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Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer
graphene nanoribbons with defects
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We study electronic transport in monolayer and bilayer graphene with single and many short-range defects
focusing on the role of edge termination (zigzag versus armchair). Within the tight-binding approximation, we
derive analytical expressions for the transmission amplitude in monolayer graphene nanoribbons with a single
short-range defect. The analytical calculations are complemented by exact numerical transport calculations for
monolayer and bilayer graphene nanoribbons with a single and many short-range defects and edge disorder. We
find that for the case of the zigzag edge termination, both monolayer and bilayer nanoribbons in a single- and
few-mode regime remain practically insensitive to defects situated close to the edges. In contrast, the transmission
of both armchair monolayer and bilayer nanoribbons is strongly affected by even a small edge defect concentration.
This behavior is related to the effective boundary condition at the edges, which, respectively, does not and does
couple valleys for zigzag and armchair nanoribbons. In the many-mode regime and for sufficiently high defect
concentration, the difference of the transmission between armchair and zigzag nanoribbons diminishes. We also
study resonant features (Fano resonances) in monolayer and bilayer nanoribbons in a single-mode regime with
a short-range defect. We discuss in detail how an interplay between the defect’s position at different sublattices
in the ribbons, the defect’s distance to the edge, and the structure of the extended states in ribbons with different
edge termination influence the width and the energy of Fano resonances.

DOI: 10.1103/PhysRevB.88.125409 PACS number(s): 81.05.ue, 72.80.Vp

I. INTRODUCTION

Ever since the experimental isolation of graphene in 2004,1

significant research efforts have been focused on investigating
the electronic and transport properties of its nanoribbons.
A number of various techniques have been developed in
order to fabricate graphene nanoribbons (GNRs). These
include electron beam lithography and etching,2,3 chemical
synthesis,4 unzipping of carbon nanotubes to form graphene
nanoribbons,5 bottom-up approaches,6 and others (various as-
pects of fabrication and characterization of graphene nanorib-
bons are addressed in a recent review7). Special attention, both
experimental and theoretical, has been paid to investigating
the effect of disorder on transport in GNRs. A pronounced
feature of the majority of transport experiments in GNRs is
the absence of conductance quantization,2,3,8 the effect which
is routinely observed in conventional semiconductor quantum
wires and quantum point contact systems.9 Another distinct
feature of the conductance of GNRs is the appearance of
the transport gap not predicted by the transport calculations
for ideal GNRs.2,3 These features in the conductance of
realistic GNRs are related to the effect of disorder, such
as edge disorder as well as short- and long-range disorder
due to adatoms, vacancies, and defects, Coulomb impurities
in substrates, ripples on the surface, etc. Theoretically, the
effect of disorder in GNRs has been studied in many different
contexts, including the transport gap formation, suppression of
quantization, symmetries, localization, Fano resonances, and
many others.10–23

Edge disorder plays an especially important role in GNRs.
This is because such disorder is almost unavoidable in
GNRs produced by most fabrication methods used today
(especially by the commonly used etching technique), whereas
the effect of disorder in the bulk of GNRs, such as charged
Coulomb impurities, can be reduced by using suspended
samples.24 (Note that vacancies and defects have a rather
small concentration in high-quality exfoliated samples.25) It
has been demonstrated previously that edge disorder is largely
responsible for the formation of the transport gap and the
suppression of the conductance quantization.14–16 Considering
the importance of edge disorder for transport properties of
GNRs, a question arises as to whether for a similar disorder
density the nanoribbons with different edge character [zigzag
and armchair (zGNR and aGNR)] are affected in a similar way
or not. This is the central question in the present work. Note that
the role and the manifestation of the edge character in transport
and electronic properties of GNRs have been addressed in a
number of previous studies. For example, zigzag and armchair
edges probed by scanning tunneling spectroscopy exhibit
different features of the standing wave patterns.26–28 It has also
been shown that in a single-mode regime, zGNRs show the
perfect conductance if the scattering is limited to long-range
impurities only.29,30 This remarkable property of zGNR was
attributed to the single-valley transport caused by the existence
of a chiral mode propagating at the edge of the zGNR.31 The
aGNRs and zGNRs also show different profiles of current
distribution.32
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In the present paper, we study the effect of edge disorder on
the transport properties of both GNRs and bilayer graphene
nanoribbons (BGNs), focusing on the difference between
zigzag and armchair edges. We extend our calculation to the
multimode regime, thus not limiting ourselves to a single-mode
propagation. In contrast to previous studies, which mostly
relied on numerical calculations, in the present study we
develop an analytical approach that provides the exact results
for the transmission coefficient of GNRs. Also, in addition
to monolayer nanoribbons, we consider the case of bilayer
graphene nanoribbons, with both zigzag and armchair edges
(aBGNs and zBGNs). One of our most important findings is
that for the case of the zigzag edge, both monolayer and bilayer
nanoribbons (zGNRs and zBGNs) remain practically insensi-
tive to the disorder situated close to the edges. This remarkable
behavior is not related to the chiral edge state residing at the
zigzag boundary,31 as this behavior persists into the few-mode
regime as well. Instead, it is related to the effective boundary
condition at the zigzag edge which does not couple valleys,33

thus hindering the intervalley scattering due to the edge
disorder. (Note that the edge defects are essentially short-range
scatterers favoring large momentum transfer leading to the
intervalley scattering.20,29,34) In contrast, the armchair edge
mixes the valleys33; as a result, the conductance of both
aGNRs and aBGNs is strongly affected by even a small defect
concentration. We demonstrate that for a sufficiently high
concentration of disorder, the difference in the conductance
of zigzag and armchair ribbons diminishes in a many-mode
regime. In our paper, we also address Fano resonances in a
single-mode regime that originate from the interference of an
extended scattering state in nanoribbons and a quasilocalized
state on the defect.21–23 We discuss in detail how an interplay
between the defect’s position at different sublattices in the
ribbons, the defect’s distance to the edge, and the structure of
the extended states of ribbons with different edge termination
influence the width and the energy of Fano resonances.

