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a b s t r a c t

The framework of non-extensive statistical mechanics, proposed by Tsallis, has been
used to describe a variety of systems. The non-extensive statistical mechanics is usually
introduced in a formalway, using themaximization of entropy. In this paperwe investigate
the canonical ensemble in the non-extensive statistical mechanics using amore traditional
way, by considering a small system interactingwith a large reservoir via short-range forces.
The reservoir is characterized by generalized entropy instead of the Boltzmann–Gibbs
entropy. Assuming equal probabilities for all available microstates we derive the equations
of the non-extensive statistical mechanics. Such a procedure can provide deeper insight
into applicability of the non-extensive statistics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complexity in natural or artificial systemsmay be caused by long-range interactions, long-rangememory, non-ergodicity
or multifractality. Such systems have exotic thermodynamical properties and are unusual from the point of view of
traditional Boltzmann–Gibbs statistical mechanics. Statistical description of complex systems can be provided using the
non-extensive statistical mechanics that generalizes the Boltzmann–Gibbs statistics [1–3]. The non-extensive statistical
mechanics has been used to describe phenomena in high-energy physics [4], spin-glasses [5], cold atoms in optical
lattices [6], trapped ions [7], anomalous diffusion [8,9], dusty plasmas [10], low-dimensional dissipative and conservative
maps in the dynamical systems [11–13], turbulent flows [14], and Langevin dynamics with fluctuating temperature [15,16].
Concepts related to the non-extensive statistical mechanics have found applications not only in physics but in chemistry,
biology, mathematics, economics, and informatics as well [17–19].

The basis of the non-extensive statistical mechanics is the generalized entropy [1]

Sq = kB

1 −

µ

p(µ)q

q − 1
, (1)

where p(µ) is the probability of finding the system in the state characterized by the parametersµ; the parameter q describes
the non-extensiveness of the system. More generalized entropies and distribution functions are introduced in Refs. [20,21].
The generalized entropy (1) can be written in a form similar to the Boltzmann–Gibbs entropy

SBG = −kB


µ

p(µ) ln p(µ) (2)

as an average of q-logarithm [1]:

Sq = kB


µ

p(µ) lnq
1

p(µ)
, (3)
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where the q-logarithm is defined as

lnq x =
x1−q

− 1
1 − q

. (4)

In the limit q → 1 the q-logarithm becomes an ordinary logarithm, thus the Boltzmann–Gibbs entropy can be obtained
from Eq. (1) in the limit q → 1 [1,2]. The inverse function of the q-logarithm is the q-exponential function

expq(x) ≡ [1 + (1 − q)x]
1

1−q
+ , (5)

with [x]+ = x if x > 0, and [x]+ = 0 otherwise. The q-exponential and q-logarithm appear in many equations of non-
extensive statistical mechanics [1]. Some properties of q-exponential and q-logarithm are presented in Appendix B.

The equilibrium of an isolated system consisting of N particles and having the Hamiltonian H is described by the
microcanonical ensemble. In the statistical physics it is assumed that the equilibrium in the microcanonical ensemble
corresponds to equally probablemicrostates [22,23], therefore in themicrocanonical ensemble the probability ofmicrostate
µ is p(µ) = 1/W , where W is the number of microstates. The microstates are constrained to a shell defined by the
macrovariables such as energy of the system and number of particles. Usually the number of microstates W grows
exponentially with the particle number N . However, in the systems described by the non-extensive statistical mechanics,
for example in the systems with long-range interactions or long-range correlations, the dependence of the number of
microstates on the particle number N is different from exponential [1]. In particular, the number of microstates can grow
slower than exponential, as a power-law of N . This difference of the dependence on N can arise due to non-ergodicity of the
systems, when not all available microstates can be reached. In this caseW is the effective number of reachable microstates.
When probabilities are equal, Eq. (1) for the generalized entropy takes the simpler form

Sq = kB lnq W . (6)

For the systemswhere the effective number ofmicrostatesW grows as a power-lawof thenumber of particlesN the standard
Boltzmann–Gibbs entropy (2) is not proportional to the number of particles in the system and thus is not extensive. The
extensive quantity is the generalized entropy (1) for some value of q ≠ 1. In general, if the entropy Sq is proportional to the
number of particles N then the number of microstatesW grows asW ∼ expq N . There are two different cases: (i) q < 1 and
W ∼ N1/(1−q). The number of microstates grows as a power-law. (ii) q > 1 andW behaves as (1−(q−1)AN)−1/(q−1). In this
case there is a maximum value of the number of particles Ncrit where the number of microstates becomes infinite and thus
themacroscopic limitN → ∞ cannot be taken. Because this complication occurswhen q > 1, in this paperwe consider only
the case of q < 1; the value of q in all the equations below should be assumed to be less than 1. Note, that the q-exponential
distribution is compatible with classical Hamiltonian systems in the thermodynamic limit only when 0 6 q 6 1 [24]. The
case of q > 1 warrants a separate investigation and is outside of the scope of the present paper.

The canonical ensemble in the non-extensive statisticalmechanics is usually introduced in a formalway, starting from the
maximization of the generalized entropy [1]. The physical assumptions appear in themaximization procedure in the form of
constraints. However, the q-averages used for constraints are unusual from the point of view of ordinary, Boltzmann–Gibbs
statistics. The physical justification of q-averages and escort distributions is not completely clear. Thus a more physically
transparent method would be useful for understanding the non-extensive statistical mechanics. The goal of this paper is to
investigate the canonical ensemble in the non-extensive statistical mechanics using a more traditional way, by considering
a small system interacting with a large reservoir via short-range forces. Consistent investigation of such a situation has not
been performed yet. We assume that the generalized entropy (1) for some value of q < 1 instead of the Boltzmann–Gibbs
entropy is extensive for the reservoir. In addition, as in the standard statistical mechanics we assume equal probabilities for
all available microstates of the combined system consisting of the small system and the reservoir. By doing so we can avoid
the critique of the generalized entropy presented in Refs. [25,26].

