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In this paper we consider heterogeneous diffusion processes with the power-law dependence of the diffusion
coefficient on the position and investigate the influence of external forces on the resulting anomalous diffusion.
The heterogeneous diffusion processes can yield subdiffusion as well as superdiffusion, depending on the behavior
of the diffusion coefficient. We assume that not only the diffusion coefficient but also the external force has a
power-law dependence on the position. We obtain analytic expressions for the transition probability in two cases:
when the power-law exponent in the external force is equal to 2η − 1, where 2η is the power-law exponent in
the dependence of the diffusion coefficient on the position, and when the external force has a linear dependence
on the position. We found that the power-law exponent in the dependence of the mean square displacement
on time does not depend on the external force; this force changes only the anomalous diffusion coefficient. In
addition, the external force having the power-law exponent different from 2η − 1 limits the time interval where
the anomalous diffusion occurs. We expect that the results obtained in this paper may be relevant for a more
complete understanding of anomalous diffusion processes.
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I. INTRODUCTION

There are many systems and processes where the time
dependence of the centered second moment is not linear as
in the classical Brownian motion. Such a family of processes
is called anomalous diffusion. In one dimension the anomalous
diffusion is characterized by the power-law time dependence
of the mean square displacement (MSD) [1]:

〈(�x)2〉 = Kαtα. (1)

Here Kα is the anomalous diffusion coefficient. When α �= 1,
this time dependence deviates from the linear function of time
characteristic for the Brownian motion. If α < 1, the phe-
nomenon is called subdiffusion. Occurrence of subdiffusion
has been experimentally observed, for example, in the behavior
of individual colloidal particles in two-dimensional random
potential energy landscapes [2]. It has been theoretically shown
that active particles moving at constant speed in a heteroge-
neous two-dimensional space experience self-trapping leading
to subdiffusion [3]. Usually it is assumed that subdiffusive
behavior is caused by the particle being trapped in local
minima for prolonged times before it escapes to a neighboring
minima. Continuous time random walks (CTRWs) with on-site
waiting-time distributions falling slowly as t−α−1 predict a
subdiffusive behavior [4,5].

Superdiffusion processes, characterized by the nonlinear
dependence (1) of the MSD on time with the power-law
exponent in the range 1 < α < 2, constitute another subclass
of anomalous diffusion processes. Superdiffusion is observed,
for example, in vibrated dense granular media [6]. Theoretical
models suggest that supperdiffusion can be caused by Lévy
flights [4]. Lévy flights resulting in a superdiffusion can
be modeled by fractional Fokker-Planck equations [7] (or
Langevin equations with an additive Lévy stable noise). In
many experimental studies it is possible only to show that
signal intensity distribution has Lévy law tails: distribution
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function of turbulent magnetized plasma emitters [8] and
step-size distribution of photons in hot vapors of atoms [9]
have Lévy tails. This indirectly shows that in these systems
superdiffusion could be found.

Anomalous diffusion does not uniquely indicate the pro-
cesses occurring in the system, because there are different
stochastic processes sharing the behavior of the MSD (1). The
physical mechanisms leading to the deviations from the linear
time dependence of the MSD can depend on the system or
on the temporal and spatial ranges under consideration. For
example, diffusion described by CTRW has been observed for
submicron tracers in biological cells [10–12] and structured
colloidal systems [13] and for charge carrier motion in amor-
phous semiconductors [5,14]. Fractional Brownian motion and
fractional Langevin equations have been used to model the
dynamics in membranes [15,16], motion of polymers in cells
[17], and tracer motion in complex liquids [18,19]. Diffusion
of even smaller tracers in biological cells has been described
by a spatially varying diffusion coefficient [20].

Recently, in Refs. [21–24] it was suggested that the
anomalous diffusion can be a result of heterogeneous diffusion
process (HDP), where the diffusion coefficient depends on
the position. Spatially dependent diffusion can occur in
heterogeneous systems. For example, heterogeneous medium
with steep gradients of the diffusivity can be created in
thermophoresis experiments using a local variation of the
temperature [25,26]. Mesoscopic description of transport in
heterogeneous porous media in terms of space dependent
diffusion coefficients is used in hydrology [27,28]. In turbulent
media the Richardson diffusion has been described by hetero-
geneous diffusion processes [29]. Power-law dependence of
the diffusion coefficient on the position has been proposed to
model diffusion of a particle on random fractals [30,31]. In bac-
terial and eukaryotic cells the local cytoplasmic diffusivity has
been demonstrated to be heterogeneous [20,32]. Motion of a
Brownian particle in an environment with a position dependent
temperature has been investigated in Ref. [33]. In a random
walk description the spatially varying diffusion coefficient can
be included via position dependence of the waiting time for a
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jump event [34]; the position dependence occurs because in the
heterogeneous medium the properties of a trap can reflect the
medium structure. This is the case for diffusion on fractals and
multifractals [35]. Inhomogeneous versions of continuous time
random walk models for water permeation in porous ground
layers were proposed in Ref. [36]. Heterogeneous diffusion
process might be applicable to describe anomalous diffusion
in such systems.