The paper is organized as follows. In Sec. II we present
the tight-binding model of p-orbital electrons in monolayer
and bilayer nanoribbons with edge disorder. The conductance
calculations in graphene nanoribbons with edge defects are
performed on the basis of the recursive Green’s function

technique,35 which is briefly presented in Sec. II A. To analyze
the conductance, we also perform calculation for a nanoribbon
with a single defect situated at different distances from the
edge. Such calculations are performed analytically with the
help of the Green’s function and the Dyson equations and
are described in Sec. II B. Note that analytical calculations are
especially instrumental for the case of Fano resonances, which
can be quite narrow in wide nanoribbons and thus are easily
missed in numerical calculations. Sections III A and III C
present the results and a discussion concerning the effect of
edge defects on the transmission of nanoribbons, and Sec. III B
addresses the resonance scattering leading to Fano resonances
in the conductance. Finally, Sec. IV presents the conclusions.

II. FORMULATION AND APPROACH TO THE PROBLEM

A. Model and technique description

In this section, we formulate the basics of electron trans-
mission in single- and bilayer graphene nanoribbons. We use
the standard nearest-neighbor p-orbital electron tight-binding
Hamiltonian of the form H = H0 + V0, where H0 is the kinetic
energy operator and V0 describes the electron scattering on
defects. We start with monolayer graphene with36

H0 = −t
∑

i

(a†
i bi+� + H.c.), (1)

where the summation runs over a hexagonal graphene lattice
[Fig. 1(a)], a

†
i (ai) and b

†
i (bi) are the standard creation

(annihilation) operators at sublattices A and B in the unit
cell i of position pa1 + qa2 (p,q integers), and � denotes the
nearest-neighbor cells. The parameter t is the nearest-neighbor
hopping energy (t ≈ 2.8 eV). The scattering on defects is
described by the potential V0,

V0 = U
∑

i

(a†
i ai + b

†
i bi), (2)

where the summation runs over defected sites with the on-site
potential U .

Bilayer graphene is considered in the form of Bernal
stacking; see Fig. 1(d). The kinetic energy operator has the

FIG. 1. (Color online) (a) Honeycomb lattice structure of graphene composed of two interpenetrating triangular lattices; a1 = a(3/2,
√

3/2)
and a2 = a(3/2, − √

3/2) are the lattice unit vectors, and a ≈ 1.42 Å is the carbon-carbon distance.36 A (red) and B (blue) mark two sublattices
of the graphene lattice. (b) Asymmetric graphene sheet. (c) Labeling of carbon atoms in the rectangular unit cell used in analytical calculations.
(d) Structure of bilayer graphene indicating sublattices A1,B1 (upper layer) and A2,B2 (lower layer) and hopping integrals γ1 between sites in
the sublattices A1 and A2, and γ3 between sites in the sublattices B1 and B2.
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form36,37

H0 = −γ0

∑
i:l=1,2

(a†
l,ibl,i+�+H.c.)−γ1

∑
i

(a†
1,ia2,i+H.c.)

− γ3

∑
i

(b†1,ib2,i + H.c.), (3)

where a
†
l,i (al,i) and b

†
l,i (bl,i) are the creation (annihilation)

operators for sublattices A and B in the layer l = 1,2 in
the unit cell i. γ0 is the nearest-neighbor hopping energy
within one layer (γ0 ≈ 3.16 eV). In calculations for BGNs
we assume γ1 = 0.39

3.16 [γ0] and γ3 = 0, i.e., we consider the
minimal low-energy model.36,37 A definition of sublattices
for bilayer graphene is illustrated in Fig. 1: sites belonging
to the sublattices A1 and A2 are situated on the top of each
other, whereas sites belonging to B1 and B2 are displaced. The
scattering on defects is described by

V0 = U
∑

i:l=1,2

(a†
l,ial,i + b

†
l,ibl,i), (4)

where the summation runs over defected sites with the on-site
potential U . From now on we will express all energies in
the units of the hopping energy t for monolayer graphene
and γ0 for bilayer graphene. In our calculation, we use a
model of the strong short-range scattering setting U = 100
in numerical calculations and setting U → ∞ in analytical
ones. This model is appropriate to describe the absence of a
carbon atom at the edge of a nanoribbon or a vacancy in the
bulk, as well as to describe a scattering on an adatom.38,39

The conductance calculation of monolayer graphene
nanoribbons (GNRs) with a single defect is performed ana-
lytically and confirmed numerically. The analytical approach
is described in detail in the next section. The calculation of the
conductance in monolayer graphene nanoribbons with many
defects and all calculations for bilayer graphene nanoribbons
(BGNs) are performed numerically on the basis of the recursive
Green’s function technique.18,35 In this technique, a ribbon
of width W is divided into three regions, namely a left
lead, a scattering region, and a right lead. The scattering
potential is defined in the scattering region of length L,
whereas both semi-infinite leads are considered to be ideal
(no scattering). In the recursive Green’s function technique,
Green’s functions of every slice in the scattering region are
calculated and recursively coupled by the Dyson equation to
obtain the Green’s function of the whole scattering region.
The surface Green’s function of the leads is calculated
using the wave functions of the Bloch states of the infinite
leads. The transmission and reflection amplitudes are obtained
with use of previously calculated Green’s functions. The
connection between the transmission and the conductance at
zero temperature is provided by the Landauer formula,

