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Phase-space curvature in spin-orbit-coupled ultracold atomic systems
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We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry
curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus
spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads
to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly
contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the
semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature
limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally,
we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled
system can be viewed as a direct effect of the phase-space Berry curvature.
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I. INTRODUCTION

The geometrical concept of curvature has found multiple
applications in various branches of physics [1], including the
general theory of relativity [2], gauge theories in particle
physics [3], and, most recently, condensed-matter physics in
the guise of Berry curvatures [4]. In simple terms, position-
space Berry curvature can be understood as a result of
magnetization texture in real space, while momentum-space
Berry curvature requires spin-orbit coupling (SOC) [4,5].
Here, SOC is understood in the broad sense, i.e., as linking
the velocity to some quantized internal characteristic of the
particle.

Even though SOC arises naturally in crystals that lack an
inversion center, that is not the case in ultracold-atom systems
[6]. There, the coupling between the motion of each neutral
atom and its hyperfine spin [7] (or other degrees of freedom
[8,9]) has to be artificially engineered [10]. Recently, this
field has seen considerable progress [11–13], and some of the
proposed spin-orbit-coupling schemes have been experimen-
tally realized. In particular, one-dimensional equal Rashba-
Dresselhaus [14,15] SOC was implemented several years ago
[16] and has received a substantial amount of attention [17].
Furthermore, there has been promising experimental progress
in engineering two-dimensional Rashba SOC [18,19], while
three-dimensional Weyl SOC remains an active theoretical
research direction [20–23]. Most of this work is concentrated
on utilizing the internal states of the atom and transitions
between them with no spatial dependence. However, other
means, such as spatial degrees of freedom and periodic driving
of the system, can also be efficiently exploited for similar
purposes [24–26]. For example, it is possible to achieve strong
effective magnetic field in optical lattices and thus simulate
various condensed-matter Hamiltonians [27–32]. According
to the concept of synthetic dimensions [33], internal degrees
of freedom can be used to emulate additional spatial directions
[7,8,33–37]. In this context, coupling between spatial and
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internal degrees of freedom was demonstrated using both
hyperfine [7] and long-lived electronic [8,9] states. Central
to understanding all of these advances is the notion of the
Berry phase [38].

The Berry phase, as well as Berry curvatures in real
and momentum spaces, has been thoroughly discussed in
the literature in various contexts (see [4,12] and references
therein). However, up to now considerably less attention has
been paid to phase-space Berry curvatures, especially outside
the solid-state physics community. It was only recently realized
that this phase-space Berry curvature can lead to an alternation
of the density of states [39,40]. This change in the density
of states might in turn be used to detect topological objects,
such as skyrmions, by a mundane electrical measurement. This
turns out to be particularly relevant to solid-state materials,
where both spin-orbit coupling and magnetization textures are
present [41,42].

Theoretical progress concerning phase-space Berry cur-
vature has been mostly concentrated on lattice systems in
the semiclassical approximation. In an early publication [43],
wave-packet propagation in a slowly perturbed crystal was de-
scribed using a combined Hamiltonian-Lagrangian approach.
A derivation of the equations of motion using the Ehrenfest
theorem without the Lagrangian formalism was presented in
Ref. [44]. A series of articles by Gosselin and coworkers de-
veloped a purely Hamiltonian semiclassical treatment [45–47]
and also perturbatively addressed the problem beyond the
semiclassical (lowest order in the reduced Planck constant h̄)
approximation [48,49]. In other work, quantum kinetic equa-
tions were derived for multiband systems, taking the effects of
phase-space Berry curvature into account [50].

In this paper we approach the phase-space Berry curva-
ture with applications in ultracold-atom systems in mind.
We present two main results. First, we derive quantum-
mechanical Heisenberg equations of motion, where various
Berry curvatures show up without relying on the semiclassical
approximation [Eqs. (28)]. These equations also allow us to
recover the semiclassical results of Ref. [43] by explicitly
taking the small-curvature limit purely within the Hamiltonian
formalism. Second, we show that in the experimentally acces-
sible equal Rashba-Dresselhaus spin-orbit-coupled system, the
effective mass in the semiclassical single-minimum regime
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FIG. 1. In the absence of spin-orbit coupling both spin species
(↑ and ↓) respond to a spin-independent linear potential in the same
way since their masses are equal (left). When the spin-orbit coupling
is turned on, adiabatic motion occurs in dispersion branches labeled
by + and −. The effective mass in the two branches is different,
resulting in a different response to the same potential (right). This
effect can be explained by the phase-space Berry curvature in the
semiclassical regime (see Sec. VI for more details).

can be reinterpreted as the phase-space Berry curvature
(see Fig. 1).

