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Optical adiabatons are specific shape-invariant pulse pairs propagating at the reduced group velocity 
and without optical absorption in the medium. The purpose of this study is to analyze the possibility 
of adiabaton formation in multilevel atomic systems with the focus on M-type and double tripod (DT) 
systems having five energy levels and different interaction configurations. Findings show that the 
M-type atomic system is prone to intensity dependent group velocity and pulse front steepening which 
prevents the formation of long range optical adiabatons. In contrast, the DT atomic system is quite 
favorable for the formation of optical adiabatons exhibiting two different optical field configurations 
propagating with invariant shape.
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Precise control of light-matter interactions is crucial in optics research and applications. Remarkable progress in 
this field has been made using quantum interference in resonant media1–3, where materials can be manipulated 
into specific quantum states to enhance or suppress light absorption. One notable technique that exemplifies this 
approach is electromagnetically induced transparency (EIT)2,4–6, allowing a material to become transparent to a 
specific light frequency that it would normally absorb. Beyond the transparency, EIT can also lead to a wealth of 
other fascinating effects. These include the formation of non-absorbing dark states7, slow group velocities (slow 
light)8, giant nonlinearities9–12 and other phenomena13–29. This underscores the power of quantum interference in 
achieving precise control over the optical response making EIT-related research an active area until present30–32. 
Notably, most of the aforementioned effects can be observed in simple three- or four-level atomic media driven 
by several coherent laser fields (usually probe and pump) tuned to the resonant atomic transitions. However, the 
possibilities of coherent control substantially increase for the light-atom configurations with larger number of 
atomic levels. For these type of multilevel systems more sophisticated interaction effects and richer dynamics 
can be observed. Recent studies show that EIT paradigm can been extended further into the nonlinear regime, 
where EIT-enhanced nonlinearities support shape-preserving optical pulses beyond the weak-probe limit33–35.

Typically, EIT-based research focuses on conditions where the probe field is much weaker than the coupling 
field. However, in practical applications, such as achieving extremely low group velocities, the intensity of the 
coupling laser field must be kept quite low as well. This requirement presents a challenge for ultra-slow light 
propagation because the probe field needs to be significantly weak to maintain the validity of the weak probe 
approximation. On the other hand, in order to be detectable, the probe field should also be strong enough, so 
that the weak probe approximation is often not met. This issue has led to an interest in studying the effects of 
stronger probe fields in EIT scenarios. Grobe et al.36 addressed this by finding an exact solution to the coupled 
nonlinear Maxwell-Schrödinger equations for the Λ scheme under so-called adiabatic conditions. The solution 
permits the waves of arbitrary shapes to propagate, retaining their shapes relatively unchanged after some initial 
reshaping. These shape-preserving waves are known as adiabatons.

An optical adiabaton is a set of shape-invariant pulses with slowly changing envelopes that propagate at 
reduced group velocities without optical absorption in the medium. Adiabatons represent a nonlinear pulse 
propagation regime under EIT conditions, where the intensity of the probe field is comparable to that of the 
control field, allowing the adiabatic approximation to hold37. Briefly, the adiabatic approximation means that 
the optical fields have large intensities and change slowly, so that the excited states are not populated. On 
the contrary, when the system deviates from the adiabaticity, the pulses experience absorption, attenuation, 
reshaping, and steepening effects. As such, the adiabatons are of significant interest in the field of coherent 
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control and quantum optics, having applications in quantum information processing, precision spectroscopy, 
and optical communication, where the control over group velocity and pulse shape is crucial.

The theoretical prediction of adiabatons in a Λ system36 was soon experimentally confirmed38. Subsequent 
studies on adiabatons explored this phenomenon in various systems and conditions39–44. For instance, a four-
level double-Λ scheme was used to demonstrate the pulse matching and adiabaton-type propagation39. Temporal 
reshaping and compression of a probe pulse, due to its group velocity’s dependence on the control field, were also 
studied40,41. Two types of adiabatons with zero and non-zero energy in Λ and ladder schemes, respectively, were 
analyzed42. Additionally, two pairs of adiabatically propagating pulses at different group speeds — fast and slow 
adiabatons — were found in a tripod system43. Adiabatons for five-level systems have only been analyzed in a 
simple five-level double-Λ scheme44.

In multilevel atomic systems, as was already mentioned, the increased number of energy levels and 
interacting laser fields provides enhanced control over the formation and dynamics of shape-preserving optical 
pulses. However, the conditions under which adiabatic pulse propagation — specifically, the formation of optical 
adiabatons — can occur have not been fully investigated in complex EIT-based schemes. In this work, we address 
this open question by theoretically analyzing adiabatic pulse propagation in two well-known multilevel atomic 
systems: the M-type45,46 and the double tripod (DT) configurations47–51. Both schemes feature five distinct 
energy levels, but differ in field arrangements: the M-type system involves four laser fields in an M-shaped 
configuration, whereas the DT setup includes six fields forming a pair of interconnected tripods (Fig. 1).

