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Transfer of optical vortices in coherently prepared media
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We consider transfer of optical vortices between laser pulses carrying orbital angular momentum in a cloud
of cold atoms characterized by the � configuration of the atom-light coupling. The atoms are initially prepared
in a coherent superposition of the lower levels, creating a so-called phaseonium medium. If a single vortex
beam initially acts on one transition of the scheme, an extra laser beam is subsequently generated with the same
vorticity as that of the incident vortex beam. The absorption of the incident probe beam takes place mostly at the
beginning of the atomic medium within the absorption length. The losses disappear as the probe beam propagates
deeper into the medium where the atoms are transferred to their dark states. The method is extended to a tripod
atom-light coupling scheme and a more general (n + 1)-level scheme containing n ground states and one excited
state, allowing for creation of multiple twisted light beams. We also analyze generation of composite optical
vortices in the scheme using a superposition of two initial vortex beams and study lossless propagation of such
composite vortices.
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I. INTRODUCTION

The coherent manipulation of pulse propagation through
atomic ensembles [1–4] leads a plethora of important phe-
nomena, such as electromagnetically induced transparency
(EIT) [1,5–7] and slow light propagation [1,5,6,8], enhance-
ment of optical nonlinearities [9–12], generation of matched
pulses [13,14], creation of a spinor slow light [15–19], and
formation of adiabatons [20,21] and optical solitons [22,23].
It has been demonstrated that due to the EIT the light pulses
not only could be slowed down, but also stored by switching
off the controlled beam [5,24–27]. Therefore, the atomic
system can be used as an optical memory for transferring
the quantum state of light to the matter and back to the
light [5,28,29]. By using extra energy levels and additional
laser field one arrives at more complex atom-light coupling
schemes [2,30–41] which can provide more than one dark
state and offer different directions in studying of propagation
effects in coherently driven atomic media.

Light can carry an orbital angular momentum (OAM)
[42,43]. Such light beams have helical (twisted) wavefronts
that spiral along the beam direction much like a corkscrew.
The twisted light field is characterized by a phase factor eilφ ,
where φ is the azimuthal angle with respect to the beam axis
and l denotes the vortex integer winding number (OAM num-
ber). When interacting with atoms such optical vortex beams
reveal a number of interesting effects, including light-induced
torque [44,45], atom vortex beams [46], entanglement of
OAM states of photon pairs [47], OAM-based four-wave mix-
ing [48,49], spatially dependent optical transparency [50–52],
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and the vortex slow light [33,53–55]. The twisted slow light
[18,33,53–57] gives additional possibilities in manipulation of
the optical information during the storage and retrieval of the
slow light [58,59].

The previous studies on the EIT have concentrated on a
situation where the atoms are initially in their ground states,
and the Rabi frequency of the probe field is much weaker
than that of the control field. It has been demonstrated that
the OAM of the control vortex beam can be transferred to the
probe field in the tripod atom-light coupling scheme during
the storage and retrieval of the probe field [33,57]. Without
switching off and on of the control fields (hence without
storage and retrieval of the probe field), transfer of optical
vortices take place by applying a pair of weaker probe fields in
the closed loop double-� [55] or double-tripod [18] schemes.

In this paper, we demonstrate that the exchange of optical
vortices in nonclosed loop structures is possible under the
condition of weak atom-light interaction in coherently pre-
pared atomic media. To this end, we analyze the interaction
of multicomponent laser pulses carrying OAM propagating in
multilevel atom-light coupling schemes with atoms prepared
in a coherent superposition of lower levels. Such a medium
has been named the phaseonium [60–63]. We derive the basic
equations describing the propagation of the coherent laser
pulses weakly interacting with atoms in multilevel config-
urations. To elucidate the physical situation of exchange of
OAMs, we begin with a basic three-level configuration, the �

system, containing only a pair of laser pulses. Subsequently
we extend our model to more complicated schemes involving
additional laser pulses and additional atomic levels. It is
shown that the transfer of optical vortices is also possible for
the tripod system and a more general (n + 1)-level scheme.
Furthermore we show that composite optical vortices can be
formed in the � system when both probe fields are present at
entrance of the medium.
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The phaseonium medium proposed in this paper is based
on a coherent superposition of the ground states and can be re-
alized experimentally using the fractional or partial stimulated
Raman adiabatic passage (STIRAP) [64]. The generation of
a quantum superposition of ground states in a robust and
controlled way is known to be possible in a four-state tripod
system by using a sequence of three laser pulses [30,31].
Such a technique is based on the existence of two degenerate
dark states and their interaction. The mixing of the dark
states can be controlled by changing the relative delay of
the pulses, and thus an arbitrary superposition state can be
created. This method for creation of coherent superpositions
can be generalized to N level schemes.

