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Uncertainty presents significant challenges in the reasoning about and controlling of 
complex dynamical systems. To address this challenge, numerous researchers are developing 
improved methods for stochastic analysis. This book presents a diverse collection of some of 
the latest research in this important area. In particular, this book gives an overview of some 
of the theoretical methods and tools for stochastic analysis, and it presents the applications of 
these methods to problems in systems theory, science, and economics. 

The first section of the book presents theoretical methods and tools for the analysis of stochastic 
systems. The first two chapters by Sharma et al. present the Fokker-Planck equation and the 
Ito calculus. In Chapter 3, Charles presents the use of colored noise with stochastic differential 
equations. In Chapter 4, Lopez-Ruiz and Sanchez discuss coupled map lattices and cellular 
automata. In Chapter 5, Ohtsubo presents a game theoretic approach. In Chapter 6, Doria 
presents an approach that uses Hausdorff outer and inner measures. In Chapter 7, Warin and 
Vialle for analysis using distributed algorithms. Finally, in Chapter 8, Spiring explores the use 
of Mathematica7. 

The second section of the book presents the application of stochastic methods in systems 
theory. In Chapter 9, Yang et al. present a learning algorithm for the parity problem. In 
Chapter 10, Nechval and Pugailis present an improved technique for state estimation. In 
Chapter 11, Serra presents a fuzzy identification method. In Chapter 12, Ferreira and Serra 
present an application of fuzzy methods to dynamic systems. The next three chapters by Yan 
et al., Perez et al., and Courmontagne explore the problem of filtering for stochastic systems. 
In Chapter 16, Olama et al. look at wireless fading channel models. In Chapter 17, Liang 
considers information flow and causality quantification. The last two chapters of this section 
by Zhang and Zhang and Sokolov consider control systems. 

The third section of the book presents the application of stochastic methods to problems in 
science. In Chapter 20, Marano and Sgobba present design criteria for vibration control. In 
Chapter 21, Kaminski and Lauke consider reinforced elastomers. In Chapter 22, Alessandro 
and Francesco discuss structural design. In Chapter 23, Lam et al. apply stochastic methods to 
the modeling of earthquake ground motion. In Chapter 24, Rastovic addresses laser-plasma 
interactions. Finally, in Chapter 25, Kuwahara et al. apply new, efficient stochastic simulation 
methods to biological systems. 
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The final section of the book presents the application of stochastic methods to problems in 
economics. In Chapter 26, Nechval and Purgailis consider the problem of determining a 
products lifetime. In Chapter 27, Gontis et al. applies a stochastic model to financial markets. 
In Chapter 28, Mania et al. take on the problem of hedging in the market. In Chapter 29, 
Simovic and Simovic apply stochastic control approaches to tactical and strategic operations 
in the market. Finally, in Chapter 30, Darya et al. consider optimal control problems in 
fractional bio-economic systems.
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In 1984, H. Risken authored a book (H. Risken, The Fokker-Planck Equation: Methods of 
Solution, Applications, Springer-Verlag, Berlin, New York) discussing the Fokker-Planck 
equation for one variable, several variables, methods of solution and its  applications, 
especially dealing with laser statistics. There has been a considerable progress on the topic 
as well as the topic has received greater clarity. For these reasons, it seems worthwhile again 
to summarize previous as well as recent developments, spread in literature, on the topic. 
The Fokker-Planck equation describes the evolution of conditional probability density for 
given initial states for a Markov process, which satisfies the Itô stochastic differential 
equation. The structure of the Fokker-Planck equation for the vector case is  
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where ),( txf t is the system non-linearity, ),( txG t is termed as the process noise 

coefficient, and ),,(
0 ot txtxp is the conditional probability density. The Fokker-Planck 

equation, a prediction density evolution equation, has found its applications in developing 
prediction algorithms for stochastic problems arising from physics, mathematical control 
theory, mathematical finance, satellite mechanics, as well as wireless communications. In 
this chapter, the Authors try to summarize elementary proofs as well as proofs constructed 
from the standard theories of stochastic processes to arrive at the Fokker-Planck equation. 
This chapter encompasses an approximate solution method to the Fokker-Planck equation 
as well as a Fokker-Planck analysis of a Stochastic Duffing-van der Pol (SDvdP) system, 
which was recently analysed by one of the Authors. 
 
Key words: The Duffing-van der Pol system, the Galerkin approximation, the Ornstein-
Uhlenbeck process, prediction density, second-order fluctuation equations.  
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1. Introduction 

The stochastic differential equation formalism arises from stochastic problems in diverse 
field, especially the cases, where stochastic problems are analysed from the dynamical 
systems’ point of view. Stochastic differential equations have found applications in 
population dynamics, stochastic control, radio-astronomy, stochastic networks, helicopter 
rotor dynamics, satellite trajectory estimation problems, protein kinematics, neuronal 
activity, turbulence diffusion, stock pricing, seismology, statistical communication theory, 
and structural mechanics. A greater detail about stochastic differential equations’ 
applications can be found in Kloeden and Platen (1991). Some of the standard structures of 
stochastic differential equations are the Itô stochastic differential equation, the Stratonovich 
stochastic differential equation, the stochastic differential equation involving p -differential, 
stochastic differential equation in Hida sense, non-Markovian stochastic differential 
equations as well as the Ornstein-Uhlenbeck (OU) process-driven stochastic differential 
equation. The Itô stochastic differential equation is the standard formalism to analyse 
stochastic differential systems, since non-Markovian stochastic differential equations can be 
re-formulated as the Itô stochastic differential equation using the extended phase space 
formulation, unified coloured noise approximation (Hwalisz et al. 1989). Stochastic 
differential systems can be analysed using the Fokker-Planck equation (Jazwinski 1970). The 
Fokker-Planck equation is a parabolic linear homogeneous differential equation of order two 
in partial differentiation for the transition probability density. The Fokker-Planck operator is 
an adjoint operator. In literature, the Fokker-Planck equation is also known as the 
Kolmogorov forward equation. The Kolmogorov forward equation can be proved using 
mild regularity conditions involving the notion of drift and diffusion coefficients (Feller 
2000). The Fokker-Planck equation, definition of the conditional expectation, and integration 
by part formula allow to derive the evolution of the conditional moment. In the Risken’s 
book, the stochastic differential equation involving the Langevin force was considered and 
subsequently, the Fokker-Planck equation was derived. The stochastic differential equation 
with the Langevin force can be regarded as the white noise-driven stochastic differential 

equation, where the input process satisfies ).(,0 stwww stt    He considered  

the approximate solution methods to the scalar and vector Fokker-Planck equations 
involving change of variables, matrix continued-fraction method, numerical integration 
method, etc. (Risken 1984, p. 158). Further more, the laser Fokker-Planck equation was 
derived. 
This book chapter is devoted to summarize alternative approaches to derive the Fokker-
Planck equation involving elementary proofs as well as proofs derived from the Itô 
differential rule. In this chapter, the Fokker-Planck analysis hinges on the stochastic 
differential equation in the Itô sense in contrast to the Langevin sense. From the 
mathemacians’ point of view, the Itô stochastic differential equation involves rigorous 
interpretation in contrast to the Langevin stochastic differential equation. On the one hand, 
the stochastic differential equation in Itô sense is described as 

,),(),( tttt dBtxGdttxfdx  on the other, the Langevin stochastic differential 

equation assumes the structure ,),(),( tttt wtxGtxfx  where tB and tw  are the 
Brownian and white noises respectively. The white noise can be regarded as an informal 

non-existent time derivative tB of the Brownian motion .tB  Kiyoshi Itô, a famous Japanese 

mathematician, considered the term dtBdB tt
'' and developed Itô differential rule. The 

results of Itô calculus were published in two seminal papers of Kiyoshi Itô in 1945. The 
approach of this chapter  is different and more exact in contrast to the Risken’s book in the 
sense that involving the Itô stochastic differential equation, introducing relatively greater 
discussion on the Kolmogorov forward and Backward equations. This chapter discusses a 
Fokker-Planck analysis of a stochastic Duffing-van der Pol system, an appealing case, from 
the dynamical systems’ point of view as well.  
This chapter is organised as follows: (i) section 2 discusses the evolution equation of the 
prediction density for the Itô stochastic differential equation. A brief discussion about 
approximate methods to the Fokker-Planck equation, stochastic differential equation is also 
given in section 2 (ii) in section 3, the stochastic Duffing-van der Pol system was analysed to 
demonstrate a usefulness of the Fokker-Planck equation. (iii) Section 4 is about the 
numerical simulation of the mean and variance evolutions of the SDvdP system. Concluding 
remarks are given in section (5). 

