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The framework of non-extensive statistical mechanics, proposed by Tsallis, has been used to describe a 
variety of systems. The non-extensive statistical mechanics is usually introduced in a formal way, thus 
simple models exhibiting some important properties described by the non-extensive statistical mechanics 
are useful to provide deeper physical insights. In this article we present a simple model, consisting of 
a one-dimensional chain of particles characterized by binary random variables, that exhibits both the 
extensivity of the generalized entropy with q < 1 and a q-Gaussian distribution in the limit of the large 
number of particles.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

There exist a number of systems featuring long-range interac-
tions, long-range memory, and anomalous diffusion, that possess 
anomalous properties in view of traditional Boltzmann–Gibbs sta-
tistical mechanics. Non-extensive statistical mechanics is intended 
to describe such systems by generalizing the Boltzmann–Gibbs 
statistics [1–3]. In general, the non-extensive statistical mechan-
ics can be applied to describe the systems that, depending on the 
initial conditions, are not ergodic in the entire phase space and 
may prefer a particular subspace which has a scale invariant ge-
ometry, a hierarchical or multifractal structure. Concepts related to 
the non-extensive statistical mechanics have found applications in 
a variety of disciplines: physics, chemistry, biology, mathematics, 
economics, and informatics [4–6].

The non-extensive statistical mechanics is based on a general-
ized entropy [1]

Sq = 1 − ∫ [p(x)]qdx

q − 1
, (1)

where p(x) is a probability density function of finding the system 
in the state characterized by the parameter x, while q is a param-
eter describing the non-extensiveness of the system. Entropy (1) is 
an extension of the Boltzmann–Gibbs entropy

SBG = −
∫

p(x) ln p(x)dx (2)
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which is recovered from Eq. (1) in the limit q → 1 [1,2]. More 
generalized entropies and distribution functions are introduced 
in Refs. [7,8]. Statistics associated to Eq. (1) has been success-
fully applied to phenomena with the scale-invariant geometry, 
like in low-dimensional dissipative and conservative maps in the 
dynamical systems [9–11], anomalous diffusion [12,13], turbulent 
flows [14], Langevin dynamics with fluctuating temperature [15,
16], spin-glasses [17], plasma [18] and to the financial systems 
[19–21].

By maximizing the entropy (1) with the constraints∫ +∞
−∞ p(x)dx = 1 and

∫ +∞
−∞ x2[p(x)]qdx∫ +∞

−∞ [p(x)]qdx
= σ 2

q , (3)

where σ 2
q is the generalized second-order moment [22–24], one 

obtains the q-Gaussian distribution density

pq(x) = C expq

(−Aqx2). (4)

Here expq(·) is the q-exponential function, defined as

expq(x) ≡ [
1 + (1 − q)x

] 1
1−q
+ , (5)

with [x]+ = x if x > 0, and [x]+ = 0 otherwise. The q-Gaussian 
distribution (or distribution very close to it) appears in many phys-
ical systems, such as cold atoms in dissipative optical lattices [25], 
dusty plasma [18], motion of hydra cells [26], defect turbulence 
[27] and seismic activity [28]. The q-Gaussian distributions are 
found to be related to long-lived quasi-stationary chaotic states 

http://dx.doi.org/10.1016/j.physleta.2014.12.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:julius.ruseckas@tfai.vu.lt
http://www.itpa.lt/~ruseckas
http://dx.doi.org/10.1016/j.physleta.2014.12.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.12.038&domain=pdf


J. Ruseckas / Physics Letters A 379 (2015) 654–659 655
in multi-dimensional Hamiltonian systems (in Fermi–Pasta–Ulam 
model [29–31], in Klein–Gordon disordered lattices [32]) and in 
Galactic dynamics [33]. The q-Gaussian distribution is one of the 
most important distributions in the non-extensive statistical me-
chanics. Its importance stems from the generalized central limit 
theorems [34–36]. According to q-generalized central limit theo-
rem, q-Gaussian can result from a sum of N q-independent ran-
dom variables. The q-independence is defined in [34] through the 
q-product [37,38], and the q-generalized Fourier transform [34]. 
When q �= 1, q-independence corresponds to a global correlation 
of the N random variables. However, the rigorous definition of 
q-independence is not transparent enough in physical terms.