This paper is organized as follows. In Sec. II we present the
problem and introduce the notation. In Sec. III we attack the
general problem by performing an adiabatic approximation,
which results in the Heisenberg equations of motion. To show
that this treatment is also of practical interest, we then apply
these results to two particular cases in Sec. IV. Namely,
we derive the (quantum) equations of motion when either
the position-space Berry curvature or the momentum-space
Berry curvature is nonvanishing. In Sec. V, we perform
the semiclassical approximation for the general problem and
obtain the corresponding equations of motion with various
Berry-curvature terms explicitly shown. We investigate the ex-
perimentally relevant equal Rashba-Dresselhaus Hamiltonian
in our framework in Sec. VI. Finally, Sec. VII summarizes our
results and provides some directions for future work.

II. POSITION-DEPENDENT SPIN-ORBIT COUPLING

Let us consider the following Hamiltonian with position-
dependent spin-orbit coupling:

H = h̄2

2m
[kI − A(r)]2 + V (r), (1)

where A is a position-space vector of 2 × 2 matrices in
the spin space, V is a spin-space matrix, and I is the
identity matrix. For concreteness and simplicity we consider
(pseudo)spin-1/2 atoms, i.e., systems with two dispersion
branches. Generalization to higher-spin systems with more
than two dispersion branches is straightforward and does
not change the qualitative picture. Note that A and V may
depend on position r [51]. Wave vector k and position r are
(noncommuting) operators. We separate the spin-dependent
part of the potential,

V (r) =
∑

j

vj (r)σ j + v0(r)I, (2)

and also make the spin dependence of the vector potential A
explicit,

Aj (r) =
∑

l

al
j (r)σ l, (3)

where σ j are the Pauli matrices. Note that the square of the A
matrix is proportional to the identity matrix. We write position-
space vectors using bold font and their indices as subscripts,
whereas spin-space vectors are denoted by an arrow above and
their indices are written as superscripts. The matrix A may also
contain a term proportional to the identity matrix. Such a term
would describe the usual U (1) electromagnetic field, which is
beyond the scope of this paper, and we thus neglect it.

Using the matrices given in Eqs. (2) and (3), the Hamilto-
nian in Eq. (1) becomes

H = h̄2

2m
I

∑
i

kiki +
∑

j

(
− h̄2

2m

∑
i

{
ki,a

j

i

} + vj

)
σ j

+
⎛
⎝∑

i,j

h̄2

2m
a

j

i a
j

i + v0

⎞
⎠I, (4)

where we have introduced the anticommutator {ki,a
j

i } =
kia

j

i + a
j

i ki . The Hamiltonian above contains a term of the
Zeeman form, and thus, it is natural to introduce the operator

Bj = − h̄2

2m

∑
i

{
ki,a

j

i

} + vj , (5)

which plays the role of the magnetic field in this term. We will
therefore use the term “effective magnetic field” to describe
the operator Bj from here on. Furthermore, there is a spin-
independent potential in the Hamiltonian,

W (r) = h̄2

2m

∑
i,j

[
a

j

i (r)
]2 + v0(r). (6)

We now are in the position to write down the initial Hamilto-
nian in the following concise manner:

H = h̄2

2m
k2I + �B · �σ + W (r)I (7)

We proceed to look for the solution of the time-dependent
Schrödinger equation

ih̄
∂

∂t
� = H� (8)

using adiabatic approximation by assuming that the distance
between the eigenvalues of the operator �B · �σ is large com-
pared to the off-diagonal terms.

III. GENERAL EQUATIONS
FOR ADIABATIC APPROXIMATION

In this section we treat the quantum-mechanical problem
exactly first and then in the adiabatic approximation. We do
not directly perform, for example, the expansion in orders of
h̄ as carried out in Refs. [45–49]. Instead, we postpone the
semiclassical approximation to Sec. V.
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A. Unitary transformation

Anticipating adiabatic approximation, let us define a unitary
operator U , which diagonalizes the term �B · �σ in spin space.
Our problem is divided into two dispersion branches which we
label with the sign of the eigenvalue of the operator �B · �σ . In
particular, the definition of U implies that

P†
+U † �B · �σUP− = P†

−U † �B · �σUP+ = 0, (9)

where

P+ =
(

1
0

)
, P− =

(
0
1

)
(10)

are the respective σ z eigenstates. Therefore, we can rewrite
the diagonalized Zeeman term as

