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Influence of the detector’s temperature on the quantum Zeno effect

Julius Ruseckas*
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

~Received 28 May 2001; published 18 July 2002!

In this paper we study the quantum Zeno effect using the irreversible model of the measurement. The
detector is modeled as a harmonic oscillator interacting with the environment. The oscillator is subjected to the
force, proportional to the energy of the measured system. We use the Lindblad-type master equation to model
the interaction with the environment. The influence of the detector’s temperature on the quantum Zeno effect
is obtained. It is shown that the quantum Zeno effect becomes stronger~the jump probability decreases! when
the detector’s temperature increases.
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I. INTRODUCTION

The quantum Zeno effect is a consequence of the in
ence of the measurements on the evolution of a quan
system. In quantum mechanics the short-time behavior of
nondecay probability of unstable particles is not exponen
but quadratic@1#. This deviation from the exponential deca
has been observed by Wilkinsonet al. @2#. In 1977, Misra
and Sudarshan@3# showed that this behavior when combin
with the quantum theory of measurement, based on the
sumption of the collapse of the wave function, led to a ve
surprising conclusion: frequent observations slowed do
the decay. An unstable particle would never decay when c
tinuously observed. Misra and Sudarshan have called
effect the quantum Zeno paradox or effect. Later it was
alized that the repeated measurements could not only s
the quantum dynamics, but the quantum process may be
celerated by frequent measurements as well. This effect
called a quantum anti-Zeno effect@4–6#.

The quantum Zeno effect has been experimentally pro
@7# in a repeatedly measured two-level system undergo
Rabi oscillations. The interruption of Rabi oscillations h
been at the focus of interest@4,8–14#. Recently, the quantum
Zeno effect has been considered for tunneling from a po
tial well into the continuum@15#, as well as for photoioniza
tion @16#. The quantum anti-Zeno effect has been obtain
experimentally@17#.

In the analysis of the quantum Zeno effect the finite d
ration of the measurement becomes important and, there
the projection postulate is not sufficient to solve this pro
lem. In Ref. @6# a simple model that allows to take int
account the finite duration and finite accuracy of the m
surement has been developed. However, this model doe
take into account the irreversibility of the measurement p
cess.

The basic ideas of a quantum measurement process
theoretically expounded in Refs.@18–24# on the assumption
of environmentally induced decoherence or superselect
In this paper we extend the model, used in Ref.@6#, including
the interaction of the detector with the environment. Then
becomes possible to study the influence of other parame
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of the detector on the evolution of the measured system,
In this paper we analyze the influence of the detector’s te
perature on the measured system.

To describe the decoherence and dissipation we use
the Lindblad-type master equation. Semigroup theories p
neered by Lindblad@25# demonstrated that the density
matrix positivity, translational invariance, and approach
thermal equilibrium cannot be satisfied simultaneously. U
der the assumption of Markovian dynamics and the ini
decoupling of the system and bath, the semigroup appro
adds dissipative dynamics to the quantum master equat
by means of the Lindblad dissipation operators.

Recently the semigroup formalism has attracted much
tention. Quantum computing is one of the fields in whi
quantum dissipation finds the most recent applications
physical chemistry, semigroup theories have been utilize
model dynamics of ultrafast predissociation in a condens
phase or cluster environment@26#, and electronic quenching
due to the coupling of the adsorbate negative ion in re
nance to the metal electrons in the desorption of neutral m
ecules on metal surfaces@27#. In nuclear physics, the sem
group formalism is applied to model giant resonances in
nuclear spectra above the neutron emission threshold@28#.

We proceed as follows. In Sec. II we present the mode
the measurement. The method of the solution is presente
Sec. III. The measurement of the unperturbed system is c
sidered in Sec. IV. In Sec. V we derived a formula for t
probability of the jump into another level during the me
surement of the frequently measured perturbed system.
tion VI summarizes our findings.