The method described here for transfer of optical vortices
may find application for creation of structured light by another
light [53]. Using our method one could create a vortex at a
wavelength for which it is not possible to do it directly with
standard optics (e.g., far infrared or UV) [65]. In addition,
the transfer of vortices is a possible tool for manipulation of
information encoded into OAM of light.

II. THREE-LEVEL � SYSTEM

Let us first consider the � scheme for the transfer of
optical vortices, illustrated in Fig. 1. Specifically, we study
the propagation of two laser pulses with the Rabi frequencies
�1 and �2 (pulse pair) in a medium consisting of atoms in
the three-level � configuration of the atom-light coupling.
The two atomic lower states |g1〉 and |g2〉 are coupled to an
excited state |e〉 via the two light fields. The Hamiltonian for
such a system reads in the appropriate rotating frame and in
the interaction picture

H� = �1|g1〉〈e| + �2|g2〉〈e| + H.c. (1)

The dynamics of the pulse pair �1 and �2 and two atomic
coherences ρg1e and ρg2e are described by the Maxwell-Bloch
equations (MBE) for an open system:

ρ̇g1e =i
(
δ1 + iγeg1

)
ρg1e − i�1

(
ρee − ρg1g1

) + i�2ρg1g2 , (2)

ρ̇g2e =i
(
δ2 + iγeg2

)
ρg2e − i�2

(
ρee − ρg2g2

) + i�1ρg2g1 , (3)

FIG. 1. Schematic diagram of the three-level � quantum system
containing an upper state |e〉 and lower levels |g1〉 and |g2〉 interacting
with two Rabi frequencies �1 and �2.

and

∂�1

∂z
+ c−1 ∂�1

∂t
= i

α1γeg1

2L
ρg1e, (4)

∂�2

∂z
+ c−1 ∂�2

∂t
= i

α2γeg2

2L
ρg2e, (5)

where α1 and α2 are the optical depths of both laser pulses
�1 and �2, L denotes the optical length of the medium,
and γeg1 and γeg2 are the rates of decay from the excited
state |e〉 to lower states |g1〉 and |g2〉, respectively. We have
defined the detunings as δ1 = ωeg1 − ω1 and δ2 = ωeg2 − ω2,
where ωeg1 and ωeg2 are the frequencies of the transitions
|g1〉 ↔ |e〉 and |g2〉 ↔ |e〉, respectively, while ω1 and ω2

represent the central frequencies of the probe beams. We have
disregarded the diffraction terms containing the transverse
derivatives (2k1)−1∇2

⊥�1 and (2k2)−1∇2
⊥�2 in the Maxwell

equations (4) and (5), where k1 = ω1/c and k2 = ω2/c are
the central wave vectors of the first and second beams. One
can evaluate these terms as ∇2

⊥�1(2) ∼ w−2�1(2), where w

represents a characteristic transverse dimension of the laser
beams. This can be a width of the vortex core if the beam
carries an optical vortex or a characteristic width of the beam
if it has no vortex. Consequently the change of the phase of
the probe beams due to the diffraction term after passing the
medium is estimated to be L/2kw2, where L is the length of
the atomic cloud, where k ≈ k1(2). The phase change L/2kw2

can be neglected when the sample length L is not too large,
Lλ/w2 	 π , where λ = 2π/k is an optical wavelength. For
example, by taking the length of the atomic cloud to be
L = 100 μm, the characteristic transverse dimension of the
beams w = 20 μm, and the wavelength λ = 1 μm, we obtain
Lλ/w2 = 0.25. Under these conditions the diffraction terms
do not play a significant role and we can drop it out in Eqs. (4)
and (5).