In the ordinary statistical mechanics a small subsystem of a large system in the microcanonical ensemble is described by
the canonical ensemble. The rest of the system serves as a heat reservoir that defines a temperature for the part on which
we focus our attention [22]. It is assumed that the description of a subsystem by the canonical ensemble is valid also in the
non-extensive statistical mechanics [1]. However, the systems considered in the non-extensive statistical mechanics can
have long-range interactions and long-range correlations. In this paper we are investigating a small system interacting with
a large system via short-range forces, therefore, our approach is not directly applicable to a subsystem of a large systemwith
long-range interactions. We are considering instead a heterogeneous situation when a small system is interacting with the
reservoir via different forces than the subsystems of the reservoir.

The paper is organized as follows: To make the comparison of the non-extensive statistical mechanics with the standard
Boltzmann–Gibbs statistical mechanics easier, in Section 2 we briefly present the usual construction of the canonical
ensemble in the standard statistical mechanics. In Section 3 we consider the canonical ensemble in the non-extensive
statistical mechanics describing a small system interacting with a large reservoir via short-range forces and in Section 4
we explore the resulting Legendre transformation structure. Section 5 summarizes our findings.
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2. Canonical ensemble in Boltzmann–Gibbs statistical mechanics

To highlight the differences from the non-extensive statistical mechanics, let us at first briefly review the canonical
ensemble in the extensive Boltzmann–Gibbs statistical mechanics. The standard approach [22,23] is to consider a composite
systemconsisting of a systemunder investigation S interactingwith a large reservoir R. The systemShas energy E, the energy
of the reservoir R is ER and the energy of the composite system is Etot. Due to the interaction the system S and the reservoir
R can exchange energy. The interaction is assumed to be short-range, therefore in the macroscopic limit the energy of the
interaction is negligible and the total energy of the composite system is Etot = E + ER. For simplicity we assume that there
is no exchange of the particles between the system S and the reservoir R.

The number of microstates in the system S having the energy E is W (E) and the number of microstates in the reservoir
is WR(ER). Here it is assumed that the numbers of microstates depend only on the energy. The short range interactions
of the system S with the reservoir R do not significantly change the numbers of microstates and thus the total number of
microstates in the combined system when the system S has energy E is W (E)WR(Etot − E). The full number of microstates
Wtot(Etot) of the combined system is obtained summing over all available energies of the system S:

Wtot(Etot) =


E

W (E)WR(Etot − E). (7)

Introducing the entropy of the system S(E) = kB lnW (E) and the entropy of the reservoir SR(ER) = kB lnWR(ER) we can
write

Wtot(Etot) =


E

e
1
kB

S(E)+ 1
kB

SR(Etot−E)
. (8)

In the extensive Boltzmann–Gibbs statistics the entropy of the reservoir SR is proportional to the number of particles NR
in the reservoir and is macroscopically large. The sum of large exponentials can be approximated by the largest term, as is
described inAppendixA. In the statisticalmechanics it is postulated that in the equilibrium theprobability of eachmicrostate
is the same and equal 1/Wtot. Thus the most probable state of the composite system corresponds to the largest term in the
sum (8). The most probable energy U of the system S corresponding to this largest term can be found from the condition

∂

∂U
S(U) −

∂

∂Etot
SR(Etot − U) = 0. (9)

This condition allows to introduce the temperature T characterizing the equilibrium:

1
T

=
∂

∂U
S(U) =

∂

∂Etot
SR(Etot − U). (10)

We can also consider the situation when the Boltzmann–Gibbs entropy of the system S is not necessarily extensive and
proportional to the number of particles N in the system. If we introduce the generalized entropy as Sq(E) = kB lnq W (E)
then the sum (8) becomes

Wtot(Etot) =


E

e
1
kB

Sq(E)

q e
1
kB

SR(Etot−E) (11)

and the largest term is determined from the condition
e

1
kB

Sq(U)

q

q−1
∂

∂U
Sq(U) −

∂

∂Etot
SR(Etot − U) = 0. (12)

Herewehave used Eq. (B.4).We can conclude, that the temperature T is related to the generalized entropy Sq via the equation

1
T

=

∂
∂U Sq(U)

1 +
1−q
kB

Sq(U)
. (13)

Introducing the auxiliary q-temperature by the equation

1
Tq

=
∂

∂U
Sq(U) (14)

we get the relation

T = Tq


1 +

1 − q
kB

Sq(U)


. (15)

The auxiliary temperature Tq in the formulation of the non-extensive statisticalmechanics based onmaximization of entropy
can appear as the inverse of the Lagrange multiplier associated with the energy constraint. Although Tq is not the physical
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temperature, it can have another physical meaning. For example, such effective temperature is directly related to the
density of vortices in type II superconductors [27]. The relation (15) between the physical temperature T and the auxiliary
temperature Tq has been proposed by various authors in Refs. [28–36]. Definitions of the temperature associated with
different formulations of the non-extensive statistical mechanics have been analyzed in Ref. [37]. The general requirement
that composition rules of entropy and energy should satisfy to be compatible with zeroth law of thermodynamics has been
investigated in Ref. [38]. It has been shown that formal logarithms of the original quantities should be additive.

Note, that the statistics of the system S is determined by the reservoir, as we see from Eq. (18). Therefore, it is more
convenient to describe even such a system using the Boltzmann–Gibbs entropy. The same conclusion has been made in
Ref. [39]: it has been shown that physical temperature and pressurewithin the formalism for non-extensive thermostatistics
leads to expressions which coincide with those obtained by using the standard formalism of statistical mechanics.