II. MODEL OF THE MEASUREMENT

We consider a system that consists of two parts. The
part of the system has the discrete energy spectrum.
Hamiltonian of this part isĤ0. The other part of the system i
represented by HamiltonianĤ1. HamiltonianĤ1 commutes
with Ĥ0. In a particular case the second part can be abs
and Ĥ1 can be zero. The operatorV̂(t) causes the jumps
between different energy levels ofĤ0. Therefore, the full
Hamiltonian of the system is of the formĤS5Ĥ01Ĥ1

1V̂(t). The example of such a system is an atom with
Hamiltonian Ĥ0 interacting with the electromagnetic field
©2002 The American Physical Society05-1
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represented byĤ1, while the interaction between the ato
and the field isV̂(t).

We will measure in which eigenstate of the Hamiltoni
Ĥ0 the system is. The measurement is performed by coup
the system with the detector. The full Hamiltonian of t
system and the detector is

Ĥ5ĤS1ĤD1ĤI , ~1!

whereĤD is the Hamiltonian of the detector andĤI repre-
sents the interaction between the detector and the meas
system, described by the HamiltonianĤ0. As the detector we
use a harmonic oscillator with the Hamiltonian

ĤD5\V~ b̂†b̂1 1
2 !, ~2!

where b̂ and b̂† are the creation and anihillation operato
respectively. We choose the interaction operatorĤI in the
form

ĤI5lq̂Ĥ0 , ~3!

where q̂5b̂†1b̂ is the coordinate of the detector and t
parameterl describes the strength of the interaction. Th
system-detector interaction is similar to that considered
von Neumann@29# and in Refs.@6,30–34#. In order to obtain
a sensible measurement, the parameterl must be large.

The measurement begins at time momentt0. At the begin-
ning of the interaction with the detector, the detector’s d
sity matrix is r̂D(t0). The detector initially is in the therma
equilibrium with the temperatureT. Therefore,

r̂D~ t0!5 r̂T5expS 2
\Vn̂

kBT
D F12expS 2

\V

kBTD G , ~4!

wheren̂5b̂†b̂. The average excitation of the detector in th
mal equilibrium with the temperatureT is

n̄~T!5FexpS \V

kBTD21G21

. ~5!

The full density matrix of the system and detector isr̂(t0)
5 r̂S(t0) ^ r̂D(t0), wherer̂S(t0) is the density matrix of the
system.

The detector is interacting with the environment. T
master equation for the density matrix of the system and
detector in the Lindblad form is~Ref. @25#!

]r̂~ t !

]t
5

1

i\
@Ĥ,r̂~ t !#1LD@ r̂~ t !#, ~6!

where

LD@ r̂~ t !#5(
m

~@V̂mr̂~ t !,V̂m
† #1@V̂m ,r̂~ t !V̂m

† # !, ~7!
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and V̂m are the Lindblad dissipation operators. We use
equation of a dissipative phase-damped oscillator discus
in the quantum optic@18#. The Lindblad dissipation opera
tors are chosen as follows:

V̂15Ag

2
â†â, V̂25Ag↑

2
â†, V̂35Ag↓

2
â. ~8!

Then Eq.~6! for the density matrix becomes

]r̂~ t !

]t
5

1

i\
@Ĥ,r̂~ t !#1

g

2
@2n̂r̂~ t !n̂2n̂2r̂~ t !2 r̂~ t !n̂2#

1
g↑
2

@2â†r̂~ t !â2~ n̂11!r̂~ t !2 r̂~ t !~ n̂11!#

1
g↓
2

@2âr̂~ t !â†2n̂r̂~ t !2 r̂~ t !n̂#. ~9!

The approach thermal equilibrium is obtained when the
rametersg↑ andg↓ satisfy the condition@35#

g↑5g↓expS 2
\V

kBTD . ~10!

III. SOLUTION OF THE MASTER EQUATION

For the solution of Eq.~9! we adopt the technique used
Ref. @36#. We introduce the quantum characteristic functi
@37#

x~j,j* !5Tr$r̂ejb̂†
e2j* b̂%. ~11!

The quantum characteristic function of the detector at th
mal equilibrium is

xT~j,j* !5exp@2jj* n̄~T!#. ~12!

