate
frequencies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A number of experimental observations show that more complex diffusion processes in which the mean-square dis-
placement is not proportional to the time t take place in various systems. A broad family of processes described by certain
deviations from the classical Brownian linear time dependence of the centered second moment is called anomalous diffu-
sion. Anomalous diffusion in one dimension is characterized by the occurrence of a mean square displacement of the form

⟨(1x)2⟩ =
2Kα

Γ (1 + α)
tα, (1)

which deviates from the linear Brownian dependence on time [1]. Eq. (1) introduces the anomalous diffusion coefficient
Kα . Such a deviation from classical diffusive behavior can be observed in many systems [2–4] and leads to many interesting
physical properties [5]. Applications of anomalous diffusion have been found in physics, chemistry and biology [1,5,6]. In
general, anomalous diffusion occurs in complex structures exhibiting the presence of long-range correlations or memory
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effects [1]. In the physics of complex systems, anomalous transport properties and their description have attracted consid-
erable interest starting with the pioneering papers of Montroll and his collaborators [7].

An important subclass of anomalous diffusion processes constitute subdiffusion processes, characterized by the sublinear
dependence with the power-law exponent in the range 0 < α < 1. In this situation no finite mean jump time1t exists [2].
Subdiffusion processes have been reported in condensed matter systems [2], ecology [3], and biology [4]. Continuous time
randomwalks (CTRWs) with on-site waiting-time distributions falling slowly as t−α−1 and lacking the first moment predict
a subdiffusive behavior and are powerful tools to describe systems which display subdiffusion [2,8]. Starting from the
generalized master equation or from the CTRW the fractional Fokker–Planck equation can be rigorously derived [9,10].
Fractional Fokker–Planck equation provides a useful approach for the description of transport dynamics in complex systems
which are governed by anomalous diffusion [2] and nonexponential relaxation patterns [11]. It has been used to model
dynamics of protein systems and for reactions occurring in disorderedmedia [2,12–18]. Description equivalent to a fractional
Fokker–Planck equation consists of a Markovian dynamics governed by an ordinary Langevin equation but proceeding in an
auxiliary, operational time instead of the physical time [19]. This Markovian process is subordinated to the process defining
the physical time; the subordinator introduces memory effects [20]. Other approaches for the theoretical description of the
subdiffusion use the generalized Langevin equation [21–23], fractional Brownianmotion [24], or the Langevin equationwith
multiplicative noise [25].

The traditional CTRW provides a homogeneous description of the medium. More complex situation is the diffusion in
nonhomogeneous media, for example diffusion on fractals and multifractals [26]. Nonhomogeneous systems exhibit not
only subdiffusion related to traps, but also enhanced diffusion can occur: for example, transport of interacting particles in
a weakly disordered media is superdiffusive due to the disorder and subdiffusive without the disorder [27]. Anomalous
diffusion in heterogeneous fractal medium has been considered in Ref. [28] where it was proposed that in one dimension
the mean square displacement has the form ⟨(1x)2⟩ ∼ x−θ tα instead of Eq. (1). Heterogeneous fractional Fokker–Planck
equation on heterogeneous fractal structure media has been investigated in Refs. [29–32]. In nonhomogeneous media
the properties of a trap can reflect the medium structure, therefore in the description of transport in such a medium the
waiting time should explicitly depend on the position. This dependence can be introduced by using the position-dependent
subdiffusion exponents [33–35]. Another way is to consider position-dependent time subordinator [36].

In the homogeneous systems the power spectral density (PSD) of the signals generated by time-subordinated Langevin
equations has power-law dependency S(f ) ∼ f α−1 on the frequency as f → 0 [37]. Since 0 < α < 1, the power-law
exponent 1 − α is smaller than 1. The purpose of this paper is to consider the PSD in nonhomogeneous systems exhibiting
anomalous diffusion. We demonstrate, that in such systems the PSD can have power-law behavior with the exponent equal
to or larger than 1 in a wide range of intermediate frequencies.

The paper is organized as follows: in Section 2we introduce the time-fractional Fokker–Planck equation describing subd-
iffusion in nonhomogeneousmedia. The expression for the power spectral density of the fluctuations of the diffusing particle
in such a medium is obtained in Section 3. In Section 4 we consider a particular case of the time-fractional Fokker–Planck
equation involving the coefficients with power-law dependence on the position. Numerical methods of solution are dis-
cussed in Section 5. Section 6 summarizes our findings.