G = 2e2

h̄

∑
α,β

Tβ,α, Tβ,α = |tβ,α|2, (5)

where Tβ,α and tβ,α are, respectively, the transmission coeffi-
cient and the transmission amplitude from the incoming state
α in the left lead to the outgoing state β in the right lead. We
also calculate the local density of states (LDOS) of graphene

nanoribbons with a defect, expressing it via the imaginary part
of the Green’s function of the ribbon in a standard way.18,35

B. Analytical expressions for transmission of electrons in
monolayer graphene nanoribbons with a single defect

For configurations of graphene with rectangular geometry,
it is convenient to use a rectangular unit cell, as has been done
in Refs. 40 and 41. Such a unit cell has four atoms labeled with
the symbols l, λ, ρ, and r , as shown in Fig. 1(c). The atoms
with labels l and ρ belong to sublattice A, and the atoms with
labels λ and r belong to sublattice B. We use dimensionless
Cartesian components of the wave vector

κ = 3akx, ξ =
√

3aky (6)

instead of the wave-vector components kx and ky . The first
Brillouin zone corresponding to the rectangular unit cell
contains the values of the wave vectors κ and ξ in the
intervals −π � κ < π , −π � ξ < π . Compared to the area
of the Brillouin zone of the hexagonal unit cell, the area of
the Brillouin zone of the rectangular unit cell is two times
smaller. The smaller Brillouin zone leads to the appearance of
additional dispersion branches. Those dispersion branches can
be taken into account by using the values of the wave vector
in the longitudinal direction from a two times larger interval
[−2π,2π ).

Analytical expressions for wave functions in graphene
nanoribbons were provided in Refs. 40 and 41. Eigenfunctions
of tight-binding Hamiltonian (1) in armchair and zigzag
graphene nanoribbons can be written as

ψσ
ν,κ‖(�) = χσ

ν,κ‖(�⊥)eiκ‖m . (7)

Here σ = aGNR,zGNR, and the triplet � = m,n,α indicates
the position of the site. The numbers m and n determine
the position of the rectangular unit cell and α = l,ρ,λ,r

shows the position in the cell. For aGNR, the transverse
and longitudinal components of the wave vector are κ⊥ = ξ ,
κ‖ = κ , and for zGNR they are κ⊥ = κ , κ‖ = ξ . The functions
χσ

ν,κ‖(�⊥) with �⊥ = n,α are transverse mode wave functions.
The corresponding eigenenergies are

E(κ,ξ ) = s1|φ(κ,ξ )| (8)

with s1 = ±1 and

φ(κ,ξ ) = −e−i κ
2 + 2 cos

(
ξ

2

)
. (9)

The square of the absolute value of φ(κ,ξ ) is

|φ(κ,ξ )|2 = 1 + 4 cos2

(
ξ

2

)
− 4 cos

(
ξ

2

)
cos

(
κ

2

)
. (10)

The longitudinal component of the wave vector κ‖ can
take values from the interval −2π � κ‖ < 2π . The possible
values of the transverse component of the wave vector are
determined by the boundary conditions. In tight-binding cal-
culations, there is a difference between graphene nanoribbons
having the longitudinal axis of symmetry and without it. A
symmetrical sheet of graphene is shown in Fig. 1(a), whereas
an asymmetrical sheet is shown in Fig. 1(b). We consider
graphene nanoribbons having N whole rectangular unit cells in
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the transverse direction. That is, zGNRs with the longitudinal
axis of symmetry and aGNRs without the axis of symmetry
have N rectangular unit cells in the transverse direction, while
zGNRs without the axis of symmetry and aGNRs with the
longitudinal axis of symmetry have N + 1/2 rectangular unit
cells in the transverse direction. From now on, we will write
equations only for symmetrical nanoribbons. Equations for
asymmetrical aGNRs can be obtained by changing the number
N to N − 1/2 and for asymmetrical zGNRs by changing to
N + 1/2.

For aGNR, the transverse component of the wave vector is

ξν = πν

N + 1
, ν = 1, . . . ,N + 1, (11)

and for zGNR the transverse component of the wave vector
κν ≡ κν(ξ ) is the solution of the equation

sin(κνN )

sin
[
κν

(
N + 1

2

)] = 2 cos

(
ξ

2

)
, ν = 1, . . . ,N. (12)

The expressions for the transverse mode wave functions
χσ

ν,κ‖ (�⊥) are given in Appendix.
For calculation of the Green’s function, it is useful to have

the eigenfunctions of graphene ribbons characterized not by
the longitudinal wave vector but by the energy. Given the
energy, the components of the wave vector ξν and κν for aGNR

can be calculated from Eq. (11) and

κν(E) = s12 arccos

[
1 − E2

4 cos
(

ξν

2

) + cos

(
ξν

2

)]
. (13)

The sign s1 can be determined from the sign of the energy:
s1 = sgn(E). For zGNR, the wave vector κ (i)

ν is the solution of
the equation

|E| =
∣∣∣∣∣∣

sin
(

κ (i)
ν

2

)
sin

[
κ

(i)
ν

(
N + 1

2

)]
∣∣∣∣∣∣ , (14)

whereas the wave vector ξ (i)
ν (E) is determined from the

equation

ξ (i)
ν = ±2 arccos

(
sin(κ (i)

ν N )

2 sin
[
κ

(i)
ν

(
N + 1

2

)]
)

. (15)

Here index i = 1,2 numbers solutions having the same index
ν; different indices i correspond to different valleys.

