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Influence of the detector’s temperature on the quantum Zeno effect
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In this paper we study the quantum Zeno effect using the irreversible model of the measurement. The
detector is modeled as a harmonic oscillator interacting with the environment. The oscillator is subjected to the
force, proportional to the energy of the measured system. We use the Lindblad-type master equation to model
the interaction with the environment. The influence of the detector’s temperature on the quantum Zeno effect
is obtained. It is shown that the quantum Zeno effect becomes strthggump probability decreasewhen
the detector’s temperature increases.
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[. INTRODUCTION of the detector on the evolution of the measured system, too.
In this paper we analyze the influence of the detector’s tem-
The quantum Zeno effect is a consequence of the influperature on the measured system.
ence of the measurements on the evolution of a quantum To describe the decoherence and dissipation we use the
system. In quantum mechanics the short-time behavior of théhe Lindblad-type master equation. Semigroup theories pio-
nondecay probability of unstable particles is not exponentiaheered by Lindblad[25] demonstrated that the density-
but quadratid1]. This deviation from the exponential decay matrix positivity, translational invariance, and approach to
has been observed by Wilkinsat al. [2]. In 1977, Misra  thermal equilibrium cannot be satisfied simultaneously. Un-
and Sudarshaf8] showed that this behavior when combined der the assumption of Markovian dynamics and the initial
with the quantum theory of measurement, based on the aglecoupling of the system and bath, the semigroup approach
sumption of the collapse of the wave function, led to a veryadds dissipative dynamics to the quantum master equations
surprising conclusion: frequent observations slowed dow®y means of the Lindblad dissipation operators.
the decay. An unstable particle would never decay when con- Recently the semigroup formalism has attracted much at-
tinuously observed. Misra and Sudarshan have called thigntion. Quantum computing is one of the fields in which
effect the quantum Zeno paradox or effect. Later it was reguantum dissipation finds the most recent applications. In
alized that the repeated measurements could not only sloRhysical chemistry, semigroup theories have been utilized to
the quantum dynamics, but the quantum process may be afodel dynamics of ultrafast predissociation in a condensed-
celerated by frequent measurements as well. This effect wahase or cluster environmef6], and electronic quenching
called a quantum anti-Zeno effefet—6]. due to the coupling of the adsorbate negative ion in reso-
The quantum Zeno effect has been experimenta”y proveaance to the metal electrons in the desorption of neutral mol-
[7] in a repeatedly measured two-level system undergoingcules on metal surfac¢7]. In nuclear physics, the semi-
Rabi oscillations. The interruption of Rabi oscillations hasgroup formalism is applied to model giant resonances in the
been at the focus of intereit,8—14. Recently, the quantum nuclear spectra above the neutron emission thredi2a
Zeno effect has been considered for tunneling from a poten- We proceed as follows. In Sec. Il we present the model of
tial well into the continuunj15], as well as for photoioniza- the measurement. The method of the solution is presented in
tion [16]. The quantum anti-Zeno effect has been obtained>€c. Ill. The measurement of the unperturbed system is con-
experimentally[17]. sidered in Sec. IV. In Sec. V we derived a formula for the
In the analysis of the quantum Zeno effect the finite du-Probability of the jump into another level during the mea-
ration of the measurement becomes important and, thereforéUrement of the frequently measured perturbed system. Sec-
the projection postulate is not sufficient to solve this prob-tion VI summarizes our findings.
lem. In Ref.[6] a simple model that allows to take into
account the finite duration and finite accuracy of the mea- Il. MODEL OF THE MEASUREMENT
surement has been developed. However, this model does not
take into account the irreversibility of the measurement pro- We consider a system that consists of two parts. The first
cess. part of the system has the discrete energy spectrum. The
The basic ideas of a quantum measurement process weramiltonian of this part i$1 o. The other part of the system is
theoretically expounded in Reftl8-24 on the assumption - represented by Hamiltoniad;. HamiltonianH; commutes
of environmentally induced decoherence or superselectioyith . In a particular case the second part can be absent
In th|s paper we extend the mOd?" used in FEG}' including .and I:|1 can be zero. The operat&(t) causes the jumps
the interaction of the detector with the environment. Then i . ~
tween different energy levels f,. Therefore, the full

becomes possible to study the influence of other paramete o ,
Hamiltonian of the system is of the forrig=H,+H;