Importantly, the DT scheme exhibits several remarkable properties not present in simpler systems, like Λ 
or M. In particular, DT setup supports two probe beams at different frequencies which couple together via four 
control fields and atomic coherences. This arrangement leads to the formation of a two-component (spinor) slow 
light with distinct characteristics47,51. In such a medium, only specific combinations of the probe fields (normal 
modes) can propagate through the atomic cloud with well-defined and differing group velocities. As current 
study demonstrates, under suitable conditions in DT system the six optical fields after some propagation distance 
form two distinct combinations that propagate with a stable, shape-preserving structure. Those combinations 
of optical fields represent adiabatons. On the contrary, the M-type system suffers from an intensity-dependent 
group velocity that causes pulse front steepening and ultimately a breakdown of adiabaticity conditions. These 
findings highlight a key aspect of our work: adiabaton formation is not universally supported across all EIT-
enabled multilevel systems, even when they share similar energy-level structures. Rather, the possibility of stable, 
shape-preserving propagation is critically dependent on the specific interaction topology and coupling geometry.

The paper is structured as follows. In Sec.  1 we examine light pulse propagation in a multilevel M-type 
system, which is not favorable to adiabaton formation. Then, in Sec.  2 we present calculations and analyze 
adiabaton propagation in a DT system. Finally, we conclude with a discussion and summarize our findings in 
Sec. 3. Additionally, for illustration of the approach used in the paper, in Supplementary Information we present 
some well-established analytical results for a simple three level Λ system and two optical fields, as previously 
described in Refs.36,37.

Propagation of light pulses in M-type system
Equations of motion for atoms and fields
We consider a M-type atomic system (Fig. 1a) involving three metastable ground states |0⟩, |1⟩ and |2⟩, as well 
as two excited states |e1⟩ and |e2⟩. Four laser fields with the Rabi frequencies Ωj,l induce resonant transitions 
|l⟩ → |ej⟩; here the j = 1, 2 and l = 0, j. Applying the rotating wave approximation (RWA), the atomic 
Hamiltonian in the rotating frame with respect to the atomic levels reads

	
HM =

2∑
j=1

{
−1

2 (Ωj,0|ej⟩⟨0| + Ωj,j |ej⟩⟨j| + H.c.) − i

2Γ|ej⟩⟨ej | + δj |j⟩⟨j|
}

,� (1)

where δj  are two-photon detunings. The losses in the Hamiltonian (1) are taken into account in an effective 
way by introducing a rate Γ of the excited state decay. In order to simplify the mathematical description of 
the system while keeping the relevant physical details, we characterize the state of an atom using a state vector 

(a) (b)

Fig. 1.  (a) Five level M-type atomic system. Four laser beams with the Rabi frequencies Ω1,0, Ω1,1, Ω2,2 and 
Ω2,0 act on atoms characterized by three hyperfine ground levels |0⟩, |1⟩ and |2⟩ and two excited levels |e1⟩ 
and |e2⟩; (b) Five level DT atomic system. Six laser beams with the Rabi frequencies Ω1,0, Ω1,1, Ω1,2 and Ω2,0, 
Ω2,1, Ω2,2 act on atoms characterized by three hyperfine ground levels |0⟩, |1⟩ and |2⟩ and two excited levels 
|e1⟩ and |e2⟩. Both systems initially reside in the ground level |0⟩ as marked by green circles.
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|Ψ⟩ =
∑2

l=0 ψl|l⟩ +
∑2

j=1 ψej |ej⟩, as in Refs.36,52, instead of a more complete description that involves a 
density matrix37,53. The time-dependent Schrödinger equation iℏ∂t|Ψ⟩ = HM|Ψ⟩ for the atomic state-vector 
|Ψ⟩ yields the following equations for the atomic probability amplitudes ψl, ψej :

	
i∂tψ0 = −1

2Ω∗
1,0ψe1 − 1

2Ω∗
2,0ψe2 , � (2)

	
i∂tψ1 = δ1ψ1 − 1

2Ω∗
1,1ψe1 , � (3)

	
i∂tψ2 = δ2ψ2 − 1

2Ω∗
2,2ψe2 , � (4)

	
i∂tψe1 = − i

2Γψe1 − 1
2Ω1,0ψ0 − 1

2Ω1,1ψ1 , � (5)

	
i∂tψe2 = − i

2Γψe2 − 1
2Ω2,0ψ0 − 1

2Ω2,2ψ2 . � (6)