Given the eigenfunctions ψσ
ν,κ‖ (�), the general expression

for the retarded Green’s function is

G0(�,�′; E) =
∑

s1=±1

∑
ν

∫ 2π

−2π

dκ‖
ψσ

ν,κ‖ (�)ψσ∗
ν,κ‖(�

′)

E − E(κ,ξ ) + iη
. (16)

From Eq. (16) for symmetrical zGNR we obtain the retarded
Green’s function

G0(�,�′; E) = −i

N∑
ν=1

∑
i=1,2

1

vzGNR
ν,i (E)

⎧⎨
⎩

χ zGNR
ν,i,ξ

(i)
ν

(�⊥; E)χ zGNR
ν,i,−ξ

(i)
ν

(�′
⊥; E)eiξ (i)

ν (E)(m−m′) , m > m′,

χ zGNR
ν,i,−ξ

(i)
ν

(�⊥; E)χ zGNR
ν,i,ξ

(i)
ν

(�′
⊥; E)e−iξ (i)

ν (E)(m−m′) , m < m′,
(17)

where

vzGNR
ν,i = ∂

∂ξ
E(κ (i)

ν (ξ ),ξ )

∣∣∣∣
ξ=ξ

(i)
ν

= −s1(−1)ν
N sin

(
κ (i)

ν

2

)
cos

[
κ (i)

ν

(
N + 1

2

)] − 1
2 sin(κ (i)

ν N )

N sin
(

κ
(i)
ν

2

)
− 1

2 sin(κ (i)
ν N ) cos

[
κ

(i)
ν

(
N + 1

2

)] sin

(
ξ (i)
ν

2

)
(18)

is the velocity. The sign of ξ (i)
ν in Eq. (15) should be chosen in such a way that the velocity vzGNR

ν,i is positive.
The symmetrical aGNR has states localized on the atoms with indices ρ and λ with the energies E = ±1.40 Thus the expression

for the retarded Green’s function in symmetrical aGNR is

G0(�,�′; E) = −i

N∑
ν=1

1

vaGNR
ν (E)

{
χ aGNR

ν,κν
(�⊥; E)χ aGNR

ν,−κν
(�′

⊥; E)eiκν (E)(m−m′) , m > m′

χ aGNR
ν,−κν

(�⊥; E)χ aGNR
ν,κν

(�′
⊥; E)e−iκν (E)(m−m′) , m < m′

(19)

+
∑

s1=±1

χ aGNR
N+1 (�⊥; E)χ aGNR∗

N+1 (�′
⊥; E)

E − s1
δm,m′ , (19)

where

vaGNR
ν = ∂

∂κ
E(κ,ξν)

∣∣∣∣
κ=κν

= 1

E
cos

(
ξν

2

)
sin

(
κν

2

)
(20)

is the velocity. The last term in Eq. (19) is from the localized states corresponding to ν = N + 1. For asymmetrical aGNR, there
is no such localized states and the last term in Eq. (19) is absent.

The expression for the Green’s function of a system with a single defect is45

G(�,�′) = G0(�,�′) + G0(�,�0)UG0(�0,�
′)

1 − UG0(�0,�0)
, (21)
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where G0 = [E − H0 + iη]−1 is the retarded Green’s function of the graphene nanoribbon without defect. The transmission
amplitude from the transverse mode ν ′ to ν can be calculated using the Green’s function46

tν,ν ′ = i
√

υνυν ′
∑
�⊥,�′

⊥

χ∗
ν (�⊥)e−iκν (m−m0)G(�,�′)χν ′(l′⊥)eiκν′ (m′−m0). (22)

Using Eqs. (19), (21), and (22), the transmission amplitude for aGNR with a defect is

tν,ν ′ = δν,ν ′ −
√

vaGNR
ν

vaGNR
ν ′

i U
vaGNR

ν
χ aGNR

ν,−κν
(�0⊥)χ aGNR

ν ′,κν′ (�0⊥)

1 + iU
N∑

ν ′′=1

1
vaGNR

ν′′
χ aGNR

ν ′′,−κν′′ (�0⊥)χ aGNR
ν ′′,κν′′ (�0⊥) − U

∑
s1=±1

1
E−s1

χ aGNR∗
N+1 (�0⊥)χ aGNR

N+1 (�0⊥)

. (23)

For zGNR with a defect, the transmission amplitude is

tν,i;ν ′,i ′ = δν,ν ′δi,i ′ −
√

vzGNR
ν,i

vzGNR
ν ′,i ′

i U

vzGNR
ν,i

χ zGNR
ν,i,−ξ

(i)
ν

(�0⊥)χ zGNR
ν ′,i ′,ξ (i′ )

ν′
(�0⊥)

1 + iU
N∑

ν ′′=1

∑
i ′′

1
vzGNR

ν′′ ,i′′
χ zGNR

ν ′′,i ′′,−ξ
(i′′ )
ν′′

(�0⊥)χ zGNR
ν ′′,i ′′,ξ (i′′ )

ν′′
(�0⊥)

. (24)

If the defect is an absence of an atom, then Eqs. (23) and (24)
should be taken in the limit U → ∞. From this point on we
will consider such defects.

III. CONDUCTANCE OF MONOLAYER GRAPHENE
NANORIBBONS AND BILAYER GRAPHENE

NANORIBBONS WITH DEFECTS

In this section, we present and discuss the results for the
conductance of nanoribbons with single and many defects.
Most of the calculations are performed for zGNRs and zigzag
bilayer graphene nanoribbons of width 23.71 nm as well as
metallic aGNRs and armchair bilayer graphene nanoribbons
of width 23.73 nm, if not stated differently. (Calculations in
Sec. III B are performed for narrower ribbons.)

