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The non-extensive statistical mechanics has been applied to describe a variety of complex systems with 
inherent correlations and feedback loops. Here we present a dynamical model based on previously 
proposed static model exhibiting in the thermodynamic limit the extensivity of the Tsallis entropy with 
q < 1 as well as a q-Gaussian distribution. The dynamical model consists of a one-dimensional ring 
of particles characterized by correlated binary random variables, which are allowed to flip according 
to a simple random walk rule. The proposed dynamical model provides an insight how a mesoscopic 
dynamics characterized by the non-extensive statistical mechanics could emerge from a microscopic 
description of the system.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Assumption that the velocities of the colliding particles are un-
correlated and independent of the position of the particles is a key 
point in the molecular chaos hypothesis. The hypothesis itself is a 
cornerstone of the classical (extensive) statistical mechanics. In a 
more general form the lack of correlations assumption is included 
into the functional form of the Boltzmann–Gibbs entropy:

SBG = −
∫

P (x) ln P (x)dx . (1)

This assumption works rather well for many classical dynamical 
systems, in which large number of particles and their interactions 
help to mask the existing correlations. E.g., after the collision of 
gas particles the velocities of those particles are no longer uncor-
related, but due to large number of them and, thus, large number 
of the collisions between them, the correlation quickly becomes 
forgotten. Yet there are systems in which long-range interactions, 
long-range memory or non-ergodicity are present. To understand 
these, sometimes referred to as complex, systems and their appar-
ently anomalous properties a generalization of classical statistical 
mechanics proposed by Tsallis [1] is used. This generalized frame-
work has found its applications to extremely different systems 
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studied by both “hard” (e.g., mathematics, physics, chemistry) and 
“soft” (e.g., economics) sciences [2–9].

The non-extensive statistical mechanics framework is con-
structed starting from the generalization of the Boltzmann–Gibbs 
entropy [1]

Sq = 1 − ∫ [P (x)]q dx

q − 1
, (2)

where P (x) is a probability density function of finding the sys-
tem in the state characterized by the parameter x, the parame-
ter q describes the non-extensiveness of the system. The original 
Boltzmann–Gibbs entropy, Eq. (1), can be obtained from Eq. (2) in 
the limit q → 1 [1,10]. More generalized entropies and distribution 
functions are introduced in Refs. [11,12]. In the classical statisti-
cal mechanics the Gaussian distribution plays an important role. 
Similarly, in the non-extensive statistical mechanics the q-Gaussian 
distribution

Pq(x) = C expq(−Aqx2) (3)

becomes important [1]. Note that in Eq. (3) q-exponential function 
is present, this function is defined as follows

expq(x) ≡ [1 + (1 − q)x]
1

1−q
+ , (4)

where the notation [x]+ means [x]+ = x if x > 0, and [x]+ = 0
otherwise. Recently, in Ref. [13] it has been shown that q-Gaussian 
distributions emerge in the limit of large number of realizations 
in a generalized binomial distribution representing a sequence of 
correlated trials.
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To illustrate non-extensive statistical mechanics several statisti-
cal models which in the N → ∞ limit provide q-Gaussian attrac-
tors have been constructed [14–17]. The first attempt to create 
such models has been undertaken in Ref. [18]. However, it has 
been shown that the distributions do not approach a q-Gaussian 
form when the number of particles N in the model increases [19]. 
Two models that provide q-Gaussian distributions have been in-
troduced in [14], the second model does so by construction. More 
detailed analysis of the models in [14] has been presented in [15]
and the generalization to higher dimensions has been proposed 
in [16]. However, the standard Boltzmann–Gibbs entropy remains 
extensive for the models from Ref. [14]. This situation has been 
improved by the model presented in Ref. [17]. This model is based 
on a system composed of N distinguishable particles arranged in 
a chain, each of the particles in the chain is characterized by a 
binary random variable (this can be, for example, particles with 
the spin 1

2 ). In the aforementioned model it is assumed that spins 
next to each other are almost always aligned in the same direc-
tion. The only exceptions are assumed to be d cases in which the 
neighboring spins are antialigned. In this model the number of 
states grows as a power-law, with the corresponding index q be-
ing qstat = 1 − 1/d. In addition, the distribution of the total spin 
of the system in the limit of N → ∞ tends to a q-Gaussian with 
qdist �= qstat. All models in [14,17,18], except the last model of [14]
are for q ≤ 1.