Let us assume that the atoms are initially in a superposition
of both lower levels (the phaseonium medium)

|ψ (0)〉 = c1|g1〉 + c2|g2〉. (6)

We consider a weak atom-light interaction where
|�1|, |�2| 	 γeg1 , γeg2 . Then, to the first order one has
ρee ≈ 0, ρg1g1 ≈ |c1|2, ρg2g2 ≈ |c2|2, and ρg1g2 ≈ c1c∗

2, giving
the following the steady-state solutions for the coherences
ρg1e and ρg2e:

ρg1e = − |c1|2�1 + c1c∗
2�2

δ1 + iγeg1

, (7)

ρg2e = − c∗
1c2�1 + |c2|2�2

δ2 + iγeg2

. (8)

The first-order approximation is valid when |ρg1e|, |ρg2e| 	
1. Otherwise we cannot assume that ρg1g1 and ρg1g2 are not
changing during the propagation of light.

Substituting Eqs. (7) and (8) into the Maxwell equations
(4) and (5) one arrives at the following coupled equations for
the propagation of the pulse pair [41]:

∂�1

∂z
= − iβ1(|c1|2�1 + c1c∗

2�2), (9)

∂�2

∂z
= − iβ2(c∗

1c2�1 + |c2|2�2), (10)
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where

βa = αaγega

2L
(
δa + iγega

) , (11)

with a = 1, 2.
The second laser field is assumed to be zero �2(0) = 0 at

the entrance z = 0, while �1(0) = �. Under these conditions
the solutions to Eqs. (9) and (10) read

�1(z) = �

X2
(β1|c1|2e−iX2z + β2|c2|2), (12)

�2(z) = �

X2
c∗

1c2β2(e−iX2z − 1), (13)

where

X2 = β1|c1|2 + β2|c2|2. (14)

Up to now no assumption has been made concerning the
spatial profile of the laser fields. We take now that the incident
beam �1 has an optical vortex

�1(0) = � = |�|eilφ, (15)

where l is the orbital angular momenta along the propagation
axis z and φ is the azimuthal angle. For a doughnut Laguerre-
Gaussian (LG) beam the transverse profile reads

|�| = ε

(
r

w

)|l|
e−r2/w2

, (16)

where r describes a cylindrical radius, w is a beam waist,
and ε represents the strength of the vortex beam. According
to Eqs. (12)–(15), the generated pulse beam �2(z) ∼ eilφ ac-
quires the same phase as the first vortex beam. Therefore, the
laser beam �1 transfers its vortex to the generated beam �2.

Equations (12) and (13) show that both light beams ex-
perience losses during their propagation. Yet the losses ap-
pear only at the entrance of the medium before the EIT is
established for both fields. To simplify the discussion, let
us take α1 = α2 = α and γeg1 = γeg2 = γ , and consider a
situation where both laser fields �1 and �2 are in an exact
resonance with the corresponding atomic transitions (δ1 =
δ2 = 0). Then Eqs. (11) and (14) lead to β1 = β2 = X2 =

1
2iLabs

, where Labs = L/α is the absorption length. If optical
density of the resonant medium is sufficiently large α � 1, the
absorption length constitutes a fraction of the whole medium
Labs 	 L. For the distances z exceeding the absorption length
z � Labs both exponential terms vanish in Eqs. (12) and (13)
and the EIT is established leading to lossless propagation of
both fields. Using Eqs. (15) and (16) we get

�1(z � Labs) = ε

(
r

w

)|l|
e−r2/w2

(1 − |c1|2)eilφ, (17)

�2(z � Labs) = − ε

(
r

w

)|l|
e−r2/w2

c∗
1c2eilφ. (18)

In this way, the beams experience no absorption loss for large
propagation distances z � Labs. This is illustrated in Fig. 2
showing the dependence of the intensities |�1(z)|2/|�1(0)|2
and |�2(z)|2/|�1(0)|2 given by Eqs. (12) and (13) on the
dimensionless distance z/Labs for the resonance case δ1 =
δ2 = 0 and α = 20. Although initially at the beginning of