We multiply Eq. ~6! by exp(2j* b̂) from the left and by
exp(jb̂†) from the right and take the trace. When the intera
tion between the measured system and the detector is ab
~i.e., l50), we obtain the equation

]

]t
x~j,j* ;t !5 iVS j

]

]j
x2j*

]

]j*
x D 1

g

2 S 2j* j
]2

]j]j*
x

2j* 2
]2

]j* 2
x2j2

]2

]j2
x2j*

]

]j*
x2j

]

]j
x D

1
g↑
2 S j

]

]j
x1j*

]

]j*
x22jj* x D

2
g↓
2 S j

]

]j
x1j*

]

]j*
x D . ~13!

We will search for a solution of Eq.~13! in the form
5-2



in
e

i
d

ix

n

-
r

-
ome
ce
the

n-

,

INFLUENCE OF THE DETECTOR’S TEMPERATURE ON . . . PHYSICAL REVIEW A66, 012105 ~2002!
x~j,j* !5expS (
j ,k

Cj ,k~ t !j j~2j* !kD , ~14!

whereCj ,k are the coefficients to be determined. Substitut
Eq. ~14! into Eq. ~13! we obtain the set of equations for th
coefficientsCj ,k ,

]Cj ,k~ t !

]t
5 iV~ j 2k!Cj ,k~ t !2

g

2
~ j 2k!2Cj ,k~ t !1

1

2
~g↑2g↓!

3~ j 1k!Cj ,k~ t !1g↑d j ,1dk,1 . ~15!

The solution of Eq.~15! is

C1,1~ t !5C1,1~0!e2(g↓2g↑)t1n̄~T!~12e2(g↓2g↑)t!,
~16!

Cj ,k~ t !5Cj ,k~0!eiV( j 2k)te2(g/2)( j 2k)2t2~1/2!(g↓2g↑)( j 1k)t,

j Þ1, kÞ1. ~17!

From the solution we see that the functionx approaches the
function at the equilibriumxT as the timet grows. The de-
tector’s density matrixr D̂, correspondingly, tends tor T̂.

IV. MEASUREMENT OF THE UNPERTURBED SYSTEM

At first, we will consider the case when the perturbation
absent, i.e.,V̂(t)50. Since the Hamiltonian of the measure
system does not depend ont we will omit the parametert0 in
this section. We can choose the basisuna& common for the
operatorsĤ0 and Ĥ1,

Ĥ0una&5Enuna&, ~18!

Ĥ1una&5E1~n,a!una&, ~19!

wheren numbers the eigenvalues of the HamiltonianĤ0 and
a represents the remaining quantum numbers.

We introduce the density matrixr̂m,n5(a^maur̂una&
and the characteristic function

xm,n~j,j* ;t !5Tr$r̂m,n~ t !ejb̂†
e2j* b̂%. ~20!

From Eq.~6! we obtain the equation for the density matr
r̂m,n ,

]

]t
r̂m,n5 ivmnr̂m,n2 iV~ n̂r̂m,n2 r̂m,nn̂!

2 il~vmq̂r̂m,n2 r̂m,nq̂vn!1LD@ r̂m,n#, ~21!

where

vn5
En

\
, ~22!

vmn5vm2vn . ~23!
01210
g

s

Equation~21! may be solved similarly as in Sec. III. Whe
the detector is initially at equilibrium, thenxmn(j,j* ;0)
5xmn(0)exp@2jj* n̄(T)#. As in Sec. III we take the charac
teristic function of the form~14! and obtain the equations fo
the coefficientsCj ,k ,

]C0,0

]t
52 ivmn@11l~C1,01C0,1!#, ~24!

]C1,0

]t
5~ iV2geff#C1,01 il~vn2vmnC1,1!, ~25!

]C0,1

]t
52~ iV1geff!C0,12 il~vm1vmnC1,1!, ~26!

]C1,1

]t
5~g↑2g↓!C1,11g↑ , ~27!

with the initial conditions C0,0(0)50,C1,0(0)50,C0,1(0)
50,C1,1(0)5n̄(T). Here

geff5
1
2 ~g1g↓2g↑!. ~28!