The distributions of the non-extensive statistical mechanics can 
be obtained from mesoscopic description of the systems in the 
form of probabilistic dynamics [1]. Such probabilistic description 
can be provided by nonlinear Fokker–Planck equations and corre-
sponding nonlinear stochastic differential equations (SDEs) [20,21], 
SDEs with additive and multiplicative noises [22,23] or with mul-
tiplicative noise only [24], and with fluctuating friction forces [25]. 
Nonlinear SDEs generating distributions of non-extensive statisti-
cal mechanics together with 1/ f noise have been proposed in 
Ref. [26]. Scaling law that follows from nonlinear Fokker–Planck 
equations has been recently experimentally confirmed in granular 
media [27].

The goal of this paper is to extend the model presented in 
Ref. [17] by introducing stochastic temporal dynamics. Conserv-
ing the total number of domains d, we allow spins near domain 
boundaries to flip. This effectively introduces a random walk of 
domain boundaries into the previous static model. In the limit of 
large number of spins we derive the Fokker–Planck equation and 
a corresponding SDE describing the temporal dynamics of the to-
tal spin of the system. The proposed dynamical model provides 
an insight how a mesoscopic dynamics characterized by the non-
extensive statistical mechanics could emerge from a microscopic 
description of the system.

The Letter is organized as follows. To show how stochastic tem-
poral dynamics can be introduced into a model describing the 
equilibrium, in Section 2 we introduce stochastic dynamics into a 
simple model consisting of uncorrelated binary random variables. 
In Section 3 we use a similar stochastic temporal dynamics for 
the model with correlated binary random variables and leading to 
extensive generalized entropy with q < 1. In Section 4 we demon-
strate that presence of macroscopic fluctuations in this model can 
lead to 1/ f noise, whereas in Section 5 we consider properties of 
a part of larger system. We summarize the paper in Section 6.

2. Stochastic dynamics in the model with uncorrelated binary 
variables

As in Ref. [17], we start with the analysis of the dynami-
cal model without any correlations between the particles or their 
spins. Let us say that we have N particles which have spin projec-
tions on certain axis equal to either − 1 or + 1 . The microscopic 
2 2
state of such system is fully described by a set of spin projections 
{s1, s2, . . . , sN}. This system may be treated, in the statistical me-
chanics sense, using the microcanonical ensemble in which each 
of the microscopic states is assigned the same probability. Here 
we obtain the same stationary probability density function (PDF) 
from the temporal dynamics perspective.

We are interested in an observable macroscopic quantity, the 
total spin of the system

M =
N∑

i=1

si . (5)

Alternatively we can express the total spin as

M = 1

2
(N+ − N−) , (6)

where N+ is the number of spins with projection + 1
2 and N− is 

the number of spins with projection − 1
2 . A sum of N+ and N− , by 

definition, should give the total number of spins N ,

N+ + N− = N . (7)

From Eqs. (6) and (7) we obtain relation between total spin and 
number of particles having certain spin projections:

N+ = 1

2
N + M , N− = 1

2
N − M . (8)

To introduce temporal dynamics we assume that during the 
short time interval �t each spin can flip with the probability 
1
2 γ�t . If �t is short enough we can assume that only one spin 
flip takes place during the time interval �t . Since each spin can 
flip independently, the transition probabilities per unit time are

p(M → M + 1) ≡ p+(M) = 1

2
γ N− , (9)

p(M → M − 1) ≡ p−(M) = 1

2
γ N+ . (10)

The transition probabilities p+(M) and p−(M) define a one-step 
stochastic process and imply the following Master equation for 
the probability P M(M, t) to find the value M of the total spin at 
time t [28]:

∂

∂t
P M(M, t) = p+(M − 1)P M(M − 1, t)

+ p−(M + 1)P M(M + 1, t)

− (p+(M) + p−(M))P M(M, t) . (11)

For large enough N we can represent the dynamics by a continu-
ous variable x = 2M/N . Using the standard methods from Ref. [28]
one can derive the Fokker–Planck equation from the Master equa-
tion (11) assuming that N is large and neglecting the terms of the 
order of 1/N2. The resulting Fokker–Planck equation is

∂

∂t
P x(x, t) = − ∂

∂x
[π+(x) − π−(x)]P x(x, t)

+ ∂2

∂x2

1

N
[π+(x) + π−(x)]P x(x, t) , (12)

where P x(x, t) = (N/2)P M(Nx/2, t) is the PDF of the stochastic 
variable x and

π±(x) ≡ 2

N
p±

(
Nx

2

)
. (13)

The SDE corresponding to the Fokker–Planck equation (12) is [29]

dx = [π+(x) − π−(x)] +
√

2 [π+(x) + π−(x)]ξ(t) . (14)

dt N
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Here ξ(t) is a white noise with autocorrelation 〈ξ(t)ξ(t′)〉 =
δ(t − t′). When the diffusion coefficient depends on x, SDE (14)
should be understood in Itô convention.