0 5 10 15 20
z/Labs

0
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|
1,
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z)
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/|

1(
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| 1(z)|
2/| 1(0)|
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| 2(z)|
2/| 1(0)|

2

FIG. 2. Dependence of the dimensionless intensities of the light
fields |�1(z)|2/|�1(0)|2 and |�2(z)|2/|�1(0)|2 given in Eqs. (12)
and (13) on the dimensionless distance z/Labs for c1 = c2 = 1√

2
,

δ1 = δ2 = 0, and α = 20.

the atomic medium losses occur, going deeper through the
medium the losses disappear as the atoms go to their dark state
[6]

D(z � Labs)= �2(z � Labs)|g1〉−�1(z � Labs)|g2〉√
�2

1(z � Labs)+�2
2(z � Labs)

. (19)

Let us investigate how sensitive is the proposed method for
transferring of optical vortices to errors in the amplitudes and
the phases of the superpositions. The sensitivity of system to
the errors is given by the derivative of the fields in the output
given by Eqs. (12) and (13) with respect to the coefficients
c1 and c2. Assuming β1 = β2 = β = 1

2iLabs
and using the fact

|c2| =
√

1 − |c1|2, Eqs. (12) and (13) can be rewritten as

�1(z) = � + �
(
e−i z

2iLabs − 1
)|c1|2, (20)

�2(z) = �
(
e−i z

2iLabs − 1
)|c1|

√
1 − |c1|2eiφc , (21)

where φc = φc2 − φc1 is the relative phase of coefficients c1

and c2. The relative phase of the coefficients c1 and c2 appears
only in Eq. (21). Calculating the derivative of the fields given
by Eqs. (20) and (21) with respect to the amplitude |c1| as well
as the relative phase φc gives

∂�1(z)

∂|c1| = 2�|c1|
(
e−i z

2iLabs − 1
)
, (22)

∂�2(z)

∂|c1| = �eiφc
(
e−i z

2iLabs − 1
) 1 − 2|c1|2√

1 − |c1|2
, (23)

∂�2(z)

∂φc
= i�2(z). (24)

Equations (22)–(24) show that the proposed method is not
very sensitive to the errors in the coefficients. This can be also
seen from Eqs. (17) and (18) for z � Labs. It is clear that the
ratio |�1|/|�2| is proportional to |c2|/|c1|. Errors in the am-
plitudes will change this ratio and, consequently, the intensity
of the transferred vortex. The intensity does not depend on
the phases of the superpositions. Only the relative phase of
the coefficients c1 and c2 enters into Eq. (13) or Eq. (18) and
changes the global phase of the second field �2(z).
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FIG. 3. Schematic diagram of the four-level tripod quantum sys-
tem containing an upper state |e〉 and lower levels |g1〉, |g2〉, and |g3〉
interacting with three Rabi frequencies �1, �2, and �3.

III. TRIPOD SYSTEM

Consider next the propagation of three light pulses through
a medium consisting of atoms with a tripod level structure
shown in Fig. 3. Previously the tripod scheme was employed
when studying the transfer of optical vortices [33,57]. It was
shown that the transfer of optical vortices from a control field
of larger intensity to a probe field of weaker intensity in tripod
scheme was only possible through switching off and on of the
control laser beams [33,57]. In the following, we demonstrate
that the exchange of optical vortices in tripod scheme is
possible even without switching off and on of the control
beams, if one uses a coherently prepared atomic system.

In the tripod scheme an excited state |e〉 is coupled to three
lower levels |g1〉, |g2〉, and |g3〉 through three laser pulses
�1, �2, and �3, respectively. The Hamiltonian for the tripod
scheme reads in the interaction representation

HT = �1|g1〉〈e| + �2|g2〉〈e| + �3|g3〉〈e| + H.c. (25)

The MBEs describing the evolution of system can be written
as

ρ̇g1e = i
(
δ1 + iγeg1

)
ρg1e − i�1

(
ρee − ρg1g1

)
+ i�2ρg1g2 + i�3ρg1g3 , (26)

ρ̇g2e = i
(
δ1 + iγeg2

)
ρg2e − i�2

(
ρee − ρg2g2

)
+ i�1ρg2g1 + i�3ρg2g3 , (27)