On the other hand, the Rabi frequencies of the laser fields obey the following propagation equations

	
(∂t + c∂z)Ω1,0 = i

2gψe1 ψ∗
0 , � (7)

	
(∂t + c∂z)Ω2,0 = i

2gψe2 ψ∗
0 , � (8)

	
(∂t + c∂z)Ω1,1 = i

2gψe1 ψ∗
1 , � (9)

	
(∂t + c∂z)Ω2,2 = i

2gψe2 ψ∗
2 , � (10)

where the parameter g characterizes the strength of coupling of the light fields with the atoms. For simplicity here 
we have assumed that the coupling strength g is the same for both laser fields. The coupling strength g is related 
to the optical depth α as g = cΓα/L, where L is the length of the medium.

Coupled and uncoupled states
For simplifying of analysis it is convenient to introduce coupled |C⟩ and uncoupled |U⟩ atomic states. Coupled 
states are superpositions of the ground states that are directly connected to the excited states via optical fields, 
whereas uncoupled states are not coupled to the excited states. Let us define two unnormalized and non-orthogonal 
to each other coupled states as |Cj⟩ = χ∗

j |0⟩ + |j⟩ where χj = Ωj,0/Ωj,j( j = 1, 2). Then, a normalized 
uncoupled state (orthogonal to both coupled states) can be defined as |U⟩ = 1

N0
(|0⟩ − χ1|1⟩ − χ2|2⟩) where 

N0 =
√

1 + |χ1|2 + |χ2|2 is a normalization factor. Following this notation the amplitudes to find an atom in 
the coupled and uncoupled states read

	 ψCj = ⟨Cj |Ψ⟩ = χjψ0 + ψj , � (11)

	
ψU = ⟨U|Ψ⟩ = 1

N0
(ψ0 − χ∗

1ψ1 − χ∗
2ψ2) . � (12)

The initial atomic amplitudes then can be expressed as

	
ψ0 = 1

N0

(
ψU + 1

N0
χ∗

1ψC1 + 1
N0

χ∗
2ψC2

)
, � (13)

	
ψ1 = ψC1 − χ1ψ0 = − χ1

N0
ψU + · · · , � (14)

	
ψ2 = ψC2 − χ2ψ0 = − χ2

N0
ψU + · · · . � (15)

Using the coupled states the system Hamiltonian (1) can be rewritten as

	
HM =

2∑
j=1

{
−1

2
(
Ωj,j |ej⟩⟨Cj | + Ω∗

j,j |Cj⟩⟨ej |
)

+ δj |j⟩⟨j| − i

2Γ|ej⟩⟨ej |
}

,� (16)

The equations for the atomic amplitudes in terms of coupled and uncoupled states take the form

	 i∂tψU = ∆ψU + · · · , � (17)
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i∂tψC1 = V1ψU − 1

2Ω∗
1,1N2

1 ψe1 − 1
2Ω∗

2,0χ1ψe2 + · · · , � (18)

	
i∂tψC2 = V2ψU − 1

2Ω∗
1,0χ2ψe1 − 1

2Ω∗
2,2N2

2 ψe2 + · · · , � (19)

	
i∂tψe1 = − i

2Γψe1 − 1
2Ω1,1ψC1 , � (20)

	
i∂tψe2 = − i

2Γψe2 − 1
2Ω2,2ψC2 . � (21)

Here, V1 = 1
N0

(i∂t − δ1)χ1, V2 = 1
N0

(i∂t − δ2)χ2 represent the non-adiabatic coupling coefficients,

	
∆ = 1

N0
i∂t

1
N0

+ χ1

N0
i∂t

χ∗
1

N0
+ χ2

N0
i∂t

χ∗
2

N0
+ δ1

|χ1|2

N2
0

+ δ2
|χ2|2

N2
0

� (22)

denotes the detuning, and N1 =
√

1 + |χ1|2, N2 =
√

1 + |χ2|2 are the normalization factors for the 
unnormalized coupled states. Note, that terms containing amplitudes ψC1 , ψC2  were omitted in the Eqs. (14)-
(15), (17)-(19) being not relevant for the first order of the adiabatic approximation.

Adiabatic approximation
The term “adiabatic” means that the rate of change of the varying quantities is sufficiently small, so that a 
system remains in a quasi-steady state. Here, for the atom-light system adiabatic approximation implies that 
the optical fields have large intensities and change slowly, so that the excited states are not populated. Violation 
of the conditions for the adiabatic approximation leads to the increase of population of the excited states and 
corresponding losses due to their decay.