 
2. Evolution of conditional probability density 

The Fokker-Planck equation describes the evolution of conditional probability density for 
given initial states for the Itô stochastic differential system. The equation is also known as 
the prediction density evolution equation, since it can be utilized to develop prediction 
algorithms, especially where observations are not available at every time instant. One of the 
potential applications of the Fokker-Planck equation is to develop estimation algorithms for 
the satellite trajectory estimation. This chapter summarizes four different proofs to arrive at 
the Fokker-Planck equation. The first two proofs can be regarded as elementary proofs and 
the last two utilize the Itô differential rule. Moreover, the Fokker-Planck equation for the OU 
process-driven stochastic differential equation is discussed here, where the input process 
has non-zero, finite, relatively smaller correlation time.  
The first proof of this chapter begins with the Chapman-Kolmogorov equation. The 
Chapman-Kolmogorov equation is a consequence of the theory of the Markov process. This 
plays a key role in proving the Kolmogorov backward equation (Feller 2000). Here, we 
describe briefly the Chapman-Kolmogorov equation and subsequently, the concept of the 
conditional probability density as well as transition probability density are introduced to 
derive the evolution of conditional probability density for the non-Markov process. The 
Fokker-Planck equation becomes a special case of the resulting equation.    The conditional 
probability density  
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321 ttt  and take values .,, 321 xxx  In the theory of the Markov process, the above can 
be re-stated as 
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integrating over the variable 2x , we have  
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introducing the notion of the transition probability density and time instants 
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Note that the above density evolution equation is derived for the arbitrary stochastic 
process )0,(  txX t . Here, the arbitrary process means that there is no restriction 
imposed on the process while deriving the density evolution equation and can be regarded 
as the non-Markov process. Consider a Markov process, which satisfies the Itô stochastic 
differential equation, the evolution of conditional probability density retains only the first 
two terms )(1 xk and ),(2 xk  which is a direct consequence of the stochastic differential rule 
for the Itô stochastic differential equation in combination with the definition 
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The Fokker-Planck operator is an adjoint operator, since ,,)(, pLpL   where 

(.)L is the Kolmogorov backward operator. This property is utilized in deriving the 

evolution )( txd


of the conditional moment (Jazwinski 1970). The Fokker-Planck equation 
is also known as the Kolmogorov Forward equation. 
The second proof of this chapter begins with the Green function, the Kolmogorov forward 
and backward equations involve the notion of the drift and diffusion coefficients as well as 
mild regularity conditions (Feller 2000). The drift and diffusion coefficients are regarded as 
the system non-linearity and the ‘stochastic perturbation in the variance evolution’ 
respectively in noisy dynamical system theory. Here, we explain briefly about the formalism 
associated with the proof of the Kolmogorov forward and backward equations. Consider the 
Green’s function  
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respectively (Feller 2000), and the detailed proof of equation (8) can be found in a celebrated 
book authored by Feller (2000). For the vector case, the Kolmogorov backward equation can 
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where the mappings f and G  are the system non-linearity and process noise coefficient  
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Note that the Kolmogorov backward equation is a parabolic linear homogeneous differential 
equation of order two in partial differentiation, since the backward operator is a linear    
operator and the homogeneity condition holds. The Kolmogorov forward equation can be 
derived using the relation  
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The terms )(yb and )(ya  of equation (9) have similar interpretations as the terms of 
equation (8). The vector version of equation (9) is  
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ji GGa )( , the Kolmogorov forward operator assumes the structure 

of the Fokker-Planck operator and is termed as the Kolmogorov-Fokker-Planck operator. 
The third proof of the chapter explains how the Fokker-Planck equation can be derived using 
the definition of conditional expectation and Itô differential rule. 
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Finally, we derive the Fokker-Planck equation using the concept of the evolution of the 
conditional moment and the conditional characteristic function. Consider the state 

vector ,Uxt   RU : , i.e. ,)( Rxt  and the phase space .nRU   The state 

vector tx  satisfies the Itô SDE as well. Suppose the function )( tx is twice differentiable. 

The evolution )( txd


of the conditional moment is the standard formalism to analyse 

stochastic differential systems. Further more, )( txd
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greater detail can be found in Sharma (2008). The stochastic evolution )( txd of the scalar 
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i.e. .0),(  dBtxG ti  Consider ,)( t
T xS

t ex  the evolution of the characteristic 

function becomes 
 

.)),()(
)(

),()(
2
1),(()( 2

2
2 dtetxGGSS

x
x

txGGSetxfSedE
qp

xS
tpq

T
qp

p p

t
tpp

T
p

p

xS
tpp

xS t
T

t
T

t
T















  
    

  

 
Making the use of the definition of the characteristic function as well as the integration by 
part formula, we arrive at the Fokker-Planck equation.  
The Kushner equation, the filtering density evolution equation for the Itô stochastic 
differential equation, is a ‘generalization’ of the Fokker-Planck equation. The Kushner 
equation is a partial-integro stochastic differential equation, i.e.  
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where (.)L is the Fokker-Planck operator, ),,,( 0 ttztxpp    the observation 
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tt Bdxhz   and ),( txh t is the measurement non-linearity. Harald J 

Kushner first derived the expression of the filtering density and subsequently, the filtering 
density evolution equation using the stochastic differential rule (Jazwinski 1970). Liptser-
Shiryayev discovered an alternative proof of the filtering density evolution, equation (14), 

involving the following steps: (i) derive the stochastic evolution 


)( txd   of the conditional 
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 (ii) subsequently, the stochastic 

evolution of the conditional characteristic function can be regarded as a special case of the 

conditional moment evolution, where t
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t ex )( (iii) the definition of the conditional 
expectation as well as integration by part formula lead to the filtering density evolution 
equation, see Liptser and Shiryayev (1977). RL Stratonovich developed the filtering density 

evolution for stochastic differential equation involving the 
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-differential as well. For this 

reason, the filtering density evolution equation is also termed as the Kushner-Stratonovich 
equation.  
Consider the stochastic differential equation of the form  
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where t is the Ornstein-Uhlenbeck process and generates the process tx , a non-Markov 
process. The evolution of conditional probability density for the non-Markov process with 
the input process with a non-zero, finite, smaller correlation time cor , i.e. 10  cor , 
reduces to the Fokker-Planck equation. One of the approaches to arrive at the Fokker-Planck 
equation for the OU process-driven stochastic differential equation with smaller correlation 
time is function calculus. The function calculus approach involves the notion of the 
functional derivative. The evolution of  conditional probability density for the output 
process tx , where the input process t  is a  zero mean, stationary and Gaussian process, 
can be written (Hänggi 1995, p.85) as  
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Equation (18) in combination with equation (19) leads to  
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After retaining the first two terms of the right-hand side of equation (21) and equations (22)-
(23) in combination with equation (21) lead to   
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Equations (24)-(25) in conjunction with equation (16) give  
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The Kolmogorov-Fokker-Planck equation and the Kolmogorov backward equation are 
exploited to analyse the Itô stochastic differential equation by deriving the evolution of the 
conditional moment. The evolutions of conditional mean and variance are the special cases 
of the conditional moment evolution. The conditional mean and variance evolutions are 
infinite dimensional as well as involve higher-order moments. For these reasons, 
approximate mean and variance evolutions are derived and examined involving numerical 
experiments. Alternatively, the Carleman linearization to the exact stochastic differential 
equation resulting the bilinear stochastic differential equation has found applications in 
developing the approximate estimation procedure. The Carleman linearization transforms a 
finite dimensional non-linear system into a system of infinite dimensional linear systems 
(Kowalski and  Steeb 1991). 
The exact solution of the Fokker-Planck equation is possible for the simpler form of the 
stochastic differential equation, e.g. 
 
 .tt adBdx    (26) 

 
The Fokker-Planck equation for equation (26) becomes 
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satisfies equation (26). However, the closed-form solution to the Fokker-Planck equation for 
the non-linear stochastic differential equation is not possible, the approximate solution to 
the Fokker-Planck equation is derived. The Galerkin approximation to the Fokker-Planck 
equation received some attention in literature. The Galerkin approximation can be applied 
to the Kushner equation as well. More generally, the usefulness of the Galerkin 
approximation to the partial differential equation and the stochastic differential equation for 
the approximate solution can be explored. The theory of the Galerkin approximation is 
grounded on the orthogonal projection lemma. For a greater detail, an authoritative book, 
computational Galerkin methods, authored by C A J Fletcher can be consulted (Fletcher 
1984). 
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satisfies equation (26). However, the closed-form solution to the Fokker-Planck equation for 
the non-linear stochastic differential equation is not possible, the approximate solution to 
the Fokker-Planck equation is derived. The Galerkin approximation to the Fokker-Planck 
equation received some attention in literature. The Galerkin approximation can be applied 
to the Kushner equation as well. More generally, the usefulness of the Galerkin 
approximation to the partial differential equation and the stochastic differential equation for 
the approximate solution can be explored. The theory of the Galerkin approximation is 
grounded on the orthogonal projection lemma. For a greater detail, an authoritative book, 
computational Galerkin methods, authored by C A J Fletcher can be consulted (Fletcher 
1984). 
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3. A stochastic Duffing-van der Pol system 

The second-order fluctuation equation describes a dynamical system in noisy environment. 
The second-order fluctuation equation can be regarded as                                                           
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and ),( tG t is the process noise coefficient matrix. The Fokker-Planck equation can be 
stated as (Sage and Melsa1971, p.100) 
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Alternatively, the stochastic differential system can be analysed qualitatively involving the 
Itô differential rule, see equation (13) of the chapter. The energy function for the stochastic 
system of this chapter is  
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The qualitative analysis of the stochastic problem of this chapter  using the multi-
dimensional Itô differential rule illustrates the contribution of diffusion parameters to the 
stochastic evolution of the energy function. The energy evolution equation suggests the 
system will exhibit either increasing oscillations or decreasing depending on the choice of 
the parameters ,, b and the diffusion parameters ., uB   The numerical experiment 
also confirms the qualitative analysis of this chapter, see figures (1)-(2). This chapter 
discusses a Fokker-Planck analysis of the SDvdP system, recently analysed and published 
by one of the Authors (Sharma 2008).  
Making use of the Fokker-Planck equation, Kolmogorov backward equation, the evolutions 
of condition mean and variances (Jazwinski 1970, p. 363) can be stated as                                                             
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and ),( txf t is the system non-linearity and ),( txG t is the dispersion matrix. The 
dispersion matrix is also known as the process noise coefficient matrix in mathematical 
control theory. The mean and variance evolutions using the third-order approximation can 
be derived  involving the following: (i) first, develop the conditional moment 

evolution )( txd
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the third-order partials of the system non-linearity and diffusion coefficient are introduced 
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Jazwinski (1970, p. 363) and become a   special case of the evolution equations, i.e. (33) and 
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Evolution equations (33) and (34) involve the partial differential equation formalism. The 
mean and variance evolutions for the stochastic problem of concern here become the special 
cases of equations (33) and (34) as well as assume the structure of ODEs. 