The goal of this paper is to consider HDPs with the power-
law dependence of the diffusion coefficient on the position
and to analytically investigate the influence of external forces
on the resulting anomalous diffusion. The influence of the
external forces on HDPs has not been systematically analyzed.
In this paper we assume that the forces are characterized
by a power-law dependence on the position. Such forces
can arise in various systems: In many cases the potentials
causing the deterministic forces are power-law functions of
position, for example, linear and harmonic potentials. Power-
law potential with arbitrary power-law exponent acting on
a nanoparticle have been created in Ref. [37]. Logarithmic
potentials yielding forces behaving as x−1 have been applied
to describe dynamics of particles near a long, charged polymer
[38], momentum diffusion in dissipative optical lattices [39],
long-range interacting systems [40], and bubbles in DNA
molecules [41]. As we demonstrate, the external force having
a certain value of the power-law exponent does not restrict the
region of diffusion and changes only the anomalous diffusion
coefficient without changing the scaling exponent α. Other
values of the power-law exponent in the external force can lead
to the exponential cutoff of the probability density function
(PDF) and restrict the region of diffusion, limiting the time
interval when the anomalous diffusion occurs. We expect that
the results obtained in this paper may be relevant for a more
complete understanding of anomalous diffusion processes.

The paper is organized as follows: In Sec. II we summarize
the main properties of HDPs with the power-law dependence
of the diffusion coefficient on the position. The influence
of an external force with a particular value of the power-
law exponent is investigated in Sec. III. This value of the
power-law exponent is the same as in the drift correction
for transformation from the Stratonovich to the Itô stochastic
equation. We consider external forces having other values of
the power-law exponent in Sec. IV. Section V summarizes our
findings.

II. FREE HETEROGENEOUS DIFFUSION PROCESS

A heterogeneous diffusion process with the power-law
dependence of the diffusion coefficient on the position,
introduced in Ref. [21], is described by the Langevin equation

dx = σ |x|η ◦ dWt . (2)

Here η is the power-law exponent of multiplicative noise, σ

is the amplitude of noise, and Wt is a standard Wiener pro-
cess (Brownian motion). This stochastic differential equation
(SDE) is interpreted in Stratonovich sense. For mathematical
convenience and for further generalization we transform
Eq. (2) into the Itô convention:

dx = 1
2σ 2η|x|2(η−1)x dt + σ |x|η dWt . (3)

The Fokker-Planck equation corresponding to the SDE (2) is
[42]

∂

∂t
P (x,t) = 1

2
σ 2 ∂

∂x

{
|x|η ∂

∂x
|x|ηP (x,t)

]}
. (4)

With the reflective boundaries at small positive x = xmin and
large x = xmax, Eq. (4) leads to the steady-state PDF P0(x) ∼
x−η. Without such boundaries the time-dependent solution of
Eq. (4) with the initial condition P (x,0) = δ(x) is given by a
stretched (when η > 0) or compressed (when η < 0) Gaussian
[21]:

P (x,t) = |x|−η

√
2πσ 2t

exp

[
− |x|2(1−η)

2(1 − η)2σ 2t

]
. (5)

When η < 1, this solution describes exponential cutoff at large
values of x and power-law behavior at small values of x. The
position of the cutoff moves towards large values of x with
increase of time t . In contrast, when η > 1 the solution (5)
describes exponential cutoff at small values of x and power-law
behavior at large values of x. The position of cutoff moves
towards smaller values of x with increase of time t .

In Ref. [21] it has been demonstrated that Eq. (2) [or,
equivalently, Eq. (3)] leads to the power-law time dependence
of the MSD:

〈x2(t)〉 ∼ (σ 2t)
1

1−η . (6)

This behavior of the MSD means that HDP described by
Eq. (2) yields superdiffusion for 1 > η > 0 and subdiffusion
for η < 0. For η > 0 the diffusivity increases with increasing x,
leading to a progressive acceleration of the diffusing particle.
In contrast, the diffusivity decreases with increasing x when
η < 0. For η > 1 the particle becomes localized. When η = 1,
the MSD grows not as a power law of time but exponentially
[43,44].

The HDP (2) displays weak nonergodicity, that is, the
scaling of time and ensemble averages is different. Specifically,
in Ref. [21] it has been shown that the average over the
trajectories

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�) (7)

of the the time-averaged MSD

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t)]2dt (8)

scales as

〈δ2(�)〉 ∼ �

T
η

η−1

. (9)

Thus time-averaged MSD depends on the time difference �

linearly, in contrast to the power-law behavior of MSD in
Eq. (6).

Another interesting property of HDPs is the behavior of
the distribution of the time-averaged MSD δ2 of individual
realizations. When η < 0, the distribution of δ2 decays to zero
at δ2 = 0 [24]. This behavior of the distribution in HDPs is
different than the behavior in CTRWs, where there is a finite
fraction of immobile particles resulting in the finite value of the
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distribution at δ2 = 0. This difference allows us to distinguish
between different origins of anomalous diffusion.

III. EXTERNAL FORCE THAT DOES NOT LIMIT
THE ANOMALOUS DIFFUSION

In general, not only a random force leading to the diffusion
but also a deterministic drift force can be present in the
Langevin equation. Therefore, the question arises how an
external force influences the anomalous diffusion described
by the heterogeneous diffusion process. To investigate this
question we will consider Eq. (3) with an additional drift term.
As the results obtained in this section show, for the appearance
of the anomalous diffusion it is sufficient to consider only
positive values of x. Therefore from now on we will write just
x instead of the absolute value |x|, assuming the presence of
the boundary that does not allow for the diffusing particle to
enter the region x � 0.