The non-extensive statistical mechanics is introduced in a for-
mal way, starting from the maximization of the generalized en-
tropy [1]. Therefore, simple models providing some degree of in-
tuition about non-extensive statistical mechanics can be useful for 
understanding it. There has been some effort to create such sim-
ple models. In Ref. [39] a system composed of N distinguishable 
particles, each particle characterized by a binary random variable, 
has been constructed so that the number of states with non-zero 
probability grows with the number of particles N not exponen-
tially, but as a power law. For such a system in the limit N → ∞
the ratio Sq(N)/N is finite not for the Boltzmann–Gibbs entropy 
but for the generalized entropy with some specific value of q. The 
starting point in the construction is the Leibnitz triangle, then ini-
tial probabilities are redistributed into a small number of all the 
other possible states, in such a way that the norm is preserved. 
For example, in the restricted uniform model [39] for a fixed value 
of N all nonvanishing probabilities are equal. In the proposed mod-
els that yield q �= 1 there are d + 1 non-zero probabilities and the 
value of q is given by q = 1 − 1/d.

In Refs. [40,41], the goal has been to construct simple models 
providing q-Gaussian distributions. As in [39], the models consid-
ered in [40] consist of N independent and distinguishable binary 
variables, each of them having two equally probable states. The 
models presented in [40] are strictly scale-invariant, however, they 
do not approach a q-Gaussian form when the number of particles 
N in the model increases [42]. The situation is different with the 
models presented in [41]: the two proposed models do approach 
a q-Gaussian form, the second of them does so by construction. 
All models in [40,41], except the last model of [41] are for q ≤ 1. 
The drawback of the models from Ref. [41] is that the standard 
Boltzmann–Gibbs entropy remains extensive. In addition, the mod-
els are constructed artificially and it is hard to see how they can 
be related to real physical systems.

The goal of this paper is to provide a simple model that 
achieves both the extensivity of the generalized entropy with q �= 1
and q-Gaussian distribution in the limit of the large number of 
particles. In addition, we want to construct a model that is closer 
to situations in physical systems. We expect that such a model 
can provide deeper insights into non-extensive statistical mechan-
ics than the previously constructed simple models.

The Letter is organized as follows: To highlight differences from 
our proposed model, a simple model consisting of uncorrelated bi-
nary random variables and leading to extensive Boltzmann–Gibbs 
entropy and a Gaussian distribution is presented in Section 2. In 
Section 3 we construct a simple model exhibiting the extensivity 
of the generalized entropy with q �= 1 and q-Gaussian distribution 
in the limit of the large number of particles. Section 4 summarizes 
our findings.

2. Model of uncorrelated binary random variables

At first let us consider a model consisting of N uncorrelated bi-
nary random variables. Physical implementation of such a model 
could be N particles of spin 1 , the projection of each spin to the 
2
z axis can acquire the values ± 1
2 . The microscopic configuration 

of the system can be described by a sequence of spin projections 
s1s2 . . . sN , where each si = ± 1

2 . There are W = 2N different micro-
scopic configurations. As is usual in statistical mechanics for the 
description of a microcanonical ensemble, we assign to each mi-
croscopic configuration the same probability. Thus the probability 
of each microscopic configuration is

P = 1

W
= 1

2N
. (6)

Note, that this system has a property of composability: if we have 
two spin chains with W1 and W2 microscopic configurations, then 
we can join them to form a larger system. The description of 
a larger system is just concatenation of the descriptions of each 
subsystems and the number of microscopic configurations of the 
whole system is W = W1W2. The standard Boltzmann–Gibbs en-
tropy SBG = kB ln W is extensive for this system: SBG = NkB ln 2
grows linearly with N .