ρ̇g3e = i
(
δ1 + iγeg3

)
ρg3e − i�3

(
ρee − ρg3g3

)
+ i�1ρg3g1 + i�2ρg3g2 , (28)

and

∂�1

∂z
+ c−1 ∂�1

∂t
= i

α1γeg1

2L
ρg1e, (29)

∂�2

∂z
+ c−1 ∂�2

∂t
= i

α2γeg2

2L
ρg2e, (30)

∂�3

∂z
+ c−1 ∂�3

∂t
= i

α3γeg3

2L
ρg3e, (31)

where the diffraction terms have been neglected in the
Maxwell equations (29) and (31), like for the � scheme.

The atoms are initially prepared in a superposition of three
lower states:

|ψ (0)〉 = c1|g1〉 + c2|g2〉 + c3|g3〉. (32)

For a sufficiently weak atom-light interaction, |� j | 	 γeg j , we
can approximate ρee ≈ 0, ρg1g1 ≈ |c1|2, ρg2g2 ≈ |c2|2, ρg3g3 ≈
|c3|2, ρg1g2 ≈ c1c∗

2, ρg1g3 ≈ c1c∗
3, and ρg2g3 ≈ c2c∗

3, giving the
following steady-state equations for the atomic coherences:

ρg1e = − |c1|2�1 + c1c∗
2�2 + c1c∗

3�3

δ1 + iγeg1

, (33)

ρg2e = − c∗
1c2�1 + |c2|2�2 + c2c∗

3�3

δ2 + iγeg2

, (34)

ρg3e = − c∗
1c3�1 + c∗

2c3�2 + |c3|2�3

δ3 + iγeg3

. (35)

Substituting Eqs. (33)–(35) into the Maxwell equations (29)–
(31) and assuming that at the entrance (z = 0) there is a single
light beam �1(0) = �, �2(0) = 0, and �3(0) = 0, we obtain
[40,41]

�1(z) = �

X3
(β1|c1|2e−iX3z + β2|c2|2 + β3|c3|2), (36)

�2(z) = �

X3
c∗

1c2β2(e−iX3z − 1), (37)

�3(z) = �

X3
c∗

1c3β3(e−iX3z − 1), (38)

where

X3 = β1|c1|2 + β2|c2|2 + β3|c3|2, (39)

and βa is defined by Eq. (11), with a = 1, 2, 3. Considering
again the first laser pulse �1 initially carries an optical vortex
[defined by Eqs. (15) and (16)], two vortex beams �2 ∼ eilφ

and �3 ∼ eilφ are generated with the same vorticity as the first
laser pulse �1 ∼ eilφ .

Using Eqs. (15)–(16) and (36)–(38), one gets for suffi-
ciently large z (z � Labs) under the resonance condition δ1 =
δ2 = δ3 = 0 and assuming that α1 = α2 = α3 = α, γeg1 =
γeg2 = γeg3 = γ :

�1(z � Labs) =ε

(
r

w

)|l|
e−r2/w2

(1 − |c1|2)eilφ, (40)

�2(z � Labs) = − ε

(
r

w

)|l|
e−r2/w2

c∗
1c2eilφ, (41)

�3(z � Labs) = − ε

(
r

w

)|l|
e−r2/w2

c∗
1c3eilφ. (42)

Thus the lossless propagation of generated vortex beams takes
place at distances exceeding the absorption length Labs as
illustrated in Fig. 4. In that case the atomic system goes to
a superposition of two dark states [30,31,66,67]:

D1(z � Labs) = �3(z � Labs)|g1〉 − �1(z � Labs)|g3〉√
�2

1(z � Labs) + �2
2(z � Labs)

,

(43)

D2(z � Labs)

= [
�1(z � Labs)�2(z � Labs)|g1〉

+�2(z � Labs)�3(z � Labs)|g3〉
− (

�2
1(z � Labs) + �2

3(z � Labs)
)|g2〉

]
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FIG. 4. Dependence of the dimensionless intensities
|�1(z)|2/|�1(0)|2, |�2(z)|2/|�1(0)|2, and |�3(z)|2/|�1(0)|2
given by Eqs. (36)–(38) on the dimensionless distance z/Labs for
c1 = 1√

2
, c2 = 1√

3
, c2 = 1√

6
, δ1 = δ2 = δ3 = 0, and α = 20.