U † �B · �σU = P†
+U † �B · �σUP+ + P†

−U † �B · �σUP−. (11)

The wave function in the diagonal basis is related to the original
wave function by the same transformation,

�̃ = U †�. (12)

Plugging this definition into Eq. (8) yields the Schrödinger
equation in the new basis,

ih̄
∂

∂t
�̃ = H̃ �̃, (13)

where from

H̃ = U †HU (14)

we see that the Hamiltonian after the transformation retains its
original form,

H̃ = h̄2

2m
k̃

2
I + �̃B · �̃σ + W (r̃)I, (15)

and the effect of this transformation can be incorporated
through a redefinition of the effective magnetic field, position,
momentum, and spin operators, namely,

r̃ = U †rU, (16a)

k̃ = U †kU, (16b)

�̃σ = U † �σU. (16c)

We note that although �̃B · �̃σ is proportional to σz, in general

both �̃B and �̃σ have components in all three directions, and only
their scalar product is diagonal in spin space.

B. Adiabatic approximation

Thus far our discussion has been exact. Let us now perform
adiabatic approximation by assuming that the wave function
�̃ remains in the eigenspace of the projection operator P±P†

±,
i.e., in either the lower or upper dispersion branch with respect
to the position- and momentum-dependent effective magnetic
field. Explicitly, �̃ = ψP± defines another wave function
ψ , the components of which now evolve according to the
Schrödinger equation with an effective Hamiltonian

Heff = P†
±H̃P± (17)

either in the lower (−) or the upper (+) branch. In the effective
Hamiltonian the operators

rc = P†
± r̃P± = P†

±U †rUP±, (18a)

kc = P†
± k̃P± = P†

±U †kUP± (18b)

appear. They describe the position and momentum operators
adiabatically projected to one of the branches. These operators
rc and kc are sometimes called the covariant operators
[45]. They are manifestly different from their canonical
counterparts, signaling breakdown of the Galilean invariance
[52]. Note that even though rc can be understood as a physical
position operator (i.e., the position operator describing, e.g.,
the motion of the center of a wave packet), kc does not
correspond to kinetic momentum. A kinetic momentum,
also known as physical momentum [52], operator could be
obtained by performing the transformations described here on
h̄(kI − A), which is a matrix in spin space, as opposed to
merely h̄k. One can convince oneself that h̄(kI − A) is the
kinetic momentum by computing the commutator between rc

and the Hamiltonian in Eq. (1).
Since the position operator r and the momentum operator

h̄k are both spin independent, the projection operator com-
mutes with them. Using this property, the last two equations
can be rewritten as

rc = r − A(k), (19a)

kc = k − A(r), (19b)

where

A(k) = −P†
±U †[r,U ]P±, (20a)

A(r) = −P†
±U †[k,U ]P±. (20b)

Operators A(k) and A(r) represent the Berry connections.
Given a suitable representation, commutators in these oper-
ators become derivatives, e.g., a commutator of a function in
which the position operator is proportional to a momentum
derivative in the momentum representation. Therefore, when
the operator U is diagonal in position or momentum basis, the
Berry connection operator A(k) or A(r) becomes a connection
in the usual geometric sense [see Eqs. (30) and (39)]. This
also explains the seemingly counterintuitive labeling, which is
standard [4].

In order to evaluate the potential term it is beneficial to
expand W (r) in a power series,

W (r) = w(0) +
∑

j

w
(1)
j rj +

∑
j,l

w
(2)
j l rj rl + · · · . (21)

In most ultracold-atom-related problems the potential W is, at
most, quadratic, and we will therefore limit our attention to
such cases. Cubic and higher-order terms in the potential W

would result in a more complicated expression in Eq. (24b).
The effective Hamiltonian Heff can thus be rewritten in the
following concise form:

Heff = h̄2

2m
k2

c + W (rc) + V, (22)
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where

V = P†
±

�̃B · �̃σP± + V (r) + V (k), (23)

with

V (r) = h̄2

2m
(P†

±U †[k,U ]P∓) · (P†
∓U †[k,U ]P±), (24a)

V (k) =
∑
j,l

w
(2)
j l P

†
±U †[rj ,U ]P∓P†

∓U †[rl,U ]P±. (24b)

We see that besides the alternation of the physical momentum
and position operators, three extra potential terms have
appeared. In the following sections we investigate dynamics
in this system in more detail.