Let us consider a macroscopic quantity, the total spin of the 
system

M =
N∑

i=1

si . (7)

The total spin can take values M = − N
2 , − N

2 + 1, . . . , N
2 − 1, N

2 . 
The value of M can be obtained when there are n = M + N

2 spins 
with the projection + 1

2 , the remaining spins have projection − 1
2 . 

The macroscopic configuration corresponding to the given value of 
M can be realized by 

(N
n

)
microscopic configurations, thus using 

Eq. (6) the probability of each macroscopic configuration is

P M = 1

2N

(
N

n

)
, n = M + N

2
. (8)

Here 
(N

n

)
is the binomial coefficient. Note, that the probabilities of 

macroscopic configurations are normalized:

N/2∑
M=−N/2

P M = 1. (9)

Using Eq. (8) we can calculate the average spin of the system 
〈M〉 = 0 and the standard deviation

√〈
M2

〉 − 〈M〉2 =
√

N

2
. (10)

From Eq. (10) it follows that the relative width of the distribu-
tion of the total spin M decreases with number of spins N as 1√

N
. 

When N is large then we can approximate the factorials using Stir-
ling formula

n! ≈ √
2πnnne−n (11)

and obtain a Gaussian distribution

P M ≈ 1√
π N

2

e− 2M2
N (12)

The Gaussian distribution can be obtained by maximizing the 
Boltzmann–Gibbs entropy (2) with appropriate constraints.

3. Model of correlated spins

In this section we investigate a system consisting of N corre-
lated binary random variables. Similarly as in the previous section, 
we can think of a one-dimensional spin chain consisting of N
spins. However, the spins are correlated: spins next to each other 
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Fig. 1. One-dimensional spin chain having N spins. There are d spin flips, so that 
the spin chain consists of d + 1 domains of spins pointing to the same direction. 
The lengths of the domains are n1, n2, . . . , nd+1.

have almost always the same direction, except there are d cases 
when the next spin has an opposite direction, as is shown in Fig. 1. 
Thus the spin chain consists of d + 1 domains with spins pointing 
in the same direction and has d boundaries between domains. This 
model is inspired by a connection between non-extensive statis-
tics and critical phenomena [43–45]. As it has been shown in 
Refs. [43–45], the properties of a single large cluster of the order 
parameter at a critical point in thermal systems can be described 
by non-extensive statistics. The restriction of the number of al-
lowed states in our model is very similar to the models presented 
in [39]. The restricted uniform model of Ref. [39] corresponds to 
up to d spins pointing up in the spin chain of the length N . Our 
model, in contrast has d spin flips. This allows for the total spin 
M to acquire in our model both positive and negative values with 
equal probabilities.

3.1. Number of allowed microscopic configurations

Let us calculate the number of allowed microscopic configura-
tions of the spin chain. If the length of i-th domain is ni then we 
need to calculate the number of possible partitions such that

d+1∑
i=1

ni = N. (13)

This number is equivalent to the number of ways one can place d
domain boundaries into N − 1 possible positions. Since the spins 
in the first domain can be up or down, the number of microscopic 
configurations is twice as large. Thus the number of allowed mi-
croscopic configurations of the spin chain is

W = 2

(
N − 1

d

)
= 2

d! (N − 1) · · · (N − d). (14)

For large N � d we have that the number of microscopic config-
urations grows as a power-law of the number of spins, not expo-
nentially:

W ∼ 2

d! Nd. (15)

Assigning to each allowed microscopic configuration the same 
probability P = 1/W we get that in this situation the traditional 
Boltzmann–Gibbs entropy is not linearly proportional to N and 
thus is not extensive. The generalized entropy Eq. (1) for equal 
probabilities 1/W takes the form

Sq = kB
1 − W 1−q

q − 1
. (16)