Due to the power-law dependence of the diffusion coef-
ficient on the position, the drift term also being a power-
law function of the position allows us to obtain analytical
expressions. The external forces characterized by power-law
dependence on the position can be created experimentally;
for example, a power-law potential with arbitrary power-law
exponent acting on a nanoparticle was created in Ref. [37].
First, in this section we will consider the case where the
external force has the same dependence on coordinate x as the
drift correction for the transformation from the Stratonovich to
the It stochastic equation. Such a drift term can arise not only
due to an external force but can also represent a noise-induced
drift [45]. Thus we will generalize the SDE (3) to take the form

dx = σ 2

(
η − ν

2

)
x2η−1 dt + σxη dWt . (10)

Here ν is a new parameter describing the additional drift
term. The meaning of the parameter ν is as follows: when
the reflective boundaries at small positive x = xmin and large
x = xmax are present, the steady-state PDF is a power-law
function of position with the power-law exponent ν, P0(x) ∼
x−ν . Comparison of Eq. (10) with Eq. (3) shows that the free
HDP is obtained when ν = η.

The SDE (10) has been proposed in Refs. [46,47] to gener-
ate signals having 1/f β noise in a wide range of frequencies.
Such nonlinear SDEs have been applied to describe signals in
socioeconomical systems [48,49] and as a model of neuronal
firing [50]. According to Ref. [47], the power-law exponent
β in the power spectral density S(f ) ∼ f −β is related to the
parameters of SDE (10) as

β = 1 + ν − 3

2(η − 1)
. (11)

For some values of the parameter ν the SDE (10) can
be obtained from Eq. (2) by changing the prescription for
calculating stochastic integrals. Let us consider the SDE

dx = σxη ◦γ dWt , (12)

together with the interpretation of stochastic integrals as
[45,51]∫ T

0
f [x(t)] ◦γ dWt = lim

N→∞

N−1∑
n=0

f [x(tn)]�Wtn,

tn = n + γ

N
T . (13)

The parameter γ , 0 � γ � 1, defines the prescription for
calculating stochastic integrals. Commonly used values of the
parameter γ are γ = 0 corresponding to the prepoint Itô con-
vention, γ = 1/2 corresponding to the midpoint Stratonovich
convention, and γ = 1 corresponding to the postpoint Hänggi-
Klimontovich [52,53], kinetic or isothermal convention [54–
56]. The integration convention should be determined from
the experimental data or derived from another model [57].
The SDE (12) also has been investigated in Ref. [58].
Transformation of Eq. (12) to the Itô equation yields [51,59,60]

dx = σ 2γ (η − 1)x2η−1 dt + σxη dWt . (14)

This equation has the form of SDE (10) with the parameter ν

being

ν = 2[γ + (1 − γ )η]. (15)

Since 0 � γ � 1, the range of possible values of the parameter
ν obtained by changing the prescription in Eq. (2) is limited:
2η � ν � 2 when η < 1 and 2 � ν � 2η when η > 1. In this
section we do not place such restriction on the possible values
of ν. The values of ν outside of this range can be obtained due
to the action of an external force.

The Fokker-Planck equation corresponding to the SDE (10)
is [42]

∂

∂t
P (x,t) = σ 2

(
ν

2
− η

)
∂

∂x
[x2η−1P (x,t)]

+σ 2

2

∂2

∂x2
[x2ηP (x,t)]. (16)

The time-dependent PDF of the process given by Eq. (10) can
be obtained as follows: Transformation of the variable x to a
new variable y = x1−η (assuming that η �= 1) leads to the SDE

dy = −1

2
σ ′2ν ′ 1

y
dt + σ ′,dWt , (17)

where

ν ′ = η − ν

η − 1
, σ ′ = |η − 1|σ. (18)

Equation (17) has the form of a Bessel process [61]. This
connection with the Bessel process has also been pointed out
in Ref. [58]. The known analytic form of the solution of the
Fokker-Planck equation

∂

∂t
Py = 1

2
σ ′2ν ′ ∂

∂y
y−1Py + 1

2
σ ′2 ∂2

∂y2
Py (19)

corresponding to SDE (17) is [61–63]

P (y,t |y0,0) = y
1−ν′

2 y
1+ν′

2
0

σ ′2t
exp

(
−y2 + y2

0

2σ ′2t

)
I− ν′+1

2

(
yy0

σ ′2t

)
.

(20)
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Here In(z) is the modified Bessel function of the first kind. This
PDF obeys the initial condition P (y,t = 0|y0,0) = δ(y − y0).
For completeness, one possible way of obtaining this solution
of Eq. (19) is presented in the Appendix. The PDF (20) can be
normalized and represents an acceptable solution only when
− ν ′+1

2 > −1, that is, when ν ′ < 1. When this inequality is not
satisfied, the Bessel process leads to a total absorption at the
origin in a finite time [64]. Transforming the variables back we
obtain the time-dependent PDF satisfying the initial condition
P (x,t = 0|x0,0) = δ(x − x0):

P (x,t |x0,0) = x
1−2η−ν

2 x
1−2η+ν

2
0

|η − 1|σ 2t
exp

[
−x2(1−η) + x

2(1−η)
0

2(η − 1)2σ 2t

]

× I ν+1−2η

2(η−1)

[
x(1−η)x

(1−η)
0

(η − 1)2σ 2t

]
. (21)

Similarly as Eq. (20), the solution (21) is valid when ν+1−2η

2(η−1) >

−1. This condition is equivalent to ν > 1 and η > 1 or ν <

1 and η < 1. Similar expression of the PDF (21) has been
obtained in Ref. [58] by considering the HDP with various
values of the prescription parameter γ .