× [(
�2

1(z � Labs) + �2
3(z � Labs)

)(
�2

1(z � Labs)

+�2
2(z � Labs) + �2

3(z � Labs)
)]−1/2

. (44)

IV. MULTILEVEL SYSTEM

Let us now extend our model by considering the propa-
gation of n-component light pulses through an (n + 1)-state
atomic medium with n lower atomic states and one excited
state shown in Fig. 5. Denoting the excited state by |e〉, the
lower levels by |g1〉, |g2〉, . . . , |gn〉 and the Rabi frequency of
laser pulses by �m (m = 1, 2, . . . , n), the interaction Hamil-
tonian for such a multilevel atom reads

HM =
n∑

m=1

�m|gm〉〈e| + H.c. (45)

The MBEs describing the dynamics of the system are given
by

ρ̇gme = i
(
δm + iγegm

)
ρgme − i�m

(
ρee − ρgmgm

)
+ i

n∑
j=1; j =m

� jρgmg j (46)

FIG. 5. Schematic diagram of the multilevel quantum system
containing an upper state |e〉 and lower levels |g1〉, |g2〉, ..., |gn〉
interacting with Rabi frequencies �1, �2, ..., �n.

and
∂�m

∂z
+ c−1 ∂�m

∂t
= i

αmγegm

2L
ρgme (m = 1, 2, . . . , n), (47)

with m = 1, 2, . . . , n. As before, the diffraction terms are
ignored in the Maxwell equations (47).

The atoms comprising the system are initially in the super-
position of n ground states:

|ψ (0)〉 =
n∑

m=1

cm|gm〉. (48)

Assuming the atom-light interaction to be sufficiently weak,
|� j | 	 γeg j , one can approximate ρee ≈ 0, ρgsgs ≈ |cs|2, and
ρgsgt ≈ csc∗

t to the first order in all laser fields, giving

ρgme = −
∑n

j=1 cmc∗
j � j

δm + iγegm

, m = 1, 2, . . . , n. (49)

If all the laser pulses except the first one are zero
at the entrance [�1(0) = �, while �2(0) = 0,�3(0) =
0, . . . , �n(0) = 0], the solutions to the MBEs (46) and (47)
are [41]

�1(z) = �

Xn

(
β1|c1|2e−iXnz +

n∑
N=2

βN |cN |2
)

, (50)

�N (z) = �

Xn
c∗

1cNβN (e−iXnz − 1) (N = 2, . . . , n), (51)

with

Xn =
n∑

m=1

βm|cm|2. (52)

From Eqs. (15) and (16) it follows then that if the first light
pulse photons carry an OAM of h̄l along the propagation
direction, n − 1 optical vortices are generated in the medium
with the same vorticity as the first laser beam �1. In the
vicinity of the vortex core the generated vortex beams look
like a LG beam with their intensity vanishing at the core
r → 0.

Calling on Eqs. (15) and (16), Eqs. (50) and (51) provide
the following solutions for the distances exceeding the absorp-
tion length z � Labs:

�1(z � Labs) =ε

(
r

w

)|l|
e−r2/w2

(1 − |c1|2)eilφ, (53)

�N (z � Labs) = − ε

(
r

w

)|l|
e−r2/w2

c∗
1cN eilφ, (54)

where we have assumed that α1 = α2 = · · · = αn = α, γeg1 =
γeg2 = · · · = γegn = γ , and δ1 = δ2 = · · · = δn = 0. Equa-
tions (53) and (54) demonstrate the lossless propagation of
the n-component optical vortices because for z � Labs the
multilevel model goes to a linear superposition of n − 1 dark
states.