According to the central postulate of the statistical mechanics, the probability of themicrostateµ⊗µR where the system
S is in the microstate µ and the reservoir is in the microstate µR is

p(µ ⊗ µR) =
1

W (Etot)
. (16)

The probability of the microstate µ of the system S then is

p(µ) =


µR

p(µ ⊗ µR). (17)

If the energy of the microstate µ is Eµ then the energy of the reservoir is Etot − Eµ and the number of acceptable microstates
of the reservoir isWR(Etot − Eµ). We obtain that the probability of the microstate is equal to

p(µ) =
WR(Etot − Eµ)

W (Etot)
. (18)

Approximating the number of microstates as

WR(Etot − E) = e
1
kB

SR(Etot−E)
≈ e

1
kB

SR(Etot)− 1
kB

E ∂
∂Etot

SR(Etot) (19)

we obtain that the probability of the microstate of the system S is proportional to the Boltzmann factor

P(E) = exp


−
1

kBT
E


. (20)

Here we used the definition of temperature (10): ∂
∂Etot

SR(Etot) ≈
1
T . Note, that for the justification of the exponential

form of Eq. (20) it is essential that the Boltzmann–Gibbs entropy of the large reservoir had very small second derivative,
∂2

∂E2tot
SR(Etot) ≈ 0. This requirement means that the heat capacity of the reservoir

CR = −
1

T 2 ∂2

∂E2tot
SR(Etot)

(21)

should be very large, that is the reservoir should be a thermostat. Other possible forms of entropy (for example, the
generalized entropy S(R)

q = kB lnq WR with q ≠ 1) do not have small second derivative and thus do not lead to a good
approximation for the probability of microstate.

From the Boltzmann factor (20) follows that the normalized probability of the microstate can be written as

p(µ) =
1
Z
e−

1
kBT

Eµ
, (22)

where

Z =


µ

e
1

kBT
Eµ (23)

is the partition function. The distribution of the energy of the system E is obtained multiplying the probability p(µ) by the

number of microstates having energy Eµ = E. This number is equal to W (E) = e
1
kB

S(E), therefore the distribution of the
energy is given by

p(E) =
1
Z
e

1
kB

S(E)− 1
kBT

E
. (24)

The probability p(E) should be normalized, thus the partition function can be also written as

Z =


E

e
1
kB

S(E)− 1
kBT

E
. (25)
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In the macroscopic limit the sum of large exponentials can be approximated by the largest term, therefore

ln Z ≈
1
kB

S(U) −
1

kBT
U, (26)

where the energy U corresponding to the largest term is obtained from the equation

∂

∂U
S(U) =

1
T

. (27)

The average energy of the system

Ū =


µ

Eµp(µ) (28)

can be determined form the partition function:

Ū = kBT 2 ∂

∂T
ln Z . (29)

The free energy F is introduced according to the equation

F = −kBT ln Z . (30)

The equality

F ≡ Ū − T S̄ (31)

defines the average entropy S̄. Combining Eqs. (29)–(31) we get

∂ S̄
∂Ū

=
1
T

.

Due to approximation (26) in the macroscopic limit the average energy Ū coincides with the most probable energy U and
the average entropy S̄ coincides with S(U).

3. Canonical ensemble in non-extensive statistical mechanics

Now let us consider a composite system with a large reservoir R for which the Boltzmann–Gibbs entropy S(R) is not
proportional to the number of particles NR in the reservoir and is not extensive. The extensive quantity is the generalized
entropy S(R)

q for some value of q ≠ 1: S(R)
q ∼ NR. Here we consider only the situationwhen q < 1. The number of microstates

in such a reservoir isWR = e
1
kB

S(R)
q

q ∼ N
1

1−q
R . Therefore, the Boltzmann–Gibbs entropy S(R)

= kB lnWR depends on the number
of particles in the reservoir as SR ∼

1
1−q lnNR. This expression for the Boltzmann–Gibbs entropy is similar to the entropy of

the system consisting of d =
1

1−q quasi-particles, whereas the number of particles NR plays the role of the volume. A simple
model of such a system has been presented in Ref. [40]: the model consists of a spin chain containing NR spins; spins next to
each other have almost always the same direction, except there are d cases when the next spin has an opposite direction. In
the Boltzmann–Gibbs statistic large reservoir has large heat capacity CR. Similarly, here we require that the q-heat capacity
of the reservoir, defined by Eq. (38), should be large.

The approach presented in this section is similar to the approach in Ref. [32]. However, in Ref. [32] the reservoir is
incorrectly interpreted as a heat bath andhaving large heat capacity. Aswehave seen in the previous section, such a reservoir
leads to the exponential Boltzmann factor and approximation of the expansion of the number of states as a q-exponential
is not justified. Interaction of the system S weakly coupled to a finite reservoir having a finite energy has been considered
in Ref. [41]. Under the assumption that the number of microstates of the reservoir having energy less than ER grows as a
power-law of ER, the q-exponential distribution of the energy of the system has been obtained. However, in Ref. [41] the
extensivity of the generalized entropy has not been used and the parameter q tends to 1 when the number of particles of the
reservoir increases. In contrast to Ref. [41], in our consideration the parameter q does not depend on the number of particles
NR in the reservoir.

As in the previous section, the system under consideration S is interactingwith the reservoir via short-range interactions,
thus the total energy of the composite system in the macroscopic limit is Etot = E + ER and the total number of microstates
in the composite system when the system S has energy E is W (E)WR(Etot − E). Introducing the generalized entropy of the
system Sq(E) = kB lnq W (E) and the generalized entropy of the reservoir S(R)

q (ER) = kB lnq WR(ER) we can write

Wtot(Etot) =


E

e
1
kB

Sq(E)

q e
1
kB

S(R)
q (Etot−E)

q . (32)
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When the generalized entropy of the reservoir S(R)
q is proportional to the number of particles NR in the reservoir, even in

the limit of large NR the terms in Eq. (32) for q < 1 do not decrease fast enough with the deviation of the energy E from
the most-probable energy. Consequently, the sum of large q-exponentials cannot be approximated by the largest term. In
this paper we will not use approximations of the sum (32). However, for completeness the approximation of a sum of large
q-exponentials is investigated in Appendix A.

We assume that the postulate of equal probabilities of microstates in the equilibrium is valid also in the non-extensive
statistical mechanics. When the postulate of equal probabilities of microstates is assumed, the statistics of the system S is
determined by the reservoir according to Eq. (18). Therefore, even an ordinary system interacting with the reservoir having
large q-heat capacity is more conveniently described by the q-entropy.