The solutions of Eqs.~24!–~27! are

C1,1~ t !5n̄~T!, ~29!

C1,0~ t !5 il
vn2vmnn̄~T!

geff2 iV
~12e( iV2geff)t!, ~30!

C0,1~ t !52 il
vm1vmnn̄~T!

geff1 iV
~12e2( iV1geff)t!, ~31!

C0,0~ t !52 ivmnt1l2vmn

vn2vmnn̄~T!

geff2 iV

3S t1
1

geff2 iV
~e( iV2geff)t21! D

2l2vmn

vm1vmnn̄~T!

geff1 iV

3S t1
1

geff1 iV
~e2( iV1geff)t21! D . ~32!

Using Eqs.~14! and ~32! we find that the nondiagonal ele
ments of the density matrix of the measured system bec
small as the timet grows. This represents the decoheren
induced by the measurement. The diagonal elements of
density matrix do not change.

V. MEASUREMENT OF THE PERTURBED SYSTEM

The operatorV̂(t) represents the perturbation of the u
perturbed HamiltonianĤ01Ĥ1. We will take into account
the influence of the operatorV̂ by the perturbation method
5-3
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assuming that the strength of the interactionl between the
system and detector is large.

The density matrix at timet is related to the initial density
matrix by the equationr̂(t)5S(t) r̂(0). ThesuperoperatorS
obeys the equation

]

]t
S5LS, ~33!

where the Liouvillian superoperatorL is defined by the equa
tion

L r̂5
1

i\
@Ĥ,r̂ #1LD@ r̂#. ~34!

HereĤ andLD are defined by Eqs.~1! and~7!, respectively.
We can writeL5L01LV , whereLV is a small perturbation
defined by the equation

LVr̂5
1

i\
@V̂,r̂ #. ~35!

We expand the superoperatorS into powers ofV

S5S(0)1S(1)1S(2)1•••.

Then from Eq.~33! follows

]

]t
S(0)5L0S(0), ~36!

]

]t
S( i )5L0S( i )1LVS( i 21). ~37!

The formal solutions of Eqs.~36! and ~37! are

S(0)5eL0t ~38!

and

S( i )5E
0

t

dt1S(0)~ t2t1!LVS( i 21)~ t1!. ~39!

In the second-order approximation we have

S~ t !5S(0)~ t !1E
0

t

dt1S(0)~ t2t1!LVS(0)~ t1!

1E
0

t

dt1E
0

t1
dt2S(0)~ t2t1!LVS(0)~ t12t2!LVS(0)~ t2!.

~40!

Let the initial density matrix of the system and detector

r̂~0!5u ia&^ iau ^ r̂D , ~41!
01210
e

wherer̂D is the density matrix of the detector. The probab
ity of the jump from the levelu ia& to the levelu f a1& during
the measurement is

W~ ia→ f a1 ,t !5Tr$u f a1&^ f a1ur̂~ t !%. ~42!

The unperturbed evolution does not change the energy o
measured system, therefore, we can write

S(0)~ t !@ uma&^na8u ^ r̂D#5uma&^na8u ^ Sma,na8
(0)

~ t !r̂D .
~43!

Equation ~43! defines a new superoperatorSma,na8
(0) acting

only on the density matrix of the detector. The indicesma
andna8 in Sma,na8

(0) denote the states of the measured syste
From Eq.~43! it follows that the superoperatorSma,ma

(0) with
equal indices does not change the trace of the density m
r̂D , since the trace of the full density matrix of the measur
system and the detector must remain unchanged during
evolution.

We assume that diagonal matrix elements of the pertu
tion operatorV are zeros. Inserting the expressionr̂(t)
5S(t) r̂(0) into Eq.~42! and using Eq.~40! for the superop-
eratorS(t), we obtain the jump probability

W~ ia→ f a1 ,t !