V. COMPOSITE VORTICES

Let us next consider a situation where the � scheme is
initially prepared in a superposition state given by Eqs. (6),
but both fields �1 and �2 are incident on the medium. With
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FIG. 6. (a),(c),(e) Intensity distributions in arbitrary units as well
as (b),(d),(f) the corresponding helical phase patterns of the beam
�1(z) defined by Eq. (55) generated by combining two vortex beams
with vorticities (a),(b) l1 = l2 = 1, (c),(d) l1 = l2 = 5, and (e),(f)
l1 = l2 = 8. Here, the parameters are z = L/2, c1 = c2 = 1√

2
, δ1 =

δ2 = 0, ε1 = ε2, and α = 20. The intensity distribution and phase
pattern of the field �2(z) are identical to the intensity distribution
and phase pattern of the field �1(z) shown in this figure.

the initial conditions where both incident fields are the vor-
tex beams �1(0) = �10 = ε1( r

w
)|l1|e−r2/w2

eil1φ and �2(0) =
�20 = ε2( r

w
)|l2|e−r2/w2

eil2φ , the solutions to Eqs. (9) and (10)
take the form

�1(z) = 1

X2

[
ε1

(
r

w

)|l1|
e−r2/w2

(β1|c1|2e−iX2z + β2|c2|2)eil1φ

+ ε2

(
r

w

)|l2|
e−r2/w2

c1c∗
2β1(e−iX2z − 1)eil2φ

]
, (55)

�2(z) = 1

X2

[
ε1

(
r

w

)|l1|
e−r2/w2

c∗
1c2β2(e−iX2z − 1)eil1φ

+ ε2

(
r

w

)|l2|
e−r2/w2

(|c2|2β2e−iX2z + |c1|2β1)eil2φ

]
.

(56)

FIG. 7. (a),(c),(e) Intensity distributions in arbitrary units as well
as the (b),(d),(f) corresponding helical phase patterns of the beam
�1(z) defined by Eq. (55) generated by combining two vortex beams
with vorticities (a),(b) l1 = 1, l2 = −3, (c),(d) l1 = −1, l2 = 4, and
(e),(f) l1 = 3, l2 = −5. The selected parameters are the same as in
Fig. 6. The white dash lines in the phase patterns show the position
of vortices. The intensity distribution and phase pattern of the field
�2(z) are identical to the intensity distribution and phase pattern of
the field �1(z) shown in this figure.

In this way by applying two incident vortex beams �1(0)
and �2(0) one produces two new beams �1(z) and �2(z)
which may contain different vortices depending on the relative
amplitude and phase of the incident beams.

Various situations can appear for the beams created in
this way. If the winding numbers of the incident pulses are
the same, l1 = l2 = l , the resulting beams �1(z) and �2(z)
have the same vorticity l , and the vortex width increases with
increasing the winding number l , as illustrated in Figs. 6(a),
6(c), and 6(e). Figures 6(b), 6(d), and 6(f) show the corre-
sponding phase profile of the beams. If |l1| < |l2|, the result-
ing composite twisted beam contains a vortex of charge l1
located at the beam center which is surrounded by |l1 − l2|
peripheral vortices (Fig. 7). In this case, two light vortices
with different winding numbers l1 and l2 around the same axis
result in formation of vortices with shifted axes. In particular,
for l1 = −l2 = l we superimpose two optical vortices with
opposite topological charges and equal intensity, and the
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FIG. 8. Intensity distributions in arbitrary units for the beam
�1(z) defined by Eq. (55) generated by combining two vortex beams
with vorticities (a) l1 = 1, l2 = −1, (b) l1 = 2, l2 = −2, (c) l1 =
3, l2 = −3, and (d) l1 = 4, l2 = −4. The selected parameters are
the same as Fig. 6. The intensity distribution of the field �2(z) is
identical to the intensity distribution of the field �1(z) shown in this
figure.

azimuthal dependence is given by eilφ + e−ilφ = 2 cos(lφ).
This corresponds to the flowerlike “petals” intensity structures
demonstrated in Fig. 8. Note that such a flowerlike structure
is not called a vortex, although it has a zero intensity at the
center [68,69].