+\A/(t). The example of such a system is an atom with the
*Electronic address: ruseckas@itpa.lt Hamiltonian H, interacting with the electromagnetic field,
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represented bf-ll, while the interaction between the atom and \A/M are the Lindblad dissipation operators. We use the
and the field isV(t). equation of a dissipative phase-damped oscillator discussed

We will measure in which eigenstate of the Hamiltonianin the quantum opti¢18]. The Lindblad dissipation opera-
F|0 the system is. The measurement is performed by couplinbOrS are chosen as follows:

the system with the detector. The full Hamiltonian of the
system and the detector is V= \/gé’ré, V= 1 /%&T, V= 1 /7’75_ )
H:H5+|:|D+H|, (1) . )
Then Eq.(6) for the density matrix becomes
whereHp, is the Hamiltonian of the detector art} repre- o 1
- B p ~ ~ ")/ N ~ ~ ~ ~ ~
sents the |nte.ract|on between 'the .dAetector and the measured e E[H,p(t)]Jr E[znp(t)”—nzp(t)—p(t)nZ]
system, described by the Hamiltonidig. As the detector we
use a harmonic oscillator with the Hamiltonian

+ 2L [2aT(0a (A+ D)D)~ p(1) (A +1)]

Hp=/Q(b'D+3), (2)
- Y L2an(h)a = Rin(t) — (D)
whereb and b’ are the creation and anihillation operators, + 5 [2ap(Ha’—np(t) —p(t)n]. ©
respectively. We choose the interaction operatgrin the
form The approach thermal equilibrium is obtained when the pa-
rametersy, andy, satisfy the conditiod35]
H,=\qH,, 3
| 0 % ﬁQ) (10)
A Ay a =yexpg —i——=]|.
where q=b"+b is the coordinate of the detector and the [And kgT
parameterA describes the strength of the interaction. This
system-detector interaction is similar to that considered by IIl. SOLUTION OF THE MASTER EQUATION
von Neumann29] and in Refs[6,30—34. In order to obtain
a sensible measurement, the paramgtenust be large. For the solution of Eq(9) we adopt the technique used in

The measurement begins at time momgnAt the begin-  Ref.[36]. We introduce the quantum characteristic function
ning of the interaction with the detector, the detector’s den{37]

sity matrix isf;D(tO). The detector initially is in the thermal ~ e
equilibrium with the temperatur€. Therefore, X(£,6%)=Tr{pe®* e ¢} (11
mﬁ)

. _A_p< . 1 Q
po(to) =pr=ex Tkt )| TR T iGT

wheren=bTb. The average excitation of the detector in ther-
mal equilibrium with the temperaturg is

0
P keT

The full density matrix of the system and detectopid,)

The quantum characteristic function of the detector at ther-
, (4  mal equilibrium is

x1(£,6%)=exf — £ n(T)]. (12)

We multiply Eq.(6) by exp(—&b) from the left and by
}—1 expb") from the right and take the trace. When the interac-
-1

n(T)= (5)  tion between the measured system and the detector is absent

(i.e., A=0), we obtain the equation

A N - d d 9
=ps(ty) ® pp(tg), wherepg(to) is the density matrix of the — y(&,é*;1)=iQ| é —x—&* X) + Z( 28 ¢ X
system. at 43 IE* 2 3

The detector is interacting with the environment. The 5 5
master equation for the density matrix of the system and the — g2 J X— gzﬁ—x— & J x— fi)(
detector in the Lindblad form i€Ref. [25]) 9E*? 9E? aE* 9&

ap(t) 1 . . . yi| 9 L0 )
A + 5| E=x+ -2
o = iz [He(0]+Lolp(D)], (6) > §(9§x § Py X—286" x
where .9 . 9
2(5(95X+§ prrdl (13)

ST O Sy Uty ST
LD[p(t)]_% (Vup OV 1+ Vuwp VLD, (D) We will search for a solution of Eq13) in the form
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_ Equation(21) may be solved similarly as in Sec. Ill. When
X(§-§*)=9Xl{2k Ciu(D& (=), (14)  the detector is initially at equilibrium, thewy,,(&,£*;0)