Using Eqs. (15) and (16) one gets that the generalized entropy is 
extensive (proportional to N) only when q is

qstat = 1 − 1

d
. (17)

This is the same dependency of q on d as in [39].
In Fig. 2 the dependence of the generalized entropy (16) on the 

size N of the spin chain for various values of q is shown. As one 
Fig. 2. Dependence of the generalized entropy Sq on the number of particles N in 
the spin chain for various values of q. The number of domain walls d = 4. Only for 
q = qstat = 1 − 1/d = 0.75 the limit limN→∞ Sq(N)/N has a finite value; the limit 
vanishes (diverges) for q > 0.75 (q < 0.75).

can see, only for q = qstat the limit limN→∞ Sq/N is finite, this 
limit vanishes or diverges for all other values of q. Thus our simple 
model can be characterized by the generalized entropy with q < 1.

3.2. Distribution of the total spin

Now let us consider the macroscopic variable, the total spin M . 
If there are d + 1 domains and the total spin is M then we have 
the equality

s1

d+1∑
i=1

(−1)i−1ni = M. (18)

Eq. (18) can be written as

Nodd − Neven = M

s1
, (19)

where

Nodd =
 d

2 �+1∑
k=1

n2k−1 (20)

is the total length of odd-numbered domains,

Neven =
 d+1

2 �∑
k=1

n2k (21)

is the total length of even-numbered domains. Here ·� denotes an 
integer part of a number. In addition, the total lengths of odd- and 
even-numbered domains should obey the equation

Nodd + Neven = N. (22)

Eqs. (19) and (22) have only one solution

Nodd = 1

2

(
N + M

s1

)
, Neven = 1

2

(
N − M

s1

)
. (23)

The total length of odd-numbered domains Nodd is a sum of 
 d

2 � + 1 terms, the total length of even-numbered domains Neven

is a sum of  d+1
2 � terms. Similarly as in Eq. (14), the number of 

ways to choose n1, n2, . . . , nd+1 is equal to the number of ways to 
place  d

2 � domain boundaries into Nodd − 1 positions multiplied 
by the number of ways to place  d+1

2 � − 1 domain boundaries into 
Neven − 1 positions. Thus the number of ways to choose the do-
main lengths when M , N and s1 are given is
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Fig. 3. (a) Comparison of numerically obtained histogram of total spin M (gray area) with q-Gaussian distribution (solid red line) and with a Gaussian distribution (dashed 
green line) having the same firs two terms in the power series expansion around M = 0 as the q-Gaussian distribution. The histogram is calculated using an ensemble of 
randomly generated spin chains that have the length N = 1000 spins and d = 5 spin flips. The q-Gaussian distribution is given by Eq. (33) with xq = N/2. (b) The same 
histogram of the total spin (red dots) plotted against 1 − M2/x2

q on a log–log plot. A straight line with a slope 1/(1 − q) (shown as a dashed green line) is expected if the 
distribution is a q-Gaussian. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
W (N, M, s1) =
(

Nodd − 1

 d
2 �

)(
Neven − 1

d−1
2 �

)
. (24)

The number of microscopic configurations corresponding to a given 
value of M is

W (N, M) =
∑

s1=±1/2

W (N, M, s1). (25)

Using Eqs. (23)–(25) we obtain that the number of microscopic 
configurations corresponding to a given value of M is

W (N, M)

= 1

2d−2[(d−1
2 )!]2

× (
(N − 2)2 − 4M2) · · · ((N − (d − 1)

)2 − 4M2) (26)

when d is odd and

W (N, M)

= (N − d)

2d−2 d
2 [( d

2 − 1)!]2

× (
(N − 2)2 − 4M2) · · · ((N − (d − 2)

)2 − 4M2) (27)

when d is even. When N � d then Eqs. (26) and (27) can be ap-
proximated as

W (N, M) ≈ Nd−1

2d−2( d
2 �)!(d−1

2 �)!
(

1 − 4M2

N2

) d−1
2 �

. (28)