C. Heisenberg equations

As discussed above, the operators rc and h̄kc do not
represent the canonical position and momentum. This is
confirmed by the observation that their commutators differ
from the usual commutators for the position and momentum
operators. In particular, not only does the position-momentum
commutator gain an extra term, but the other commutators do
not vanish anymore:

[(rc)j ,(rc)l] = i�
(k,k)
j l , (25a)

[(kc)j ,(kc)l] = i�
(r,r)
j l , (25b)

[(rc)j ,(kc)l] = iδj,l + i�
(k,r)
j l , (25c)

where various Berry curvatures are given by

�
(k,k)
j l = i

[
rj ,A(k)

l

] − i
[
rl,A(k)

j

]
, (26a)

�
(r,r)
j l = i

[
kj ,A(r)

l

] − i
[
kl,A(r)

j

]
, (26b)

�
(k,r)
j l = i

[
rj ,A(r)

l

] − i
[
kl,A(k)

j

]
, (26c)

�
(r,k)
j l = i

[
kj ,A(k)

l

] − i
[
rl,A(r)

j

]
. (26d)

Also, note that �
(k,r)
j l = −�

(r,k)
lj . The emergence of the extra

terms in Eqs. (25) can be interpreted as curving up of position
space, momentum space, and phase space, respectively. In
quantum mechanics phase space is inherently curved, as posi-
tion and momentum operators do not commute to begin with.
Equations (25) demonstrate that noncommutative geometry
underlies the algebraic structure of coordinates and momenta.
Noncommutative coordinates in the context of field theory, and
physics in general, have attracted a great deal of theoretical
interest [53,54].

Adiabatic approximation, and spin projection in particular,
is essential to obtaining a nonzero Berry curvature (see Ref. [5]
for an extensive discussion). If no spin projection is performed,
Berry connections generally have a nontrivial matrix structure.
Schematically, this matrix structure serves to generate terms of
the [A,A] type, which exactly cancel the corresponding [k,A]
and [r,A] terms. In this way it is ensured that a change of
basis in spin space leaves physical dynamics unchanged. On
the other hand, adiabatic approximation confines evolution of
the system to only one of the two dispersion branches, and

the price for that simplification is the emergence of Berry
curvature.

Going beyond adiabatic approximation would bring about
effects similar to Zitterbewegung (see Refs. [55–57]). In that
case, noncommuting components of the velocity operator
ṙc signal interbranch transitions. The frequency of these
transitions is given by the gap between the dispersion branches.

Naturally, modified commutation relations result in altered
Heisenberg equations for the covariant operators

k̇c = 1

ih̄
[kc,Heff], (27a)

ṙc = 1

ih̄
[rc,Heff], (27b)

which now contain the Berry curvature terms defined above,

k̇c = − 1

h̄
∇W (rc) + 1

ih̄
[kc,V]

+ h̄

2m

∑
j,l

ej

{
�

(r,r)
j l ,(kc)l

}

+ 1

2h̄

∑
j,l

ej

{
�

(r,k)
j l ,∇lW (rc)

}
, (28a)

ṙc = h̄

m
kc + 1

ih̄
[rc,V]

+ h̄

2m

∑
j,l

ej

{
�

(k,r)
j l ,(kc)l

}

+ 1

2h̄

∑
j,l

ej

{
�

(k,k)
j l ,∇lW (rc)

}
, (28b)

where ej denotes the unit vector in the j direction (i.e., ej is a
vector, not a component of a vector), while all the ∇’s here act
on functions of a single variable and thus represent derivatives
with respect to that variable. This set of Eqs. (28) represents
the first main result of the paper.

The first term on the right-hand side in each of the two
equations denotes the usual contribution known from classical
mechanics, whereas the subsequent terms are due to adiabatic
approximation. In particular, in each case the second term is
due to emergent potentials, whereas the last two terms are
due to Berry curvatures. In order to make our hitherto abstract
discussion more concrete, we consider two simple examples
next.

IV. PARTICULAR CASES

Let us consider the situation where the operator �B becomes
a vector of complex numbers (as opposed to operators) in some
representation. In this case the eigenvalues of the operator
�B · �σ are ±| �B| with the eigenfunctions

χ+ =
(

e−i
φ

2 cos α
2

ei
φ

2 sin α
2

)
, χ− =

(
e−i

φ

2 sin α
2

−ei
φ

2 cos α
2

)
, (29)

where the spherical angles α and φ give the direction of the
vector �B. The unitary operator U , which diagonalizes the
matrix �B · �σ , then consists of two columns, χ+ and χ−. Two
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particular cases, which often occur in practice, are a position-
dependent effective magnetic field and spin-orbit coupling,
which corresponds to a momentum-dependent Zeeman term.
We investigate them in more detail below.