A. Effect of a single defect

We first consider zigzag and armchair nanoribbons with
a single defect at the edge. Figures 2(a) and 2(b) show the
transmission of, respectively, zGNR and aGNR as a function
of electron energy. There is a striking difference between
the transmission curves. Namely, while the transmission of
the zGNR remains practically unaffected by the presence
of the defect, the transmission of the aGNR shows noticeable
deviations from the ideal steps. Another difference is that
when the defect is situated at the sublattice B, the transmission
of the zGNR shows a narrow resonance (a dip) close to the
propagation threshold for the second mode. (Resonant features
in the transmission will be addressed in detail in the next
subsection.)

The above features can also be seen in the transmission
of BGNs; see Figs. 2(c) and 2(d). The transmission of the
zBGN is also practically unaffected by the defect, and exhibits
a narrow resonance when the defect is on sublattice B1 or
A2. For the case of aBGNs with a defect on sublattice B1

or B2, the ribbon’s transmission is even more suppressed in
comparison to the case of aGNRs and shows a broad dip in the
energy region of the first propagating mode. In contrast, the

transmission of aBGNs is affected very little when a defect is
on sublattice A1 or A2.

We now discuss how the transmission depends on the defect
position across a nanoribbon. Figure 3 (left panels) shows
the transmission of nanoribbons in the energy interval of the
first propagating mode. We first note that the transmission of
aGNRs and aBGNs for certain defect positions is practically
unaffected by the presence of a defect [curves in Figs. 3(b)
and 3(d) corresponding to T = 1]. This is because in these
positions the wave function of armchair ribbons vanishes or
is very small40,41 (Sec. III B), and therefore the defect is not
“felt” by the incoming states. [Note that this is the reason why
the transmission in aBGNs is not affected for certain positions
of a defect on the edge in Fig. 2(d).]

Let us now focus on the most important difference between
armchair and zigzag nanoribbons relevant to the present study.
That is, if a defect is situated sufficiently close to the edge of
zGNRs and zBGNs, the transmission in the first mode, as well
as in the few-mode regime, remains practically unaffected,
T ≈ 1. In contrast, for aGNRs and aBGNs the transmission
drops, respectively, to T ≈ 0.85 and T ≈ 0.7 (except for the
defect positions where the wave function is zero and hence
T = 1). The explanation for the different behavior of zigzag
and armchair nanoribbons containing defects close to the edges
can be related to the absence of the mixing of K and K ′
valleys at the edge of an ideal zigzag ribbon. Indeed, it is
know that the zigzag edges impose the boundary conditions
that do not allow valley mixing, whereas the armchair edges
do mix valleys.42–44 On the other hand, it has been shown
that in the hexagonal lattice, short-range scatterers (considered
in the present study) mix K and K ′ valleys,29,34 and if the
effective range of the scatterer is of the order of the carbon-
carbon distance or less, the intervalley scattering is much more
efficient than the intravalley one.34

Let us first start with the single-mode propagation. In zigzag
nanoribbons, the forward-propagating mode belongs to the K

valley, whereas the mode propagating in the opposite direction
belongs to K ′ valley.29 Therefore, if a defect is situated close
to the edge of the zigzag ribbon, the edge prevents the valley
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FIG. 2. (Color online) Transmission of the monolayer and bilayer nanoribbons with a single defect at the edge as a function of energy.
Insets indicate defect positions. Red and blue curves correspond to a defect in sublattices A and B, respectively. Green curves indicate the
transmission probability for ideal nanoribbons (without defects). Transmission curves are slightly shifted for clarity in the vertical direction.

mixing and therefore the electron cannot be backscattered as
this would require mixing of K and K ′ valleys. As a result, the
transmission remains unaffected. When the defect is moved
from the ribbon’s edge, the influence of the edge diminishes
and the backscattering becomes possible. This is clearly seen
in Fig. 3(a), where the transmission coefficient decreases from
its value T = 1 when the distance from the edge increases. For
armchair nanoribbons, the edge does not prevent mixing of K

and K ′ valleys. This allows the backscattering by the short-
range defects regardless of their distance from the edge. This
apparently holds true regardless of a number of propagating
modes in the ribbon [see Fig. 3(b)].

Consider now a few-mode regime in zigzag nanoribbons. In
this case, forward- and backward-propagating states belong to
both K and K ′ valleys.29 Nevertheless, because the intravalley
scattering is much less efficient than the intervalley one,34

and the latter is suppressed at the ribbon’s edge, the zigzag
nanoribbons remain insensitive to the scattering by short-range
defects close to the edge in a few-mode regime as well (not
shown here). However, as the energy of the incoming electron
increases, the efficiency of the intravalley scattering becomes
comparable to that of the intervalley one. As a result, the
distance to the edge when the conductance is not affected
by the presence of the defect shrinks, and in the many-mode
regime the transmission becomes significantly affected even
for defects situated on the second row; see Fig. 3 (right panels).

B. Resonant reflection in graphene nanoribbons

In this subsection, we discuss in detail resonance features
in the conductance of nanoribbons and identify them as
Fano resonances.21–23,48 We first note that a single defect

FIG. 3. (Color online) Transmission of the monolayer and bilayer nanoribbons with a single defect as a function of the defect’s position
across the nanoribbons in a single- and many-mode regime [left and right panels in (a) and (b)]. Red and blue curves correspond to a defect in
sublattices A and B, respectively. For bilayer nanoribbons, the defect is in the upper layer. Insets indicate the numbering of sites.
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FIG. 4. (Color online) LDOS for monolayer and bilayer zigzag
and armchair nanoribbons in the energy interval corresponding to the
first propagating mode. (a) Ideal zGNR terminated by B atoms at the
lower edge. (b) A defect in sublattice B at the edge of zGNR at the
energy corresponding to the resonant dip. (c) A defect in sublattice
A close to the edge of zGNR. [The values of LDOS in (b) are ∼1000
times higher in comparison to (a) and (c).] (d) Ideal aGNR; (e) Ideal
aBGN (LDOS is indicated for the upper layer). Empty circles in
(d) and (e) correspond to zero LDOS.