Instead of the total spin M it is convenient to consider a scaled 
variable

x = 2M

N
. (29)

The distribution P x(x, N) of the scaled total spin x in a spin chain 
of the length N is given by the equation

P x(x, N) = N

2

W (N, M = Nx/2)

W
, (30)

where the number of microscopic configurations W (N, M) corre-
sponding to a given value of M and the total number of micro-
scopic configurations W can be calculated using Eqs. (26), (27)
and (14). Note, that we include the multiplier N/2 in Eq. (30) be-
cause the distance between the adjacent values of the variable x
is �x = 2/N . Using Eqs. (30) and (28) we get that in the limit of 
large N the distribution P x(x, N) does not depend on N and is pro-
portional to

P x(x) ∝ (
1 − x2) d−1

2 �
. (31)

When q < 1 then the q-Gaussian distribution (4) has compact 
support, the range of possible values of x is limited by the condi-
tion |x| � xq , where

xq = 1√
(1 − q)Aq

. (32)

Using the limiting value xq the expression (4) for the q-Gaussian 
distribution takes the form

pq(x) = Γ (
5−3q

2(1−q)
)

√
πxqΓ (

2−q
1−q )

[
1 − x2

x2
q

] 1
1−q

+
. (33)

By rescaling the variable x the expression (33) for q-Gaussian dis-
tribution in the case of q < 1 can be written as

pq(x) ∝ (
1 − x2) 1

1−q . (34)

Comparing Eq. (31) with Eq. (34) we see that the distribution of 
the total spin M in our model in the limit of large number of spins 
N is a q-Gaussian with

qdist = 1 − 1

d−1
2 � . (35)

Comparison of the histogram of the total spin M , calculated 
using an ensemble of randomly generated spin chains, with a 
q-Gaussian distribution (33) is shown in Fig. 3. We see that the 
q-Gaussian describes the distribution of the total spin very well. 
By increasing the number of spin flips d, both qstat and qdist ap-
proaches the value of 1, as follows from Eqs. (17) and (35). In the 
limit of d → ∞ the distribution of total spin becomes Gaussian.

Note, that in Refs. [40,41] the starting point to construct simple 
models providing q-Gaussian distributions is the Leibnitz triangle. 
The Leibnitz triangle follows from the requirement that the proba-
bilities Pn,N to have n spins up in the spin chain of the length N
obey the relation

Pn,N + Pn+1,N = Pn,N−1. (36)

The total spin of the spin chain that has n spins up is M = n −
N/2. Thus the probability to have n spins up is the same as the 
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probability to have the total spin M = n − N/2. This probability is 
equal to W (N, M)/W , where W (N, M) and W can be calculated 
using Eqs. (26), (27) and (14). From Eq. (31) it follows that even in 
the limit of large N the present model does not obey the Leibnitz 
rule (36).

3.3. Other properties of the model

From Eqs. (17) and (35) follows the relationship between the 
two q values:

2

1 − qdist
= 1

1 − qstat
− 1 (37)

when d is odd and

2

1 − qdist
= 1

1 − qstat
− 2 (38)

when d is even. Eqs. (37) and (38) can be written as a single equa-
tion

1

1 − qdist
=

⌊
1

2

(
1

1 − qstat
− 1

)⌋
. (39)

The connection between different values of q, given by Eqs. (37)
and (38), has a simple algebraic structure that is similar to the 
structure of the relations between different q indices presented in 
Eq. (18) of Ref. [46], and Eq. (5) in Ref. [47]. This relationship is 
also similar to relations obtained from an algebra of q, proposed 
in the footnote in page 15 378 of Ref. [39] and further explored in 
Refs. [1,48]. However, Eqs. (37) and (38) cannot be obtained using 
this algebra.