: = xmn(0)exg — &€ n(T)]. As in Sec. lll we take the charac-
whereC; , are the coefficients to be determined. Substitutingteristic function of the forn{14) and obtain the equations for
Eq. (14) into Eq.(13) we obtain the set of equations for the the coefficientC; ,,
coefficientsC y,

dCoo .
aCj(ty v 1 ot =—lon[1+N(C1o+Co], (24
o UG D = S(—R2Ci )+ 5 (7= )
: Cio . .
X(J+K)Cj ) + 716161 (15) ﬁtl =(iQ— Yer]CrotiNM@p— 0niCr0), (25
The solution of Eq(15) is Jc
0,1 . .
C1a(t)=Cy (0)e” ="t n(T)(1—e (=Y, = (104 ye)Cor—iNomt onCra), (26
| | (16
&Cl,l
Ck(t)=C; k(O)eiQ(J*k)te*(7/2)(J'*k)ZI*(1/2)(n*71)(i+k)t, T:WT— Y)Ciat v, (27
i#1, k#L (17 with the initial conditions Cy0)=0,C(0)=0,Cq4(0)

From the solution we see that the functiprapproaches the =0.L14(0)=n(T). Here

function at the equm_b’rlum»(T as the t.lma grows. 'I;he de- yer=L(y+ Y1), (28)
tector’s density matripp, correspondingly, tends tor.
The solutions of Eqs(24)—(27) are

IV. MEASUREMENT OF THE UNPERTURBED SYSTEM

_ _ _ . C1a)=n(T), (29
At first, we will consider the case when the perturbation is
absent, i.e.V(t)=0. Since the Hamiltonian of the measured wn— @ n(T) '
system does not depend bwe will omit the parametet; in Crot)=in—————(1—el® 7ty (30)

this section. We can choose the bdsia) common for the Yerr— 12

operatorsHy andH , o T(T)
w w .

. Coq(t)=—iN——_ ~(1—e (%%t (31)

Holna)=E,|na), (19 ' Yerr i€

Hylna)=E(n,a)|na), (19) ®n— @A (T)

= —j 2
Codt) iont + N Omn oY)

wheren numbers the eigenvalues of the Hamiltonfag and
a represents the remaining quantum numbers.

1 .
('Q_Veﬁ)t_
t+ .Q(e 1))

- - X
We introduce the density matrip, ,== (ma|p|na) Yeft— |
and the characteristic function —
N2y omt 0N (T)
X £ =Tr{pm (1) ef2'e €D}, (20 " YertiQ)
From Eq.(6) we obtain the equation for the density matrix | t+ (e~ (2%%nt—1)|. (32
A ’yeﬁ:"l' |Q
Pm,n>
9. R . o Using Egs.(14) and (32) we find that the nondiagonal ele-
Epm’nZiwmnpm’n—iQ(npm’n—pmynn) ments of the density matrix of the measured system become
small as the time grows. This represents the decoherence
N 0o — 5 G )+ Lala 21 mduc_ed by t'he measurement. The diagonal elements of the
(OmdPmn=Pmnd@n) +Lolpmnl, (21) density matrix do not change.
where
V. MEASUREMENT OF THE PERTURBED SYSTEM
E, .
On=7 (22) The operatoV(t) represents the perturbation of the un-
perturbed HamiltoniarH,+H,. We will take into account
Omp= Om— ©p - (23 the influence of the operat& by the perturbation method,
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assuming that the strength of the interactiometween the

system and detector is large.

The density matrix at timeis related to the initial density
matrix by the equatiop(t) = S(t) p(0). Thesuperoperatos

obeys the equation

aS_LS
E - ]

where the Liouvillian superoperattris defined by the equa-

tion

~ 1oL .
Lp=7[H.p]+Lolp].

HereH andL are defined by Eqg1) and(7), respectively.
We can writeL=Ly+ Ly, whereL,, is a small perturbation,

defined by the equation
L= =1V
vP = E[ lp]
We expand the superoperat®into powers ofV

S=5O 4+ g@ ...,

Then from Eq.(33) follows

J
70— g0
5 SV=L8,

aJ . : )
Es<'>=|_os<'>+ LysSi-h.