Let us consider a situation where the light fields are slowly changing and have large intensities. In this 
situation we can apply the adiabatic approximation. Neglecting small amplitudes of the coupled states ψC1  and 
ψC2  in Eqs. (18), (19) leads to a following pair of equations

	 2V1ψU = Ω∗
1,1N2

1 ψe1 + Ω∗
2,0χ1ψe2 , � (23)

	 2V2ψU = Ω∗
1,0χ2ψe1 + Ω∗

2,2N2
2 ψe2 , � (24)

with the solution

	 ψe1 = 2W1ψU , � (25)

	 ψe2 = 2W2ψU , � (26)

where

	
W1 = 1

Ω∗
1,1N2

0
(N2

2 V1 − χ1χ∗
2V2) = 1

Ω∗
1,1N3

0
[N2

2 (i∂t − δ1)χ1 − χ1χ∗
2(i∂t − δ2)χ2] , � (27)

	
W2 = 1

Ω∗
2,2N2

0
(N2

1 V2 − χ2χ∗
1V1) = 1

Ω∗
2,2N3

0
[N2

1 (i∂t − δ1)χ2 − χ2χ∗
1(i∂t − δ2)χ1] . � (28)

On the other hand, Eqs.  (20), (21) relate ψC1 , ψC2  to ψe1 , ψe2  as ψC1 = −i(Γ/Ω1,1)ψe1  and 
ψC2 = −i(Γ/Ω2,2)ψe2 . Neglecting the decay of adiabatons, Eq. (17) for the amplitude of the uncoupled state 
becomes i∂tψU = ∆ψU. Inserting Eqs. (25), (26) into Eqs. (7)–(10) we get

	
(∂t + c∂z)Ω1,0 = i

g

N0
W1 , � (29)

	
(∂t + c∂z)Ω2,0 = i

g

N0
W2 , � (30)

	
(∂t + c∂z)Ω1,1 = −i

g

N0
χ∗

1W1 , � (31)

	
(∂t + c∂z)Ω2,2 = −i

g

N0
χ∗

2W2 . � (32)

Equations (29)–(32) describe adiabatic propagation of the fields.

Matrix form of equations
From Eqs.  (29)-(32) we obtain that the total Rabi frequencies Ω1 =

√
|Ω1,1|2 + |Ω1,0|2 = |Ω1,1|N1 and 

Ω2 =
√

|Ω2,2|2 + |Ω2,0|2 = |Ω2,2|N2 obey the equations (∂t + c∂z)Ω1 = 0 and (∂t + c∂z)Ω2 = 0, 
respectively. Combining Eqs. (29)-(32) we get the equations for the ratios χ1 and χ2
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(∂t + c∂z)χ1 = ig

N2
1

N0

W1

Ω1,1
, � (33)

	
(∂t + c∂z)χ2 = ig

N2
2

N0

W2

Ω2,2
. � (34)

Introducing the two-component spinor χ = (χ1, χ2)⊺ and using Eqs. (27), (28), (33), (34) can be written in the 
following matrix form

	 (c−1 + v̂−1)∂tχ + ∂zχ + iv̂−1δ̂χ = 0,� (35)

where

	

v̂−1 = g

cN4
0

(
N2

1 N2
2

|Ω1,1|2 − N2
1 χ1χ∗

2
|Ω1,1|2

− N2
2 χ2χ∗

1
|Ω2,2|2

N2
2 N2

1
|Ω2,2|2

)
= g

c




1
Ω2

1

N4
1

N4
0

0

0 1
Ω2

2

N4
2

N4
0


 (N2

0 I − χχ†),� (36)

is the matrix of inverse group velocity, and

	
δ̂ =

(
δ1 0
0 δ2

)
,� (37)

is the matrix of two-photon detunings.

Equal fields
Let us now consider a particular case where Ω2,0 = Ω1,0 and Ω2,2 = Ω1,1 at the beginning of the medium 
(z = 0). We also assume that δ2 = δ1. In this situation χ2 = χ1 at all times and positions. Equation for the 
propagation becomes

	

(
c−1 + g

cΩ2
1

N4
1

N4
0

)
∂tχ1 + ∂zχ1 + i

g

cΩ2
1

N4
1

N4
0

δ1χ1 = 0.� (38)

This equation has a similar form to the equation for the propagation of the probe field in the EIT configuration, 
and is also similar to the equation for Λ-type system. The group velocity is

	
vg = cΩ2

1

g

N4
0

N4
1

.� (39)

Equation (39) shows that the group velocity vg , like the group velocity of slow light, increases with the Rabi 
frequency Ω1 and is inversely proportional to atom-light coupling strength g. In addition, the presence of the 
second pair of beams increases the group velocity of the adiabaton propagation because N0 > N1. Thus, parts of 
the pulse with larger amplitude propagate faster, which leads to changing shape of the pulse and to an instability 
of its wavefront.