Using Eq. (21) we can calculate the time-dependent average
of a power of x:

〈xa〉x0 =
∫ ∞

0
xaP (x,t |x0,0) dx

=
�

[
ν−1−a
2(η−1)

]
�

[
ν−1

2(η−1)

] [2(η − 1)2σ 2t]
a

2(1−η) 1F1

×
(

a

2(η − 1)
;

ν − 1

2(η − 1)
; − x

2(1−η)
0

2(η − 1)2σ 2t

)
. (22)

Here 1F1(a; b; z) is the Kummer confluent hypergeometric
function. The integral is finite when (1) η > 1 and ν > 1 + a

with a > 0 or ν > 1 with a < 0 and (2) η < 1 and ν < 1 + a

with a < 0 or ν < 1 with a > 0. Equation (22) for the ath
moment of x has been derived also in Ref. [58]. In particular,
the average of x is equal to

〈x〉x0 =
�

[
ν−2

2(η−1)

]
�

[
ν−1

2(η−1)

] [2(η − 1)2σ 2t]
1

2(1−η) 1F1

×
(

1

2(η − 1)
;

ν − 1

2(η − 1)
; − x

2(1−η)
0

2(η − 1)2σ 2t

)
(23)

and is finite when ν > 2 and η > 1 or ν < 1 and η < 1. The
average of the square of x is equal to

〈x2〉x0 =
�

[
ν−3

2(η−1)

]
�

[
ν−1

2(η−1)

] [2(η − 1)2σ 2t]
1

1−η 1F1

×
(

1

(η − 1)
;

ν − 1

2(η − 1)
; − x

2(1−η)
0

2(η − 1)2σ 2t

)
(24)

and is finite when ν > 3 and η > 1 or ν < 1 and η < 1. When
time t is large, that is, when

x
2(1−η)
0

2(η − 1)2σ 2t
� 1, (25)

the hypergeometric function in Eq. (22) is approximately equal
to 1. Thus for large time the average 〈xa〉x0 does not depend
on the initial position x0 and is a power-law function of time:

〈xa〉x0 ≈
�

[
ν−1−a
2(η−1)

]
�

[
ν−1

2(η−1)

] [2(η − 1)2σ 2t]
a

2(1−η) . (26)

As a consequence we obtain that for large time t satisfying
the condition (25) the average of the square of x depends on
time as t1/(1−η). In addition, using Eqs. (23) and (24) we get
that the the variance 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2 has the same
dependence on time: 〈(x − 〈x〉)2〉 ∼ t1/(1−η). We can conclude
that not only the original HDP equation (2) but also Eq. (10)
with additional power-law force exhibits anomalous diffusion.
The power-law exponent in the time dependence is the same as
in Eq. (6); the external force considered in this section does not
change the character of the anomalous diffusion as long as the
condition (25) is satisfied. The power-law exponent 1/(1 − η)
depends only on the random force in the SDE (10) and does
not depend on the parameter ν characterizing the deterministic
external force. The external force changes only the anomalous
diffusion coefficient.

We check the analytic results obtained in this section by
comparing them with numerical simulations. The power-law
form of the coefficients in SDE (10) allows us to introduce
an operational time τ in addition to the physical time t so
that the diffusion coefficient in the operational time becomes
constant [65]. The relation between the physical time t and
the operational time τ is specified by the equation dt =
σ−2x−2ηdτ . For the numerical solution of SDE (10) we
use the Euler-Maruyama scheme with a variable time step
�tk = �τ/(σ 2x

2η

k ) which is equivalent to the introduction
of the operational time [65]. Thus the numerical method of
solution of SDE (10) is given by the equations

xk+1 = xk +
(

η − ν

2

)
�τ

xk

+
√

�τεk, (27)

tk+1 = tk + �τ

σ 2x
2η

k

. (28)

Here �τ � 1 is the time step in the operational time and
εk are normally distributed uncorrelated random variables
with a zero expectation and unit variance. To avoid the
divergence of the diffusion and drift coefficients at x = 0 in
the numerical simulation, we insert a reflective boundary at
x = 10−3. This modification is analogous to the regularization
of the diffusivity at x = 0, performed in Refs. [21,24]. When
η > 1 and ν > 1 the PDF of x increases for small values
of x. In this case the operational time introduced in such a
way that the coefficient before noise becomes proportional
to the first power of x can lead to a more efficient numerical
method. Such an operational time is introduced by the equation
dt = σ−2x−2(η−1)dτ , and the numerical method of solution
becomes

xk+1 = xk

[
1 + �τ

(
η − ν

2

)
+

√
�τεk

]
, (29)

tk+1 = tk + �τ

σ 2x
2(η−1)
k

. (30)
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FIG. 1. Dependence of the mean (a)–(c) and variance (d)–(f) on time for various values of the parameters η and ν when the position of the
diffusing particle changes according to Eq. (10). Solid gray lines show numerical result, dashed black lines are calculated using Eqs. (23) and
(24), dotted (red) lines show the power-law dependence on time ∼t1/[2(1−η)] for (a)–(c) and ∼t1/(1−η) for (d)–(f). The parameters are σ = 1 and
η = − 1

2 , ν = −1 for (a), (d); η = 1
2 , ν = 0 for (b), (c); η = 3

2 , ν = 5 for (c), (f). The initial position is x0 = 1.