For the transition probabilities (9) and (10), the Fokker–Planck 
equation (12) becomes

∂

∂t
P x(x, t) = γ

∂

∂x
xP x(x, t) + γ

N

∂2

∂x2
P x(x, t) (15)

and Eq. (14) takes the form

dx

dt
= −γ x +

√
2γ

N
ξ(t) . (16)

As one can see from Eq. (16), the fluctuations of the macroscopic 
quantity M decrease with the increasing number of spins as 1/

√
N . 

From Eq. (16) follows that the average value of x obeys the ordi-
nary differential equation

d

dt
〈x〉 = −γ 〈x〉 . (17)

Thus the deviations from the equilibrium average 〈x〉0 = 0 de-
cay exponentially: 〈x(t)〉 = 〈x(0)〉e−γ t . The steady-state PDF of the 
stochastic variable x obtained from the Fokker–Planck equation 
(15) is Gaussian,

P0(x) =
√

N

2π
exp

(
− N

2
x2

)
. (18)

Gaussian distribution, coinciding with Eq. (18), is also obtained as-
suming equal probabilities for each microscopic configuration.

3. Stochastic dynamics in the model with correlated binary 
variables

In this section we investigate the statistical model consisting 
of N correlated binary random variables, similar to the model of 
Ref. [17]. As in the previous section one can consider particles hav-
ing spins 1

2 . In order to avoid special treatment of the ends we will 
consider the spins situated on a ring instead of one-dimensional 
chain as in Ref. [17]. We assume that the spins are correlated, 
meaning that the two adjacent spins are aligned, except for the 
d cases when the two adjacent spins are antialigned. Note that for 
a ring of spins only even d is possible. Thus the ring consists of d
domains with aligned spins and has d domain boundaries where 
the spin flips occur. Similarly as in Ref. [17] one can show that the 
number of allowed microscopic configurations in the model grows 
with the number N of spins as Nd and the equilibrium distribu-
tion of the total spin M in the limit N → ∞ is a q-Gaussian with 
qdist = 1 − 2/(d − 2).

We introduce stochastic temporal dynamics into the model sim-
ilarly as we have done in Section 2: we assume that during the 
short time interval �t spins can flip with the probability 1

2 γ�t . 
However, in order to conserve d, only the spins next to the domain 
boundaries are allowed to flip. Furthermore, in order to conserve d, 
spins belonging to domains containing single spin should not be 
allowed to flip. If such spin would be allowed to flip, the domains 
could disappear and d would not be conserved. Alternatively, these 
spin-flip rules may be seen as introducing a random walk of the 
domain boundaries. Namely, during the short time interval �t each 
domain boundary can move to the left or to the right with equal 
probabilities 1

2 γ�t unless the move results in two boundaries in 
the same position. As in Section 2 we will obtain the Fokker–
Planck equation describing how the distribution of the total spin 
changes in time.
If the time interval �t is short enough, we may assume that 
only one spin flip takes place at the time. Since spins situated next 
to the boundaries may flip independently, in the case with no one-
spin domains the transition probabilities per unit time are given 
by

p(M → M + 1) = p(M → M − 1) = 1

2
γ d . (19)

Evidently the presence of one-spin domains would make spin flip 
less probable. Given only the number of spins N and the total spin 
M the number of one-spin domains is not exactly known, there-
fore the actual transition probabilities corresponding to the same 
total spin M will change over time. For the analytical description 
of the model we will use averaged in time transition probabili-
ties corresponding to given M . If K+(M) is the average number of 
one-spin domains with spin projection + 1

2 and K−(M) is the av-
erage number of one-spin domains with spin projection − 1

2 , then 
the average transition probabilities per unit time are

〈p(M → M + 1)〉 = 1

2
γ (d − 2K−) . (20)