We conducted numerical study of the equations (29)–(32) using the Gaussian input fields. The first field at the 
input of the atomic media is of the form Ω1,0(0, t) = A exp[−(t − t0)2/τ2

0 ], where τ0 = 5Γ−1, t0 = 23Γ−1, 
A = Γ, while the second one is a constant Ω1,1(0, t) = 1.5Γ. Results of the calculation are shown in Fig. 2 which 
demonstrates significant pulse deformation and strong steepening effect at the propagation distances exceeding 
25Labs. Here Labs = L/α denote the resonant absorption length, and α is the optical density of the medium. 
This kind of pulse shape’s deformation observed in M-type system has similar origin as a self-steepening effect 
in classical nonlinear optics54. The latter develops as a result of nonlinear dependence of the refractive index on 
pulse intensity that leads to the intensity-dependent group velocity. Commonly this effect is observed for the 
propagation of short laser pulses producing sharp steepening of the trailing edge of the pulse (optical shock) 
and accompanying spectral broadening. The effect of self-steepening is well known and the accompanying pulse 
behavior has been extensively studied earlier55.

Adiabatons in double tripod system
Initial equations
Now, we investigate a DT type atomic system (Fig. 1b) involving three metastable ground states |0⟩, |1⟩ and |2⟩, 
as well as excited states |e1⟩ and |e2⟩. Six laser fields with the Rabi frequencies Ωj,l induce resonant transitions 
|l⟩ → |ej⟩. Applying the rotating wave approximation (RWA), the atomic Hamiltonian in the rotating frame 
with respect to the atomic levels reads

	
HDT =

2∑
j=1

{
−1

2

(
2∑

l=0

Ωj,l|ej⟩⟨l| + H.c.

)
+ δj |j⟩⟨j| − i

2Γ|ej⟩⟨ej |

}
,� (40)
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where δj  are two-photon detunings. The losses in the Hamiltonian (40) are taken into account in an effective way 
by introducing a rate Γ of the excited state decay. The time-dependent Schrödinger equation iℏ∂t|Ψ⟩ = HDT|Ψ⟩ 
for the atomic state-vector |Ψ⟩ =

∑2
l=0 ψl|l⟩ +

∑2
j=1 ψej |ej⟩ yields the following equations for the atomic 

probability amplitudes ψl, ψej

	
i∂tψl = δlψl − 1

2
∑

j

Ω∗
j,lψej , � (41)

	
i∂tψej = − i

2Γψej − 1
2

∑
l

Ωj,lψl . � (42)

Here, to make the equation for the amplitude ψ0 look the same as the equations for the amplitudes ψ1,2, we 
introduced δ0 = 0. The Rabi frequencies of the laser fields obey the following propagation equations

	
(∂t + c∂z)Ωj,l = i

2gψej ψ∗
l ,� (43)

where the parameter g characterizes the strength of coupling of the light fields with the atoms.

Coupled and uncoupled states
Similarly to the M-type system, we introduce coupled (directly connected to the excited states via optical fields) 
and uncoupled (not coupled to the excited states) atomic states. The amplitudes of the two coupled states are 

ψCj = Ω−1
j

∑2
l=0 Ωj,lψl where Ωj =

√∑2
l=0 |Ωj,l|2. In addition, there is one uncoupled state

	
ψU = 1

N0

∣∣∣∣∣
ψ0 ψ1 ψ2

Ω∗
1,0 Ω∗

1,1 Ω∗
1,2

Ω∗
2,0 Ω∗

2,1 Ω∗
2,2

∣∣∣∣∣ ≡
2∑

l=0

A∗
l ψl,� (44)

Here, coefficients A0 = 1
N0

(Ω1,1Ω2,2 − Ω1,2Ω2,1), 
A1 = 1

N0
(Ω1,2Ω2,0 − Ω1,0Ω2,2), A2 = 1

N0
(Ω1,0Ω2,1 − Ω1,1Ω2,0), and the normalization factor for the uncoupled 

state N0 =
(
|Ω1,1Ω2,2 − Ω1,2Ω2,1|2 + |Ω1,2Ω2,0 − Ω1,0Ω2,2|2 + |Ω1,0Ω2,1 − Ω1,1Ω2,0|2

)1/2. Note, that 

N2
0 = Ω2

1Ω2
2 −

(∑2
l=0 Ω∗

2,lΩ1,l

) (∑2
l=0 Ω∗

1,lΩ2,l

)
, and the coefficients Al have the property 

∑2
l=0 AlΩj,l = 0.