We have calculated the mean and the variance by averaging
over 105 trajectories. Comparison of the analytic expressions
(23) and (24) with numerically obtained time-dependent mean
and variance is shown in Fig. 1. For numerical simulation we
have chosen three different values of the exponent η: η = − 1

2 ,
η = 1

2 , and η = 3
2 corresponding, respectively, to subdiffusion,

superdiffusion, and the localization of the particle. For each
case we have chosen a value of the parameter ν that differs
from η of the free HDP. For all numerical simulations the initial
position is x0 = 1. We see a good agreement of the numerical
results with analytic expressions. As we can see in Fig. 1,
the time dependence of the mean and the variance becomes a
power law for large times, and the initial position is forgotten
(for the parameters used in Figs. 1(b) and 1(e) the difference
between the exact solution and the power-law approximation
remains constant, but the relative difference is decreasing).

Comparison of the analytic expression (21) for the time-
dependent PDF P (x,t |x0,0) with the results of numerical
simulation is shown in Fig. 2. To illustrate how the PDF
changes with time, the PDF is shown at two different time

moments t = 1 and 10. We see a good agreement of the
numerical results with the analytic expression for both time
moments. With increasing time the PDF shifts to the larger
values of x when η < 1 and to the smaller values of x when
η > 1.

IV. EXTERNAL FORCE LEADING TO AN EXPONENTIAL
RESTRICTION OF THE DIFFUSION

Now let us consider the external deterministic force having a
power-law dependence on x but with the power-law exponent
different than 2η − 1. When such a force is positive if the
power-law exponent is smaller than 2η − 1 and negative if the
power-law exponent is larger than 2η − 1, the SDE describing
the HDP can be written as

dx = σ 2

[(
η − ν

2

)
x2η−1 + m1

2
xm1

minx
2η−1−m1

− m2

2x
m2
max

x2η−1+m2

]
dt + σxη dWt . (31)

10-5

10-4

10-3

10-2

10-1

100

10-2 10-1 100 101

P
(x

)

x

(a)

10-5

10-4

10-3

10-2

10-1

100

10-2 10-1 100 101 102

P
(x

)

x

(b)

10-4

10-2

100

102

10-2 10-1 100 101

P
(x

)

x

(c)

FIG. 2. Time-dependent PDF P (x,t |x0,0) corresponding to times t = 1 (light gray) and t = 10 (dark gray) for various values of the
parameters η and ν when the position of the diffusing particle changes according to Eq. (10). Dashed black lines are calculated using Eq. (21).
The dotted line shows the slope x−ν . The parameters are σ = 1 and (a) η = − 1

2 , ν = −1; (b) η = 1
2 , ν = 0; (c) η = 3

2 , ν = 5. The initial
position is x0 = 1.
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Here m1,m2 > 0 and xmin, xmax are the parameters of the
external force. In Eq. (31) we included three terms in the
drift. Each term has power-law dependence on position x, but
with different power-law exponents: equal to 2η − 1, smaller
than 2η − 1, and larger than 2η − 1. The steady-state PDF
corresponding to Eq. (31) is

P0(x) ∼ x−ν exp

{
−

(
xmin

x

)m1

−
(

x

xmax

)m2
}
. (32)

We see that the additional terms in Eq. (31) lead to expo-
nential restriction of the diffusion. When xmin � x � xmax,
the steady-state PDF has the power-law form P0(x) ∼ x−ν .
Confined HDP has been investigated in Refs. [66,67]. Analysis
of confined HDP can be relevant for the description of the tracer
particles moving in the confinement of cellular compartments
or for the particle traced with optical tweezers that exert a
restoring force on the particle [12].

We can mathematically obtain one of the terms in Eq. (31)
leading to the exponential restriction of the diffusion by
transforming the time in the initial equation. Indeed, if we
start with the Itô SDE

dx = a(x) dt + b(x) dWt (33)

and introduce a new stochastic variable z(t) = g(t)x[c(t)],
then the SDE for the stochastic variable z becomes

dz =
{

dg(t)

dt

z

g(t)
+ g(t)

dc(t)

dt
a

[
z

g(t)

]}
dt

+ g(t)

√
dc(t)

dt
b

[
z

g(t)

]
dWt . (34)

In Eq. (34) a new term that is proportional to z and to the
derivative of g(t) appears in the drift. The PDF of the stochastic
variable z is related to the PDF of x via the equation

Pz(z,t) = 1

g(t)
Px

(
z

g(t)
,c(t)

)
. (35)

Thus, to introduce a new term into Eq. (10), let us start with a
stochastic variable y(t) obeying the SDE (10) and consider a

new stochastic variable

x(t) = eμty

[
1

κ
(eκt − 1)

]
. (36)

Here the functions g(t) and c(t) are g(t) = eμt and c(t) =
κ−1(eκt − 1). From Eq. (34) follows that the equation for the
stochastic variable x is

dx =
[
μx + σ 2

(
η − ν

2

)
eκt−2μ(η−1)t x2η−1

]
dt

+ σe
1
2 κt−μ(η−1)t xη dWt . (37)

We can obtain an equation with time-independent coefficients
by requiring that

κ = 2μ(η − 1). (38)

Using this value for the parameter κ the SDE for x becomes

dx =
[
μx + σ 2

(
η − ν

2

)
x2η−1

]
dt + σxη dWt . (39)

When μ has the same sign as η − 1, this SDE can be written
in the form similar to Eq. (31):

dx = σ 2

[
η − ν

2
+ (η − 1)

(
xm

x

)2(η−1)
]
x2η−1 dt

+ σxη dW, (40)

where the parameter xm is defined by the equation

μ = σ 2(η − 1)x2(η−1)
m . (41)

Comparing Eq. (40) and Eq. (31) we see that the time trans-
formation considered in this section introduces an exponential
restriction of the diffusion at small values of x when η > 1
and at large values of x when η < 1.