〈p(M → M − 1)〉 = 1

2
γ (d − 2K+) . (21)

We will assume that during the temporal evolution the prob-
abilities of different microscopic configurations are almost equal. 
Then the average number of one-spin domains can be expressed 
as

K± =
d
2∑

i=0

i
W i

(
N±, d

2

)

Wdiv

(
N±, d

2

) , (22)

where Wdiv(N±, d/2) is the number of possible divisions of N±
spins into d/2 domains and W i(N±, d/2) is the number of pos-
sible divisions of N± spins into d/2 domains such that there are 
i one-spin domains. The number N+ of spins with projection + 1

2
and the number N− of spins with projection − 1

2 may be obtained 
from the known N and M using Eq. (8). The spins with projection 
+ 1

2 as well as the spins with projection − 1
2 are divided into d/2

domains. Thus the number of possible divisions of spins with the 
same projection into domains is

Wdiv

(
N±,

d

2

)
=

(
N± − 1

d
2 − 1

)
. (23)

Here 
(m

n

)
is the binomial coefficient. The number of possible con-

figurations with i one-spin domains can be expressed as

W i

(
N±,

d

2

)
=

( d
2
i

)
W0

(
N± − i,

d

2
− i

)
. (24)

Here the binomial coefficient 
(d/2

i

)
gives the number of ways to 

choose i one-spin domains from d/2 domains, while W0(N± − i,
d/2 − i) is the number of ways to distribute the remaining N± − i
spins into the remaining d/2 − i domains containing more than one 
spin. We obtain the expression for the number W0(n, k) of possi-
ble divisions of n spins into k domains with no one-spin domains 
as follows. First we put aside k spins. Next we distribute the re-
maining n − k spins into k domains with at least one spin each. 
Afterwards we add one spin to each of the k domains using the 
spins put aside in the first step. Evidently there is only one way to 
complete the last step, thus the number W0(n, k) is determined by 
the number of ways to divide n − k spins into k domains:

W0(n,k) =
(

n − 1 − k
)

. (25)

k − 1
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Fig. 1. Kramers–Moyal coefficients (a) D(1)(x) and (b) D(2)(x) (symbols) for two different numbers of spin flips estimated using numerical time series. In order to get a curve 
closer to a straight line the coefficient D(1)(x) is multiplied by 1 − x2. Solid lines show corresponding analytic expressions (34) and (35). The number of spins is N = 100, 
the number of spin flips is d = 4 (black squares) and d = 8 (red circles). Other parameters are γ = 0.005, �t = 1. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
Using Eqs. (22)–(25) we obtain the average number of one-spin 
domains

K± = d

2

d
2 − 1

N± − 1
. (26)

Inserting Eq. (26) into Eqs. (20) and (21) we get the average tran-
sition probabilities per unit time

〈p(M → M + 1)〉 = γ d

2

N− − d
2

N− − 1
, (27)

〈p(M → M − 1)〉 = γ d

2

N+ − d
2

N+ − 1
. (28)

Using Eqs. (27) and (28) in Eq. (12) and keeping the terms of the 
order of 1/N2 we obtain the Fokker–Planck equation

∂

∂t
P x(x, t) = 4γ d

N2

(
d

2
− 1

)
∂

∂x

x

1 − x2
P x(x, t)+ 2γ d

N2

∂2

∂x2
P x(x, t) .

(29)

The corresponding SDE, according to Eq. (14), is

dx

dt
= −4γ d

N2

(
d

2
− 1

)
x

1 − x2
+ 2

N

√
γ dξ(t) . (30)

The dependence on the number of spins N in SDE (30) can be 
removed by introducing the scaled time ts = 4γ d

N2 t:

dx

dts
= −

(
d

2
− 1

)
x

1 − x2
+ ξ(ts) . (31)

From Eq. (30) follows that the evolution of the total spin slows 
down with increasing number of spins N as 1/N2. This is in con-
trast to the case of uncorrelated spins, Eq. (16), where the relax-
ation towards equilibrium does not depend on N . For the model 
of correlated spins the fluctuations of the total spin remain macro-
scopic even in the limit N → ∞, the size of fluctuations of x does 
not depend on the number of spins N . This is different than in 
the model of uncorrelated spins where the size of fluctuations 
decreases as 1/