2. Time-fractional Fokker–Planck equation for nonhomogeneous media

In this section we derive the time-fractional Fokker–Planck equation describing diffusion of a particle in nonhomo-
geneous media. Usually the description of the anomalous diffusion is given by the CTRW theory assuming heavy-tailed
waiting-time distributions between successive jumps of the diffusing particle. Here we use the method of the derivation
that is similar to that outlined in Refs. [19,38]. We start with the Markovian process described by the Itô stochastic differ-
ential equation (SDE)

dx(τ ) = a(x(τ ))dτ + b(x(τ ))dW (τ ). (2)

Here W (τ ) is the standard Brownian motion (Wiener process). The drift coefficient a(x) and the diffusion coefficient b(x)
explicitly depend on the particle position x. This dependence on the position reflects the nonhomogeneity of a medium.
Following Ref. [19] we interpret the time τ in Eq. (2) as an internal, operational time. Eq. (2) we consider together with an
additional equation that relates the operational time τ to the physical time t . The difference between physical time t and
the operational time τ occurs due to trapping of the diffusing particle. For the trapping processes that have distribution of
the trapping times with power law tails, the physical time t = T (τ ) is given by the strictly increasing α-stable Lévy motion
defined by the Laplace transform

⟨e−kT (τ )
⟩ = e−τkα . (3)

Here the parameter α takes the values from the interval 0 < α < 1. Thus the physical time t obeys the SDE

dt(τ ) = dLα(τ ), (4)

where dLα(τ ) stands for the increments of the strictly increasing α-stable Lévy motion Lα(τ ). For such physical time t the
operational time τ is related to the physical time t via the inverse α-stable subordinator [39,40]

S(t) = inf{τ : T (τ ) > t}. (5)
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The processes x(τ ) and S(t) are assumed to be independent. Eqs. (2) and (4) define the subordinated process y(t) obtained
by a random change of time

y(t) = x(S(t)). (6)

The process y(t) describes the diffusion of a particle in a medium with traps.
Wewill derive the equation for the probability density function (PDF) of y. For the derivationweuse themethodof Laplace

transform. The PDF Px(x, τ ) of the stochastic variable x as a function of the operational time τ obeys the Fokker–Planck
equation corresponding to the Itô SDE (2)

∂

∂τ
Px(x, τ ) = LFP(x)Px(x, τ ), (7)

where LFP(x) is the time-independent Fokker–Planck operator [41]

LFP(x) = −
∂

∂x
a(x)+

1
2
∂2

∂x2
b2(x). (8)

The Laplace transform of Eq. (7) is

kP̃x(x, k)− Px(x, 0) = LFP(x)P̃x(x, k). (9)

Since the processes x(τ ) and S(t) are independent, the PDF of the random process x(S(t)) is given by

P(x, t) =


Px(x, τ )PS(τ , t) dτ . (10)

Here PS(τ , t) is the PDF of the inverse α-stable subordinator S(t). From Eq. (10) it follows that the Laplace transform P̃(x, k)
of the PDF P(x, t) is related to the Laplace transform P̃S(τ , k) of the inverse subordinator S(t):

P̃(x, k) =


Px(x, τ )P̃S(τ , k) dτ . (11)

The Laplace transform P̃S(τ , k) of the inverse subordinator S(t) we obtain as follows: from the definition of the inverse
subordinator (5) we have Pr(S(t) < τ) = Pr(T (τ ) > t), therefore

PS(τ , t) = −
∂

∂τ

 t

0
PT (t ′, τ ) dt ′. (12)

Here PT (t, τ ) is the PDF of the strictly increasing α-stable Lévy motion T (τ ). The PDF PT (t, τ ) fulfills the scaling relation

PT (t, τ ) =
1

τ
1
α

PT


t

τ
1
α

, 1

, (13)

since the strictly increasing α-stable Lévy motion is 1/α self-similar [42]. Combining Eqs. (12) and (13) we obtain

PS(τ , t) =
t
ατ

PT (t, τ ). (14)

Consequently, the Laplace transform of PS(τ , t) is equal to

P̃S(τ , k) = kα−1e−τkα . (15)

Here we used Eq. (3) for the Laplace transform of PT (t, τ ).
Using Eqs. (11) and (15) we get

P̃(x, k) = kα−1P̃x(x, kα). (16)

Acting with the operator LFP(x) on Eq. (16) we have

P̃(x, k) = k−1Px(x, 0)+ k−αLFP(x)P̃(x, k). (17)

The inverse Laplace transform of this equation yields

P(x, t) = Px(x, 0)+
1

Γ (α)

 t

0
dt ′ (t − t ′)α−1LFP(x)P(x, t ′). (18)

Introducing the fractional Riemann–Liouville operator [43]

0D−α
t f (t) ≡

1
Γ (α)

 t

0

f (t ′)
(t − t ′)1−α

dt ′, 0 < α < 1 (19)



R. Kazakevičius, J. Ruseckas / Physica A 438 (2015) 210–222 213

we can write Eq. (18) as

P(x, t) = Px(x, 0)+ 0D−α
t LFP(x)P(x, t). (20)

By differentiating this equation with respect to time we get the time-fractional Fokker–Planck equation

∂

∂t
P(x, t) = 0D1−α

t


−
∂

∂x
[a(x)P] +

1
2
∂2

∂x2
[b2(x)P]


, (21)

where

0D1−α
t f (t) ≡

1
Γ (α)

∂

∂t

 t

0

f (t ′)
(t − t ′)1−α

dt ′, 0 < α < 1. (22)

The operator 0D1−α
t is expressed via the convolution with a slowly decaying kernel, which is typical for memory effects

in complex systems [44]. Eq. (21) is the equation describing the subdiffusion of particles in an inhomogeneous medium.
This equation generalizes the previously obtained time-fractional Fokker–Planck equation with the position-independent
diffusion coefficient.