 
4. Numerical simulations 

Approximate evolution equations, equations (33) and (34), are intractable theoretically, since 
the global properties are replaced with the local. Numerical experiments under a variety of 
conditions allow examining the effectiveness of the approximate estimation procedure. The 
following set of initial conditions and system parameters can be chosen for the numerical 
testing:  
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Here the initial variances are chosen ‘non-zero’ and covariances take zero values, which 
illustrate uncertainties in initial conditions and the uncertainties are initially uncorrelated 

respectively. The order n of the state-dependent perturbation t
n
tB dBx is three, since this 

choice of the order contributes to higher-order partials of the diffusion coefficient 

),)(( txGG t
T and allows to examine the efficacy of higher-order estimation algorithms. 
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Other choices can be made about the ‘state-dependent perturbation order’ provided .1n  
The diffusion parameters B and u are selected so that the contribution to the force from 
the random forcing term is smaller than the contribution from the deterministic part. Thanks 
to a pioneering paper of H. J. Kushner on stochastic estimation theory that the initial data 
can be adjusted for the convenience of the estimation procedure, however, it must be tested 
under a variety of conditions (Kushner 1967, p. 552). The choice of an estimation procedure 
is also dictated by some experimentation and guesswork. More over, the scanty numerical 
evidence will not suffice to adjudge the usefulness of the estimation procedure. As a result 
of these, numerical experiments of this chapter encompass three different approximations.  

 In this chapter, the three different estimation procedures are the third-order, second-order, 
and first-order approximate evolution equations. The third-order approximate variance 
evolution equation involves the additional correction terms, i.e.  
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In the second-order variance evolution equation, these additional terms are not accounted for. 
The structure of the second-order mean evolution will be the same as the third-order, since the 
third-order moment vanishes with ‘nearly Gaussian assumption’. The graphs of this chapter 
illustrate unperturbed trajectories correspond to the bilinear approximation, since the mean 
trajectories involving the bilinear approximation do not involve the variance term. On the 
other hand, the perturbed trajectories correspond to the second-order and third-order 
approximations, see figures (1)-(2). The qualitative analysis of the stochastic problem of 
concern here confirms the ‘mean evolution pattern’ using the third-order approximation. This 
chapter discusses briefly about the numerical simulation of the stochastic Duffing-van der Pol 
system. A greater detail about the Fokker-Planck analysis of the stochastic problem considered 
here can be found in a paper recently published by one of the Authors (Sharma 2008). 

 
Fig. 1. A comparison between the mean trajectories for position using three approximations 
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Fig. 2. A comparison between the mean trajectories for velocity using three approximations 
 

 
Fig. 3. A comparison between the variance trajectories for position using three approximations 
 

 
Fig. 4. A comparison between the variance trajectories for velocity using three approximations 

_Third-order approximation (perturbed trajectory)  
...Second-order approximation (perturbed trajectory) 
-. Bilinear approximation (unperturbed trajectory) 

_Third-order approximation (perturbed trajectory)  
...Second-order approximation (perturbed trajectory) 
-. Bilinear approximation (unperturbed trajectory) 

Th
e 

m
ea

n 
tr

aj
ec

to
ry

 fo
r v

el
oc

ity
  

Th
e 

va
ri

an
ce

 tr
aj

ec
to

ry
  f

or
 p

os
iti

on
  

Th
e 

va
ri

an
ce

 tr
aj

ec
to

ry
  f

or
 v

el
oc

ity
  



The Fokker-Planck equation 19

Other choices can be made about the ‘state-dependent perturbation order’ provided .1n  
The diffusion parameters B and u are selected so that the contribution to the force from 
the random forcing term is smaller than the contribution from the deterministic part. Thanks 
to a pioneering paper of H. J. Kushner on stochastic estimation theory that the initial data 
can be adjusted for the convenience of the estimation procedure, however, it must be tested 
under a variety of conditions (Kushner 1967, p. 552). The choice of an estimation procedure 
is also dictated by some experimentation and guesswork. More over, the scanty numerical 
evidence will not suffice to adjudge the usefulness of the estimation procedure. As a result 
of these, numerical experiments of this chapter encompass three different approximations.  

 In this chapter, the three different estimation procedures are the third-order, second-order, 
and first-order approximate evolution equations. The third-order approximate variance 
evolution equation involves the additional correction terms, i.e.  

rqp

tj
qr

rqp
ip

tf
PP












),(
2
1 3

,,
and

rqp

ti
qr

rqp
jp

tfPP








 ),(

2
1 3

,,
. 

In the second-order variance evolution equation, these additional terms are not accounted for. 
The structure of the second-order mean evolution will be the same as the third-order, since the 
third-order moment vanishes with ‘nearly Gaussian assumption’. The graphs of this chapter 
illustrate unperturbed trajectories correspond to the bilinear approximation, since the mean 
trajectories involving the bilinear approximation do not involve the variance term. On the 
other hand, the perturbed trajectories correspond to the second-order and third-order 
approximations, see figures (1)-(2). The qualitative analysis of the stochastic problem of 
concern here confirms the ‘mean evolution pattern’ using the third-order approximation. This 
chapter discusses briefly about the numerical simulation of the stochastic Duffing-van der Pol 
system. A greater detail about the Fokker-Planck analysis of the stochastic problem considered 
here can be found in a paper recently published by one of the Authors (Sharma 2008). 

 
Fig. 1. A comparison between the mean trajectories for position using three approximations 

_Third-order approximation (perturbed trajectory)  
...Second-order approximation (perturbed trajectory) 
-. Bilinear approximation (unperturbed trajectory) 

Th
e 

m
ea

n 
tr

aj
ec

to
ry

 fo
r p

os
iti

on
  

 
Fig. 2. A comparison between the mean trajectories for velocity using three approximations 
 

 
Fig. 3. A comparison between the variance trajectories for position using three approximations 
 

 
Fig. 4. A comparison between the variance trajectories for velocity using three approximations 
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5. Conclusion 

In this chapter, the Authors have summarized four different methods to derive the Fokker-
Planck equation, including two elementary proofs. The Fokker-Planck equation of the OU 
process-driven stochastic differential system, which received relatively less attention in 
literature, is also discussed. Most notably, in this chapter, the OU process with non-zero, 
finite and smaller correlation time was considered. This chapter discusses briefly 
approximate methods to the Fokker-Planck equation, stochastic differential equations as 
well as lists ‘celebrated books’ on the topic. It is believed that the Fokker-Planck analysis of 
the stochastic problem discussed here will be useful for analysing stochastic problems from 
diverse field.  
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The deterministic versions of dynamical systems have been studied extensively in literature. 
The notion of noisy dynamical systems is attributed to random initial conditions and small 
perturbations felt by dynamical systems. The stochastic differential equation formalism is 
utilized to describe noisy dynamical systems. The Itô calculus, a pioneering contribution of 
Kiyoshi Itô, is regarded as a path-breaking discovery in the branch of mathematical science 

in which the term dtBdB tt
'' , where the Brownian motion }.,{ 0  ttBB t The 

Itô theory deals with multi-dimensional Itô differential rule, Itô stochastic integral and 
subsequently, can be exploited to analyse non-linear stochastic differential systems.  
   This chapter discusses the usefulness of Itô theory to analysing a noisy dynamical system. 
In this chapter, we consider a system of two coupled second-order fluctuation equations, 
which has central importance in noisy dynamical systems. Consider the system of the 
coupled fluctuation equations of the form  
 

),,,,,,( 1221111 BxxxxtFx    

),,,,,,( 2221122 BxxxxtFx    
 

where the state vector T
t xxxxx ),,,( 2121  and the vector Brownian 

motion .),( 21
T

t BBB   Interestingly, a suitable choice of the right-hand side 

terms 21 ,FF  of the above formalism describes the motion of an orbiting satellite in noisy 
environment, which w’d be the subject of discussion. After accomplishing the phase space 
formulation, the structure of the dynamical system of concern here becomes a multi-
dimensional stochastic differential equation. Remarkably, in this chapter, the resulting SDE 
is analysed using the Itô differential rule in contrast to the Fokker-Planck approach. This 
chapter aims to open the topic to a broader audience as well as provides guidance for 
understanding the estimation-theoretic scenarios of stochastic differential systems. 
Key words: Brownian motion, Itô differential rule, Fokker-Planck approach, second-order 
fluctuation equations, multi-dimensional stochastic differential equation 
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1. Introduction 