√
N . Steady-state PDF of the stochastic variable x

obtained from the Fokker–Planck equation (29) is

P0(x) ∝ (1 − x2)
d
2 −1 . (32)

This steady-state PDF has a q-Gaussian form with q < 1 and co-
incides with the distribution of the total spin obtained assuming 
equal probabilities for each microscopic configuration. The Fokker–
Planck equation (29) is a particular case of known Fokker–Planck 
equations giving q-Gaussian distributions and satisfies the condi-
tion given by Eq. (11) of Ref. [30].
3.1. Testing the Markovian approximation of the dynamical model with 
correlated binary variables

To check the assumptions made in deriving the Fokker–Planck 
equation (29) we numerically simulate the temporal evolution of 
the ring of spins and obtain the time series describing the time de-
pendence of the total spin M . Using those time series we estimate 
Kramers–Moyal coefficients and compare them to the analytical 
predictions. In addition we compare time-dependent PDFs of the 
total spin to the PDFs obtained using Markovian approximation 
with the transition probabilities per unit time (27), (28).

In numerical simulation we have chosen a random initial con-
figuration with N = 100 spins and d = 4 or d = 8 spin flips, 
a small time step �t such that γ�t 
 1 and generated time series 
with 3 · 107 points. Using the numerical time series we estimate 
Kramers–Moyal coefficients [31]

D(n)(X) = 1

n!�t
〈[x(t + �t) − x(t)]n〉∣∣x(t)=X , (33)

where x = 2M/N . The numerically obtained Kramers–Moyal coef-
ficients D(1)(x) and D(2)(x) are shown as symbols in Fig. 1. We 
have found the coefficients D(3) and D(4) to be 4 to 5 degrees 
of magnitude smaller than D(1) and D(2) . Thus, according to the 
Pawula theorem the dynamics of the complete model may be ap-
proximated by an Fokker–Planck equation. The continuous curves 
in Fig. 1 show the analytical expressions for the Kramers–Moyal 
coefficients

D(1)(x) = −4γ d

N2

(
d
2 − 1

)
x

(
1 − 2

N

)2 − x2
, (34)

D(2)(x) = 2γ d

N2

(
1 − d

N

)(
1 − 2

N

)
− x2

(
1 − 2

N

)2 − x2
, (35)

that take into account the effects of the finite number of the spins. 
To derive Eqs. (34), (35) we have inserted Eqs. (27) and (28) into 
Eq. (12) without making any further approximations. We see in 
Fig. 1 a good agreement of the numerically estimated Kramers–
Moyal coefficients with the analytic predictions. In the limit of 
N → ∞ the curves in Fig. 1 should be straight lines. However, as 
Eqs. (34), (35) and the numerical simulations show, there are de-
viations from the straight lines for the most extreme values of the 
total spin. The range of x values where the deviations are signifi-
cant decreases with increasing N .

Total spin of the system does not determine the transition prob-
abilities completely, because these probabilities depend also on the 
number of one-spin domains. To check the impact of this miss-
ing information on the temporal evolution of the system we have 



1586 A. Kononovicius, J. Ruseckas / Physics Letters A 380 (2016) 1582–1588
Fig. 2. Dependence of the Pearson product-moment correlation coefficient ρ on the 
scaled time ts . The coefficient ρ is calculated between the time-dependent PDF 
obtained from the Markovian approximation and the numerically obtained time-
dependent PDFs when the initial configuration contains no one-spin domains (red 
squares), one one-spin domain (green circles), two one-spin domains (blue trian-
gles). The solid curves passing through the symbols are for the convenience of the 
eyes only. Black solid curve without symbols shows the Pearson product-moment 
correlation coefficient between the time-dependent PDF obtained from the Marko-
vian approximation and the steady-state PDF. Model parameters are N = 100, d = 4, 
γ = 0.005, �t = 1. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

randomly generated several initial spin configurations, each with 
M = 0, and observed how well the numerically obtained time-
dependent PDFs (calculated using 105 realizations that start from 
same initial configuration and contain 5 · 105 points each) corre-
spond to the time-dependent PDF obtained from the Markovian 
approximation. The dependence of the Pearson product-moment 
correlation coefficient ρ on the scaled time ts is shown in Fig. 2. 
One can see that the differences in initial spin configuration play 
a significant role for intermediate times ts � 1 as the Pearson 
product-moment correlation coefficient becomes smaller. The ini-
tial configuration becomes less important as the time-dependent 
PDF approaches the steady-state PDF.