The largest term in the sum (32) corresponds to the most probable state of the composite system and is found from the
equation

∂
∂U Sq(U)

1 +
1−q
kB

Sq(U)
−

∂
∂Etot

S(R)
q (Etot − U)

1 +
1−q
kB

S(R)
q (Etot − U)

= 0.

Here U is the most-probable energy of the system S. Thus in order to satisfy the zeroth law of thermodynamics we need to
define the temperature T as

1
T

=

∂
∂U Sq(U)

1 +
1−q
kB

Sq(U)
=

∂
∂Etot

S(R)
q (Etot − U)

1 +
1−q
kB

S(R)
q (Etot − U)

. (33)

This definition of the temperature is the same as Eq. (13).
If one introduces the entropy of the combined system as S(tot)

q (Etot) = kB lnq W (Etot) then as a consequence of the
impossibility to approximate the sum (32) by the largest term the entropy of the combined system is not a simple
combination of the entropies of the system S and the reservoir R: S(tot)

q (Etot) ≠ Sq(U)+S(R)
q (Etot−U)+

1−q
kB

Sq(U)S(R)
q (Etot−U).

Due to this the conclusions of Ref. [42] that the zeroth law of thermodynamics holds only if the energy is also nonadditive
do not apply for the situation considered in this paper. On the other hand, if one assumes that the interaction between the
system S and R are long range and the energy is not additive then the pseudo-additivity of entropies can be valid [36].

The probability of a microstate of the system S is given by Eq. (18). Similarly as in the previous section, assuming that the
second derivative of q-entropy of the reservoir is very small, ∂2

∂E2tot
S(R)
q (Etot) ≈ 0, we can approximate

WR(Etot − E) = e
1
kB

S(R)
q (Etot−E)

q ≈ e
1
kB

S(R)
q (Etot−U)− 1

kB
(E−U) ∂

∂Etot
S(R)
q (Etot−U)

q . (34)

Note that now the Boltzmann–Gibbs entropy of the reservoir does not have a small second derivative. The condition
∂2

∂E2tot
S(R)
q (Etot) ≈ 0 means that the q-heat capacity of the reservoir, defined in Eq. (38), is very large. The ordinary heat

capacity of such a reservoir can be determined as follows: if we increase the energy of the reservoir by a small amount 1E,
the increase of the temperature T , according to Eq. (33), is

1T =
1 − q
kB

1E − T

∂2

∂E2R
S(R)
q (ER)

∂
∂ER

S(R)
q (ER)

1E. (35)

This means that the heat capacity of the reservoir CR =
1E
1T is

CR =
1

1−q
kB

+
T

T (R)
q

1
C(R)
q

, (36)

where T (R)
q is the auxiliary q-temperature of the reservoir defined via the equation

1

T (R)
q

=
∂

∂ER
S(R)
q (ER) (37)

and

C (R)
q = −

1

(T (R)
q )2 ∂2

∂E2R
S(R)
q (ER)

(38)

is the q-heat capacity of the reservoir, defined similarly to the physical heat capacity, Eq. (21). If the second derivative of the
generalized entropy is small, ∂2

∂E2R
S(R)
q (ER) ≈ 0, then the heat capacity is C =

kB
1−q . If we increase the energy of the reservoir
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with very large q-heat capacity by 1E, the new temperature of the reservoir becomes

T ′
= T +

1 − q
kB

1E. (39)

The expression for the heat capacity C =
kB
1−q is the same as the heat capacity of a gas consisting of d =

1
1−q quasi-particles.

Using the property (B.2) of the q-exponential function we obtain that the probability of the microstate of the system S is
proportional to the factor

P̃(E) = expq


−

1
kBT (U)

(E − U)


, (40)

where T is the temperature according to Eq. (33). However, the temperature T depends also on the properties of the system,
not only on the reservoir. It is more convenient to introduce the temperature that the reservoir not interacting with the
system could have:

1
T (0)

=

∂
∂Etot

S(R)
q (Etot)

1 +
1−q
kB

S(R)
q (Etot)

. (41)

Taking into account that ∂2

∂E2R
S(R)
q (ER) ≈ 0 we obtain

T (U) ≈

1 +
1−q
kB

S(R)
q (Etot) −

1−q
kB

U ∂
∂Etot

S(R)
q (Etot)

∂
∂Etot

S(R)
q (Etot)

= T (0) −
1 − q
kB

U . (42)

This equation shows that the interaction with the system lowers the temperature of the reservoir. On the other hand, the
q-temperature of the reservoir, defined by Eq. (37) does not change.

Using Eq. (42) we get that the probability of the microstate of the system S is proportional to

P(E) = expq


−

1
kBT (0)

E


. (43)

An expression similar to Eq. (43) has been obtained in Ref. [32]. However, in Ref. [32] the temperature that enters P(E)
has been interpreted as a physical temperature T , because the reservoir has been assumed to be a thermostat. The correct
observation that the energy of the reservoir interacting with the system should decrease has been presented in Ref. [29].

One common objection to Eq. (43) is that this expression is not invariant to the change of zero of energies [1]. However,
this reflects the physical situation of the system interacting with the reservoir having very large q-heat capacity and,
consequently, small physical heat capacity. The zero of the energy of the system S is fixed by the requirement that the
energy of the reservoir should be Etot when E = 0. If we shift the energy zero by 1E, this is equivalent to the decrease of the
energy of the reservoir by 1E. This decrease of the energy of the reservoir decreases the temperature. The probability of the
microstate should remain the same, thus the new factor should be proportional to the old:

P ′(E) = expq


−

1
kBT ′(0)

E


∼ P(E + 1E) = expq


−

1
kBT (0)

(E + 1E)


. (44)

It follows that

T ′(0) = T (0) −
1 − q
kB

1E. (45)

This equation is consistent with Eq. (39). Similar argument has been presented in Ref. [41] by considering a system S
interacting with a finite reservoir.

