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Abstract. We introduce the stochastic multiplicative model of time intervals between the events, 

defining a multiplicative point process and analyze the statistical properties of the signal. Such a 

model system exhibits power-law spectral density S(f)~1/f�, scaled as power of frequency for 

various values of � between 0.5 and 2. We derive explicit expressions for the power spectrum and 

other statistics and analyze the model system numerically. The specific interest of our analysis is 

related with the theoretical modeling of the nonlinear complex systems exhibiting fractal behavior 

and self-organization. 

Introduction 

The power spectra of a large variety of different evolutional systems at low frequencies have 1/f 

behavior. 1/f noise has been observed in condensed matter systems, river discharge, DNA base 

sequence structure, cellular automata, traffic flow, economics, financial markets and other complex 

systems with the elements of self-organization (see, e.g., [1-3] and references herein). Considerable 

parts of such systems are fractal and their statistics exhibit scaling. The universality of 1/f noise 

suggests that it does not arise as a consequence of particular interaction but it is a characteristic 

signature of complexity. Computer experiments with various cellular automata and with other 

nonlinear systems illustrate how this might appear.  

There are a number of the self-organized systems. One of the most popular of them is the 

sandpile model [4]. These nonlinear model systems were introduced also for explanation of 1/f 

noise as a result of the self organized criticality. The great interest of research in this direction is 

related with the complex behavior which mimics a noise with fractal characteristics. The noise, 

however, is originated from the nonlinear deterministic systems.  

From our point of view it is possible to define a stochastic model system exhibiting fractal 

statistics and 1/f noise, as well. Such model system may represent the limiting behavior of the 

dynamical or deterministic complex systems, explaining the evolution of the complexity into 

chaotic regime. On the other hand, the stochastic point processes, analyzed in this paper, may be 

used for description of phenomena that occur as random sequences of events, exhibiting scaling of 

several statistics [5]. Considerable part of real stochastic sequences of events in physics, 

biomedicine, geophysics and economics are fractal. The proposed point process model of such 

systems has an evident physical meaning, because in the low frequency limit the real pulses may be 

represented as the point events.  

The aim of this contribution is an introduction of the multiplicative stochastic model for the time 

interval between events in stochastic sequence, defining in such a way the multiplicative point 

process. We adopt the model of 1/f noise based on the Brownian motion of the time interval 

between subsequent pulses proposed in Refs. [3,6,7] introducing the stochastic multiplicative model 

of the interevent time [8]. The model exhibits the first order and the second order power-law 

statistics and serves as the theoretical description of the empirical trading activity in the financial 

markets [9].  

Our specific interest is an analysis of the relation between the origin of the power-law 

distributions and the power-law correlations. Obviously, the multiplicative point process can be 
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useful for the modeling of a wide variety of natural systems as well as of the processes in economics 

and finance. We expect that the multiplicative point process can serve as a limiting theoretical 

approach in the analysis of the nonlinear complex systems with the elements of self-organization 

and for analysis of transition to the chaotic behavior.  

Multiplicative Point Process 

We consider a signal ( )I t  as a sequence of the random correlated pulses 

( ) ( )k k

k

I t a t t�= ��  (1) 

where ka  is a contribution to the signal of one pulse at the time moment kt , for example, a 

contribution of one transaction to the financial data. When ka  is a constant, the process (1) is 

completely defined by the set of events { }kt  or equivalently by the set of interevent intervals 

1{ }k k kt t�
+

= � . Kaulakys and Me�kauskas [3,6,7] showed analytically that the relatively slow 

Brownian fluctuations of the interevent time k�  exhibited 1/ f  fluctuations of the signal ( )I t .  

Power spectral density of the signal (1) can be written as  

max max

min min

22
( ) lim exp( 2 ( ; ))

k k k

T
k k q k k

a
S f i f k q

T
�

�

	

= = �

= � �� �  (2) 

where T  is the observation time, ( ; ) k q kk q t t
+

� = �  is the difference of pulses occurrence times 
k q

t
+

 

and kt , a  denotes expectation of ka , while 
min

k  and 
max

k  are minimal and maximal values of index 

k  in the time interval of observation T . 

We will study the multiplicative processes defined by the stochastic iterative equation 

1

2 1
.

k k k k k

µ µ� � � � ��
+

�
= + +  (3) 

Here the interevent time k�  fluctuates due to the external random perturbation by a sequence of 

uncorrelated normally distributed random variable k�  with a zero expectation and unit variance, �  

denotes the standard deviation of the white noise and 1 =  is a damping constant of the signal. 

The diffusion described by Eq. (3) has to be restricted in some time interval min max� � �< < .  