2.1. Position-dependent trapping time

The properties of a trap in a nonhomogeneous medium can reflect the structure of the medium. In the description of the
transport in such a medium the waiting time should explicitly depend on the position [36]. Instead of Eq. (4) we assume
that the physical time t is related to the operational time τ via the SDE

dt(τ ) = g(x(τ ))dLα(τ ). (23)

Here the positive function g(x) is the intensity of random time and models the position of structures responsible for either
trapping or accelerating the particle. Large values of g(x) correspond to trapping of the particle, whereas small g(x) leads to
the acceleration of diffusion. A similar equationhas beenused inRef. [36].We interpret Eq. (23) according to the Itô stochastic
calculus: the values of x and t at operational time τ are determined by events prior to the application of the stochastic force
dLα , which acts only from time τ to τ +dτ . This assumption leads to the decoupling of the changes of x and the changes of t
occurring during an infinitesimal increment of the operational time dτ . Note, that the increments of the strictly increasing
α-stable Lévy motion Lα(τ ) are characterized by long tails and thus only moments of order smaller than α are finite.

For fixed particle position x the coefficient g(x) in Eq. (23) is constant and Eq. (23) corresponds to the fractional
Fokker–Planck equation

∂

∂τ
P(t; τ |x) = −0Dαt g(x)

αP(t; τ |x). (24)

This equation can be obtained by noting that from the definition of the strictly increasing α-stable Lévy motion (3) the
Laplace transform of the PDF P(t; τ |x) is P̃(k; τ |x) = exp{−τ [g(x)k]α}. Differentiating this expression with respect to τ and
taking the inverse Laplace transform one gets Eq. (24). Alternatively, one can obtain the fractional Fokker–Planck equation
using the methods of Refs. [26,45,46]. The fractional derivative in the Fokker–Planck equation appears as a consequence of
the increments of Lévy α-stable motion in Eq. (23).

Eqs. (2) and (23) together define the subordinatedprocess. However, now theprocesses x(τ ) and t(τ ) are not independent
and the derivation of the Fokker–Planck equation presented in previous subsection is not applicable. Nevertheless, we can
show that also with position dependent trapping time the resulting equation has the form of Eq. (21). To do this let us
consider the joint PDF Px,t(x, t; τ) of the stochastic variables x and t .

SDEs (2) and (23) correspond to the following two-dimensional fractional Fokker–Planck equation:

∂

∂τ
Px,t(x, t; τ) = LFP(x)Px,t − 0Dαt g(x)

αPx,t . (25)

This equation is a combination of Eqs. (7) and (24). Two-dimensional fractional Fokker–Planck equation (25) for the PDF
of two stochastic variables x and t can be rigorously derived from the SDEs (2) and (23) driven by Lévy stable noises as in
Refs. [26,45,46] (the Gaussian noise in Eq. (2) is a particular case of a Lévy stable noise with index of stability α = 2).

The zero of the physical time t coincides with the zero of the operational time τ , therefore, the initial condition for Eq.
(25) is Px,t(x, t; 0) = Px(x, 0)δ(t). In addition, since t is strictly increasing, we have a boundary condition Px,t(x, 0; τ) = 0
when τ > 0. The fractional Riemann–Liouville operator 0Dαt in Eq. (25) we can write as 0Dαt =

∂
∂t 0D

α−1
t .

Now let us consider x and τ as stochastic variables instead of x and t . Since the stochastic variable t is related to the
operational time τ via Eq. (23), the joint PDF Px,τ (x, τ ; t) of the stochastic variables x and τ is related to the PDF Px,t(x, t; τ)
according to the equation

Px,τ (x, τ ; t) = 0Dα−1
t g(x)αPx,t(x, t; τ). (26)
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This equation can be obtained by noting that the last term in Eq. (25) contains derivative ∂
∂t and thus should be equal to

−
∂
∂t Px,τ . From Eq. (26) it follows that

Px,t = 0D1−α
t

1
g(x)α

Px,τ . (27)

Using Eqs. (25) and (27) we obtain

∂

∂t
Px,τ (x, τ ; t) = 0D1−α

t LFP(x)
1

g(x)α
Px,τ −

∂

∂τ
0D1−α

t
1

g(x)α
Px,τ . (28)

The PDF Px,τ has the initial condition Px,τ (x, τ ; 0) = Px(x, 0)δ(τ ) and the boundary condition Px,τ (x, 0; t) = 0. The PDF of
the subordinated random process x(t) is P(x, t) =