Interesting feature of Eq. (43) is the presence of the cut-off energy: it follows from the definition of the q-exponential
function that P(E) becomes zero when E > Emax where

Emax =
kB

1 − q
T (0). (46)

This property of P(E) ensures that the physical temperature T is always positive. Discussion of possible cut-off prescriptions
associated with Tsallis’ distributions is presented in Ref. [43].

Using the factor (43) we can write the normalized probability of the microstate as

p(µ) =
1
Zq

e
−

1
kBT (0) Eµ

q , (47)
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where

Zq =


µ

e
−

1
kBT (0) Eµ

q (48)

is the generalized partition function. The distribution of the energy of the system E is obtained multiplying the probability

p(µ) by the numberW (E) = e
1
kB

Sq(E)

q of microstates having energy Eµ = E:

p(E) =
1
Zq

e
1
kB

Sq(E)

q e
−

1
kBT (0) E

q =
1
Zq

e
1
kB

T (E)
T (0) Sq(E)− 1

kBT (0) E
q , (49)

where

T (E) = T (0) −
1 − q
kB

E. (50)

The probability p(E) should be normalized, thus the partition function can be also written as

Zq =


E

e
1
kB

T (E)
T (0) Sq(E)− 1

kBT (0) E
q . (51)

The energy U corresponding to the largest term in the sum (51) is determined by the equation
∂

∂U Sq(U)

1 +
1−q
kB

Sq(U)
=

1
T (U)

. (52)

According to Eq. (42) the temperature T (U) coincides with the physical temperature.

4. Generalized free energy

The probability proportional to the factor (43) admits several different possibilities to generalize the free energy. First
of all, there are three possibilities corresponding to three temperatures: initial temperature of the reservoir T (0), auxiliary
q-temperature Tq and the physical temperature T (U). From these three choices only the temperature T (0) depends only on
the reservoir and does not depend on the properties of the system. On the other hand, the temperature T (U) has a direct
thermodynamical interpretation. In addition, the average energy of the system is connected to the generalized entropywith
the parameter 2 − q. The derivative of this generalized entropy with respect to average energy yields another auxiliary
temperature T2−q and the corresponding generalized free energy.

4.1. Initial temperature of the reservoir and unnormalized q-averages

Let us consider first the generalized free energy F̄q corresponding to the temperature T (0). This choice is closely related
to the approximation of the sum of large q-exponentials and to unnormalized q-averages. When q < 1 the sum in Eq. (51)
cannot be approximated by the largest term even in the macroscopic limit. The approximate expression for the sum of large
q-exponentials is obtained in Appendix A. According to the results of Appendix A and Eq. (51) the q-logarithm of Zq can be
approximated as

lnq Zq ≈


E


1
kB

Sq(E) −

1 +
1−q
kB

Sq(Eµ)

kBT (0)
E


p(E)q. (53)

For any function of the energy f (E) the following equality holds:
E

f (E)p(E)q =


Eµ

f (Eµ)e
1
kB

Sq(Eµ)

q


e

1
kB

Sq(Eµ)

q

q−1

p(µ)q =


µ

f (Eµ)

1 +
1−q
kB

Sq(Eµ)
p(µ)q. (54)

Therefore, we can approximate the q-logarithm of Zq as

lnq Zq ≈


µ

 1
kB
Sq(Eµ)

1 +
1−q
kB

Sq(Eµ)
−

1
kBT (0)

Eµ


p(µ)q. (55)

This equation suggests to introduce the unnormalized q-average energy of the system

Ūq =


µ

Eµp(µ)q =


E

E

1 +

1 − q
kB

Sq(E)


p(E)q. (56)
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This unnormalized q-average of the energy can be determined from the generalized partition function Zq using the equation

Ūq = kBT (0)2
∂

∂T (0)
lnq Zq. (57)

In analogy to Eq. (30) we introduce the generalized free energy

F̄q = −kBT (0) lnq Zq. (58)

The equation

F̄q ≡ Ūq − T (0)S̄q (59)

defines the entropy S̄q which is related to the unnormalized q-average of the entropy Sq. Using Eqs. (57)–(59) we obtain

∂ S̄q
∂Ūq

=
1

T (0)
. (60)

Entropy S̄q can be calculated using the probabilities p(µ) according to Eq. (1). Indeed, we have

S̄q =
1

T (0)
(Ūq − F̄q) =


µ

1
T (0)

Eµp(µ)q + kB lnq Zq. (61)

Expressing the energy from the probability p(µ) we get

Eµ = −kBT (0) lnq[p(µ)Zq] = −kBT (0)

lnq p(µ) + p(µ)1−q lnq Zq


. (62)

Inserting this expression for the energy Eµ into Eq. (61) and taking into account that


µ p(µ) = 1 we obtain

S̄q = kB


µ

p(µ)q − 1

1 − q
. (63)

This expression is consistent with the approximation (53). According to the approximation (53) the entropy S̄q is

S̄q ≈


E

Sq(E)p(E)q =


µ

Sq(Eµ)

1 +
1−q
kB

Sq(Eµ)
p(µ)q. (64)

In the macroscopic limit the entropy Sq(E) is large and we can approximate

S̄q ≈ kB


µ

p(µ)q

1 − q
≈ kB


µ

p(µ)q − 1

1 − q
. (65)

This expression is the same as (63).