The formal solutions of Eq€36) and (37) are

S(O): eLOt

and
_ t _
s<'>=f dt; SOt —t,)L, S D(ty).
0
In the second-order approximation we have

t
S(t)=SO(t) + J dt, SOt —t5)LySOty)
0

(33

(39

(39

(36)

(37

(39)

(39

t t
+ f dt, f "dt,5O(t—t,)LySO(t, — t) Ly SO(t,).
0 0

(40
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where[)D is the density matrix of the detector. The probabil-
ity of the jump from the levelia) to the level|f«;) during
the measurement is

W(ia—fary,t)=Tr{|fas)(fas|p(t)}. (42)

The unperturbed evolution does not change the energy of the
measured system, therefore, we can write

SO(t)[|ma)(ne’|®ppl=|ma)(na’|@ ST | (1)pp.
(43)

Equation (43) defines a new superoperatsﬁi’na, acting

only on the density matrix of the detector. The indicea
andna’ in Sﬁ,na' denote the states of the measured system.
From Eq.(43) it follows that the superoperat&?) ., with
equal indices does not change the trace of the density matrix

E;D , since the trace of the full density matrix of the measured
system and the detector must remain unchanged during the
evolution.

We assume that diagonal matrix elements of the perturba-

tion operatorV are zeros. Inserting the expressiét(lt)
=5(t)p(0) into Eq.(42) and using Eq(40) for the superop-
eratorS(t), we obtain the jump probability

W(ia—faq,t)

1 [t t .
= dtl ldtle’{|fa1><fa1|(5(0)(t—t1)VS(o)
h2Jo " Jo

X (1= t)[SO(t)p(0)IV+ SOt —ty)

X[SO(t;—t,) VSO (t,) p(0)]V—SO(t—t;)VS©)

X (t,— ) VSO(t,) p(0) — SOt —1){SV(t, - t,)
X[SO(tz)p(0) ]V} )}, (44)

From Egs.(43) and(41) it follows that the last two terms in
Eq. (44) contain the scalar produ¢fa,|i ). Since the states
|faq) andlia) are orthogonal, the last two terms in E44)
are zeros. Therefore, the jump probability is

1 [t t
W(ia—>fa1,t)=—f dtlf ldtzTr(|fa1><fa1|
h2Jo “Jo

X{SO(t—t;)VSO(t;—t,)
X[SO(t)p(0)IV+SO(t—ty)

X[SO(t;—t,) VSO (t2) p(0)IV}).
(45)

p(0)=lia)(ial®pp,

(41)

matrix of the system and the detector, E4fl), and Eq.(43),
we have
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: _ 1t 2 (g [ (0) i 1 2[f
W(Iaﬁfal7t)_ﬁ|via,fal| fodtljo dt2Tr{Sfa1,fa1 W(Ia_)falit)_ﬁ|via,fa1| jodtl

X (t=t)[ S0, (t1—t2)

ty
XJ’O dtz[Xia,fal(Ovo;tlitZ)
+S0) 1 a(ti=12)1SD (t2) po} (46)

+Xfal,ia(010;t11t2)]- (49)

0
The superoperatdg{?) ;, (t—t;) preserves the trace of the  The detector initially(at t= -0) is in the thermal equilib-
detector’s density matrlx therefore, the jump probability fium with the temperaturd, pp= PT [Eq. (4)]. The initial
equals to characteristic function i 1, (£,6*;0,0)=exf — ().

Using the results of the Sec. IMEgs. (14) and (29)—(32)],
we obtain the characteristic function of the density matrix at

W(ia—faq,t) time t,,
ﬁ2|v'afa1| fdtlf dto T[S, Xia ta,(§,€%1t2,t2) = Trie®'e” g*bsﬁ(am(tz)lao}
X (ty 2)+Sfa a(ti= 1) 1S (t2) o} (47) =exy{ e (1 el@- ye")t2)>
Yerr— 1)
E)Z%?,ning a new characteristic function similarly as in Eq. Xexy{ ;i:i“;i)(l_e—.(m Yentz)
Xia,fal(ga'f*;tlth)ITr{egﬁTe7§ b5(© ~Enm). 0

la,fay
R Taking the functiony;, ta, (£,£*;t2,t2) from Eq.(50) as the
X(ty— tZ)Sa ia(t2)po},  (48) initial characteristic function and proceding further as in Sec.