Px,τ (x, τ ; t) dτ . Integrating both sides of Eq. (28) we get

∂

∂t
P(x, t) = 0D1−α

t L′

FP(x)P, (29)

where the new Fokker–Planck operator is

L′

FP(x) = −
∂

∂x
a′(x)+

1
2
∂2

∂x2
b′(x)2. (30)

Here the new drift and the diffusion coefficient are

a′(x) =
a(x)
g(x)α

, b′(x) =
b(x)

g(x)
α
2
. (31)

Thus position-dependent trapping leads to position-dependent coefficients in the time-fractional Fokker–Planck equation,
even if the initial SDE (2) has constant coefficients. Eq. (29) is the same as Eq. (21) when g(x) is constant and does not depend
on position.

3. Power spectral density and time-fractional Fokker–Planck equation

In this section we derive a general expression for the PSD of the fluctuations of the diffusing particle in nonhomogeneous
medium. The evolution of the PDF of particle position x is described by the time-fractional Fokker–Planck equation (21). For
calculation of the spectrumweuse the eigenfunction expansion of the Fokker–Planck operator LFP. Method of eigenfunctions
for solving of time-dependent fractional Fokker–Planck equation has been used in Ref. [47]. Spectrum of fluctuations when
the diffusion coefficient is constant has been obtained in Ref. [37]. Similar derivation of the spectrum for nonlinear SDE has
been performed in Ref. [48].

The eigenfunctions of the Fokker–Planck operator LFP(x) are the solutions of the equation

LFP(x)Pλ(x) = −λPλ(x). (32)

Here Pλ(x) are the eigenfunctions and λ > 0 are the corresponding eigenvalues. The eigenfunctions obey the orthonormality
relation [49]

eΦ(x)Pλ(x)Pλ′(x)dx = δλ,λ′ , (33)

where

Φ(x) = −ln P0(x) (34)

is the potential associated with the operator LFP(x). Here P0(x) is the steady-state solution of Eq. (21).
We can write the time-dependent solution of the fractional Fokker–Planck equation (21) corresponding to a single

eigenfunction as

P(x, t) = Pλ(x)fλ(t). (35)

Inserting into Eq. (21) we get that the function f (t) obeys the equation

d
dt

fλ(t) = −λ0D1−α
t fλ(t) (36)

with the initial condition f (0) = 1. The Laplace transform of this equation yields

kf̃λ(k) = 1 − λk1−α f̃λ(k). (37)

The solution of Eq. (37) is

f̃λ(k) =
1

k + λk1−α
. (38)
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The inverse Laplace transform is given in terms of the monotonically decreasing Mittag-Leffler function [47]

fλ(t) = Eα(−λtα). (39)

The Mittag-Leffler function has a series expansion

Eα(z) ≡ Eα,1(z) =

∞
n=0

zn

Γ (αn + 1)
. (40)

The autocorrelation function can be calculated from the transition probability P(x, t|x0, 0) (the conditional probability
that at time t the stochastic variable has value xwith the condition that at time t = 0 it had the value x0):

C(t) =


dx


dx0 x0xP0(x0)P(x, t|x0, 0)−


dx xP0(x)

2
. (41)

The transition probability is the solution of the Fokker–Planck equation (21) with the initial condition P(x, 0|x0, 0) =

δ(x − x0). Expansion of the transition probability density in a series of the eigenfunctions has the form

P(x, t|x0, 0) =


λ

Pλ(x)eΦ(x0)Pλ(x0)Eα(−λtα), (42)

where we used Eqs. (35) and (39). Inserting Eq. (42) into Eq. (41) we get the expression for the autocorrelation function

C(t) =


λ>0

X2
λEα(−λt

α). (43)

Here

Xλ =


xPλ(x) dx (44)

is the first moment of the stochastic variable x evaluated with the λ-th eigenfunction Pλ(x). Such an expression for the
autocorrelation function has been obtained in Ref. [37].

According to Wiener–Khintchine relations, the power spectral density is related to the autocorrelation function:

S(f ) = 4


∞

0
C(t) cos(ωt) dt, (45)

where ω = 2π f . Using Eq. (43) we obtain

S(f ) = 4

λ>0

X2
λ


∞

0
Eα(−λtα) cos(ωt) dt. (46)

The integral can be calculated by noting that the Laplace transform of Eα(−λtα) is given by Eq. (38). We obtain the desired
expression for the PSD

S(f ) = 4
sin

π
2 α


ω1−α


λ

λ

λ2 + ω2α + 2λωα cos

π
2 α
X2

λ . (47)

Eq. (47) becomes the usual expression for the PSD when α → 1. Similar expression for the spectrum has been obtained in
Ref. [37].