4.2. q-temperature and normalized q-averages

It can be more convenient to deal with normalized q-averages. The normalized q-average of the energy is

Uq =


µ

Eµp(µ)q
µ

p(µ)q
. (66)

Using Eq. (54) the normalized q-average of the energy can be written as

Uq =


E

E

1 +

1−q
kB

Sq(E)

p(E)q

E


1 +

1−q
kB

Sq(E)

p(E)q

. (67)

The sumsof the form


E f (E)p(E)q can be approximated as f (U)


E p(E)q+f ′(U)


E(E−U)p(E)q. The sum


E(E−U)p(E)q

is small, since close to the maximum U the probability p(E) is an even function of E − U . We obtain that in the macroscopic
limit the normalized q-average of energy Uq should be close to the most probable energy U . Since the sum of large q-
exponentials cannot be approximated by the largest term when q < 1, it is not possible to determine the most probable
energy U or the average energy


µ Eµp(µ) knowing only the generalized partition function Zq. However, it is possible to

calculate Uq, which is close to U . On the other hand, the entropy S̄q cannot be approximated by Sq(U).
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Using Eq. (63) the normalized q-average Uq can be related to the unnormalized Ūq via the equation

Uq =
Ūq

1 +
1−q
kB

S̄q
. (68)

From Eq. (68) follows that the introduction of the normalized q-average energy Uq allows to factorize the generalized
partition function Zq:

Zq = e
1
kB

S̄q− 1
kBT (0) Ūq

q = e
1
kB

S̄q
q e

−
1

kBT (0)Uq
q . (69)

The entropy of the combined system S(tot)
q using the expansion (34) can be written as

S(tot)
q = kB lnq e

1
kB

S(R)
q (Etot−U)

q e
1

kBT (U)
U

q Zq. (70)

Using Eq. (69) and assuming that U ≈ Uq we get that the entropy S(tot)
q can be expressed as the usual pseudo-additive

combination of entropies from the non-extensive statistical mechanics:

S(tot)
q ≈ S(R)

q (Etot − Uq) + S̄q +
1 − q
kB

S(R)
q (Etot − Uq)S̄q. (71)

However, in this equation the entropy S̄q is not directly connected to the number of microstates of the system S.
Let us introduce an auxiliary q-temperature Tq of the system S via the equation

1
Tq

=
∂ S̄q
∂Uq

. (72)

Using Eqs. (60) and (68) we get

T (Uq) = Tq


1 +

1 − q
kB

S̄q


, (73)

where T (Uq) = T (0) −
1−q
kB

Uq is the temperature of the reservoir corresponding to the energy of the system equal to Uq.
Since S̄q > 0, the q-temperature is always smaller than the physical temperature T (Uq). Note that only physical tempera-
tures of the system and the reservoir are equal. The q-temperature of the system Tq is not equal to the q-temperature of the
reservoir T (R)

q .
We introduce the q-analog of the free energy corresponding to the temperature Tq:

Fq ≡ Uq − TqS̄q. (74)

Then, using Eqs. (72) and (74) we get

S̄q = −
∂Fq
∂Tq

. (75)

We define the q-heat capacity of the system as

Cq =
∂Uq

∂Tq
= Tq

∂ S̄q
∂Tq

= −Tq
∂2Fq
∂T 2

q
. (76)

The physical heat capacity C can be determined as the derivative of Uq with respect to the physical temperature T (Uq):

C =
∂Uq

∂T (Uq)
. (77)

Using Eqs. (72) and (73) we get the equation that relates the physical heat capacity with the auxiliary q-heat capacity:

C =
1

T (Uq)
Tq

1
Cq

+
1−q
kB

. (78)

Since Tq < T (Uq), from Eq. (78) follows that the physical heat capacity C is always smaller than the q-heat capacity Cq.
Generalized partition function Z̄q related to the generalized free energy Fq is

Z̄q ≡ e
−

Fq
kBTq

q . (79)
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Note that Zq ≠ Z̄q. Using Eqs. (72), (74) and (79) we get the expression for the energy Uq:

Uq = kBT 2
q

∂

∂Tq
lnq Z̄q. (80)

The generalized partition function Z̄q cannot be directly expressed as a sum. However, Z̄q can be connected to a sum of
q-exponentials as follows: we write the probability of the microstate in the form

p(µ) =
1

Z̃q
e
−

1
kBT (Uq)

(Eµ−Uq)

q , (81)

where

Z̃q =


µ

e
−

1
kBT (Uq)

(Eµ−Uq)

q (82)

is related to Zq via the equation

Z̃q = Zqe
1

kBT (Uq)
Uq

q . (83)

Using Eq. (69) we get

Z̃q = e
1
kB

S̄q
q . (84)

Therefore,

lnq Z̄q = lnq Z̃q −
1

kBTq
Uq. (85)

4.3. Physical temperature and Rényi entropy

The third possibility is to introduce the free energy corresponding to the physical temperature T (Uq). In order to do this
let us consider another entropy, given by the equation

S̃q = kB ln e
1
kB

S̄q
q =

kB
1 − q

ln

1 +

1 − q
kB

S̄q


. (86)

The entropy S̃q is more directly connected to the physical temperature T (Uq). Indeed, using Eqs. (72) and (73) we get that
the derivative of the entropy S̃q gives the physical temperature:

∂ S̃q
∂Uq

=
1

T (Uq)
. (87)

From Eq. (63) it follows that

S̃q =
kB

1 − q
ln


µ

p(µ)q


. (88)

Thus the entropy S̃q is the Rényi entropy [44,45].
Using the Rényi entropy we introduce the free energy corresponding to the physical temperature T (Uq):

F̃q ≡ Uq − T (Uq)S̃q. (89)

Also in this case we retain the Legendre transformation structure. For example, using Eq. (87) we get

∂ F̃q
∂T (Uq)

= −S̃q. (90)

4.4. Average energy of the system

It is impossible to exactly determine the average energy of the system

Ū =


µ

Eµp(µ) (91)
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knowing only the sum of q-exponents Zq. However, the knowledge of another sum
µ


e
−

1
kBT (0) Eµ

q

2−q

allows us to do so. Indeed, using the property of the q-exponential function (B.4) and the expression for the probability p(µ)
Eq. (47) we get

Ū =
kBT (0)2

(2 − q)Zq

∂

∂T (0)


µ


e
−

1
kBT (0) Eµ

q

2−q

. (92)

Instead of this sum we can use the generalized entropy (1) with the parameter q′
= 2 − q:

S̄2−q = kB

1 −

µ

p(µ)2−q

1 − q
. (93)

Using the generalized entropy S̄2−q the expression for the average energy Ū becomes

Ū =
kBT (0)2

(2 − q)Zq

∂

∂T (0)
Z2−q
q


1 −

1 − q
kB

S̄2−q


. (94)

We can obtain another expression for the average energy Ū by inserting Eµ from Eq. (62) into Eq. (91):

Ū = T (0)Z1−q
q S̄2−q − kBT (0) lnq Zq. (95)

Combining Eqs. (94) and (95) we obtain

∂Ū
∂T (0)

−
T (0)Z1−q

q

2 − q
∂ S̄2−q

∂T (0)
= 0. (96)

Therefore, yet another auxiliary temperature T2−q, introduced by the equation

1
T2−q

=
∂ S̄2−q

∂Ū
, (97)

is equal to

T2−q = T (0)
Z1−q
q

2 − q
. (98)

This relation between temperatures is exactly the same as obtained by maximizing the entropy (93) with the constraint
(91) [1]. The temperature T2−q, similarly as the temperature Tq, depends not only on the reservoir but also on the properties
of the system.