A. Position-space curvature

When the operator �B depends only on the coordinate r , the
unitary transformation operator is a function of only position:
U = U (r). In this case the Berry connections are A(k) = 0
and

A(r) = iχ
†
±(r)∇(r)χ±(r). (30)

The corresponding Berry curvatures are �(k,k) = �(k,r) =
�(r,k) = 0 and

�
(r,r)
j l = ∇(r)

j A(r)
l − ∇(r)

l A(r)
j . (31)

The scalar potentials are V (k) = 0 and

V (r) = − h̄2

2m
(χ †

±∇(r)χ∓) · (χ †
∓∇(r)χ±). (32)

These quantities can also be expressed in terms of the angles
on the Bloch sphere, namely, α and φ. Concretely, the Berry
connection is

A(r) = ± 1
2 cos α∇(r)φ, (33)

and the potential is the same for the two branches,

V (r) = h̄2

8m
[(∇(r)α)2 + sin2 α(∇(r)φ)2], (34)

while the Berry curvature is opposite for the two branches,

�
(r,r)
j l = ± sin α

2

[(∇(r)
j φ

)(∇(r)
l α

)
− (∇(r)

j α
)(∇(r)

l φ
)]

. (35)

The latter two equations can also be conveniently expressed
using the unit vector �n = �B/| �B|, describing the direction of
the vector �B [58],

V (r) = h̄2

8m
(∇(r)�n)2, (36)

�
(r,r)
j l = ∓1

2
�n · (∇(r)

j �n × ∇(r)
l �n)

. (37)

The equations of motion (28) in this case are

k̇c = − 1

h̄
∇(r)W (rc) + 1

ih̄
[kc,V]

+ h̄

2m

∑
j,l

ej

{
�

(r,r)
j l ,(kc)l

}
, (38a)

ṙc = h̄

m
kc. (38b)

The curvature �
(r,r)
j l is also known as the synthetic mag-

netic field and has been studied theoretically [10,12] as
well as experimentally [59,60]. Note that the Stern-Gerlach
experiment [61], which is often discussed in introductory
quantum mechanics textbooks [62], can also be described
in this framework. In particular, a linear magnetic field

gradient separates out the two spin components since the Berry
connection in position space becomes nonzero, even though
the Berry curvature itself vanishes in that case.

B. Momentum-space curvature

When operator �B depends only on momentum k, basis
transformation is facilitated by U = U (k), which then is a
function of only momentum. In this case, the position-space
Berry connection vanishes, A(r) = 0, whereas

A(k) = −iχ
†
±∇(k)χ±. (39)

Accordingly, the Berry-curvature components related to po-
sition space vanish, �(r,r) = �(k,r) = �(r,k) = 0, and all the
curvature is concentrated in the momentum space,

�
(k,k)
j l = −∇(k)

j A(k)
l + ∇(k)

l A(k)
j . (40)

The scalar potential has only momentum components, i.e.,
V (r) = 0 and

V (k) = −
∑
j,l

w
(2)
j l

(
χ
†
±∇(k)

j χ∓
)(

χ
†
∓∇(k)

l χ±
)
. (41)

Equations similar to Eqs. (34)–(37) can also be written down
in the case at hand. Finally, Heisenberg equations of motion
(28) in this case are

k̇c = − 1

h̄
∇(r)W (rc), (42a)

ṙc = h̄

m
kc + 1

ih̄
[rc,V]

+ 1

2h̄

∑
j,l

ej

{
�

(k,k)
j l ,∇(r)

l W (rc)
}
. (42b)

We remark that, strictly speaking, when the two dispersion
branches touch, adiabatic approximation becomes invalid.
The condition for the validity of adiabatic approximation is
particularly elegant in this momentum-space curvature case.
Concretely, | �B| must be nonzero for each k. This is the case
only when the system of equations

− h̄2

m

∑
i

kia
j

i + vj = 0 (43)

has no solutions. In terms of k, this system of equations
is linear. Therefore, the branches do not touch only if the
following determinant in spin space vanishes:∑

j,l,n

εjlna
j

1al
2a

n
3 = 0, (44)

where εjln is the Levi-Civita symbol. Effects of the
momentum-space curvature have already been extensively
studied theoretically [63,64].

V. SEMICLASSICAL APPROXIMATION

As we saw in the last section, in cases where all the
Berry curvature is concentrated in a single component, for
example, as either position-space curvature or momentum-
space curvature, the equations of motion are relatively simple
and can often be treated exactly. However, this is not the case
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in general. Moreover, in the definition of the Berry connection
or the Berry curvatures, h̄ is crucially absent, suggesting that
these quantities also affect semiclassical dynamics. Finally,
semiclassical approximation is of practical interest, as it allows
one to investigate the motion of wave packets and clouds of
ultracold atoms in particular. Motivated by these points, we
consider semiclassical approximation in general in this section
and proceed to apply it to particular Hamiltonians subse-
quently.