For small frequencies ω ≪ λ
1/α
1 we can neglect the frequency when it appears together with the eigenvalues λ. Here λ1

is the smallest eigenvalue larger than zero. Thus for small frequencies Eq. (47) approximately is

S(f ) ≈ 4
sin

π
2 α


ω1−α


λ

X2
λ

λ
. (48)

We obtain that for small frequencies the PSD has a power-law dependency on the frequency S(f ) ∼ f −(1−α). However, the
power-law exponent is always smaller than 1, since 0 < α < 1. It is not possible to get pure 1/f spectrum this way. In
the next section we show that it is possible to get larger power-law exponents in the PSD in a wide range of intermediate
frequencies when the diffusion coefficient is not constant and depends on x.
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4. Time-fractional Fokker–Planck equation with power-law coefficients

In this section we consider a particular case of the time-fractional Fokker–Planck equation (21). We assume that the
diffusion coefficient has a power-law dependence on the particle position x and Eq. (21) takes the form

∂

∂t
P(x, t) = σ 2

0D1−α
t

ν
2

− η
 ∂
∂x


x2η−1P(x, t)


+

1
2
∂2

∂x2

x2ηP(x, t)


. (49)

Here η is the power-law exponent of the multiplicative noise in Eq. (2) and ν defines the behavior of the steady-state PDF
P0(x). Eq. (49) should be considered together with the boundary conditions that restrict the stochastic variable x to the
positive values.

The steady-state PDF P0(x) obtained from Eq. (49) has a power-law form

P0(x) ∼ x−ν . (50)

For ν ≥ 1 the PDF P0(x) diverges as x → 0, thus the diffusion should be restricted at least from the side of small values. This
can be done by introducing an additional potential that becomes large only when x acquires values outside of the interval
[xmin, xmax] into the drift term of Eq. (49). The simplest choice is the reflective boundaries at x = xmin and x = xmax.

The power-law form of the diffusion coefficient is natural for systems exhibiting self-similarity, for example disordered
materials, and has been used to describe diffusion on fractals [50,51], turbulent two-particle diffusion, transport of fast
electrons in a hot plasma [52,53]. Eq. (49) is a generalization of the Fokker–Planck equation resulting from nonlinear SDEs
proposed in Refs. [54,55]. Such nonlinear SDEs generate signals having 1/f spectrum in awide range of frequencies and have
been used to describe signals in socio-economical systems [56,57] and Brownian motion in inhomogeneous media [58].

In Ref. [48] an approximate expression for the first moment Xλ has been obtained for the Fokker–Planck operator
appearing in Eq. (49) assuming reflective boundaries at xmin = 1 and xmax = ξ , ξ ≫ 1. According to the results of Ref. [48]

Xλ ∼
cλ

|1 − η|

1
ρβ1

, (51)

where

cλ =


|1 − η|

zmax

ν − 1
1 − ξ 1−ν

πρ, ρ =

√
2λ

|η − 1|
, β1 = 1 +

ν − 3
2(η − 1)

. (52)

The parameters zmin and zmax depend on the boundaries xmin and xmax.Whenρzmax ≫ 1, replacing summation by integration
in Eq. (47) we obtain the expression for the PSD

S(f ) ≈ 4
sin

π
2 α


ω1−α


λ

λ2 + ω2α + 2λωα cos

π
2 α
X2

λD(λ) dλ. (53)

The density of eigenvalues D(λ) has been estimated as [48]

D(λ) ∼
1

√
λ
. (54)

Using Eqs. (51) and (54) we get

S(f ) ∼ 4
sin

π
2 α


ω1+α(β1−1)

 z−2
min
ωα

z−2
max
ωα

1
uβ1−1

1
u2 + 1 + 2u cos


π
2 α
du. (55)

Here the upper range of integration is limited because Xλ becomes small when ρzmin ≫ 1 [48]. When z−2
max ≪ ωα ≪ z−2

min
and 0 < β1 < 2 then we can approximate the lower limit of integration by 0 and the upper limit by ∞. In this case the PSD
depends on the frequency as S(f ) ∼ f −1−α(β1−1). When β1 > 2 then the largest contribution is from the lower limit of the
integration. Thus, when z−2

max ≪ ωα ≪ z−2
min then the leading term in the expansion of the approximate expression for the

PSD in the power series of ω is

S(f ) ∼


1

ω1+α(β1−1)
, 0 < β1 < 2,

1
ω1+α

, β1 > 2.
(56)

This expression for PSD can also be written as

S(f ) ∼


1
ωβ
, 1 − α < β < 1 + α,

1
ω1+α

, β > 1 + α.

(57)
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Here

β = 1 + α(β1 − 1) = 1 +
α(ν − 3)
2(η − 1)

(58)

is the power-lawexponent of the PSD. Eq. (58) generalizes the expression for the power-lawexponent obtained for nonlinear
SDEs [55]. When ν = 3 then from Eq. (58) follows that we obtain 1/f spectrum.