The generalized free energy corresponding to the average internal energy of the system Ū and the temperature T2−q is

F2−q = Ū − T2−qS̄2−q. (99)

This expression for the generalized free energy F2−q is similar to the expression

F̄q = Ū − (2 − q)T2−qS̄2−q (100)

for the generalized free energy F̄q that follows from Eq. (95). We see that in general F̄q ≠ F2−q.

5. Discussion

In summary,wehave demonstrated that a small system interactingwith a large reservoir having large q-heat capacity can
be described by the non-extensive statistical mechanics. From the point of view of the ordinary statistics such a reservoir
is similar to a gas of d = 1/(1 − q) quasi-particles. Thus the analysis presented in the paper should be applicable if the
number of quasi-particles in the reservoir does not grow (at least approximately) with the number of particles NR in the
reservoir. The probability of the microstate of the system interacting with such a reservoir via short-range forces is given
by the q-exponential function (43), instead of the exponential Boltzmann factor (20). Large q-heat capacity of the reservoir
leads to a small physical heat capacity, therefore the temperature in the equilibrium T depends both on the properties of the
reservoir and the properties of the system. In order to avoid this inconvenience one can consider the temperature T (0) of
the reservoir that is not interacting with the system or introduce an auxiliary q-temperature T (R)

q that remains constant due
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to large q-heat capacity of the reservoir. Small heat capacity of the reservoir does not allow to consider it as a thermostat,
thus the description using the standard canonical ensemble of the statistical mechanics is not applicable. The treatment of
the canonical ensemble presented in this paper allows us to obtain relations between the physical temperature T and the
auxiliary q-temperature Tq (73) as well as between the q-heat capacity Cq and the physical heat capacity C (78).

The canonical ensemble in the statistical mechanics describes also a subsystem of a large system in equilibrium.
In our investigation the reservoir is exhibiting long-range interactions and long-range correlations, whereas the small
system is interacting with the large reservoir via short-range forces. Thus the approach presented in this paper is not
directly applicable to a subsystem of such a reservoir. However, we expect that our results can be also useful for deeper
understanding of the statistical description of the subsystems with long-range interactions.

Sums of large exponentials often appear in the Boltzmann–Gibbs statistical mechanics. Such sums can be approximated
by keeping only the largest term. Similarly, in the non-extensive statistical mechanics appear sums of large q-exponentials.
However, for such sums taking only the largest term is a very poor approximation. This is because the q-exponential function
with q < 1 does not decrease as fast as the exponential function. As a consequence, the deviations from the most probable
state in the non-extensive statistical mechanics are much larger than the deviations in the standard statistical mechanics.
As it is shown in Appendix B, sums of large q-exponentials are well approximated using q-averages. This fact is one of the
reasons why q-averages play such an important role in the non-extensive statistics.

In this paper we considered the reservoir for which the generalized entropy with q < 1 is extensive. The case of q > 1 is
more complicated, because one cannot take themacroscopic limitN → ∞. The investigation of the small system interacting
with the reservoir characterized by q > 1 remains a task for the future.

Appendix A. Sum of large q-exponentials

One can easily show that the sum of large exponentials

Z =

W
i=1

eNφ(i) (A.1)

can be approximated by the largest term. Indeed, if φmax is the maximum of φ(i) then

eNφmax 6 Z 6 WeNφmax (A.2)

and

0 6
ln Z
N

− φmax 6
lnW
N

. (A.3)

IfW grows slower than exponentially with increasing N , then in the limit of large N the ratio lnW/N vanishes and we have

lim
N→∞

ln Z
N

= φmax. (A.4)

Now let us consider the sum of large q-exponentials

Zq =

W
i=1

eNφ(i)
q , (A.5)

where q < 1. In contrast to the sum of large exponentials, approximation of the sum of large q-exponentials with the largest
term is a poor one. We can construct a better approximation as follows: let us introduce the weights

p(i) =
eNφ(i)
q

Zq
(A.6)

and the unnormalized q-average

⟨φ⟩q ≡

W
i=1

φ(i)p(i)q. (A.7)

By noticing that

Nφ(i) = lnq[p(i)Zq] = lnq p(i) + p(i)1−q lnq Zq (A.8)

one can write the difference lnq Zq − N⟨φ⟩q as

lnq Zq − N⟨φ⟩q =

W
i=1

p(i)q − 1

1 − q
. (A.9)
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The sum


i p(i)
q can have the largest possible value when all weights p(i) are equal. In such a case p(i) = 1/W and

i p(i)
q
= W 1−q. Thus

lnq Zq
N

− ⟨φ⟩q 6
lnq W
N

. (A.10)

IfW grows with increasing N as Np and

p <
1

1 − q
(A.11)

then in the limit of large N the ratio lnq W/N vanishes and we have

lim
N→∞

lnq Zq
N

= ⟨φ⟩q. (A.12)

This gives the required approximation of the sum of q-exponentials. Note, that lnq W/N as the upper limit of the difference
lnq Zq −N⟨φ⟩q is the worst case, when all terms in the sum are equal. For sufficiently fast decreasing terms the sum


i p(i)

q

can be bounded even for largerW .