The Ordinary Differential Equation (ODE) formalism is utilized to analyse dynamical 
systems deterministically. After accounting the effect of random initial conditions and small 
perturbations felt by dynamical systems gives rise to the concept of stochastic processes and 
subsequently, stochastic differential equations, a branch of mathematical science. As a result 
of these, the SDE confirms actual physical situations in contrast to the ODE. A remarkable 
success of stochastic differential equations can be found in different branches of sciences, i.e. 
stochastic control, satellite trajectory estimations, helicopter rotor, stochastic networks, 
mathematical finance, blood clotting dynamics, protein kinematics, population dynamics, 
neuronal activity. A nice exposition about the application of stochastic processes  and 
Stochastic Differential Equations in sciences  can be found in celebrated books authored by 
Karatzas and Shreve (1991), Kloeden and Platen (1991),  Campen (2007) . The stochastic 
differential equation in the Itô sense is a standard form to describe dynamical systems in 
noisy environments. Alternatively, stochastic differential equations can be re-written 

involving 
2
1

 differential, i.e. the Stratonovich sense, as well as p -differential, where 

10  p  (Pugachev and Synstin 1977). The Itô stochastic differential equation describes 
stochastic differential systems driven by the Brownian motion process. The Brownian 
motion process has greater conceptual depth and ageless beauty. The Brownian motion 
process is a Gauss-Markov process as well as satisfies the martingale properties, 

i.e. stxFxE sst  ,)( and the sigma algebra rsrs FF

  (Revuz and Yor 1991, Strook 

and Varadhan 1979). The Central Limit Theorem (CLT) of stochastic processes confirms the 
usefulness of the Brownian motion for analysing randomly perturbed dynamical systems. 
The Brownian motion process can be utilized to generate the Ornstein-Uhlenbeck (OU) 
process, a colored noise (Wax 1954). This suggests that the stochastic differential system 
driven by the OU process can be reformulated as the Itô stochastic differential equation by 
introducing the notion of ‘augmented state vector approach’. Moreover, the state vector, 
which satisfies the stochastic differential equation driven by the OU process, will be non-
Markovian. On the other hand, the augmented state vector, after writing down the SDE for 
the OU process, becomes the Markovian. For these reasons, the Itô stochastic differential 
equation would be the cornerstone formalism in this chapter. The white noise can be 

regarded as informal non-existent time derivative tB of the Brownian motion .tB  Kiyoshi 

Ito considered the term '' tdB resulting from the multiplication between the white noise tB  

and the time differential .dt  
This chapter demonstrates the usefulness of the Itô theory to analysing the motion of an 
orbiting satellite accounting for stochastic accelerations. Without accounting the effect of 
stochastic accelerations, stochastic estimation algorithms may lead to inaccurate estimation 
of positioning of the orbiting particle.  
After introducing the phase space formulation, the stochastic problem of concern here can 
be regarded as a dynamical system perturbed by the Brownian motion process. In this 
chapter, the multi-dimensional Itô differential rule is exploited to analyse the stochastic 
differential system, which is the subject of discussion, in contrast to the Fokker-Planck 

approach (Sharma and Parthasarathy 2007). The Fokker-Planck Equation (FPE) is a 
parabolic linear homogeneous differential equation of order two in partial differentiation for 
the transition probability density. A discussion on the Fokker-Planck equation is given in 
appendix 2. The chapter encompasses estimation-theoretic scenarios as well as qualitative 
analysis of the stochastic problem considered here.    
This chapter is organized as follows: section (2) begins by writing a generalized structure of 
two-coupled second-order fluctuation equations. Subsequently, approximate evolutions of 
conditional mean vector and variance matrix are derived.   In section (3), numerical 
experiments were accomplished. Concluding remarks are given in section (4). Furthermore, 
a qualitative analysis of the stochastic problem of concern here can be found in ‘appendix’1. 

 
2. The structure of a noisy dynamical system and evolution equations 

In dynamical systems’ theory, second-order fluctuation equations describe dynamical 
systems perturbed by noise processes. Here, first we consider a system of two coupled 
second-order equations, which is an appealing case in dynamical systems and the theory of 
ordinary differential equations (Arnold 1995), 
 

),,,,,( 221111 xxxxtFx    

),,,,,( 221122 xxxxtFx    
 

after introducing the noise processes along the components ),( 21 xx of the coupled 
equations, the above can be re-written as 
 

                                                  ),,,,,,( 1221111 BxxxxtFx                                                 (1) 

                                                  ).,,,,,( 2221122 BxxxxtFx                                                (2) 
 

Equations (1)-(2) constitute  a system of two coupled second-order fluctuation equations. 
After accomplishing the phase space formulation, the above system of fluctuation equations 
leads to a multi-dimensional stochastic differential equation. Choose  
 

31 xx  , 

,42 xx   
and 

),,,,,,( 1432113 BxxxxtFx    

).,,,,,( 2432124 BxxxxtFx    
 
By considering a special case of the above system of equations, we have                                                               
 

,31 dtxdx   

,42 dtxdx   
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1. Introduction 

The Ordinary Differential Equation (ODE) formalism is utilized to analyse dynamical 
systems deterministically. After accounting the effect of random initial conditions and small 
perturbations felt by dynamical systems gives rise to the concept of stochastic processes and 
subsequently, stochastic differential equations, a branch of mathematical science. As a result 
of these, the SDE confirms actual physical situations in contrast to the ODE. A remarkable 
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After introducing the phase space formulation, the stochastic problem of concern here can 
be regarded as a dynamical system perturbed by the Brownian motion process. In this 
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and 
,),,,,(),,,,( 143213432133 dBxxxxtgdtxxxxtfdx   

.),,,,(),,,,( 243214432143 dBxxxxtgdtxxxxtfdx   
 

The resulting stochastic differential equation is a direct consequence of the Itô theory, i.e. 

.'' dtBdB tt
  More precisely,  

 
                tt dBxxxxtGdtxxxxtfdx ),,,,(),,,,( 43214321  ,                         (3) 

 
where                    
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Equation (3) can be regarded as the stochastic differential equation in the Itô sense. 
Alternatively, the above stochastic differential equation can be expressed in the Stratonovich 
sense. The Stratonovich stochastic differential equation can be re-written as the Itô stochastic 
differential equation using mean square convergence. A greater detail can be found in 
Jazwinski (1970), Protter (2005) and Pugachev and Synstin (1977). Here, the Itô SDE w’d be 
the cornerstone formalism for the stochastic problem of concern here. It is interesting to note 
that the motion of an orbiting particle accounting for stochastic dust particles’ perturbations 
can be modeled in the form of stochastic differential equation, i.e. equation (3), where 
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and r ,   are the radial and angular co-ordinates respectively. The radial and angular 

components of the stochastic velocity are 
 dB
r

dBr rr  and  respectively. A  

procedure for deriving the equation of motion of the stochastic differential system of 
concern here involves the following: (i) write down the Lagrangian of the orbiting particle                              
 

).()(
2
1),,( 222 rmVrrmrrL     

 
This form of the Lagrangian is stated in Landau (1976), which results from the Lagrangian 

)())(sin(
2
1),,,,( 222222 rmVrrrmrrL    evaluated at .

2
   

(ii) Subsequently, the use of the Euler-Lagrange equation with additional random forces 
along ))(),(( ttr  results stochastic two-body dynamics, a system of two coupled second-
order fluctuation equations assuming the structure of equations (1)-(2) (iii) accomplish 
phase space formulation, which leads to the multi-dimentional stochastic differential 
equation. For a greater detail about the motion of the orbiting particle in a stochastic dust 
environment, the Royal Society paper (Sharma and Partasarathy 2007) can be consulted. A 
theoretical justification explaining ‘why the Brownian motion process is accurate to describe 
the dust perturbation’ hinges on the Central Limit Theorem of stochastic processes. 
 Equation (3) in conjunction with equation (4) can be re-stated in the standard format as                          
 

trttt dBtxGdttxfdx ),,,(),(  , 

 
where tx is the state vector, ),( txf t  is the system non-linearity, ),,,(  rt txG is the 

dispersion matrix,  r and   are diffusion  parameters. The on-line estimation of the 

diffusion parameters r and   can be accomplished from experiments by taking 

measurements on the particle trajectory at discrete-time instants using the Maximum 
Likelihood Estimate (MLE). The MLE involves the notion of the conditional probability 

density ),,,,,....,(
0121   rzzzzzp

nn 
where 

i
z denotes the observation vector  

at i th time instant, .0 ni   The estimated parameter 

vector
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 Moreover, the 

conditional probability density ),,,,....,(
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i.e. 
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After determining the diffusion parameters on the basis of the MLE, the diffusion 
parameters are plugged into the above diffusion equation, i.e. stochastic differential 
equation. As a result of this, we have                             
 

                                                   ,),G( tttt dBtxdttxfdx  ),(                                          (5) 
 

where ).,0(~ IdtNdBt  A detailed discussion about the on-line estimation of unknown 
parameters of the stochastic differential system can be found in Dacunha-Castelle and 
Florens-Zmirou (1986). The above stochastic differential equation, equation (5), in 
conjunction with equation (4) can be analysed using the Fokker-Planck approach. Making 
the use of the FPE, we derive the evolution of the conditional moment, conditional 
expectation of the scalar function of an n -dimensional state vector. Note that the Fokker-
Planck operator is an adjoint operator.    
  This chapter is intended to analyse the stochastic problem of concern here using the multi-
dimensional Itô differential rule in contrast to the FPE approach. Here, we explain the Itô 
theory briefly and subsequently, its usefulness for analysing the noisy dynamical system. 