Now let us investigate how fast the distribution of the scaled 
total spin x = 2M/N approaches the limiting q-Gaussian when the 
number of spins N increases. Deviations from equilibrium are con-
sidered in the large-deviation theory and play an important role in 
the statistical physics [49]. Recently the q-generalization of large-
deviation theory was proposed in Refs. [46,50]. It has been shown 
that in some systems, described by the non-extensive statistics, 
large deviations decay with increase of the number of particles 
not exponentially, but as a q-exponential function expqLDT

(−Nr(x)). 
The leading term in the expansion of the q-exponential function 
into the power series of the number of particles N describes a 
power-law decay of deviations.

The distribution P x(x, N) of the scaled total spin for a finite 
value of N is given by Eq. (30). Expanding Eq. (30) in power se-
ries of N we obtain that for large N the difference between the 
distribution of x for finite value of N and the limiting distribution 
corresponding to the infinite N decreases as N−1:

P x(x, N) − P x(x,∞)

≈ d!(d−1
2 � + 1)

2d N( d
2 �)!(d−1

2 �)!

×
{

1 −
(

2

⌊
d − 1

2

⌋
+ 1

)
x2

}(
1 − x2) d−1

2 �−1
(40)

Thus the deviation decay as a power-law, as it is the case in 
Ref. [46]. However, by considering the next term in the expan-
sion of P x(x, N) in the power series of N and comparing with 
the power series of the q-exponential expqLDT

(−Nr(x)) we get that 
the decay of the deviation in our model cannot be described by 
q-exponential function. This is in contrast with Ref. [50], where 
the two leading terms in the power series are the same.
4. Discussion

Our simple model of a spin chain exhibits both non-extensive 
behavior of Boltzmann–Gibbs entropy and q-Gaussian distribution 
of the total spin. This is in contrast to the other models involv-
ing N binary random variables: the models presented in [39]
demonstrate that the generalized entropy with q �= 1 can be ex-
tensive, but they do not provide q-Gaussian distribution, whereas 
the models from Ref. [41] yield q-Gaussians but for them the 
Boltzmann–Gibbs entropy is extensive. Thus the model, presented 
in this paper, is an improvement over earlier models and may pro-
vide deeper insights into non-extensive statistical mechanics.

By comparing the model with the chain of uncorrelated spins, 
presented in Section 2, we see that the reason for the non-
extensivity of Boltzmann–Gibbs entropy and the extensivity of the 
generalized entropy is the reduction of the number of allowed mi-
croscopic configurations, resulting from the restriction of the num-
ber of allowed spin flips. Similar reason is behind the differences 
in the distribution of the total spin M: the number of possible con-
figurations having Nodd spins pointing in one direction and Neven
spins in the opposite direction in the chain of uncorrelated spins 
is the exponential function of Nodd Neven, resulting in the Gaussian 
function of M . When the number of spin flips is restricted, the 
number of configurations is a power-law function of NoddNeven, 
resulting in the q-Gaussian.

The model can be slightly modified by requiring that the num-
ber of spin flips is not constant, but can be a random number not 
larger than d. Since the number of microscopic configurations hav-
ing d spin flips grows as Nd , the contribution of configurations 
with smaller number of spin flips becomes negligible in the limit 
of large N . Thus the conclusions of Section 3 remain valid also for 
this modified model.

Note, that the values of q obtained from the entropy (17)
and from the distribution (35) are different. This difference is 
not surprising and is similar to the q-triplet in the non-extensive 
statistical mechanics. Usually the systems described by the non-
extensive statistical mechanics have three different values of q, the 
q-triplet [1]. This triplet consists of the values of q, (qsen, qrel, 
qstat) obtained from the sensitivity to the initial conditions, the 
relaxation in phase-space, and the distribution of energies at a sta-
tionary state [1]. Since our model does not involve the energy and 
there is no evolution in time, we have obtained only two values q. 
It would be interesting task for the future to extend the model and 
get the full q-triplet.

The model presented here provides q-Gaussian distribution 
with q < 1. Thus another open question is whether it is possible 
to modify the model to obtain q-Gaussian distribution with q > 1.
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