In semiclassical approximation we neglect the commutator
between position and momentum. In that case the effective
magnetic field operator becomes

Bj = − h̄2

m

∑
i

kia
j

i (r) + vj (r). (45)

The matrix �B · �σ still has the eigenvectors χ±, but they
now parametrically depend on the numbers r and k. Berry
connections (20) are

A(r) = iχ
†
±∇(r)χ±, (46a)

A(k) = −iχ
†
±∇(k)χ± (46b)

and lead to corresponding Berry curvatures (26),

�
(k,k)
j l = −∇(k)

j A(k)
l + ∇(k)

l A(k)
j , (47a)

�
(r,r)
j l = ∇(r)

j A(r)
l − ∇(r)

l A(r)
j , (47b)

�
(k,r)
j l = −∇(k)

j A(k)
l − ∇(r)

l A(r)
j , (47c)

�
(r,k)
j l = ∇(r)

j A(r)
l + ∇(k)

l A(k)
j , (47d)

and scalar potentials (24),

V (r) = − h̄2

2m
(χ †

±∇(r)χ∓) · (χ †
∓∇(r)χ±), (48a)

V (k) = −
∑
j,l

w
(2)
j l χ

†
±∇(k)

j χ∓χ
†
∓∇(k)

l χ±. (48b)

Equations of motion (28) then take the form

k̇c = − 1

h̄
∇(r)W − 1

h̄
∇(r)V

+ h̄

m

∑
j,l

ej�
(r,r)
j l (kc)l

+ 1

h̄

∑
j,l

ej�
(r,k)
j l ∇(r)

l W, (49a)

ṙc = h̄

m
kc + 1

h̄
∇(k)V

+ h̄

m

∑
j,l

ej�
(k,r)
j l (kc)l

+ 1

h̄

∑
j,l

ej�
(k,k)
j l ∇(r)

l W. (49b)

We see that in semiclassical approximation Berry curvatures
� and scalar potentials V do not vanish and still show up in the
equations of motion. However, since they involve derivatives of

the eigenvectors χ±, which vary at scales much larger than the
other relevant length scales, e.g., the de Broglie wavelength,
these quantities are not dominant. Therefore, it is a reasonable
approximation to insert classical relations k̇c ≈ −∇(r)W/h̄

and ṙc ≈ h̄kc/m on the right-hand side of the equations of
motion. In that case, we arrive at

k̇c = − 1

h̄
∇(r)(W + V)

+
∑
j,l

ej

[
�

(r,r)
j l (ṙc)l + �

(k,r)
lj (k̇c)l

]
, (50a)

ṙc = h̄

m
kc + 1

h̄
∇(k)V

−
∑
j,l

ej

[
�

(r,k)
lj (ṙc)l + �

(k,k)
j l (k̇c)l

]
, (50b)

where we have grouped the terms in order to facilitate
comparison with Eqs. (2.19) in Ref. [43]. Even though
the result is the same, we arrived at it purely within the
Hamiltonian formalism. Furthermore, in our derivation we
have shown that these equations constitute a special case of
the semiclassical situation; namely, they are valid only when
Berry curvatures are small.

VI. ONE-DIMENSIONAL SPIRAL

Up to this point our discussion has been valid for an
arbitrary number of spatial dimensions. Now we specialize
to a single spatial dimension, where the effects of phase-space
Berry curvature are nevertheless nontrivial, as phase space in
this case is two-dimensional. In particular, as an application of
the discussion above, in this section we investigate the dynam-
ics described by the following one-dimensional Hamiltonian:

H = H0 − FxI, (51)

where the −FxI term describes a spin-independent force
(linear potential), while

H0 = h̄2

2m
(kI − aσ3)2

+ h̄�

2

(
cos

x

λ
σ1 + sin

x

λ
σ2

)
(52)

is an exactly solvable Hamiltonian with a constant spin-
orbit-coupling term and a position-dependent Zeeman term.
The spin-orbit coupling term is characterized by its constant
strength a. The position-space Zeeman term constitutes a
spiral with a constant magnitude �/2 and a wavelength λ.
Furthermore, it is convenient to introduce the wave number