5
1

\2E0

t

dt1E
0

t1
dt2Tr$u f a1&^ f a1u„S(0)~ t2t1!V̂S(0)

3~ t12t2!@S(0)~ t2!r̂~0!#V̂1S(0)~ t2t1!

3@S(0)~ t12t2!V̂S(0)~ t2!r̂~0!#V̂2S(0)~ t2t1!V̂S(0)

3~ t12t2!V̂S(0)~ t2!r̂~0!2S(0)~ t2t1!$S(0)~ t12t2!

3@S(0)~ t2!r̂~0!#V̂%V̂…%. ~44!

From Eqs.~43! and~41! it follows that the last two terms in
Eq. ~44! contain the scalar product^ f a1u ia&. Since the states
u f a1& andu ia& are orthogonal, the last two terms in Eq.~44!
are zeros. Therefore, the jump probability is

W~ ia→ f a1 ,t !5
1

\2E0

t

dt1E
0

t1
dt2Tr„u f a1&^ f a1u

3$S(0)~ t2t1!V̂S(0)~ t12t2!

3@S(0)~ t2!r̂~0!#V̂1S(0)~ t2t1!

3@S(0)~ t12t2!V̂S(0)~ t2!r̂~0!#V̂%….

~45!

From Eq. ~45!, using the expression for the initial densi
matrix of the system and the detector, Eq.~41!, and Eq.~43!,
we have
5-4
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W~ ia→ f a1 ,t !5
1

\2
uVia, f a1

u2E
0

t

dt1E
0

t1
dt2Tr$Sf a1 , f a1

(0)

3~ t2t1!@Sia, f a1

(0) ~ t12t2!

1Sf a1 ,ia
(0) ~ t12t2!#Sia,ia

(0) ~ t2!r̂D%. ~46!

The superoperatorSf a1 , f a1

(0) (t2t1) preserves the trace of th

detector’s density matrix, therefore, the jump probabil
equals to

W~ ia→ f a1 ,t !

5
1

\2
uVia, f a1

u2E
0

t

dt1E
0

t1
dt2Tr$@Sia, f a1

(0)

3~ t12t2!1Sf a1 ,ia
(0) ~ t12t2!#Sia,ia

(0) ~ t2!r̂D%. ~47!

Defining a new characteristic function similarly as in E
~20!,

x ia, f a1
~j,j* ;t1 ,t2!5Tr$ejb̂†

e2j* b̂Sia, f a1

(0)

3~ t12t2!Sia,ia
(0) ~ t2!r̂D%, ~48!

the jump probability~47! can be expressed as
i

01210
.

W~ ia→ f a1 ,t !5
1

\2
uVia, f a1

u2E
0

t

dt1

3E
0

t1
dt2@x ia, f a1

~0,0;t1 ,t2!

1x f a1 ,ia~0,0;t1 ,t2!#. ~49!

The detector initially~at t50) is in the thermal equilib-
rium with the temperatureT, r̂D5 r̂T @Eq. ~4!#. The initial
characteristic function isx ia, f a1

(j,j* ;0,0)5exp@2jj* n̄(T)#.
Using the results of the Sec. IV@Eqs. ~14! and ~29!–~32!#,
we obtain the characteristic function of the density matrix
time t2,

x ia, f a1
~j,j* ;t2 ,t2!5Tr$ejb̂†

e2j* b̂Sia,ia
(0) ~ t2!r̂D%

5expS i jlv i

geff2 iV
~12ei (V2geff)t2! D

3expS i j* lv i

geff1 iV
~12e2 i (V1geff)t2!

2jj* n̄~T! D . ~50!

Taking the functionx ia, f a1
(j,j* ;t2 ,t2) from Eq. ~50! as the

initial characteristic function and proceding further as in S
IV, we have the value of the characteristic function, defin
by Eq. ~48! with the parametersj5j* 50,
x ia, f a1
~0,0;t1 ,t2!5expF2 iv ia, f a1

~ t12t2!1l2v i f

v f2v i f n̄~T!

geff2 iV S t12t21
1

geff2 iV
~e( iV2geff)(t12t2)21! D

2l2v i f

v i1v i f n̄~T!

geff1 iV S t12t21
1

geff1 iV
~e2( iV1geff)(t12t2)21! D1

l2v i f v i

~geff2 iV!2
~12e( iV2geff)t2!