(vacancy) in an infinite graphene sheet accommodates a
localized quasibound state with the energy E = 0.21,47 The
wave function of this state vanishes at the sublattice hosting the
defect and is localized around the defect at another sublattice.
The observed resonant dips in the transmission of nanoribbons
represent well-known Fano resonances48 that originate from
the interference of an extended state in the ribbon with a
weakly coupled quasibound state residing at the defect. The

width of the resonant dip is determined by the strength of the
coupling between the quasibound state and the extended state:
the weaker the coupling, the narrower the dip. These types of
resonances are well known in conventional two-dimensional
semiconductor heterostructures.49–52 The Fano resonances in
the transmission of graphene nanoribbons have been addressed
in Refs. 21–23. In the present study, we provide a detailed
discussion on how the width and energy of these resonances
depend on the edge termination, the defect’s position at
different sublattices in the ribbons, and the distance to the
edge for both cases of monolayer and bilayer nanoribbons.

Let us first consider a zGNR and, for the sake of concrete-
ness, define its edge atoms as those belonging to sublattice B;
see Fig. 4(a) for illustration. Figure 5(a) shows the transmission
probability of the zGNR with a defect at sublattices A or
B for a unit cell situated at a different distance n from the
edge. The transmission coefficient of the zGNR exhibits the
following features. For n = 1, the transmission shows a narrow
dip (antiresonance) close to the propagation threshold of the
second mode if the defect belongs to the same sublattice as
the edge termination (i.e., sublattice B). If the defect belongs
to sublattice A (n = 4), the transmission remains practically
unaffected; see Fig. 5(a). When the defect at sublattice B

is moved toward the center of the ribbon, the antiresonance
dip becomes wider and its position shifts to lower energies.
At the same time, for a defect at sublattice A, a dip close
to E = 0 starts to develop and it becomes more pronounced
as the defect is moved toward the center. Finally, when the
defect is in the middle of the ribbon at sublattice A or B, the
transmission coefficient exhibits very similar features for both
defect positions, showing a broad dip in the vicinity of E = 0.

To understand these resonance features, we calculate and
analyze the LDOS of a ribbon with a defect. Consider now an
ideal zGNR (without defects) with the edge atoms at sublattice
B. In the vicinity of this edge, the wave function is localized at
sublattice B and is negligibly small at sublattice A. Note that
the wave function vanishes at a row of missing atoms belonging

FIG. 5. (Color online) Resonant dips in the transmission of a (a) zGNR, (b) zBGN, (c) aGNR, and (d) BGN with a single defect situated at
different distances from the ribbon’s edge as indicated in the figures. Red and blue curves correspond to the defect on the A and B sublattices.
The number of sites across the nanoribbons is M = 40 for zGNR and zBGN (corresponding to the width w = 4.12 nm), and M = 20 for
aGNR and aBGN (corresponding to the width w = 2.34 nm).
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to sublattice A; see Fig. 4(a) for illustration. Consider now a
defect at the edge of a zGNR on sublattice B as illustrated
in Fig. 4(b). The wave function of the quasibound state of
such a defect is apparently strongly affected by the presence
of the edge. Indeed, the resonant state cannot be localized in
the immediate vicinity of the defect at sublattice A because
the edge strongly suppresses the wave function there, and the
wave function has to vanish at the neighboring row of missing
A atoms. As a result, the wave function of the resonant state is
strongly distorted in comparison to the case of a defect on an
infinite sheet, and the resonant energy is shifted from E = 0
to higher energies. The influence of the edge on the wave
function of the resonant state decreases as the defect is moved
from the edge, which leads to the shift of the resonant energy
back to E = 0 when the defect is moved toward the center of
the ribbon. The calculated LDOS in a ribbon with a defect is
shown in Fig. 6, which illustrates the influence of the ribbon’s
edge on the wave function of the localized state residing at
defects situated at different distances from the edge. Let us
now discuss the width of the Fano resonances. When the defect
is situated at the ribbon’s edge at sublattice B, the coupling
between the extended state in the nanoribbon and the localized
state at the defect is the weakest and it increases as the defect
is moved toward the middle of the ribbon. This is because
the wave function of the defect is localized at sublattice A,
whereas the amplitude of the wave function of the extended
state at sublattice A is negligibly small at the edge and increases
toward the middle; see Fig. 4(a). Hence, the overlap between
the wave functions increases, which results in the increase of
the width of the resonant dip; see Fig. 5(a). When the distance
from the defect to the edge increases, the dip’s position shifts
toward E = 0, which is related to the shift of the resonant
energy due to the reduced effect of the edge on the wave
function of the localized state as discussed above.

When the defect is situated at the ribbon’s edge at sublattice
A, both the defect’s wave function and the wave function of an
extended state are localized at sublattice B; see Figs. 4(a) and
4(c). As a result, the overlap and hence the coupling between
the wave functions are strong and the resonant behavior is
manifested as a broad dip when the transmission coefficient
T does not vanish. (Note that a narrow resonance requires the
formation of a long-lived quasibound state, which is possible
only for the case of a weak coupling between the extended
and the quasibound state.) When the defect is moved from
the edge, the overlap between the defect’s wave function and
the wave function of the extended state decreases because the
amplitude of the former diminishes toward the opposite edge
of the ribbon. This leads to the formation of a resonant dip
at E = 0; see Fig. 5(a). Note that in the present case of the
defect on sublattice A, the resonant energy does not depend
on the distance of the defect to the ribbon’s edge. In contrast
to the previous case, the ribbon’s edge does not distort the
wave function of the quasibound state because the missing
row of atoms [where the wave function has to vanish; see
Fig. 4(a)] belongs to sublattice A, while the wave function of
the quasibound state is negligibly small anyway.