κ = �

2a

m

h̄
, (53)

which quantifies the relative strength of the position-space and
momentum-space Zeeman terms. This Hamiltonian H0 is well
known: it has undergone extensive theoretical investigation
(see Ref. [17] and references therein) and has also been realized
experimentally [16].
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A. Exact solution

In this section we recap the exact diagonalization [17] of H0.
We begin by observing that the Zeeman term can be rewritten
as

cos(x/λ)σ1 + sin(x/λ)σ2 = e−i x
2λ

σ3σ1e
i x

2λ
σ3 , (54)

and hence, the coordinate dependence may be eliminated by
performing a unitary transformation. Concretely, the wave
function in the new basis is

�̃ = U †�, (55)

where

U = e−i x
2λ

σ3 . (56)

We then obtain the transformed Hamiltonian

H̃0 = U †H0U = h̄2

2m
(k − k0σ3)2 + h̄�

2
σ1, (57)

where

k0 = a + 1

2λ
. (58)

The symbols in this Hamiltonian directly correspond to
physical quantities in the experimental realization of the model
[16,17]. In particular, given two lasers with small detuning
from the Raman resonance, k0 is the wave-vector difference
of the lasers (recoil wave vector), and ER = h̄2k2

0/2m is the
recoil energy. The intensity of the two lasers is represented by
the Rabi frequency �. The dispersion is thus given by

E

h̄2/m
= k2

2
+ k2

0

2
±

√
(kk0)2 + �2

4

(
m

h̄

)2

(59)

in the lower (−) and the upper (+) branches. The upper branch
has a single quadratic minimum, whereas the lower branch has
one quadratic minimum when

h̄� > 4ER (60)

and two quadratic minima or one quartic minimum otherwise.
As the gap between the two branches is governed by the
ratio h̄�/ER and we are interested in the situation where
the adiabatic approximation is applicable, we limit further
discussion to the single-minimum regime given in Eq. (60).
Expanding the dispersion around the minimum k = 0, we find
that the effective mass m∗

± in the two branches is given by

m

m∗±
= 1 ± 2k2

0

�

h̄

m
≈ 1 ± 1

κ

(
a + 1

λ

)
, (61)

respectively. The first equality applies in the limit k � k0

of interest when computing the effective mass, whereas the
second approximation holds in the semiclassical regime. In-
deed, the smallness of 1/λa and 1/λκ defines the semiclassical
regime, where all the gradients are small compared to the de
Broglie wavelength. Namely, when the period of the spiral
λ in the position-space Zeeman term is large compared to
the spin-orbit-coupling wave number a, we have 1/λa � 1.
In combination with the single-minimum condition, this also
implies 1/λκ � 1. Note further that one can transform back
from the physical Hamiltonian H̃0 in Eq. (57) to the original

Hamiltonian H0, Eq. (52), with arbitrary λ and a as long as
Eq. (58) is satisfied.

In order to investigate the dynamics of the full Hamiltonian
H , the force term −FxI may be added to the exact solution
as a perturbation. In that case one concludes that in the
presence of spin-orbit coupling, the two branches (effective
spin components) respond to a force differently, as one of
them accelerates faster than the other.

B. Semiclassical solution

We now treat H including the effect of the force F explicitly
and also carefully tracing the effects of Berry curvatures in
this system. The full Zeeman term now is a position- and
momentum-dependent matrix:

�B · �σ = h̄�

2

(
cos

x

λ
σ1 + sin

x

λ
σ2

)
− h̄2

m
akσ3. (62)

As this term contains both position and momentum operators,
it does not conform to either of the cases addressed in Sec. IV.
We therefore have to resort to the semiclassical approach.

The direction of the vector �B can be written in terms of the
spherical angles α(k) and φ(x) as introduced in Eq. (29). In
particular,

tan α = −κ

k
, (63a)

φ = x

λ
. (63b)

The eigenvalues of the matrix �B · �σ are

±| �B| = ± h̄�

2κ

√
κ2 + k2. (64)

For adiabatic approximation to hold, it is sufficient that the
gap between the two branches, 2| �B|, is larger than all the other
relevant energy scales. This condition in particular enforces
the single-minimum condition (60). The Berry connections
are A(k) = 0 and

A(r) = ∓ k

2λ
√

κ2 + k2
(65)

in this case. Note that due to the nonvanishing A(r) [see
Eq. (19b)], the physical momentum differs from the canonical
momentum,

kc = k

(
1 ± 1

2λ
√

κ2 + k2

)
. (66)

Position and momentum spaces remain flat, �(k,k) =�(r,r) =0,
and only phase-space Berry curvature is nonzero and opposite
for the two branches:

�(k,r) = −�(r,k) = ± κ2

2λ(κ2 + k2)
3
2

. (67)

The scalar potentials (23) are V (k) = 0 and

V (r) = h̄2

8mλ2

κ2

κ2 + k2
, (68)
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and thus, the full potential V is

V = ± h̄�

2κ

√
κ2 + k2 + h̄2

8mλ2

κ2

κ2 + k2
. (69)

Semiclassical dynamics follows Eqs. (49),

k̇c = F

h̄
(1 − �(r,k)), (70a)

ẋc = h̄

m
kc(1 + �(k,r)) + 1

h̄
∇(k)V, (70b)

which in general are quite complicated.
However, for our semiclassical approach to be valid,

we should keep only the lowest-order corrections in the
small parameters 1/λa and 1/λκ . Furthermore, in order to
prevent the kinetic energy from causing sizable interbranch
transitions, we limit ourselves to the |k| � κ regime, where
the adiabatic approximation holds. These approximations lead
to

kc ≈ k

(
1 ± 1

2λκ

)
, (71a)

�(r,k) = −�(k,r) ≈ ∓ 1

2λκ
, (71b)

1

h̄
∇(k)V ≈ ± k

κ

�

2κ
. (71c)

Therefore, equations of motion in this limit are

k̇c = F

h̄

(
1 ± 1

2λκ

)
, (72a)

ẋc = h̄

m
kc

(
1 ± 1

2λκ
± a

κ

)
, (72b)

and for the center-of-mass motion we obtain the following
closed equation:

ẍc = F

m

[
1 ± 1

κ

(
1

λ
+ a

)]
. (73)

From this equation one can read off the effective mass, which
is then seen to match the one given in Eq. (61).

We conclude that the effective mass in this model in
semiclassical approximation is correctly captured for both
branches by the phase-space Berry curvature. The Berry-
curvature result is compared with the bare mass and also
with the exact solution in Fig. 2. Thus, the effective mass
measurement is a direct probe of the phase-space Berry
curvature in this system. Therefore, effective-mass measure-
ments in Refs. [65,66] can be reinterpreted as the first
measurements of phase-space Berry curvature in ultracold-
atom systems. This conclusion is the second main result of the
paper.

VII. SUMMARY AND OUTLOOK

In summary, we have presented a derivation of equations of
motion in the presence of position-space, momentum-space,
and phase-space Berry curvatures. We have relied on only
the Hamiltonian formalism, and we have clearly separated
adiabatic approximation, semiclassical approximation, and

FIG. 2. Dispersion of the two branches in the units of the recoil
energy ER and the recoil wave vector k0 in the semiclassical single-
minimum regime, h̄�/ER = 10. The effective mass from the phase-
space Berry curvature in Eq. (73) (solid line) is compared to the exact
result (dashed line, left) and the bare-mass approximation m∗

± = m

(dotted line, right).

the low-curvature limit. Our approach has resulted in the
Heisenberg equations of motion (28), which are written
down with no reference to semiclassical approximation.
From them, we have derived the semiclassical equations of
motion (49). In the limit of small curvature they reduce
to Eqs. (50). The latter can be directly compared to the
results of Ref. [43]. Moreover, we have investigated the
semiclassical dynamics in a system with an equal Rashba-
Dresselhaus spin-orbit coupling system in a single spatial
dimension. We have concluded that in the strong-coupling
regime, where the dispersions of both branches are quadratic,
the effective mass is directly related to phase-space Berry
curvature.

Several directions of future work look promising. On the
one hand, populating optical lattices with ultracold atoms,
one can go far beyond the regimes readily achievable in
solid-state physics. In particular, it possible to engineer strong
artificial magnetic fields [30,31,67] as well as strong synthetic
spin-orbit coupling [8,9,68], while motion of wave packets
can be controlled and observed with remarkable precision
[69–71]. This motivates one to generalize the presented
approach and revisit the effects of phase-space Berry curvature
on a lattice. Furthermore, in higher-dimensional models, the
effects of phase-space Berry curvature most likely go beyond
the rescaling of mass. In the one-dimensional system we
have investigated, the phase space is two-dimensional, thus
permitting only scalar curvature. In more dimensions, this is
no longer true. Finally, in the semiclassical approach including
the effects of harmonic confinement is straightforward, thus
allowing one to consider trapped systems and analyze their
collective modes.

ACKNOWLEDGMENTS

It is our pleasure to thank Gediminas Juzeliūnas, Hannah
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Generated Spin-Orbit Coupling for Ultracold Atoms, Phys. Rev.
Lett. 111, 125301 (2013).

[22] T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and
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