The initial atomic amplitudes then can be expressed as

	 ψl = AlψU + · · · � (45)

The equations (41), (42) for the atomic amplitudes in terms of coupled and uncoupled states take the form

	 i∂tψU = ∆ψU + · · · , � (46)

Fig. 2.  Dependence of pulse amplitude ratio χ1 on the propagation distance in M-type system calculated at 
time instance of t = 26.5Γ−1.
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i∂tψCj = VjψU − 1

2Ωj

∑
m

ψem

2∑
l=0

Ωj,lΩ∗
m,l , � (47)

	
i∂tψej = − i

2Γψej − 1
2ΩjψCj . � (48)

Here, the detuning ∆ =
∑2

l=0 Al(i∂t + δl)A∗
l , and coefficients Vj = Ω−1

j

∑2
l=0 Al(i∂t + δl)Ωj,l describe 

the non-adiabatic coupling. The terms omitted in Eqs. (45) and (46) contain amplitudes ψC1  and ψC2 .

Adiabatic approximation
Let us consider a situation where the light fields are slowly changing and have large intensities. In this situation 
we can apply adiabatic approximation. Neglecting small amplitudes of the coupled states ψC1  and ψC2  in 
Eq. (47) leads to a system of equations

	
2ΩjVjψU =

∑
m

ψem

2∑
l=0

Ωj,lΩ∗
m,l,� (49)

with the solution

	 ψej = 2WjψU,� (50)

where

	
W1 = 1

N2
0

(Ω2
2Ω1V1 −

2∑
l=0

Ω∗
2,lΩ1,lΩ2V2) = 1

N2
0

2∑
l=0

Al

(
Ω2

2(i∂t + δl)Ω1,l −
2∑

m=0

Ω∗
2,mΩ1,m(i∂t + δl)Ω2,l

)
, � (51)

	
W2 = 1

N2
0

(Ω2
1Ω2V2 −

2∑
l=0

Ω∗
1,lΩ2,lΩ1V1) = 1

N2
0

2∑
l=0

Al

(
Ω2

1(i∂t + δl)Ω2,l −
2∑

m=0

Ω∗
1,mΩ2,m(i∂t + δl)Ω1,l

)
. � (52)

On the other hand, Eq. (48) relates ψCj  to ψej  as ψCj = −i(Γ/Ωj)ψej . Neglecting the decay of adiabatons, 
Eq. (46) for the amplitude of the uncoupled state becomes i∂tψU = ∆ψU. Inserting Eq. (50) into Eq. (43) we 
get a set of equations

	 (∂t + c∂z)Ωj,l = igWjA∗
l .� (53)

Equations (53) describe the adiabatic propagation of the fields. For the validity of the adiabatic approximation 
one should require that the population of the excited states be small compared to the population of the uncoupled 
state. According to Eq. (46) this leads to the adiabatic condition |Wj | ≪ 1.

From Eq. (53) we obtain that the total Rabi frequencies Ωj  obey the equation

	 (∂t + c∂z)Ωj = 0,� (54)

meaning that Ωj  propagate without changing shape. In addition, for the coupling fields Rabi frequencies we have

	
(∂t + c∂z)

2∑
l=0

Ω∗
2,lΩ1,l = 0.� (55)

Then, from both Eqs. (54), (55) follows that

	 (∂t + c∂z)N0 = 0.� (56)

Thus the normalization factor N0 also does not change shape during the propagation.

Matrix form of equations
Introducing the two-component spinors (columns) as Ω̂l = (Ω1,l, Ω2,l)⊺ we can write Eqs. (53) as

	
(c−1∂t + ∂z)Ω̂l + A∗

l v̂−1
2∑

n=0

An(∂t − iδn)Ω̂n = 0,� (57)

where

	
v̂−1 = g

c

1
N2

0

(
Ω2

2 −
∑2

m=0 Ω∗
2,mΩ1,m

−
∑2

m=0 Ω∗
1,mΩ2,m Ω2

1

)
,� (58)
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is the matrix of inverse group velocity51 with the properties

	
det v̂−1 = g2

c2N2
0

,� (59)

and

	 (∂t + c∂z)v̂−1 = 0.� (60)

The eigenvalues of the matrix of inverse group velocity define the velocities of the propagating modes. These 
velocities increase with the amplitudes of the fields and are inversely proportional to atom-light coupling 
strength g. Also, from the equation (60) follows that the matrix v̂−1 does not change its z-dependent shape 
during the propagation.

Multiplying Eq. (57) by Al and summing we get

	

2∑
l=0

Al(c−1∂t + ∂z)Ω̂l + v̂−1
2∑

l=0

Al(∂t − iδl)Ω̂l = 0.� (61)

Finally, using the matrix of inverse group velocity v̂−1 the adiabatic condition |Wj | ≪ 1 in DT system can be 
written as

	

c

g

∣∣∣∣∣v̂
−1

2∑
l=0

Al(i∂t + δl)Ω̂l

∣∣∣∣∣ ≪ 1.� (62)

The condition should hold for each component of the column in vertical bars.