Consider the state vector   Uxxx T
t  21 ,  is a solution vector of the above SDE, 

RU : , i.e. ,)( Rxt  and the phase space .nRU   Suppose the 

function )( tx is twice differentiable.  The stochastic evolution )( txd of the scalar 
function of the n -dimensional state vector using the stochastic differential rule     can be 
stated as                                             
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After plugging the i th component of stochastic differential equation, i.e. equation (5), in the 
above evolution, we have         
 

2

2 )(
),()(

2
1),(

)(
()(

i

t
tii

T

i
ti

i i

t
t x

xtxGGtxf
x
xxd








  

  

      dt
xx

xtxGG
ji

t

ji
tij

T )
)(

),()(
2









   ,),(

)(
1,1





dBtxG

x
x

ti
rni i

t
 


         (6) 

 
where the size of the vector Brownian motion process is .r   Note that the contribution to the 
term )( txd coming from the second and third terms of the right-hand side of equation (6) 

is attributed to the property .dtdBdB    The integral counterpart of equation (6) can 

be written as 
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The evolution )( txd


of the conditional moment is the standard formalism to analyse 

stochastic differential systems. The contribution to the term )( txd


comes from the system 

non-linearity and dispersion matrix, since the term )( tx is a scalar function of the 
n dimensional state vector. The state vector satisfies the Itô stochastic differential 

equation, see equation (5). As a result of this, the expectation and differential operators can 
be interchanged.  
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Note that the expected value of the last term of the right-hand side of equation (6) vanishes, 

i.e. .0),(  dBtxG ti  For the exact mean and variance evolutions, we consider 

)( as)( txx it and ji xx ~~  respectively, where iii xxx ~ . Thus, we have 



The Itô calculus for a noisy dynamical system 27

),,,,....,,(
0121   rzzzzzp

nn 
 

),,),,,....,,,,,....,,((
012210121   rxxxxxxzzzzzpE

nnnnn 
  

 
where 

11 11 ))(,(


  kkkk
wxfxx kkkkk  


, 

1k
w is ).1,0(N  

 
After determining the diffusion parameters on the basis of the MLE, the diffusion 
parameters are plugged into the above diffusion equation, i.e. stochastic differential 
equation. As a result of this, we have                             
 

                                                   ,),G( tttt dBtxdttxfdx  ),(                                          (5) 
 

where ).,0(~ IdtNdBt  A detailed discussion about the on-line estimation of unknown 
parameters of the stochastic differential system can be found in Dacunha-Castelle and 
Florens-Zmirou (1986). The above stochastic differential equation, equation (5), in 
conjunction with equation (4) can be analysed using the Fokker-Planck approach. Making 
the use of the FPE, we derive the evolution of the conditional moment, conditional 
expectation of the scalar function of an n -dimensional state vector. Note that the Fokker-
Planck operator is an adjoint operator.    
  This chapter is intended to analyse the stochastic problem of concern here using the multi-
dimensional Itô differential rule in contrast to the FPE approach. Here, we explain the Itô 
theory briefly and subsequently, its usefulness for analysing the noisy dynamical system. 

Consider the state vector   Uxxx T
t  21 ,  is a solution vector of the above SDE, 

RU : , i.e. ,)( Rxt  and the phase space .nRU   Suppose the 

function )( tx is twice differentiable.  The stochastic evolution )( txd of the scalar 
function of the n -dimensional state vector using the stochastic differential rule     can be 
stated as                                             
                        

j
ji

ii
i i

t
t dxdxdx

x
x

xd  





,2
1)(

)(


  .
)(2

ji

t

xx

x



 
 

After plugging the i th component of stochastic differential equation, i.e. equation (5), in the 
above evolution, we have         
 

2

2 )(
),()(

2
1),(

)(
()(

i

t
tii

T

i
ti

i i

t
t x

xtxGGtxf
x
xxd








  

  

      dt
xx

xtxGG
ji

t

ji
tij

T )
)(

),()(
2









   ,),(

)(
1,1





dBtxG

x
x

ti
rni i

t
 


         (6) 

 
where the size of the vector Brownian motion process is .r   Note that the contribution to the 
term )( txd coming from the second and third terms of the right-hand side of equation (6) 

is attributed to the property .dtdBdB    The integral counterpart of equation (6) can 

be written as 
 

ds
sx
xsxGGdssxf

sx
xxx

i

s
sii

T

i

t

t
si

i i

s
t

t
tt )(

)(
),()(

2
1),(

)(
)(

()()( 2

2

00

0 






 




 

)
)()(

)(
),()(

2

0

ds
sxsx

xsxGG
ji

s

ji
sij

T
t

t 







 

.)(),(
)(

1,1
0

sdBsxG
x
x

si
rni i

s
t

t




 
 


  

 

The evolution )( txd


of the conditional moment is the standard formalism to analyse 
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Note that the expected value of the last term of the right-hand side of equation (6) vanishes, 

i.e. .0),(  dBtxG ti  For the exact mean and variance evolutions, we consider 

)( as)( txx it and ji xx ~~  respectively, where iii xxx ~ . Thus, we have 
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 The analytical and numerical solutions of the exact estimation procedure for the non-linear 
stochastic differential system are not possible, since its evolutions are infinite dimensional 
and require knowledge of higher-order moment evolutions. For these reasons, approximate 
evolutions, which preserve some of the qualitative characteristics of the exact evolutions, are 
analysed. Here, the bilinear and second-order approximations are the subject of 
investigation. The second-order approximate evolution equations can be derived by 
introducing second-order partials of the system non-linearity ),( txf t and the diffusion 

coefficient ),)(( txGG t
T  into the exact mean and variance evolutions, equations (7)-(8). 

Thus, the mean and variance evolutions for the non-linear stochastic differential system, 
using the second-order approximation, are 
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Making the use of the above conditional moment evolutions for the system non-linearity 
and process noise coefficient matrix stated in equation (4), leads to the following mean and 
variance evolutions for the stochastic differential system considered here: 
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The mean trajectory for the stochastically perturbed dynamical system using bilinear 
approximation does not include variance terms in the mean evolution. The term 

,)),(( ttxGGT the expected value of the diffusion coefficient, in the variance evolution 

accounts for the stochastic perturbation felt by the orbiting particle. For this reason, the 
bilinear approximation leads to the ‘unperturbed mean trajectory’, see figures (1)-(4) as well. 
On the other hand, the variance evolution using bilinear approximation for the dust-

perturbed model includes perturbation effects, i.e. ),( txGG t
T  . In order to account for the 

stochastic perturbation in the mean evolution, we utilize the second-order approximation in 
the mean evolution. The second-order approximation includes ‘the second-order partials’ of 
the system non-linearity ),( txf t and variance terms in the mean trajectory, which leads to 

better estimation of the trajectory. The variance evolution 
rv

dP of the radial velocity, using 

the second-order approximation, involves an additional term rrr P
2  in contrast to the 

bilinear approximation. The variance evolution dP of the angular velocity, using the 

second-order approximation, accounts for a correction term 4
23
r
Prr , in contrast to the 

bilinear approximation as well.  
 Note that the conditional moment evolutions derived in this chapter for the stochastic 
problem of concerns here agree with the evolutions stated in a Royal society paper (Sharma 
and Parthasarathy 2007). However, the approach of this chapter, multi-dimensional Itô rule, 
is different from the Fokker-Plank approach adopted in the Royal Society contribution. 

 
3. Numerical experiments 

The simulations of the mean and variance evolutions are accomplished using a simple, but 
effective finite difference method-based numerical scheme. The discrete version of the 
standard stochastic differential equation is  
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The mean trajectory for the stochastically perturbed dynamical system using bilinear 
approximation does not include variance terms in the mean evolution. The term 

,)),(( ttxGGT the expected value of the diffusion coefficient, in the variance evolution 

accounts for the stochastic perturbation felt by the orbiting particle. For this reason, the 
bilinear approximation leads to the ‘unperturbed mean trajectory’, see figures (1)-(4) as well. 
On the other hand, the variance evolution using bilinear approximation for the dust-

perturbed model includes perturbation effects, i.e. ),( txGG t
T  . In order to account for the 

stochastic perturbation in the mean evolution, we utilize the second-order approximation in 
the mean evolution. The second-order approximation includes ‘the second-order partials’ of 
the system non-linearity ),( txf t and variance terms in the mean trajectory, which leads to 

better estimation of the trajectory. The variance evolution 
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bilinear approximation. The variance evolution dP of the angular velocity, using the 
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bilinear approximation as well.  
 Note that the conditional moment evolutions derived in this chapter for the stochastic 
problem of concerns here agree with the evolutions stated in a Royal society paper (Sharma 
and Parthasarathy 2007). However, the approach of this chapter, multi-dimensional Itô rule, 
is different from the Fokker-Plank approach adopted in the Royal Society contribution. 