Finally, it is noteworthy that for both cases of defects on
the A and B sublattices, the position and the width of the
resonant dips are rather similar when the defects are situated
in the middle of the ribbon. This is because in the center of
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FIG. 6. (Color online) LDOS of a zigzag nanoribbon with a single
defect at the sublattice A at the resonant energy corresponding to
the transmission dip (E = 0.216 544). Defect position is (a) n = 1,
(b) n = 5 (site numbers at the x and y axis and the numbering of the
defect position are the same as in the previous figures). The ribbon’s
width is M = 40 sites.

the ribbon the amplitudes of the wave functions on the A

and B sublattices are rather similar. As a result, a coupling
between the extended states and the localized states at the
defects residing at both the A and B sublattices is also similar,
which leads to a similar width of the resonant dips.

Let us now proceed to the case of zBGN; see Fig. 5(b). The
quasibound state of a defect in bilayer graphene is localized
in the layer where the defect is situated and has the same
structure as the localized state in monolayer graphene. The
extended state of zBGN in each layer has a structure which
is very similar to that of zGNR.18,41 Because the structures of
both the localized state and the extended state in zBGN and
zGNR are similar, the behavior of the transmission coefficient
of zBGN is practically the same as that of zGNR; cf. Figs. 5(a)
and 5(b).

Let us now consider aGNR. We first note that a defect
in one of the sites in rows 3, 6, 9, . . . leaves the transmission
probability unchanged [T = 1 in Fig. 5(c)]. This is because the
LDOS of the nanoribbon vanishes at these sites, and therefore
the defect does not distort the wave function of the ribbon; see
Fig. 4(d). A defect in one of the sites in rows 1, 2, 4, 5, . . . leads
to a zero-energy resonant dip. For the explanation of its origin,
consider a defect, say, in row 4 belonging to the A sublattice
or in row 5 belonging to the B sublattice. They are surrounded
by sites from the opposite sublattices, two of which have a
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high LDOS; see Fig. 4(d). This means that the localized state
will not be very distorted and its resonant energy will remain
practically the same as for an infinite graphene sheet. Note that
the width of the state is essentially the same for all the defect
positions except for those closest to the ribbon’s edge. As the
wave function of the extended state alternates between zero
and a constant value across the ribbon, its overlap with the
localized state around the defect does not change much when
one moves the defect across the ribbon. However, because the
extended state vanishes outside the ribbon, the overlap between
states will be smaller for the defect at the edge, which leads to
a narrower resonance; see Fig. 5(c).

Finally, let us consider the case of aBGN; see Fig. 5(d).
As for the case of aGNR, a defect in sites with a vanishing
LDOS does not affect the transmission probability (rows 3, 6,
9, . . . ). In contrast to aGNR, the transmission probability of
aBGN behaves qualitatively different depending on whether
a defect is on the A or B sublattice. A defect in one of the
sites in rows 1, 2, 4, 5, . . . in sublattice A leads to a broad
and shallow resonance dip at the energy E ≈ 0. A defect in
the same rows but at sublattice B corresponds to dips with
transmission T = 0 and has a resonance energy significantly
shifted from zero. To explain the origin and features of the
resonances, let us focus on a representative case of a defect at
sublattice B in row 5. It is surrounded by sites from sublattice
A, all with low (or zero) LDOS; see Fig. 4(e). As discussed
above for the case of zGNR, this would lead to a significant

distortion of the wave function of the localized state and a
shifting of the resonant energy from E = 0 to higher values.
However, in contrast to zGNR, the energy and the width of the
resonance dip for aBGN remain practically unchanged when
the defect is moved toward the middle of the ribbon. This is
because the LDOS of aBGN alternates between zero and the
same constant value across the ribbon, consequently it distorts
the localized state around different sites in the same way, and
the overlap remains the same. Consider now a defect in row
4 but at sublattice A. Such a defect has two neighbors with a
high LDOS; see Fig. 4(e). As a result, similarly to the cases
discussed above, the localized state remains practically not
distorted, which leads to a resonant dip with a resonant state
with energy E ≈ 0.

Let us finally note that the properties of resonant states,
such as the transmission minimum, the resonance width, and
the energy, depend on the defect strength. For example, an
increase in the on-site potential strength leads to a decrease in
the transmission minimum for the zero-energy resonant states
in armchair nanoribbons.

C. Effect of many defects

Having understood the effect of a single defect on the
conductance of monolayer and bilayer graphene nanoribbons,
let us now turn to the case of many defects forming disordered
edges. We consider two models of the disordered edge. In

p1

p2

p3

p1

p2

p3

FIG. 7. (Color online) Transmission of monolayer and bilayer nanoribbons with disordered edges. (a) zGNR, (b) aGNR, (c) zBGN, and
(d) aBGN. Top insets illustrate two models of disordered edges used in the present study. Simulations are averaged over 50 realizations.
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the first model, all the edge atoms covered by rectangular
areas of random lengths and constant depths (of 5% and
10% of the ribbon width) are removed, as shown in Fig. 7.
Such a model apparently preserves the edge topology (i.e.,
zigzag or armchair) in the direction of transport. In the second
model, we follow Ref. 18 and introduce a disordered edge
by removing atoms from the outermost row (indicated by
the red solid line in the insets) with probability p1 = 0.5,
followed by removing atoms from the second and third rows
with conditional probabilities p2 = 0.5 and p3 = 0.5 if at least
one of the adjacent atoms from the previous row is absent.