Adiabatons
Let us now consider the situation where there are no two-photon detunings, δl = 0. We will search for a 
propagating solution in the form Ωj,l = fj,l (t − z/vg). Then ∂zΩj,l = −v−1

g ∂tΩj,l and Eq. (57) becomes

	
v−1

g ∂tΩ̂l = A∗
l v̂−1

2∑
n=0

An∂tΩ̂n.� (63)

Multiplying this equation by Al and summing over l we obtain

	
v̂−1

2∑
l=0

Al∂tΩ̂l = v−1
g

2∑
l=0

Al∂tΩ̂l.� (64)

We see that in this case 
∑2

l=0 Al∂tΩ̂l should be an eigenvector of a matrix v̂−1, with vg  being the eigenvalue. 
Note, that since the adiabatic condition (62) contains inverse group velocity, the adiabaticity requirement for the 
solution with smaller value of vg  is stricter.

Let us write the eigenvector of the matrix v̂−1 corresponding to an eigenvalue v−1
g  as (1, ξ)T . Since this 

eigenvector is equal to 
∑2

l=0 Al∂tΩ̂l, we have 
∑2

l=0 Al∂tΩ2,l = ξ
∑2

l=0 Al∂tΩ1,l. Then Eq.  (63) can be 
written as

	
∂tΩ1,l = A∗

l

2∑
n=0

An∂tΩ1,n , � (65)

	
∂tΩ2,l = ξA∗

l

2∑
n=0

An∂tΩ1,n, � (66)

or ∂tΩ2,l = ξ∂tΩ1,l, with the solution Ω2,l(t) − ξΩ1,l(t) = Ω2,l(0) − ξΩ1,l(0). Initially the pulses Ω1,0 and 
Ω2,0 are absent, thus Ω2,l(t) = ξΩ1,l(t). As a consequence of Eqs. (54), (55) the propagating solution obeys the 
equations

	
Ωj = const,

2∑
l=0

Ω∗
2,lΩ1,l = const.� (67)

These equations ensure that the velocity vg  remains constant.
Let us consider the situation when Ω2,2(0) = Ω1,1(0) and Ω2,1(0) = Ω1,2(0). Then the eigenvalues are 

vg = c
g

[Ω1,1(0) − ξΩ1,2(0)]2 with ξ = ±1.  From the equations it follows that Ω2,2 = Ω1,1 and Ω2,1 = Ω1,2 for 
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all times. The values of Ω1,1 and Ω1,2 can be found by solving the equations Ω1,2 − ξΩ1,1 = Ω1,2(0) − ξΩ1,1(0), 
Ω2

1,0 + Ω2
1,1 + Ω2

1,2 = Ω2
1,1(0) + Ω2

1,2(0).
Similarly to the previous cases, we used numerical calculations to demonstrate the obtained 

effects. At the beginning of the atomic medium two optical fields have Gaussian temporal shape: 
Ω1,0(0, t) = A1 exp[−(t − t1)2/τ2

1 ], Ω2,0(0, t) = A2 exp[−(t − t2)2/τ2
2 ], where τ1 = τ2 = 5Γ−1, 

t1 = t2 = 23Γ−1, A1 = Γ, A2 = 0; other fields are constant with amplitudes Ω1,1(0, t) = Ω2,2(0, t) = 1.5Γ 
and Ω1,2(0, t) = Ω2,1(0, t) = 0.5Γ. Numerical results obtianed by solving Eqs. (53) are depicted in Fig. 3. It 
can be seen that there is adiabaton regime for the fields Ωj,l after some propagation distance. There are two 
combinations of fields Ωj,l propagating with different group velocities as indicated by two dotted rectangles in 
Fig. 3. The first combination, denoted by the right rectangle, is characterized by Ω2,0(z, t) = −Ω1,0(z, t) and 
propagates with smaller group velocity. The second combination, denoted by the left rectangle, is characterized 
by Ω2,0(z, t) = Ω1,0(z, t) and propagates with larger group velocity. Note, that the latter combination is not 
completely formed yet because it overlaps in time with the initial pulse Ω1,0(0, t).

For the adiabatons to arise in the DT scheme the external fields should have large amplitudes and change 
slowly, so that the adiabatic condition given by Eq. (62) holds. The adiabatons should form whenever pulses of 
arbitrary shape are applied to optically thick five level media, assuming that amplitudes of the pulses are such 
that N0 is not zero. The latter requirement follows from Eqs. (62) and (59).