Using Eqs. (21) and (35) we obtain the time-dependent PDF
for the stochastic variable x obeying SDE (40):

P (x,t |x0,0) = 2|η − 1|x2(η−1)
m

1 − e−2μ(η−1)t
x

1−ν−2η

2 x
1+ν−2η

2
0 e

1+ν−2η

2 μt exp

[
− x

2(η−1)
m

1 − e−2(η−1)μt

(
x2(1−η) + x

2(1−η)
0 e−2(η−1)μt

)]
I 1+ν−2η

2(η−1)

×
{

x
2(η−1)
m x(1−η)x

(1−η)
0

sinh[(η − 1)μt]

}
. (42)

The conditions of validity of this expression is the same as for Eq. (21). That is, the expression for the PDF given by Eq. (42) is
valid when ν > 1 and η > 1 or ν < 1 and η < 1. The average of a power of x, calculated using Eq. (42), is

〈xa〉x0 =
∫ ∞

0
xaP (x,t |x0,0) dy

=
�

[
ν−1−a
2(η−1)

]
�

[
ν−1

2(η−1)

] xa
m

(1 − e−2(η−1)μt )
a

2(η−1)
1F1

(
a

2(η − 1)
;

ν − 1

2(η − 1)
; −x

2(η−1)
m x

2(1−η)
0

e2(η−1)μt − 1

)
. (43)

This average is finite under the same conditions as Eq. (22). In particular, the average of x is equal to

〈x〉x0 =
�

[
ν−2

2(η−1)

]
�

[
ν−1

2(η−1)

] xm

(1 − e−2(η−1)μt )
1

2(η−1)
1F1

(
1

2(η − 1)
;

ν − 1

2(η − 1)
; −x

2(η−1)
m x

2(1−η)
0

e2(η−1)μt − 1

)
(44)
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FIG. 3. Dependence of the mean (a)–(c) and variance (d)–(f) on time for various values of the parameters η and ν when the position of
the diffusing particle changes according to Eq. (40). Solid gray lines show numerical result, dashed black lines are calculated using Eqs. (44)
and (45), dotted (red) lines show the power-law dependence on time ∼t1/[2(1−η)] for (a)–(c) and ∼t1/(1−η) for (d)–(f). The parameters are
σ = 1 and η = − 1

2 , ν = −1, xm = 5 for (a), (d); η = 1
2 , ν = 0, xm = 100 for (b), (c); η = 3

2 , ν = 5 xm = 0.01 for (c), (f). The initial position
is x0 = 1.

and is finite when ν > 2 and η > 1 or ν < 1 and η < 1. The average of the square of x is equal to

〈x2〉x0 =
�

[
ν−3

2(η−1)

]
�

[
ν−1

2(η−1)

] x2
m

(1 − e−2(η−1)μt )
1

η−1
1F1

(
1

(η − 1)
;

ν − 1

2(η − 1)
; −x

2(η−1)
m x

2(1−η)
0

e2(η−1)μt − 1

)
(45)

and is finite when ν > 3 and η > 1 or ν < 1 and η < 1.
When μ has the same sign as η − 1 and t → ∞ then the

PDF (42) tends to the steady-state PDF

P0(x) = 2|η − 1|xν−1
m

�
[

ν−1
2(η−1)

] x−ν exp

[
−

(
xm

x

)2(η−1)
]
. (46)

The steady-state PDF (46) leads to the steady-state averages
of x and x2:

〈x〉st =
�

[
ν−2

2(η−1)

]
�

[
ν−1

2(η−1)

]xm, (47)

〈x2〉st =
�

[
ν−3

2(η−1)

]
�

[
ν−1

2(η−1)

]x2
m. (48)

Now let us consider the time evolution of the average 〈x2〉x0 ,
given by Eq. (45). In the case when the initial position x0

is far from the cutoff boundary xm (that is, x0 � xm when
η < 1 and x0  xm when η > 1), the time evolution of the
average 〈x2〉x0 can be separated into three parts. First, for small
times

t � x
2(1−η)
0

2(η − 1)2σ 2

the influence of the initial position is significant and the
diffusion is approximately normal, and 〈x2〉x0 depends linearly

on time t . For the intermediate times

x
2(1−η)
0

2(η − 1)2σ 2
� t � 1

2(η − 1)μ
= x

2(1−η)
m

2(η − 1)2σ 2

the exponent e−2(η−1)μt in Eq. (45) differs from 1 only slightly;
however the last argument of the hypergeometric function is
already small. Approximating the hypergeometric function by
1 and expanding the exponent e−2(η−1)μt into power series
and keeping only the linear term we obtain that the average
〈x2〉x0 depends on time as a power law, 〈x2〉x0 ∼ t1/(1−η). Thus
for this intermediate range of time the anomalous diffusion
occurs. Finally, for large times

t � 1

2(η − 1)μ

the cutoff position xm starts to influence the diffusion and
〈x2〉x0 approaches the steady-state value (48). We can conclude
that the introduction of the boundary via an exponential cutoff
does not change the anomalous diffusion when the starting
position is far from the boundary ant the time is not too large.