4.1. Power spectral density from scaling properties

Power-law exponent (58) in the PSD can be obtained from the scaling properties of Eq. (49), similarly as it has been done
for the nonlinear SDEs [59]. Changing the variable x to the scaled variable xs = ax in Eq. (49) yields

∂

∂t
P(xs, t) =

σ 2

a2(η−1) 0
D1−α
t


λ

2
− η


∂

∂xs


x2η−1
s P(xs, t)


+

1
2
∂2

∂x2s


x2ηs P(xs, t)


. (59)

The Riemann–Liouville fractional derivative has the following scaling property: 0D1−α
t f (ct) = c1−α0D1−α

ct f (ct). Thus,
changing the time t to the scaled time ts = aµt we get

aµ
∂

∂ts
P(x, ts) = σ 2

0aµ(1−α)D1−α
ts


λ

2
− η


∂

∂x


x2η−1P(x, ts)


+

1
2
∂2

∂x2

x2ηP(x, ts)


. (60)

The change of the variable x to the scaled variable ax or the change of the time t to the scaled time aµt produces the same
fractional Fokker–Planck equation if

µ =
2(η − 1)

α
. (61)

It follows, that the transition probability P(x, t|x0, 0) has the following scaling property:

aP(ax, t|ax0, 0) = P(x, aµt|x0, 0). (62)

As has been shown in Ref. [59], the power-law steady state PDF P0(x) ∼ x−ν and the scaling property of the transition proba-
bility (62) lead to the power-law form PSD S(f ) ∼ f −β in a wide range of frequencies. The power-law exponent β is given by

β = 1 + (ν − 3)/µ. (63)

Using Eq. (61) we obtain the same expression for β as in Eq. (58).
The presence of restrictions at x = xmin and x = xmax makes the scaling (62) not exact. This limits the power-law part of

the PSD to a finite range of frequencies fmin ≪ f ≪ fmax. Similarly as in Ref. [59], we estimate the limiting frequencies as

σ
2
α x

2
α (η−1)
min ≪ 2π f ≪ σ

2
α x

2
α (η−1)
max , η > 1, (64)

σ
2
α x

−
2
α (1−η)

max ≪ 2π f ≪ σ
2
α x

−
2
α (1−η)

min , η < 1.

This equation shows that the frequency range grows with decrease of α. By increasing the ratio xmax/xmin one can get an
arbitrarily wide range of the frequencies where the PSD has 1/f β behavior.

5. Numerical approach

5.1. Numerical approximation of sample paths

Since analytical solution of time-fractional Fokker–Planck equation can be obtained only in separate cases, there is a
need of numerical solution. Numerical solution of time-fractional Fokker–Planck equation is complicated [60]. It is easier to
numerically solve Langevin equations (2), (4) instead. The desired properties of the solution of the Fokker–Planck equation
then can be calculated by averaging over many sample paths obtained by solving the Langevin equations. The numerical
method of solution of the Langevin equations with constant drift coefficient is outlined in Refs. [38,61]. We can use the
same method also when the drift coefficient is position-dependent.

Choosing the time step1τ of the operational time τ the inverse subordinator S(t) is approximated as [62]

S1τ (t) = [min{n ∈ N : T (n1τ) > t} − 1]1τ . (65)

Such approximation satisfies [63]

sup
06t6T

[S1τ (t)− S(t)] 6 1τ . (66)

The values T (n1τ) are generated by summing up the independent and stationary increments of the Lévy process:

T (n1τ) = T ([n − 1]1τ)+1τ 1/αξn. (67)
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Here ξn are independent totally skewed positive α-stable random variables with the distribution specified by the Laplace
transform ⟨e−kξ

⟩ = e−kα . Such variables can be generated using the formula [64]

ξ =
sin

α

U +

π
2


cos(U)

1
α


cos


U − α


U +

π
2


W

 1−α
α

. (68)

Here U is uniformly distributed on

−
π
2 ,

π
2


and W has an exponential distribution with mean 1. Note, that in Ref. [38] an

incorrect formula for generating totally skewed positive α-stable random variables has been used. The definition of the Lévy
α-stable distribution using the Laplace transform (3) differs from the more common definition using the Fourier transform.
This has been corrected in Ref. [61].

The SDE (2) in the operational time τ can be numerically solved using the Euler–Maruyama scheme with the time step
1τ . For each value of the stochastic variable xk we assign the physical time tk generated by the process T (τ ) using Eq. (67).
Thus the numerical method of solution of Langevin equations (2), (4) is given by the following equations:

xk+1 = xk + a(xk)1τ + b(xk)
√
1τεk, (69)

tk+1 = tk +1τ
1
α ξk. (70)

Here εk are i.i.d. random variables having standard normal distribution.
For numerical solution of nonlinear equations, such as those resulting in Eq. (49), the fixed time step1τ can be inefficient.