Pure multiplicativity corresponds to the parameter 1µ = . Nevertheless, other values of µ  can 

produce power laws, as well, and the explicit expressions can be derived without the loss of 

generality. The iterative relation (3) can be rewritten as a continuous Langevine stochastic 

differential equation in k  space 

2 1

k k k

d

dk

µ µ�
� � ���

= +  (4) 

where ( )
kk k k� � ��

�= � . The stationary solution of the corresponding Fokker-Plank equation with 

a zero flow gives the long time probability distribution of �  in the space k  

( )kP C �
�� �=  (5) 
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where C� has to be defined from the normalization 
max

min

( ) 1P d
�

�
� � =�  and 

2

2
2


� µ

�
= � . 

Power Spectral Density and Counting Statistics 

The power spectral density is a well-established measure of long-time correlations and is widely 

used in stochastic systems. For the normal distribution of ( ; )k q�  Eq. (2) takes the form 

2
2 2 2

,

2
( ) lim exp{ 2 ( ; ) 2 ( ; )}

T
k q

a
S f i f k q f k q

T
� � � �

	

= � ��  (6) 

where ( ; )k q�  can be expressed from the solution of the multiplicative stochastic equation (4),  

2 2 2 1

1 1

1
( ; ) exp(( ) )

2

q i

k j

i j

k q i
µ µ�  � � �� �� �

= =

� = � +� � . (7) 

Averaging over the normal distributions of j�  yields the explicit expressions for the mean ( ; )k q�  

and variance 
2
( ; )k q� � , 

2 1 2 2
( ; ) ( )

2
k kk q q q

µ
� � � �� = + + , (8) 

2
2 2 3( ; )

3
kk q qµ �� �� = . (9) 

In the low frequency limit Eqs. (6) and (8) yield the power spectral density  

max

min

12
3 2 3 2 22

( ) ( ) Re exp( ( )) ( ) .
4(3 2 )

x

x

C a
S f i x erfc ix x dx

ff
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�
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Here we introduce the scaled variable 3 2f
x µ�

�


�
=  and �  is the expectation of k� . For min 0x 	  

and maxx 	
  Eq. (10) yields the explicit form of the power spectrum  

2

3 2

1
( )
2 3 2
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ff
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. (11) 

Eq. (11) proves that the multiplicative point process exhibits a general model of signals with the 

power spectral density ( ) ~S f f �� . The scaling exponent is 

2
2 / 2

1
3 2

 � µ
�

µ

�
= +

�
. (12) 

Numerical calculations confirm the validity of Eqs. (10), (11) and (12).  
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In the Fig. 1 and Fig. 2 we provide results of numerical calculations for the various values of 

parameters. We suppose that this stochastic model with the parameters resulting in 1� ;  can be 

adopted for a wide variety of real systems. 
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Fig. 1. Power spectral density vs frequency of the signal generated by the Eqs. (1), (2) and (3) with 

the parameters ,1=µ  05.0=�  and different relaxations of the signal  . We restrict the diffusion 

of the interevent time in the interval 6

min 10�
=� , 1max =�  with the reflective boundary condition at 

min�  and transition to the white noise, kk ���� +=
+ max1 , for max�� >k . 
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Fig. 2. The same as in Fig. 1 but for 5.0=µ , 02.0=�  and different parameters . 
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Let us assume that 1a �  and the signal ( )I t  counts the transactions in financial markets. Then 

the number of transactions in the selected time window d�  defined as ( ) ( )
dt

t

N t I t dt

�+

= �  measures 

the trading activity. For the pure multiplicative model, 1µ = , Eqs. (7) and (8) define the relation 

between N  and � . After substitution ,k q N� �	 	  and ( ; )
d

k q �	�  we get 

2

2
d

N N


� � �+ = . (13) 

This relationship may be used for definition of the probability density function of N in a real time 

from the relation ( ) ( )
t t

P N dN P d� �= ,  
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. (14) 

In the case of pure multiplicativity, 1µ = , the model has only one parameter, 22 / � , defining 

the scaling of the power spectral density, the power-law distributions of interevent time and the 

counting number N . The model proposed with the adjusted parameter 22 / �  nicely describes the 

empirical power spectral density and the exponent of power-law distribution of the trading activity 

N  in the financial markets [10]. 

Conclusions 

We introduce a multiplicative stochastic model for the time intervals between events of the process 

seeking to define the variety of self-affine time series exhibiting the power-law spectra of different 

slopes. Such a model of time series has only a few parameters. However, it defines the statistical 

properties of the system, i.e., the power-law behavior of the distribution function and the scaled 

power spectral density of the signal. Such power-law phenomena are observable in a large variety of 

processes, from earthquakes to the financial time series. The proposed model relates and connects 

the power-law correlations and the power-law distribution of the signal intensity into the consistent 

theoretical approach. The generated time series are fractal since they exhibit jointly the power-law 

probability distribution and the power-law autocorrelation of the signal. The ability of the model to 

simulate 1/f noise as well as to reproduce signals with the values of power spectral density slope 

between 0.5 and 2 promises wide applications of the model. 
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