Comparison of the analytic expressions (44) and (45) with
numerically obtained time-dependent mean and variance is
shown in Fig. 3. As in Sec. III, for numerical solution we use the
Euler-Maruyama scheme with a variable time step, equivalent
to the introduction of the operational time in addition to
the physical time t . When the diffusion coefficient in the
operational time τ does not depend on position x, the numerical
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FIG. 4. Time-dependent PDF P (x,t |x0,0) corresponding to times t = 1 (light gray) and t = 10 (dark gray) for various values of the
parameters η and ν when the position of the diffusing particle changes according to Eq. (40). Dashed black lines are calculated using Eq. (42).
The dotted line shows the steady-state PDF (46). The parameters are σ = 1 and (a) η = − 1

2 , ν = −1, xm = 5; (b) η = 1
2 , ν = 0, xm = 100;

(c) η = 3
2 , ν = 5 xm = 0.01. The initial position is x0 = 1.

method is given by the equations

xk+1 = xk +
[(

η − ν

2

)
1

xk

+ (η − 1)x2(η−1)
m x

1−2η

k

]
�τ

+
√

�τεk, (49)
tk+1 = tk + �τ

σ 2x
2η

k

. (50)

When η > 1, a more efficient numerical method is obtained
when the change of the variable x in one step is proportional
to the value of the variable. Then the numerical method of
solution is described by the equations

xk+1 = xk

[
1 + �τ

(
η − ν

2

)
+ �τ (η − 1)

(
xm

xk

)2(η−1)

+
√

�τεk

]
, (51)

tk+1 = tk + �τ

σ 2x
2(η−1)
k

. (52)

When η < 1, to avoid the divergence of the diffusion and
drift coefficients at x = 0 in the numerical simulation, we
insert a reflective boundary at x = 10−3. This is not necessary
when η > 1 because the additional term in the drift creates an
exponential cutoff at small values of x ∼ xm. For numerical
simulation we used the same values of the parameters η and
ν as in Fig. 1, and the initial position is x0 = 1. We have
chosen the parameter xm of the external force so that the initial
position x0 is far from the boundary xm. In Fig. 3 we see a good
agreement of the numerical results with analytic expressions.
The numerical calculation and the analytic expressions confirm
the presence of a time interval where the mean and the variance
have a power-law dependence on time, as can be seen in Fig. 3.
The upper limit of this time interval is determined by the the
position xm of the exponential cutoff.

Comparison of the analytic expression (42) for the time-
dependent PDF P (x,t |x0,0) with the results of numerical
simulation is shown in Fig. 4. We see a good agreement of the
numerical results with the analytic expression. With increasing
time the PDF shifts to the larger values of x when η < 1 and to
the smaller values of x when η > 1. However, in contrast to the
situation in the previous section where the restricting force was
not present, this shift of the PDF now is limited, at large times
the time-dependent PDF approaches the steady-state PDF (46).

V. CONCLUSIONS

In summary, we have obtained analytic expressions (21)
and (42) for the transition probability of the heterogeneous
diffusion process whose diffusivity has a power-law depen-
dence on the distance x. In the description of the HDP we
have included an additional deterministic force that also has a
power-law dependence on the position. The drift term having
a power-law dependence on the position not only can arise
due to an external force but can also represent a noise-induced
drift [45]. Such a drift term appears in a Langevin equation
describing overdamped fluctuations of the position of a particle
in nonhomogeneous medium [68]. Stochastic differential
equations with power-law drift and diffusion terms have
been used to model random fluctuations of the atmospheric
forcing on the ocean circulation [69] and pressure time series
routinely used to define the index characterizing the North
Atlantic Oscillation [70]. The Brownian motion of a colloidal
particle in water subjected to the gravitational force and with a
space-dependent diffusivity due to the presence of the bottom
wall of the sample cell has been investigated in Ref. [71].
Force causing exponential cutoff in the PDF of the particle
position can describe HDP process in confined regions; such a
description can be relevant, for example, for the tracer particles
moving in the confinement of cellular compartments [12,20].

A system obeying SDEs with power-law drift and diffusion
terms can be experimentally realized as an electrical circuit
driven by a multiplicative noise, similarly as in Ref. [72]. The
equation describing the overdamped motion of the Brownian
particle takes the form of Eq. (10) when a temperature gradient
is present in the medium and the particle is subjected to
the external potential that is proportional to the temperature
profile [33]. In particular, steady state heat transfer due to
the temperature difference between the beginning and the end
of the system corresponds to η = 1/2 in Eq. (10) [33]. For
a charged particle the external force can be introduced by
applying the electric potential difference at the ends of the
system.

When the power-law exponent in the deterministic force is
equal to 2η − 1, where 2η is the power-law exponent in the
dependence of the diffusion coefficient on the position, the
external force does not limit the region of diffusion. Other
values of the power-law exponent in the deterministic force
can cause the exponential cutoff in the PDF of the particle
positions. Such an exponential restriction of the diffusion
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appears when the external force is positive if the power-law
exponent is smaller than 2η − 1 and negative if the power-law
exponent is larger than 2η − 1. We obtained an analytic
expression (42) for the transition probability in a particular
case when the external restricting force has a linear dependence
on the position. Using analytic expression for the transition
probability we calculated the time dependence of the moments
of the particle position, Eqs. (22) and (43).

We found that the power-law exponent in the dependence
of the MSD on time does not depend on the external force; this
force changes only the anomalous diffusion coefficient. This
conclusion is valid for sufficiently large times satisfying the
condition (25), that is, when the initial position of the particle is
forgotten and the anomalous diffusion occurs. In addition, the
external force having the power-law exponent different from
2η − 1 limits the time interval where the anomalous diffusion
occurs. The conclusions remain valid also when the external
force can be represented as a sum of several terms, each term
being a power-law function of position with a different power-
law exponent. Thus, our results indicate that the anomalous
diffusion caused by diffusivity being a power-law function of
the position is robust with respect to an external perturbation;
the exponent α in Eq. (1) is determined only by the diffusion
coefficient.