Figure 7 shows the transmission probability of monolayer
and bilayer nanoribbons in the energy interval spanning both
few- and many-mode regimes. For both models of disorder,
the transmission of monolayer and bilayer nanoribbons of the
same edge topology is rather similar, even though the trans-
mission of bilayer nanoribbons is somehow lower than that of
monolayer ones. This is consistent with the case of a ribbon
with a single defect, where the corresponding transmission of
monolayer and bilayer nanoribbons is also rather similar; see
Figs. 2 and 3.

Let us now discuss differences and similarities in the
transmission of zigzag and armchair nanoribbons. In the
single- and few-mode regime, the conductance of both aGNR
and aBGN is strongly suppressed. Note that even with a single
defect, the conductance of armchair nanoribbons shows a
noticeable suppression; see Figs. 2(b), 2(d), 3(b), and 3(d).
With many defects this suppression adds up, leading to the
formation of a pronounced transport gap of zero conductance.
In contrast, in a few-, and especially in the single-mode regime,
the conductance of zigzag ribbons is affected very little. This
behavior can also be traced to the corresponding behavior of
zigzag nanoribbons with a single defect, the conductance of
which remains unchanged in comparison to the ideal case,
provided that the defect is situated not far from the edge
(Sec. III A). It is noteworthy that for the disorder preserving
the edge topology, the conductance of both zGNR and zBGN
in a single-mode regime remains practically unchanged in
comparison to the ideal case.

In a many-mode regime, the difference in conductance
between zigzag and armchair ribbons practically disappears;
cf. Figs. 7(a) and 7(b) and Figs. 7(c) and 7(d). As discussed in
Sec. III A, the distance to the edge for which the conductance
of zigzag ribbons is not affected by the presence of the defect
shrinks as the energy of the electrons increases [see Fig 3, right
panels in (a)–(d)]. Thus, for high energies the armchair and
zigzag ribbons become equally sensitive to the edge disorder.

IV. CONCLUSIONS

We have studied the transmission properties of mono-
and bilayer graphene nanoribbons with defects, focusing on
the role of edge termination (zigzag versus armchair). Using
the standard tight-binding model of p-orbital electrons on a
hexagonal lattice, we have developed an analytical approach
based on the Green’s function technique and the Dyson
equation for calculation of the transmission coefficient of
monolayer graphene nanoribbons with a single short-range
defect. Calculation of the conductance in monolayer graphene
nanoribbons with many defects and calculations for bilayer

graphene nanoribbons is performed numerically on the basis
of the tight-binding recursive Green’s function technique. The
principal conclusions of our work can be summarized as
follows:

(i) For the case of the zigzag edge termination, both
monolayer and bilayer nanoribbons in a single- and a few-
mode regime remain practically insensitive to defects situated
close to the edges. This remarkable behavior is related to the
effective boundary condition at the zigzag edges which do not
couple valleys, thus prohibiting intervalley scattering due to
short-range defects situated close to the edges. In contrast, the
armchair edges mix the valleys; as a result, the conductance of
both monolayer and bilayer nanoribbons is strongly affected
by even a small defect concentration at the edges.

(ii) For higher electron energies in the many-mode regime,
the difference of the transmission between the armchair and
zigzag ribbons diminishes, and for sufficiently high defect
concentration they become equally sensitive to the edge
disorder.

(iii) Both monolayer and bilayer nanoribbons with a short-
range defect show resonant features in the lowest energy mode.
Resonances are identified to be of Fano type and emerge from
the interference between the quasibound localized state around
the defect and the extended state in the ribbon. We consider
four different cases of a defect in (a) zGNR, (b) zBGN,
(c) aGNR, and (d) aBGN. We discuss in detail how the
interplay between the defects position at different sublattices in
the ribbons, the defect distance to the edge, and the structure of
the extended states in ribbons with different edge termination
influence the width and the energy of Fano resonances.
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APPENDIX: TRANSVERSE MODE WAVE FUNCTIONS

The transverse mode wave function in aGNR is

χ aGNR
ν,κ (n,r) = 1√

2(N + 1)
sin(ξνn), (A1)

χ aGNR
ν,κ (n,ρ) = −1√

2(N + 1)

φ(κ,ξν)

E(κ,ξν)
sin

[
ξν

(
n − 1

2

) ]
,

(A2)

χ aGNR
ν,κ (n,λ) = −1√

2(N + 1)
e−i κ

2 sin

[
ξν

(
n − 1

2

) ]
, (A3)

χ aGNR
ν,κ (n,l) = 1√

2(N + 1)
e−i κ

2
φ(κ,ξν)

E(κ,ξν)
sin(ξνn). (A4)

For zGNR, taking into account Eq. (12) we have

χ zGNR
ν,ξ (n,r) = CzGNR

ν,ξ sin(κνn), (A5)
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χ zGNR
ν,ξ (n,ρ) = s1(−1)νCzGNR

ν,ξ e−i
ξ

2 sin

[
κν

(
N+1

2
−n

) ]
,

(A6)

χ zGNR
ν,ξ (n,λ) = −CzGNR

ν,ξ e−i
ξ

2 sin

[
κν

(
n − 1

2

) ]
, (A7)

χ zGNR
ν,ξ (n,l) = s1(−1)ν+1CzGNR

ν,ξ sin[κν(N + 1 − n)], (A8)

where

CzGNR
ν,ξ =

{
2N − sin(κνN )

sin
(

κν

2

) cos

[
κν

(
N + 1

2

)]}− 1
2

(A9)

is the normalization factor. It should be noted that
for both wave functions χ aGNR

ν,κ and χ zGNR
ν,ξ , given

by Eqs. (A1)–(A4) and (A5)–(A8), the following
equality holds: χσ∗

ν,κ‖(�⊥) = χσ
ν,−κ‖ (�⊥).
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