 
3. Numerical experiments 

The simulations of the mean and variance evolutions are accomplished using a simple, but 
effective finite difference method-based numerical scheme. The discrete version of the 
standard stochastic differential equation is  
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where 

1kt
w is a standard normal variable. The dimension of the phase space of the 

stochastic problem of concern here is four, since the state vector 
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4321 RUvrxxxxx T
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t    The size of the mean state vector is 
four  and the number of entries in the variance matrix of the state is sixteen. Since the state 
vector is a real-valued vector stochastic process, the condition jiij PP  holds. The total 

number of distinct entries in the variance matrix w’d be ten. The initial conditions are 
chosen as                    
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 ,0)0(Prad/TU, 1.1)0(,AU/TU 01.0)0(rad, 1)0(,AU1)0(
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The initial conditions considered here are in canonical system of units. Astronomers adopt a 
normalized system of units, i.e. ‘canonical units’, for the simplification purposes. In 
canonical units, the physical quantities are expressed in terms of Time Unit (TU) and 

Astronomical Unit (AU). The diffusion parameters 2
3

(TU)0121.0


r  and 

2
3

4

)(
102.2

TU

AU are chosen for numerical simulations. Here we consider   a set of 

deterministic initial conditions, which implies that the initial variance matrix w’d be zero. 
Note that  random initial conditions lead to the non-zero initial variance matrix. The system 
is deterministic at 0tt  and becomes stochastic at 0tt   because of the stochastic 
perturbation. This makes the contribution to the variance evolution coming from the ‘system 

non-linearity coupled with ‘initial variance terms’ will be zero at .1tt   The contribution 

to the variance evolution at 1tt   comes from the perturbation term ),)(( txGG t
T  only. 

For ,1tt  the contribution to the variance evolution comes from the system non-linearity 
as well as the perturbation term. This assumption allows to study the effect of random 
perturbations explicitly on the dynamical system. The values of diffusion parameters are 
selected so that the contribution to the force coming from the random part is smaller than 
the force coming from the deterministic part. It has been chosen for simulational 
convenience only.              
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Fig. 4. 

 
Fig. 5. 
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Fig. 7. 

 
Fig. 8. 
 
Here, we analyse the stochastic problem involving the numerical simulation of approximate 
conditional moment evolutions. The approximate conditional moment evolutions, i.e. 
conditional mean and variance evolutions, were derived in the previous section using the 
second-order and bilinear approximations. The variance evolutions using the second-order 
approximation result reduced variances of the state variables rather than the bilinear, see 
figures (5), (6), (7), and (8). These illustrate that the second-order approximation of the mean 
evolution produces less random fluctuations in the mean trajectory, which are attributed to 
the second-order partials of the system non-linearity ),,( txf t i.e. 
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Significantly, the variance terms are also accounted for in the mean trajectory. This explains 
the second-order approximation leads to the perturbed mean trajectory. This section 
discusses very briefly about the numerical testing for the mean and variance evolutions 
derived in the previous section. A greater detail is given in the Author’s Royal Society 
contribution. This chapter is intended to demonstrate the usefulness of the Itô theory for 
stochastic problems in dynamical systems by taking up an appealing case in satellite 
mechanics.  

 
4. Conclusion 

In this chapter, the Author has derived the conditional moment evolutions for the motion of 
an orbiting satellite in dust environment, i.e. a noisy dynamical system. The noisy 
dynamical system was modeled in the form of multi-dimensional stochastic differential 
equation. Subsequently, the Itô calculus for ‘the Brownian motion process as well as the 
dynamical system driven by the Brownian motion’ was utilized to study the stochastic 
problem of concern here. Furthermore, the Itô theory was utilized to analyse the resulting 
stochastic differential equation qualitatively. The Markovian stochastic differential system 
can be analysed using the Kolmogorov-Fokker-Planck Equation (KFPE) as well. The KFPE-
based analysis involves the definition of conditional expectation, the adjoint property of the 
Fokker-Planck operator as well as integration by part formula. On the other hand, the Itô 
differential rule involves relatively fewer steps, i.e. Taylor series expansion, the Brownian 
motion differential rule. It is believed that the approach of this chapter will be useful for 
analysing stochastic problems arising from physics, mathematical finance, mathematical 
control theory, and technology.                

 
Appendix 1 

The qualitative analysis of the non-linear autonomous system can be accomplished by 
taking the Lie derivative of the scalar function , where ,: RU  U is the phase space 

of the non-linear autonomous system and .)( Rxt   The function   is said to be the first 

integral if the Lie derivative vL  vanishes (Arnold 1995). The problem of analysing the 
non-linear stochastic differential system qualitatively becomes quite difficult, since it 
involves multi-dimensional diffusion equation formalism. The Itô differential rule (Liptser 
and Shirayayev 1977, Sage and Melsa 1971) allows us to obtain the stochastic evolution of 
the function . Equation (6) of this chapter can be re-written as  
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Consider the function )()( tt xEx  , where E (.) is the energy function. Thus the 
stochastic evolution of the energy function (Sharma and Parthasarathy 2007) can be stated as            
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The above evolution   for the stochastic differential system of this chapter assumes the 
following structure: 
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Thus the derivative of the energy function for the stochastic system of concern here will not 
vanish leading to the non-conservative nature of the energy function.  

 
Appendix 2  

The Fokker-Planck equation has received attention in literature and found applications for 
developing the prediction algorithm for the Itô stochastic differential system. Detailed 
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an orbiting satellite in dust environment, i.e. a noisy dynamical system. The noisy 
dynamical system was modeled in the form of multi-dimensional stochastic differential 
equation. Subsequently, the Itô calculus for ‘the Brownian motion process as well as the 
dynamical system driven by the Brownian motion’ was utilized to study the stochastic 
problem of concern here. Furthermore, the Itô theory was utilized to analyse the resulting 
stochastic differential equation qualitatively. The Markovian stochastic differential system 
can be analysed using the Kolmogorov-Fokker-Planck Equation (KFPE) as well. The KFPE-
based analysis involves the definition of conditional expectation, the adjoint property of the 
Fokker-Planck operator as well as integration by part formula. On the other hand, the Itô 
differential rule involves relatively fewer steps, i.e. Taylor series expansion, the Brownian 
motion differential rule. It is believed that the approach of this chapter will be useful for 
analysing stochastic problems arising from physics, mathematical finance, mathematical 
control theory, and technology.                

 
Appendix 1 

The qualitative analysis of the non-linear autonomous system can be accomplished by 
taking the Lie derivative of the scalar function , where ,: RU  U is the phase space 

of the non-linear autonomous system and .)( Rxt   The function   is said to be the first 

integral if the Lie derivative vL  vanishes (Arnold 1995). The problem of analysing the 
non-linear stochastic differential system qualitatively becomes quite difficult, since it 
involves multi-dimensional diffusion equation formalism. The Itô differential rule (Liptser 
and Shirayayev 1977, Sage and Melsa 1971) allows us to obtain the stochastic evolution of 
the function . Equation (6) of this chapter can be re-written as  
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Consider the function )()( tt xEx  , where E (.) is the energy function. Thus the 
stochastic evolution of the energy function (Sharma and Parthasarathy 2007) can be stated as            
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The above evolution   for the stochastic differential system of this chapter assumes the 
following structure: 
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Thus the derivative of the energy function for the stochastic system of concern here will not 
vanish leading to the non-conservative nature of the energy function.  

 
Appendix 2  

The Fokker-Planck equation has received attention in literature and found applications for 
developing the prediction algorithm for the Itô stochastic differential system. Detailed 
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discussions on the Fokker-Planck equation, its approximate solutions and applications in 
sciences can be found in Risken (1984), Stratonovich (1963). The Fokker-Planck equation is 
also known as the Kolmogorov forward equation. The Fokker-Planck equation is a special 
case of the stochastic equation (kinetic equation) as well. The stochastic equation is about the 
evolution of the conditional probability for given initial states for non-Markov processes. 
The stochastic equation is an infinite series. Here, we explain how the Fokker-Planck 
equation becomes a special case of the stochastic equation. The conditional probability 
density 
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For deriving the stochastic equation, we consider the conditional probability 

density ),( 21 xxp where  
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After integrating over the variable 2x , the above equation leads to  
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The conditional characteristic function is the conditional moment generating function and 

the n th order derivative of the conditional characteristic function )( 21 xxiuEe  evaluated at 
the 0u gives the n th order conditional moment. This can be demonstrated by using the 
definition of the generating function of mathematical science, i.e. 
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discussions on the Fokker-Planck equation, its approximate solutions and applications in 
sciences can be found in Risken (1984), Stratonovich (1963). The Fokker-Planck equation is 
also known as the Kolmogorov forward equation. The Fokker-Planck equation is a special 
case of the stochastic equation (kinetic equation) as well. The stochastic equation is about the 
evolution of the conditional probability for given initial states for non-Markov processes. 
The stochastic equation is an infinite series. Here, we explain how the Fokker-Planck 
equation becomes a special case of the stochastic equation. The conditional probability 
density 
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The above equation describes the evolution of conditional probability density for given 
initial states for the non-Markovian process. The Fokker-Plank equation is a stochastic 
equation with ixki  2,0)( . Suppose the scalar stochastic differential equation of the 
form 
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and the higher-order coefficients of the stochastic equation will vanish as a consequence of 
the Itô differential rule. Thus, the Fokker-Planck equation  
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Abstract