IV, we have the value of the characteristic function, defined
the jump probability(47) can be expressed as by Eg. (48) with the parameter§=¢* =0

wi—win(T :
Xia,fa (OiO;tlitZ):eXF{ _iwia fa (tl_t2)+)\2wiff—lf'()(tl_ 2 (e(IQ_yeﬁ)(tl_tz)_l))
Tt Tt Yeri— 1€}

Yeft—

w|+wifﬁ(T) ( . )\Zwifwl .
N2 —— Tt i e_(lﬂ+7eff)(tl_t2)—1) Tt 1_e(|9—7eff)t2)
| YerT 1 e 7eff+|Q( (‘yeff—iQ)z(
o B )\zwifa)l . i 3
X (1— 10 ve (t1~t2)) (1—e (0% 7etz) (1 — @~ (10 +ver(t112)) | (51
(7eﬁ+iQ)2
I
Here Xiafa,(0,0it1,t2) =X — i 0ig fa,(t1—12) ]
1 — )\Zwizf
Oigfey= @it 3 [Ea(i,a)=Ex(fa)]. (52 xexp —[1+2n(T)]——
I 1
Approximations X[ty —ty+ — (e Yeilli=td—1) | |,
Veff

When the dissipation is fast, i.e., the dissipation time is
much less than the period of the oscillator, we hd¥e The probability of the jump from the levéia) to the level
<. Then |faq) during the measurement according to Ep) is
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2t ¢ N the form of Eq.(56), since thenxia,fal(o,o;tl,tz) depends
W(ia—faq,t)= ﬁ|via’fal|2Ref0du< 1- T) el @fay ial not only on the differenceé; —t, but also ont,.
When\ is big, the integral in Eq(53) contributes only
[1+2F(T)])\2w-2 small values ofu and we can expand the exponent
X F{— i X exp(—vyefU) into a Taylor series keeping the first three
Yeff terms only. We obtain the jump rate
X | u+ i(e‘yeﬁ”—l)”. (53 - 2 2pal -
Yeit R(Iaﬂfal)%ﬁ|via’fal| Ref0 duexp i wiq,,iaU

We introduce the function 1 B

: -5+ 2n(T)])\2wi2fu2)

D (Ve ia= |Via,fa1|zeXF{g[E1(f,011)_ Eai ,a)]t)
(54)

2
and the Fourier transformation @f(t),, ia Rliam fa)~ 2|Via,fal| / ( 59)
Y a2 ey Y 2[1+2n(T)]

©

1 .
G(‘”)falvia: ﬂf_mdtq)(t)fal’iaexq —iwt). (59 The obtained decay rate is inversely proportional to the mea-
surement strengtih. The measurement strength appears in
Then we can rewrite E¢53) in the form the equations multiplied by/1+ 2n(T), therefore, the effect
of the measurement increases as the temperature of the de-
tector grows.

or

. 2wt (=
W(Iaafal,t)z?f doG(®)ta, ioP(®)if, (56)

VI. CONCLUSIONS

where . . .
We analyze the quantum Zeno effect using the irreversible

1 t u model of the measurement. The detector is modeled as a
P(w)if:;ReJ du(l—;) exfli(w— wj)u] harmonic oscillator, initially being at the thermal equilib-
0 rium. The interaction of the detector with the system is mod-
F{ [1+2F(T)])\2wi2f eled similarly as in Refl6]. The Lindblad-type master equa-
xexg — tion for the detectors density matrix is solved analytically. An
Veff equation for the probability of the jump between the mea-
H sured system’s states during the measurement, similar to that

(57) of Refs.[5,6,38, is obtained Eq(56). From the used model
it follows that the increase of the detector’s temperature

. . . leads to the enhancement of the quantum Zeno or quantum
Equation(56) is of the form obtained by Kofman and Kur- anti-Zeno effects.

izki [5], assuming the ideal instantaneous projections. The
function P(w);; is the measurement-modified shape of the
spectral line(Refs.[5,6,38). Here we have shown that Eq.
(56) can be derived from a more realistic model as well. Due | wish to thank Professor B. Kaulakys for his suggestion
to the assumption that dissipation is faQt< y.¢ is crucial.  of the problem, for encouragement, stimulating discussions,
Without this assumption the jump probability cannot haveand critical remarks.

1
u+ — (e %efil—1)
Yetf

X
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