For example, in Eq. (49) with η > 1 large values of stochastic variable x lead to large coefficients and thus require a very
small time step. A more efficient way of solution is to use a variable time step that adapts to the coefficients in the equation.
Similar method has been used in Refs. [54,55] for solving nonlinear SDEs. Such a variable time step is equivalent to changing
of the operational time τ to the position-dependent operational time τ ′. If we choose the intensity of random time in Eq.
(23) as g(x) = b(x)−

2
α , then according to Eq. (31) instead of initial Langevin equations (2), (4) we get the new Langevin

equations

dx(τ ′) =
a(x(τ ′))

b(x(τ ′))2
+ dW (τ ′), (71)

dt(τ ′) = b(x(τ ′))−
2
α dLα(τ ′). (72)

Discretizing the operational time τ ′ with the time step 1τ ′ and using the Euler–Maruyama approximation for Eq. (71)
instead of Eqs. (69), (70) we have

xk+1 = xk +
a(xk)
b(xk)2

1τ ′
+

√
1τ ′εk, (73)

tk+1 = tk +


1τ ′

b(xk)2

 1
α

ξk. (74)

Comparison with Eqs. (69), (70) shows that Eqs. (73), (74) can be obtained by replacing the time step 1τ in Eqs. (69), (70)
by

1τ →
1τ ′

b(xk)2
. (75)

As an example, we solve the Langevin equations

dx =


η −

ν

2


x2η−1dτ + xηdW (τ ), (76)

dt = dLα(τ ) (77)
resulting in the time-fractional Fokker–Planck equation (49). For restriction of the diffusion region we use the reflective
boundaries at x = xmin and xmax. More effective numerical solution scheme is obtained changing the operational time τ to
the time τ ′ defined by the equation

dt(τ ′) = x(τ ′)−
2
α (η−1)dLα(τ ′). (78)

This change is equivalent to the introduction of the variable time step1τk = 1τ ′x−2(η−1)
k . Discretizing the operational time

τ ′ with the step1τ ′ from Eqs. (76)–(78) we get the following numerical approximation:

xk+1 = xk +


η −

ν

2


xk1τ ′

+ xk
√
1τ ′εk, (79)

tk+1 = tk +


1τ ′

x2(η−1)
k

 1
α

ξk. (80)
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a b

Fig. 1. Sample path obtained fromLangevin equations (76), (77) using numerical solution schemegiven by Eqs. (79), (80). (a) Dependence of the operational
time τ ′ , defined by Eq. (78), on the physical time t . (b). Dependence of the stochastic variable x on the physical time t . The parameters are α = 0.7, η = 2,
ν = 3. Reflective boundaries are placed at xmin = 1 and xmax = 1000.

Sample path obtained using Eqs. (79), (80) with the parameters η = 2 and ν = 3 is shown in Fig. 1. The change of the
operational time τ ′ with the physical time t is shown in Fig. 1(a) and the dependence of the stochastic variable x on the
physical time t is shown in Fig. 1(b). Due to nonlinear coefficients in Eq. (76) the sample path in Fig. 1(b) exhibits peaks or
bursts, corresponding to the large deviations of the variable x. The intervals with x being constant indicate the heavy-tailed
trapping times. Comparing Fig. 1(a) with Fig. 1(b) we see that the operational time τ ′ increases faster when x acquires larger
values, in accordance to Eq. (78).

5.2. Power spectral density

Since the equations exhibit a slow (power-law instead of a usual exponential) relaxation [47], calculation of the PSD using
sample paths is very slow. A more efficient way is to find the eigenvalues and eigenfunctions of the Fokker–Planck operator
(8) and calculate the PSD using the rapidly converging series in Eq. (47). This is the approach for calculating the PSD used in
Ref. [37] for the case of constant diffusion coefficient.

As an example let us calculate the PSD of the diffusion described by the time-fractional Fokker–Planck equation (49) with
η ≠ 1 and the reflective boundaries at xmin = 1 and xmax = ξ . Eq. (32) for the eigenfunctions of the Fokker–Planck operator
that enters Eq. (49) is

−


η −

ν

2

 ∂
∂x

x2η−1Pλ(x)+
1
2
∂2

∂x2
x2ηPλ(x) = −λPλ(x). (81)

The reflective boundaries lead to the conditions Sλ(1) = 0 and Sλ(ξ) = 0, where

Sλ(x) =


η −

ν

2


x2η−1Pλ(x)−

1
2
∂

∂x
x2ηPλ(x) (82)

is the probability current related to the eigenfunction Pλ(x). The steady state solution of Eq. (49) is

P0(x) =
ν − 1

1 − ξ 1−ν
x−ν . (83)

It is more convenient to transform Eq. (81) into the Schrödinger equation [49]. To do this we first make the diffusion
coefficient constant by changing the variable x to

z =
x1−η

|η − 1|
. (84)