4. Long-range temporal dependence in the model

Presence of macroscopic fluctuations in the model presented in 
previous section can enable recovery of 1/ f noise. To demonstrate 
this let us consider a quantity equal to the ratio of the number 
of spins with projection − 1

2 to the number of spins with projec-
tion + 1

2 :

y = N−
N+

= 1 − x

1 + x
. (36)

The range of possible y values is [d/(2N − d), (2N − d)/d]. Using 
Itô’s lemma one may obtain the following SDE for the stochastic 
variable y

dy

dt
= 1

4

(
2 − λ1

2
+ λ2

2y

)
(1 + y)3 + 1

2
(1 + y)2ξ(ts) , (37)
s

where

λ1 = d

2
+ 1 , λ2 = d

2
− 1 . (38)

The steady-state PDF of the stochastic variable y, obtained from 
the Fokker–Planck equation corresponding to the SDE (37), is

P0(y) = 
(λ1 + λ2)


(λ1 − 1)
(λ2 + 1)

yλ2

(1 + y)λ1+λ2

= 
(λ1 + λ2)


(λ1 − 1)
(λ2 + 1)
expq2

(
−λ2

y

)
expq1

(−λ1 y) , (39)

where

q1 = 1 + 1/λ1 , q2 = 1 + 1/λ2 . (40)

Thus the steady-state PDF of y is a q-exponential with q-expo-
nential cut-off at small values of y. The SDE (37) for large y � 1
coincides with the nonlinear SDE proposed in Refs. [32,33] (with 
the power-law exponent in the drift term η = 2). This similarity 
implies that SDE (37) should generate time series exhibiting power 
spectral density (PSD) of S( f ) ∼ 1/ f β form, where

β = 1 + λ1 − 3

2(η − 1)
= d

4
. (41)

This expression is valid for 0 < β � 2. Thus we may expect that 
the PSD of the ratio N−/N+ should be 1/ f in a wide range of 
frequencies when d = 4. The range of frequencies is limited by the 
finite number of spins (the ratio N−/N+ has a finite maximum 
possible value ymax ≈ 2N/d) as well as by the steady-state PDF 
of y exhibiting power-law behavior with the power-law exponent 
λ1 only for y � 1. According to Ref. [34] the frequencies in the 
power-law part of the PSD satisfy σ 2 y2(η−1)

min 
 2π fs, where σ is 
the coefficient in the noise term. For SDE (37) ymin = 1 and σ = 1

2 . 
Going back from the scaled time ts to the physical time t we get 
that the PSD has power-law behavior for frequencies

γ d

N2

 2π f . (42)

We see that the lowest limiting frequency decreases with increase 
of the number of spins as 1/N2. The width of the frequency region 
with the power-law behavior of the PSD grows with increasing par-
ticle number N .

The power-spectral density of the ratio y = N−/N+ obtained 
from numerical simulation of the stochastic evolution of the ring of 
spins when d = 4 is shown in Fig. 3. We see a good agreement of 
the numerical results with the analytical predictions. The numer-
ical simulation confirms the presence of 1/ f region in the spec-
trum of the ratio N−/N+ . The 1/ f interval in the PSD in Fig. 3(b) 
is approximately between fmin ≈ 10−9 and fmax ≈ 10−6, the low-
est frequency fmin is in agreement with the estimation (42). The 
width of this frequency interval can be increased by increasing N .
Fig. 3. (a) The steady-state PDF of the ratio N−/N+ . Solid (red) line corresponds to Eq. (39). (b) The PSD of the ratio N−/N+ . Solid (red) line shows the slope f −1. Black 
squares show numerical results obtained using simulation of the stochastic evolution of the ring of spins. Model parameters are γ = 0.005, N = 103, d = 4. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Interacting subsystems

The temporal dynamics in the model of correlated spins, pro-
posed in Section 3, allows us to consider a contact between two 
such systems. Since the dynamics results in a random walk of the 
spin flip positions, it is natural to assume that the contact between 
two systems allows for spin flips to move from one system to the 
other. If the first system has d1 spin flips, the second system has d2
spin flips, then the total number of spin flips in the composite sys-
tem is d = d1 + d2. Taking into account the relation qstat = 1 − 1/d
[17], we obtain that the index qstat of the composite system obeys 
the equation