3~12e( iV2geff)(t12t2)!2
l2v i f v i

~geff1 iV!2
~12e2( iV1geff)t2!~12e2( iV1geff)(t12t2)!G . ~51!
Here

v ia, f a1
5v i f 1

1

\
@E1~ i ,a!2E1~ f ,a1!#. ~52!

Approximations

When the dissipation is fast, i.e., the dissipation time
much less than the period of the oscillator, we haveV
!geff . Then
s

x ia, f a1
~0,0;t1 ,t2!5exp@2 iv ia, f a1

~ t12t2!#

3expF2@112n̄~T!#
l2v i f

2

geff

3S t12t21
1

geff
~e2geff(t12t2)21! D G .

The probability of the jump from the levelu ia& to the level
u f a1& during the measurement according to Eq.~49! is
5-5
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W~ ia→ f a1 ,t !5
2t

\2
uVia, f a1

u2ReE
0

t

duS 12
u

t Deiv f a1 ,iau

3expF2
@112n̄~T!#l2v i f

2

geff

3S u1
1

geff
~e2geffu21! D G . ~53!

We introduce the function

F~ t ! f a1 ,ia5uVia, f a1
u2expS i

\
@E1~ f ,a1!2E1~ i ,a!#t D

~54!

and the Fourier transformation ofF(t) f a1 ,ia ,

G~v! f a1 ,ia5
1

2pE2`

`

dtF~ t ! f a1 ,iaexp~2 ivt !. ~55!

Then we can rewrite Eq.~53! in the form

W~ ia→ f a1 ,t !5
2pt

\2 E2`

`

dvG~v! f a1 ,iaP~v! i f , ~56!

where

P~v! i f 5
1

p
ReE

0

t

duS 12
u

t Dexp@ i ~v2v i f !u#

3expF2
@112n̄~T!#l2v i f

2

geff

3S u1
1

geff
~e2geffu21! D G . ~57!

Equation~56! is of the form obtained by Kofman and Kur
izki @5#, assuming the ideal instantaneous projections.
function P(v) i f is the measurement-modified shape of t
spectral line~Refs. @5,6,38#!. Here we have shown that Eq
~56! can be derived from a more realistic model as well. D
to the assumption that dissipation is fast,V!geff is crucial.
Without this assumption the jump probability cannot ha
n,
re

d

01210
e

e

the form of Eq.~56!, since thenx ia, f a1
(0,0;t1 ,t2) depends

not only on the differencet12t2 but also ont2.
When l is big, the integral in Eq.~53! contributes only

small values of u and we can expand the expone
3exp(2geffu) into a Taylor series keeping the first thre
terms only. We obtain the jump rate

R~ ia→ f a1!'
2

\2
uVia, f a1

u2ReE
0

`

du expS iv f a1 ,iau

2
1

2
@112n̄~T!#l2v i f

2 u2D
or

R~ ia→ f a1!'
2uVia, f a1

u2

\2luv i f u
A p

2@112n̄~T!#
. ~58!

The obtained decay rate is inversely proportional to the m
surement strengthl. The measurement strength appears

the equations multiplied byA112n̄(T), therefore, the effect
of the measurement increases as the temperature of the
tector grows.

VI. CONCLUSIONS

We analyze the quantum Zeno effect using the irrevers
model of the measurement. The detector is modeled a
harmonic oscillator, initially being at the thermal equilib
rium. The interaction of the detector with the system is mo
eled similarly as in Ref.@6#. The Lindblad-type master equa
tion for the detectors density matrix is solved analytically. A
equation for the probability of the jump between the me
sured system’s states during the measurement, similar to
of Refs.@5,6,38#, is obtained Eq.~56!. From the used mode
it follows that the increase of the detector’s temperat
leads to the enhancement of the quantum Zeno or quan
anti-Zeno effects.
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