Let us now assume α1 = α2 = α, γeg1 = γeg2 = γ , and
δ1 = δ2 = 0. At propagation distances exceeding the absorp-
tion length z � Labs all exponential terms vanish in Eqs. (55)
and (56) and we get

�1(z � Labs) = e−r2/w2

[
|c2|2ε1

(
r

w

)|l1|
eil1φ

− c1c∗
2ε2

(
r

w

)|l2|
eil2φ

]
, (57)

�2(z � Labs) = e−r2/w2

[
−c∗

1c2ε1

(
r

w

)|l1|
eil1φ

+ |c1|2ε2

(
r

w

)|l2|
eil2φ

]
. (58)

Therefore, if the two incident vortex fields are nonzero, for
z � Labs both vortex beams experience no absorption as the
atoms comprising the medium are converted to their dark
states defined by Eq. (19). It is noteworthy that there is an
even more favorable scenario for the lossless propagation
of both vortex beams. Assuming that �1(0) = �2(0) = � =
ε( r

w
)|l|e−r2/w2

eilφ and choosing the values of c1 and c2 such
that c1 = −c2 = 1√

2
, one arrives at �1(z) = �2(z) = �(z).

Under this condition the atoms are in their dark states from

the very beginning, the medium becomes completely trans-
parent to both vortex beams, and the fields propagate without
losses as in free space. Such an analysis for generation and
propagation of composite optical vortices can be extended to
the (n + 1)-level schemes when all n laser fields are present at
the entrance to the atomic medium.

VI. CONCLUDING REMARKS

We have analyzed the propagation dynamics of two (three)
component laser pulses with OAM interacting with atoms in
the � (tripod) atom-light coupling schemes. The quantum
system is initially prepared in a coherent superposition of two
(three) lower levels. If a vortex beam acts on one transition of
the � (tripod) system, an extra light beam can be nonlinearly
generated with the same OAM number as the initially injected
structured light. We have also extended the analysis to a
(n + 1)-level phaseonium medium for the n-component gen-
eration of the twisted light beams. The lossless propagation of
generated vortex light beams has been also considered. It has
been shown that at the propagation distances exceeding the
absorption length the system goes to a linear superposition of
n − 1 dark states leading to the transparency of the medium to
the n-component optical vortices.

It has been recently shown that a double-� scheme can be
employed for the exchange of optical vortices based on EIT
[55]. In the double-� scheme there should be two additional
control lasers of larger intensity to assure the exchange of
optical vortices. On the other hand, in the current proposal one
does not need the strong atom-light interaction as we are deal-
ing with small intensities (|�i| 	 γegi ). It is only needed that
a medium is initially coherently prepared in a superposition
of atomic lower levels. The losses in both schemes are similar
and take place mostly at beginning of the medium within the
absorption length. The losses disappear when the light pulses
propagate deeper through the medium.

We have also considered a situation where both vortex
beams �1 and �2 are present at the beginning of the medium
of the �-type atoms. When the two vortex beams are incident
on the medium, they can create two composite beams with
new vortices. Different cases for the appearance of composite
vortices have been explored, and the situations for absorption-
less propagation of composite vortices are discussed. We have
also extended the model for generation of composite optical
vortices to the (n + 1)-level structures.

The coherent superposition of the ground states employed
in this paper can be realized experimentally using the frac-
tional or partial STIRAP in which only a controlled fraction
of the population is transferred to the target state [64]. The
creation of a quantum superposition of metastable states out
of a single initial state in a robust and controlled way has
been shown to be possible in a four-state system by using a
sequence of three pulses [30,31]. Such a technique is based
on the existence of two degenerate dark states and their
interaction. The mixing of the dark states can be controlled
by changing the relative delay of the pulses, and thus an
arbitrary superposition state can be generated. Such a method
for creation of coherent superpositions can be generalized to
N level schemes.

033812-7



HAMID REZA HAMEDI et al. PHYSICAL REVIEW A 99, 033812 (2019)

The � (tripod) level scheme containing two (three) ground
states and one excited state may be implemented experimen-
tally, for example, using the 87Rb atoms. The excited level
|e〉 can then correspond to the |5P1/2, F = 1, mF = 0〉 state.
The lower states |g1〉 and |g2〉 (and |g3〉) can be attributed
to the |5S1/2, F = 1, mF = 1〉 and |5S1/2, F = 1, mF = −1〉
(and |5S1/2, F = 2, mF = 0〉) [70].
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