1

1 − qstat
= 1

1 − qstat,1
+ 1

1 − qstat,2
. (43)

Note, that for such composite system the number of allowed mi-
croscopic configurations W is not equal to the product W1W2, 
where W i is the number of allowed microscopic configurations of 
the isolated i-th system. Since the number of allowed microscopic 
configurations grows as W ∼ Nd [17] and for composite system 
N = N1 + N2 with d = d1 + d2, we have

W ∼ (W
1−qstat,1
1 + W

1−qstat,2
2 )

1
1−qstat . (44)

This equation generalizes Eq. (3.113) of Ref. [1] for subsystems 
with different values of q.

The subsystem of larger composite system has fluctuating num-
ber of spin flips. Let us calculate the probability distribution of spin 
flips in the subsystems when this distribution becomes stationary. 
In this situation we can assume that each microscopic configura-
tion of the composite system has the same probability. The number 
of ways to partition a ring of N spins into d domains is equal to 
the number of ways 

(N
d

)
to place d domain boundaries into N pos-

sible positions. This number should be multiplied by 2 because 
there are 2 ways to assign the signs of spin projections to the do-
mains. Thus the number of allowed microscopic configurations of 
the ring of spins is

W = 2

(
N

d

)
(45)

Let us consider a subsystem as a spin chain having N1 spins being 
a part of a larger ring with N spins. The number of microscopic 
configurations where the subsystem has d1 domain boundaries is 
proportional to the number of ways to place d1 domain boundaries 
into N1 −1 positions in the subsystem multiplied by the number of 
ways to place remaining d − d1 domain boundaries into remaining 
N − N1 + 1 positions:

W (d1) = 2

(
N1 − 1

d1

)(
N − N1 + 1

d − d1

)
(46)

The probability to have d1 boundaries in the subsystem is equal to 
the ratio

P (d1) = W (d1)

W
. (47)

Note that the probabilities are normalized, 
∑d

d1=0 P (d1) = 1. Using 
Eqs. (45)–(47) for large N1 � d1 and N � d we obtain the distri-
bution of the spin flips in the subsystem

P (d1) ≈
(

d

d1

)(
N1

N − N1

)d1
(

N − N1

N

)d

. (48)

The average number of spin flips in the subsystem calculated using 
the probabilities (47) is

〈d1〉 = d
N1

. (49)

N

Thus for the two subsystems in contact we have the equality

〈d1〉
N1

= 〈d2〉
N2

(50)

when distributions of spin flips in the subsystems become station-
ary. We can interpret the quantity � = 〈d1〉/N1 as an effective 
temperature. An effective temperature associated with the non-
extensive statistical mechanics and proportional to the density of 
vortices in type II superconductors has been introduced in [35,36].

6. Conclusions

We have extended the statistical model proposed in Ref. [17]
that exhibits both extensive behavior of generalized entropy for 
q < 1 and a q-Gaussian distribution. Assuming that the stochastic 
temporal dynamics is due to random walk of domain boundaries 
we have derived the Fokker–Planck equation (29) and correspond-
ing SDE (30) describing the evolution of the total spin in time. 
Although distributions from non-extensive statistical mechanics are 
more often obtained using nonlinear Fokker–Planck equations [1], 
our model is well described by a linear Fokker–Planck equation. 
Eq. (29) is a particular case of a known class of Fokker–Planck 
equations, which have q-Gaussian stationary distributions [30]. The 
proposed temporal dynamics in the model provides insight on 
how Fokker–Planck equations with stationary distributions of non-
extensive statistical mechanics can arise from microscopic descrip-
tion of the system.

In contrast to the model with uncorrelated spins, presented in 
Section 2, the dynamics in the proposed model of correlated spins 
slow down with the increasing number of spins as 1/N2. In addi-
tion, the fluctuations of the total spin remain macroscopic even in 
the limit N → ∞, whereas in the model with uncorrelated spins 
the fluctuations decrease as 1/

√
N . These macroscopic fluctuations 

is one of the reasons for the spectrum of fluctuations of the ra-
tio N−/N+ exhibiting 1/ f behavior in a wide range of frequen-
cies. This range of frequencies increases with increasing number of 
spins N .

The model presented in this Letter works for q < 1. Thus the 
question remains whether it is possible to modify the model to 
obtain q-Gaussian distribution with q > 1.
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