In this chapter we explore the application of coloured noise as a driving force to a set of
stochastic differential equations(SDEs). These stochastic differential equations are sometimes
called Random flight models as in A. W. Heemink (1990). They are used for prediction of
the dispersion of pollutants in atmosphere or in shallow waters e.g Lake, Rivers etc. Usually
the advection and diffusion of pollutants in shallow waters use the well known partial differ-
ential equations called Advection diffusion equations(ADEs)R.W.Barber et al. (2005). These
are consistent with the stochastic differential equations which are driven by Wiener processes
as in P.E. Kloeden et al. (2003). The stochastic differential equations which are driven by
Wiener processes are called particle models. When the Kolmogorov’s forward partial differ-
ential equations(Fokker-Planck equation) is interpreted as an advection diffusion equation,
the associated set of stochastic differential equations called particle model are derived and are
exactly consistent with the advection-diffusion equation as in A. W. Heemink (1990); W. M.
Charles et al. (2009). Still, neither the advection-diffusion equation nor the related traditional
particle model accurately takes into account the short term spreading behaviour of particles.
This is due to the fact that the driving forces are Wiener processes and these have independent
increments as in A. W. Heemink (1990); H.B. Fischer et al. (1979). To improve the behaviour of
the model shortly after the deployment of contaminants, a particle model forced by a coloured
noise process is developed in this chapter. The use of coloured noise as a driving force unlike
Brownian motion, enables to us to take into account the short-term correlated turbulent fluid
flow velocity of the particles. Furthermore, it is shown that for long-term simulations of the
dispersion of particles, both the particle due to Brownian motion and the particle model due
to coloured noise are consistent with the advection-diffusion equation.
Keywords: Brownian motion, stochastic differential equations, traditional particle models,
coloured noise force, advection-diffusion equation, Fokker-Planck equation.

1. Introduction

Monte carlo simulation is gaining popularity in areas such as oceanographic, atmospheric as
well as electricity spot pricing applications. White noise is often used as an important pro-
cess in many of these applications which involve some error prediction as in A. W. Heemink

3
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(1990); H.B. Fischer et al. (1979); J. R. Hunter et al. (1993); J.W. Stijnen et al. (2003). In these
types of applications usually the deterministic models in the form of partial differential equa-
tions are available and employed. The solution is in most cases obtained by discretising the
partial differential equations as in G.S. Stelling (1983). Processes such as transport of pol-
lutants and sediments can be described by employing partial differential equations(PDEs).
These well known PDEs are called advection diffusion equations. In particular when applied
in shallow water e.g River, Lakes and Oceans, such effects of turbulence might be consid-
ered. However when this happens, it results into a set of partial differential equations. These
complicated set of PDEs are difficult to solve and in most cases not easy to get a closed so-
lution. In this chapter we explore the application coloured noise a a driving force to a set of
stochastic differential equations(SDEs). These stochastic differential equations are sometimes
called Random flight models. They are used for prediction of the dispersion of pollutants
in atmosphere or in shallow waters e.g Lake, Rivers J. R. Hunter et al. (1993); R.W.Barber et
al. (2005). Usually the advection and diffusion of pollutants in shallow waters use the well
known partial differential equations called Advection diffusion equations(ADEs). These are
consistent with the stochastic differential equations which are driven by Wiener processes
as in C.W. Gardiner (2004); P.E. Kloeden et al. (2003). The stochastic differential equations
which are driven by Wiener processes are called particle models. When the Kolmogorov’s
forward partial differential equations(Fokker-Planck equation) is interpreted as an advection
diffusion equation, the associated with this set of stochastic differential equations called par-
ticle model are derived and are exactly consistent with the advection-diffusion equation as
in W. M. Charles et al. (2009). Still, neither the advection-diffusion equation nor the related
traditional particle model accurately takes into account the short term spreading behaviour of
particles. This is due to the fact that the driving forces are Wiener processes and these have
independent increment. To improve the behaviour of the model shortly after the deployment
of contaminants, a particle model forced by a coloured noise process is developed in this ar-
ticle. The use of coloured noise as a driving force unlike Brownian motion, enables to us to
take into account the short-term correlated turbulent fluid flow velocity of the particles. Fur-
thermore, it is shown that for long-term simulations of the dispersion of particles, both the
particle due to Brownian motion and the particle model due to coloured noise are consistent
with the advection-diffusion equation.
To improve the behaviour of the model shortly after the deployment of contaminants, a ran-
dom flight model forced by a coloured noise process are often used. The scheme in Figure 1,
shows that for long term simulation both models, advection diffusion equation and the ran-
dom flight models have no difference, such situation better to use the well known ADE. The
use of coloured noise as a driving force unlike Brownian motion, enables to us to take into
account only the short-term correlated turbulent fluid flow velocity of the particles as in A. W.
Heemink (1990); W. M. Charles et al. (2009). An exponentially coloured noise process can also
be used to mimic well the behaviour of electricity spot prices in the electricity market. Further-
more, when the stochastic numerical models are driven by the white noise, in most cases their
order of accuracy is reduced. Such models consider that particles move according to a simple
random walk and consequently have independent increment as in A.H. Jazwinski (1970); D.J.
Thomson (1987). The reduction of the order of convergence happens because white noise is
nowhere differentiable. However, one can develop a stochastic numerical scheme and avoid
the reduction of the order of convergence if the coloured noise is employed as a driving force
as in A. W. Heemink (1990); J.W. Stijnen et al. (2003); R.W.Barber et al. (2005); P.S. Addison et
al. (1997).

Advection−Diffusion
Equation (ADE)

Consistent
with

Random Walk Model
(Traditional Particle Model)

Dispersion in Coastal Waters
Modelling of Long Term Scale

(Random Flight model)

Fig. 1. A schematic diagram showing that for t >> TL both the ADEs and Random flight
models are consistent

The application of coloured noise as a driving force to improve the model prediction of the
dispersion of pollutants soon after deployment is discussed in this chapter. For it is well-
known that the advection-diffusion equation describes the dispersion of particles in turbulent
fluid flow accurately if the diffusing cloud of contaminants has been in the flow longer than
a certain Lagrangian time scale and has spread to cover a distance that is larger in size than
the largest scale of the turbulent fluid flow as in H.B. Fischer et al. (1979). The Lagrangian
time scale (TL) is a measure of how long it takes before a particle loses memory of its initial
turbulent velocity. therefore, both the particle model which is driven by Brownian force and
the advection-diffusion model are unable to accurately describe the short time scale correlated
behaviour which is available in real turbulent flows at sub-Lagrangian time. Thus, a random
flight model have been developed for any length of the coloured noise. This way, the parti-
cle model takes correctly into account the diffusion processes over short time scales when the
eddy(turbulent) diffusion is less than the molecular diffusion. The inclusion of several param-
eters in the coloured noise process allows for a better match between the auto-covariance of
the model and the underlying physical processes.

2. Coloured noise processes

In this part coloured noise forces are introduced and represent the stochastic velocities of the
particles, induced by turbulent fluid flow. It is assumed that this turbulence is isotropic and
that the coloured noise processes are stationary and completely described by their zero mean
and Lagrangian auto covariance functionH.M. Taylor et al. (1998); W. M. Charles et al. (2009).

2.1 The scalar exponential coloured noise process
The exponentially coloured noise are represented by a linear stochastic differential equation.
The exponential coloured noise represent the velocity velocity of the particle;

du1(t) = − 1
TL

u1(t)dt + α1dW(t). (1)

u1(t) = u0e
−t
TL + α1

∫ t

0
e−

(t−s)
TL dW(s) (2)
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(1990); H.B. Fischer et al. (1979); J. R. Hunter et al. (1993); J.W. Stijnen et al. (2003). In these
types of applications usually the deterministic models in the form of partial differential equa-
tions are available and employed. The solution is in most cases obtained by discretising the
partial differential equations as in G.S. Stelling (1983). Processes such as transport of pol-
lutants and sediments can be described by employing partial differential equations(PDEs).
These well known PDEs are called advection diffusion equations. In particular when applied
in shallow water e.g River, Lakes and Oceans, such effects of turbulence might be consid-
ered. However when this happens, it results into a set of partial differential equations. These
complicated set of PDEs are difficult to solve and in most cases not easy to get a closed so-
lution. In this chapter we explore the application coloured noise a a driving force to a set of
stochastic differential equations(SDEs). These stochastic differential equations are sometimes
called Random flight models. They are used for prediction of the dispersion of pollutants
in atmosphere or in shallow waters e.g Lake, Rivers J. R. Hunter et al. (1993); R.W.Barber et
al. (2005). Usually the advection and diffusion of pollutants in shallow waters use the well
known partial differential equations called Advection diffusion equations(ADEs). These are
consistent with the stochastic differential equations which are driven by Wiener processes
as in C.W. Gardiner (2004); P.E. Kloeden et al. (2003). The stochastic differential equations
which are driven by Wiener processes are called particle models. When the Kolmogorov’s
forward partial differential equations(Fokker-Planck equation) is interpreted as an advection
diffusion equation, the associated with this set of stochastic differential equations called par-
ticle model are derived and are exactly consistent with the advection-diffusion equation as
in W. M. Charles et al. (2009). Still, neither the advection-diffusion equation nor the related
traditional particle model accurately takes into account the short term spreading behaviour of
particles. This is due to the fact that the driving forces are Wiener processes and these have
independent increment. To improve the behaviour of the model shortly after the deployment
of contaminants, a particle model forced by a coloured noise process is developed in this ar-
ticle. The use of coloured noise as a driving force unlike Brownian motion, enables to us to
take into account the short-term correlated turbulent fluid flow velocity of the particles. Fur-
thermore, it is shown that for long-term simulations of the dispersion of particles, both the
particle due to Brownian motion and the particle model due to coloured noise are consistent
with the advection-diffusion equation.
To improve the behaviour of the model shortly after the deployment of contaminants, a ran-
dom flight model forced by a coloured noise process are often used. The scheme in Figure 1,
shows that for long term simulation both models, advection diffusion equation and the ran-
dom flight models have no difference, such situation better to use the well known ADE. The
use of coloured noise as a driving force unlike Brownian motion, enables to us to take into
account only the short-term correlated turbulent fluid flow velocity of the particles as in A. W.
Heemink (1990); W. M. Charles et al. (2009). An exponentially coloured noise process can also
be used to mimic well the behaviour of electricity spot prices in the electricity market. Further-
more, when the stochastic numerical models are driven by the white noise, in most cases their
order of accuracy is reduced. Such models consider that particles move according to a simple
random walk and consequently have independent increment as in A.H. Jazwinski (1970); D.J.
Thomson (1987). The reduction of the order of convergence happens because white noise is
nowhere differentiable. However, one can develop a stochastic numerical scheme and avoid
the reduction of the order of convergence if the coloured noise is employed as a driving force
as in A. W. Heemink (1990); J.W. Stijnen et al. (2003); R.W.Barber et al. (2005); P.S. Addison et
al. (1997).