In addition, the results of Sec. III show that the character of
the anomalous diffusion does not depend on the interpretation
of the Langevin equation: the scaling exponent α in Eq. (1)
is the same for both the Stratonovich and Itô conventions,
because different interpretations correspond to the different
values of the parameter ν in Eq. (10): the Stratonovich
convention results in ν = η, Itô convention in ν = 2η, and the
scaling exponent α does not depend on ν. The same conclusion
that the exponent of the anomalous diffusion does not depend
on the prescription has been obtained in Refs. [58,73,74]
for equations describing diffusion without the presence of an
external force.

APPENDIX: SOLUTION OF THE FOKKER-PLANCK
EQUATION FOR THE BESSEL PROCESS

Let us consider the Fokker-Planck equation

∂

∂t
P = ν

2

∂

∂x

1

x
P + 1

2

∂2

∂x2
P (A1)

and search for the time-dependent solution P (x,t |x0,0) with
the initial condition P (x,0|x0,0) = δ(x − x0). The unnor-
malized time-independent solution of Eq. (A1) is x−ν . The
boundary condition at x = 0 for Eq. (A1) can be expressed
using the probability current [75]

S(x,t) = − ν

2x
P (x,t) − 1

2

∂

∂x
P (x,t). (A2)

We consider the boundary condition corresponding to the
vanishing probability current at x = 0, S(0,t) = 0.

One of the possible ways to obtain the solution of Eq. (A1)
is to use a Laplace transform [61]. Here we solve Eq. (A1)
using the method of eigenfunctions. This method has been
used in Ref. [76] for an equation, similar to Eq. (A1). An
ansatz of the form

P (x,t) = Pλ(x)e−λt (A3)

leads to the equation

ν

2

∂

∂x

1

x
Pλ + 1

2

∂2

∂x2
Pλ = −λPλ, (A4)

where Pλ(x) are the eigenfunctions and λ � 0 are the corre-
sponding eigenvalues. The eigenfunctions obey the orthonor-
mality relation [75]∫ ∞

0
xνPλ(x)Pλ′ (x) dx = δ(λ − λ′). (A5)

Expansion of the transition probability density P (x,t |x0,0) in
terms of the eigenfunctions has the form [75]

P (x,t |x0,0) =
∫ ∞

0
Pλ(x)xν

0 Pλ(x0)e−λt dλ. (A6)

For the solution of Eq. (A4) it is convenient to write the
eigenfunctions Pλ(x) as

Pλ(x) = x1−γ uλ(x), (A7)

where

γ = 1 + ν

2
. (A8)

A similar anzatz has been used in Refs. [62,63]. The functions
uλ(x) obey the equation

x2 d2

dx2
uλ + x

d

dx
uλ + (ρ2x2 − γ 2)uλ = 0, (A9)

where

ρ =
√

2λ. (A10)

The probability current Sλ(x), Eq. (A2), rewritten in terms of
functions uλ, becomes

Sλ(x) = −1

2
x−γ

[
γ uλ(x) + x

d

dx
uλ(x)

]
. (A11)

The orthonormality of eigenfunctions (A5) yields the orthonor-
mality for functions uλ(x)∫ ∞

0
xuλ(x)uλ′ (x) dx = δ(λ − λ′). (A12)

The general solution of Eq. (A9) is

uλ(x) = c1Jγ (ρx) + c2Yγ (ρx), (A13)

where Jγ (x) and Yγ (x) are the Bessel functions of the first and
second kind, respectively. The coefficients c1 and c2 needs to be
determined from the boundary and normalization conditions
for the functions uλ(x). Using Eqs. (A13) and (A11) we get
the probability current

Sλ(x) = − 1
2ρx1−γ [c1Jγ−1(ρx) + c2Yγ−1(ρx)]. (A14)

The requirement Sλ(0) = 0 leads to the condition c2 =
−c1 tan(πγ ). Taking into account this relation between c2 and
c1 we obtain

uλ(x) = cλJ−γ (ρx). (A15)

In addition, the condition Sλ(0) = 0 implies c2 = 0 when γ �
1. Thus, when γ � 1, ν � 1 both coefficients c1 and c2 are
zero and the solution (A6) is not valid. It is known that for a
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Bessel process with such parameters a total absorption at the
origin occurs in a finite time [64].

Orthonormality condition (A12) leads to the equation

cλcλ′

∫ ∞

0
xJ−γ (ρx)J−γ (ρ ′x) dx = δ(λ − λ′). (A16)

Since for the Bessel functions the equality

ρ

∫ ∞

0
xJγ (ρx)Jγ (ρ ′x)x dx = δ(ρ − ρ ′) (A17)

is valid, we obtain cλ = 1. Using Eqs. (A6), (A7), and (A15)
the solution of the Fokker-Planck equation can be expressed
as

P (x,t |x0,0) = x1−γ x
γ

0

∫ ∞

0
J−γ (ρx)J−γ (ρx0)e− 1

2 ρ2t ρ dρ.

(A18)

Integration yields

P (x,t |x0,0) = x1−γ x
γ

0

t
exp

(
−x2 + x2

0

2t

)
I−γ

(
xx0

t

)
. (A19)

Here Iα(x) is the modified Bessel function of the first kind.
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[33] R. Kazakevičius and J. Ruseckas, J. Stat. Mech. (2015) P02021.
[34] T. Srokowski, Phys. Rev. E 89, 030102(R) (2014).
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