Appendix B. Some properties of q-exponential function

In this paper we have used the following properties of q-exponential and q-logarithm: multiplication of two q-
exponentials

exqe
y
q = e[1+(1−q)y]x+y

q = ex+[1+(1−q)x]y
q , (B.1)

ex+y
q = exqe

y
1+(1−q)x
q = eyqe

x
1+(1−q)y
q , (B.2)

q-logarithm of a product

lnq xy = [1 + (1 − q) lnq y] lnq x + lnq y = lnq x + [1 + (1 − q) lnq x] lnq y, (B.3)

the derivatives of q-exponential and q-logarithm:

d
dx

exq = (exq)
q, (B.4)

d
dx

lnq x =
1
xq

. (B.5)

Eqs. (B.1)–(B.5) can be easily derived using the definitions (5) and are presented in the Appendix A of Ref. [1].

References

[1] C. Tsallis, Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World, Springer, New York, 2009.
[2] C. Tsallis, Braz. J. Phys. 39 (2009) 337.
[3] L. Telesca, Tectonophysics 494 (2010) 155.
[4] A. Adare, et al., Phys. Rev. D 83 (2011) 052004.
[5] R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102 (2009) 097202.
[6] E. Lutz, F. Renzoni, Nat. Phys. 9 (2013) 615.
[7] R.G. DeVoe, Phys. Rev. Lett. 102 (2009) 063001.
[8] Z. Huang, G. Su, A. El Kaabouchi, Q.A. Wang, J. Chen, J. Stat. Mech. 2010 (05) (2010) L05001.
[9] J. Prehl, C. Essex, K.H. Hoffman, Entropy 14 (2012) 701–716.

[10] B. Liu, J. Goree, Phys. Rev. Lett. 100 (2008) 055003.
[11] O. Afsar, U. Tirnakli, Europhys. Lett. EPL 101 (2) (2013) 20003.
[12] U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79 (2009) 056209.
[13] G. Ruiz, T. Bountis, C. Tsallis, Int. J. Bifurcation Chaos 22 (09) (2012) 1250208.
[14] C. Beck, S. Miah, Phys. Rev. E 87 (2013) 031002.
[15] A.A. Budini, Phys. Rev. E 86 (2012) 011109.
[16] J.-L. Du, J. Stat. Mech. 2012 (02) (2012) P02006.
[17] C.M. Gell-Mann, C. Tsallis, Nonextensive Entropy—Interdisciplinary Applications, Oxford University Press, New York, 2004.
[18] S. Abe, Astrophys. Space Sci. 305 (2006) 241.
[19] S. Picoli, R.S. Mendes, L.C. Malacarne, R.P.B. Santos, Braz. J. Phys. 39 (2009) 468.
[20] R. Hanel, S. Thurner, Europhys. Lett. EPL 93 (2011) 20006.
[21] R. Hanel, S. Thurner, M. Gell-Mann, PNAS 108 (2011) 6390.
[22] L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, Butterworth-Heinemann, 1980.
[23] P.T. Landsberg, Thermodynamics and Statistical Mechanics, Dover, New York, 2014.
[24] J.F. Lutsko, J.P. Boon, EPL 95 (2011) 20006.
[25] Q.A. Wang, Eur. Phys. J. B 26 (2002) 357.
[26] M. Nauenberg, Phys. Rev. E 67 (2003) 036114.
[27] F.D. Nobre, E.M.F. Curado, A.M.C. Souza, R.F.S. Andrade, Phys. Rev. E 91 (2015) 022135.
[28] S. Abe, Physica A 269 (1999) 403.

http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref1
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref2
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref3
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref4
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref5
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref6
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref7
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref8
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref9
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref10
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref11
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref12
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref13
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref14
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref15
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref16
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref17
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref18
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref19
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref20
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref21
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref22
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref23
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref24
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref25
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref26
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref27
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref28


J. Ruseckas / Physica A 447 (2016) 85–99 99

[29] S.K. Rama, Phys. Lett. A 276 (2000) 103.
[30] S. Abe, S. Martínez, F. Pennini, A. Plastino, Phys. Lett. A 281 (2001) 126.
[31] S. Abe, Physica A 300 (2001) 417.
[32] S. Abe, A.K. Rajagopal, Europhys. Lett. 55 (2001) 6.
[33] S. Martínez, F. Pennini, A. Plastino, Physica A 295 (2001) 246.
[34] S. Martínez, F. Pennini, A. Plastino, Physica A 295 (2001) 416.
[35] M. Casas, S. Martínez, F. Pennini, A. Plastino, Physica A 305 (2002) 41.
[36] A.M. Scarfone, Phys. Lett. A 374 (2010) 2701.
[37] Q.A. Wang, L. Nivanen, A. Le Méhauté, M. Pezeril, Europhys. Lett. 65 (2004) 606.
[38] T.S. Biró, P. Ván, Phys. Rev. E 83 (2011) 061147.
[39] R. Toral, Physica A 317 (2003) 209.
[40] J. Ruseckas, Phys. Lett. A 379 (2015) 654.
[41] A.R. Plastino, A. Plastino, Phys. Lett. A 193 (1994) 140.
[42] C. Ou, J. Chen, Physica A 370 (2006) 525.
[43] A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343 (2005) 71.
[44] A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970.
[45] C. Tsallis, J. Stat. Phys. 52 (1988) 479.

http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref29
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref30
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref31
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref32
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref33
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref34
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref35
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref36
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref37
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref38
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref39
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref40
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref41
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref42
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref43
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref44
http://refhub.elsevier.com/S0378-4371(15)01038-9/sbref45

	Canonical ensemble in non-extensive statistical mechanics
	Introduction
	Canonical ensemble in Boltzmann--Gibbs statistical mechanics
	Canonical ensemble in non-extensive statistical mechanics
	Generalized free energy
	Initial temperature of the reservoir and unnormalized  q -averages
	 q -temperature and normalized  q -averages
	Physical temperature and Renyi entropy
	Average energy of the system

	Discussion
	Sum of large  q -exponentials
	Some properties of  q -exponential function
	References