Note that the practical limits of the adiabatic approximation are constrained by both intensity and duration 
of the optical pulses. The maximum intensities of the light pulses are limited by the presence of other atomic 
energy levels. Due to a.c. Stark effect induced by the fields, the atomic spectral shifts occur, and coupling to other 
atomic levels becomes possible. In order to avoid coupling to unwanted levels, Rabi frequencies should be small 
compared to the frequency differences between the atomic states involved. On the other hand, maximum pulse 
durations are limited by the decay rates of the adiabatons due to the non-adiabatic losses. We have presented 
the corresponding decay rates for Λ type systems in the Supplementary Information of this article. However, 
because of the relations complexity, we did not present the expressions for the non-adiabatic losses for the cases 
of more complex M-type and DT schemes.

Discussion, outlook and conclusions
To conclude, we have analyzed the propagation of optical pulses in multilevel M-type and double tripod (DT) 
atomic systems under the adiabatic approximation. Both schemes contain five non-degenerate atomic levels and 
exhibit an uncoupled (dark) state. We have derived equations for the adiabatic propagation of the light pulses for 
both setups, as represented by the Eqs. (29)–(32) and Eqs. (53), correspondingly. In the case of M-type atomic 
system the adiabatic regime is unstable as pulse group velocity depends on the amplitudes of the fields, making 
different part of the pulse propagate at different velocity. As a result, a region of the pulse with large steepness 
appears and the adiabatic approximation becomes not valid after some distance. In contrast, in the DT system a 
long range adiabatic propagation of light pulses is possible and is characterized by two different configurations 
of fields propagating with invariant shape. Here, the optical adiabaton arises as a result of a transformation of 
six coupled optical fields into a robust shape-preserving combination. The difference between M-type and DT 
systems demonstrates that adiabaton formation is not commonly supported even for comparable energy-level 

Fig. 3.  Temporal dependence of pulse amplitudes in DT system. The dashed line corresponds to pulse 
envelope Ω1,0 at the input (z = 0), while the solid lines show pulse envelopes at the propagation distance 
z = 50Labs. Amplitude shown on the vertical scale is measured in Γ. There are two combinations of fields 
Ωj,l, indicated by two dotted rectangles, that propagate with different group velocities. The first combination, 
denoted by the right rectangle, has Ω2,0(z, t) = −Ω1,0(z, t) and propagates with a smaller group velocity. The 
second combination, where Ω2,0(z, t) = Ω1,0(z, t), propagates with a larger group velocity and is denoted by 
the left rectangle.
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structures in EIT-enabled multilevel setups (Fig. 1). Rather, it implies that the adiabatic propagation of light 
pulses is quite sensitive to optical fields arrangement and interaction configuration.

It should be noted that we have omitted decoherence effects in our study to focus on the ideal adiabatic 
scenario. Decoherence inherently degrades the lossless, shape-preserving propagation of adiabatons leading to 
their eventual decay. In practice, the coherence loss can be mitigated by the techniques such as optical pumping 
or dynamical decoupling. Similarly, we excluded all forms of inhomogeneous broadening, including Doppler 
broadening, from the theoretical model. Doppler broadening arises from the thermal motion of atoms, shifting 
resonance frequencies and broadening spectral lines, which induces a spread of group velocities that can distort 
pulse shapes. The resulting nonuniform coupling between the probe and control fields undermines the ground-
state coherence required for shape-invariant propagation. However, the experimental techniques employed for 
cold-atom systems can effectively suppress these effects making the idealized adiabatic regime readily attainable.

The DT configuration for the adiabaton propagation presented here can be realized experimentally similarly 
to that used in51 where an ensemble of laser-cooled Rb atoms loaded into magneto-optical trap was explored. 
Specifically, the atomic levels |5S1/2, F = 1, m = 0⟩, |5S1/2, F = 2, m = 0⟩ and |5S1/2, F = 2, m = 2⟩ 
can be used as the ground states |0⟩, |1⟩ and |2⟩, whereas the atomic levels |5P1/2, F = 2, m = 1⟩ and 
|5P3/2, F = 2, m = 1⟩ as the excited states |e1⟩ and |e2⟩, respectively. By choosing the appropriate intensities 
of the coupling laser fields, the results of the theoretical model presented in Fig. 3 can be verified experimentally.

While the current study only addresses the temporal dynamics of one-dimensional pulses, there are plans 
to extend this analysis to pulses of more complex shapes, like those having transverse intensity structure or 
carrying orbital angular momentum. That would require the use of paraxial propagation equations describing 
the transverse evolution of the beam, allowing to investigate the impact of additional degrees of freedom on 
adiabaton formation.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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