Eq. (81) then becomes

ν ′

2
∂

∂z
1
z
P ′

λ(z)+
1
2
∂2

∂z2
P ′

λ(z) = −λP ′

λ(z) (85)

with the reflective boundaries at zmin and zmax, where

zmin =


1

η − 1
1
ξ η−1

, η > 1,

1
1 − η

, η < 1,
zmax =


1

η − 1
, η > 1,

1
1 − η

ξ 1−η, η < 1.
(86)

Here

ν ′
=
η − ν

η − 1
. (87)
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Fig. 2. (Color online) Dependence of numerically obtained first moments of the variable x on the eigenvalues λ for the lowest eigenvalues (red dots).
Eigenvalues and eigenfunctions are obtained numerically solving Eq. (88). The dashed green line shows the slope λ−0.25 , predicted by Eq. (51). The
parameters used are η =

5
2 , ν = 3, xmin = 1 and xmax = 1000.

Eq. (85) can be transformed into the Schrödinger equation [49]

−
1
2

d2

dz2
ψλ(z)+ V (z)ψλ(z) = λψλ(z) (88)

with the potential

V (z) =
1
8z2

ν ′(2 + ν ′). (89)

Here ψλ(z) = P ′

λ(z)/

P ′

0(z). The condition of zero probability current at the reflective boundaries z = zmin and z = zmax
becomes

d
dz

+
ν ′

2
1
z


ψλ(z)


z=zmin,zmax

= 0. (90)

The solution of Eq. (88) corresponding to the eigenvalue λ = 0 is

ψ0(z) =


ν ′ − 1

z1−ν
′

min − z1−ν
′

max
z−

ν′

2 . (91)

Eq. (88) can be solved using standard finite-difference or finite-element methods. Having the eigenfunction ψλ(z) the first
moment of the stochastic variable x can be calculated using the equation

Xλ =

 zmax

zmin

ψ0(z)|η − 1|
1

1−η z
1

1−ηψλ(z) dz. (92)

Let us take the following values of the parameters in Eq. (49): η =
5
2 , ν = 3. The dependence of the numerically

calculated first moment Xλ on the eigenvalue λ for lowest eigenvalues is shown in Fig. 2. We see good agreement with the
analytical prediction (51) of power-law dependence on λ. For larger eigenvalues λ than those shown in Fig. 2 the power-law
dependence does not hold and Xλ decreases faster.

The PSD calculated using Eq. (47) is presented in Fig. 3. Eigenvalues λ and the first moments Xλ shown in Fig. 2 have
been used. We see good agreement with the predicted power-law dependency of the PSD on the frequency for frequen-
cies f > fmin ≈ 1. The power-law exponent coincides with Eq. (58). For smaller frequencies f < 1 the PSD exhibits the
power-law behavior (48) with the exponent 1 − α.

6. Conclusions

In summary, we proposed Eq. (21) describing the subdiffusion of particles in an inhomogeneousmedium that generalizes
the previously obtained time-fractional Fokker–Planck equation with the position-independent diffusion coefficient.
Fokker–Planck equation with the position-independent diffusion coefficient has been used to model various phenomena
such as ion channel gating [65] and the translocation dynamics of a polymer chain threaded through a nanopore [66].
Properties of such equations have been studied extensively. In this paper we analyzed a more general case when both drift
and diffusion coefficients are position-dependent. We hope that the present model can serve as a basis to study trapping
induced subdiffusion in complex inhomogeneous media.
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Fig. 3. (Color online) Power spectral density for the diffusion process defined by Eq. (49) with the parameter α = 0.8. The solid red line shows the result
of numerical calculation using Eq. (47). The dashed green line shows the slope 1/f , whereas the dotted blue line shows the slope f −0.2 . Other parameters
are the same as in Fig. 2.

We derived the analytical expression of power spectral density of signals described by the one-dimensional time frac-
tional Fokker–Planck equation in a more general case when diffusion coefficient depends on the position. The general ex-
pression for the PSD (47)we applied to a particular case (49)when the drift and diffusion coefficients have power-lawdepen-
dence on the position. The resulting PSD has a power-law form S(f ) ∼ f −β in a wide range of frequencies, with the power-
law exponent β given by Eq. (58). This approximate result is confirmed by the numerical simulation (see Fig. 3). Thus, ac-
cording to Eq. (58), time-fractional Fokker–Planck equation with power-law coefficients yields the PSD with the power-law
exponent equal to or larger than 1 in awide range of intermediate frequencies. In contrast, the PSD for small frequencies has a
power-law dependency on the frequency in the form of f −(1−α) evenwhen the diffusion coefficient depends on the position.

Since an analytical solution of time-fractional Fokker–Planck equation can be obtained only in separate cases, there is
a need of numerical solution. For the numerical solution of the nonlinear equations, such as those resulting in Eq. (49), we
propose to use a variable time step that adapts to the coefficients in the equation. Such a variable time step is equivalent to
changing of the operational time τ to the position-dependent operational time τ ′.
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