Advection−Diffusion
Equation (ADE)

Consistent
with

Random Walk Model
(Traditional Particle Model)

Dispersion in Coastal Waters
Modelling of Long Term Scale

(Random Flight model)

Fig. 1. A schematic diagram showing that for t >> TL both the ADEs and Random flight
models are consistent

The application of coloured noise as a driving force to improve the model prediction of the
dispersion of pollutants soon after deployment is discussed in this chapter. For it is well-
known that the advection-diffusion equation describes the dispersion of particles in turbulent
fluid flow accurately if the diffusing cloud of contaminants has been in the flow longer than
a certain Lagrangian time scale and has spread to cover a distance that is larger in size than
the largest scale of the turbulent fluid flow as in H.B. Fischer et al. (1979). The Lagrangian
time scale (TL) is a measure of how long it takes before a particle loses memory of its initial
turbulent velocity. therefore, both the particle model which is driven by Brownian force and
the advection-diffusion model are unable to accurately describe the short time scale correlated
behaviour which is available in real turbulent flows at sub-Lagrangian time. Thus, a random
flight model have been developed for any length of the coloured noise. This way, the parti-
cle model takes correctly into account the diffusion processes over short time scales when the
eddy(turbulent) diffusion is less than the molecular diffusion. The inclusion of several param-
eters in the coloured noise process allows for a better match between the auto-covariance of
the model and the underlying physical processes.

2. Coloured noise processes

In this part coloured noise forces are introduced and represent the stochastic velocities of the
particles, induced by turbulent fluid flow. It is assumed that this turbulence is isotropic and
that the coloured noise processes are stationary and completely described by their zero mean
and Lagrangian auto covariance functionH.M. Taylor et al. (1998); W. M. Charles et al. (2009).

2.1 The scalar exponential coloured noise process
The exponentially coloured noise are represented by a linear stochastic differential equation.
The exponential coloured noise represent the velocity velocity of the particle;

du1(t) = − 1
TL

u1(t)dt + α1dW(t). (1)

u1(t) = u0e
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0
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TL dW(s) (2)
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where u1 is the particle’s velocity, α1 > 0 is constant, and TL is a Lagrangian time scale. For
t > s it can be shown as in A.H. Jazwinski (1970), that the scalar exponential coloured noise
process in Eqn. (2) has mean, variance and Lagrangian auto-covariance of respectively,
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where α1 > 0 is constant, and TL is a Lagrangian time scale. For t > s it can be shown A.H.
Jazwinski (1970), that the scalar exponential coloured noise process in eqn.(2) has mean, vari-
ance and Lagrangian auto-covariance of respectively,
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2.2 The general vector coloured noise force
The general vector form of a linear stochastic differential equation for coloured noise processes
as in A.H. Jazwinski (1970); H.M. Taylor et al. (1998) is given by

du(t) = Fu(t)dt + G(t)dW(t), dv(t) = Fv(t)dt + G(t)dW(t). (5)

Where u(t) and v(t) are vectors of length n, F and G are n × n respectively n × m matrix
functions in time and {W(t); t ≥ 0} is an m-vector Brownian process with E[dW(t)dW(t)T] =
Q(t)dt. In this chapter, a special case of the Ornstein-Uhlenbeck process C.W. Gardiner (2004);
H.M. Taylor et al. (1998) is extended and repeatedly integrate it to obtain the coloured noise
forcing along the x and y-directions:
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αnun−1(t)dt, dvn(t) = − 1
TL

vn(t)dt + 1
TL

αnvn−1(t)dt

(6)

As you keep increasing the length of the coloured noise, an auto-covariance of the velocity
processes is modelled more realistically to encompasses the characteristics of an isotropic ho-
mogeneous turbulent fluid flow.
Figure 2 in an example of Wiener path and that of a coloured noise process. The sample path
of the coloured noise are smoother that that of Wiener process.
The vector Langevin equation (6) generates a stationary, zero-mean, correlated Gaussian pro-
cess denoted by (un(t), vn(t)). The Lagrangian time scale TL indicates the time over which the
process remains significantly correlated in time. The linear system in eqn.(6), is the same in
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Fig. 2. Sample paths of coloured noise (a) and sample path of Wiener process (b)

the Itô and the Stratonovich sense because the diffusion function is not a function of state but
only of time. In order to get more accurate results the stochastic differential equation driven
by the coloured is integrated. by the Heun scheme (see e.g., G.N. Milstein (1995); J.W. Stijnen
et al. (2003); P.E. Kloeden et al. (2003)).
The main purpose of this chapter is the application of coloured noise forcing in the dispersion
of a cloud of contaminants so as to improve the short term behaviour of the model while leav-
ing the long term behaviour unchanged. Being the central part of the model, it is important
to study the properties of coloured noise processes in more detail. Coloured noise is a Gaus-
sian process and it is well known that these processes can be completely described by their
mean and covariance functions see L. Arnold (1974). From eqn.(2) and from Figure 3(a), it is
easily seen that the mean approaches zero throughout and therefore requires little attention.
The covariance, however, depends not only on time but also on the initial values of un(0) and
vn(0). This immediately gives rise to the question of how to actually choose or determine
these values. Let’s consider the covariance matrix of the stationary process u in the stochastic
differential equations of the form (5). It is known (see e.g.,A.H. Jazwinski (1970)) that covari-
ance function can now be described by

dP
dt

= FP + PFT + GQGT . (7)

The equation (7) can be equated zero so as to find the steady state covariance matrix P̄ which
will then be used to generate instances of coloured noise processes. Sampling of instances of
u vector by using a steady state matrix, ensures that the process is sampled at its stationary
phase thus removing any artefacts due to a certain choice of start values that would otherwise
be used. The auto-covariance is depicted in Figure 3(c). Note that the behaviour of a physical
process in this case depends on the parameters in the Lagrangian auto-covariance. Of course
short term diffusion behaviour is controlled by the auto-covariance function. This provides
room for the choice of parameters e.g.,α1, α2 · · · . The mean, variance and the auto-covariance
are not stationary for a finite time t but as t → ∞,they approach the limiting stationary distri-
bution values as shown in Figure 3(a)–(c).
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The general vector form of a linear stochastic differential equation for coloured noise processes
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Where u(t) and v(t) are vectors of length n, F and G are n × n respectively n × m matrix
functions in time and {W(t); t ≥ 0} is an m-vector Brownian process with E[dW(t)dW(t)T] =
Q(t)dt. In this chapter, a special case of the Ornstein-Uhlenbeck process C.W. Gardiner (2004);
H.M. Taylor et al. (1998) is extended and repeatedly integrate it to obtain the coloured noise
forcing along the x and y-directions:
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As you keep increasing the length of the coloured noise, an auto-covariance of the velocity
processes is modelled more realistically to encompasses the characteristics of an isotropic ho-
mogeneous turbulent fluid flow.
Figure 2 in an example of Wiener path and that of a coloured noise process. The sample path
of the coloured noise are smoother that that of Wiener process.
The vector Langevin equation (6) generates a stationary, zero-mean, correlated Gaussian pro-
cess denoted by (un(t), vn(t)). The Lagrangian time scale TL indicates the time over which the
process remains significantly correlated in time. The linear system in eqn.(6), is the same in
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the Itô and the Stratonovich sense because the diffusion function is not a function of state but
only of time. In order to get more accurate results the stochastic differential equation driven
by the coloured is integrated. by the Heun scheme (see e.g., G.N. Milstein (1995); J.W. Stijnen
et al. (2003); P.E. Kloeden et al. (2003)).
The main purpose of this chapter is the application of coloured noise forcing in the dispersion
of a cloud of contaminants so as to improve the short term behaviour of the model while leav-
ing the long term behaviour unchanged. Being the central part of the model, it is important
to study the properties of coloured noise processes in more detail. Coloured noise is a Gaus-
sian process and it is well known that these processes can be completely described by their
mean and covariance functions see L. Arnold (1974). From eqn.(2) and from Figure 3(a), it is
easily seen that the mean approaches zero throughout and therefore requires little attention.
The covariance, however, depends not only on time but also on the initial values of un(0) and
vn(0). This immediately gives rise to the question of how to actually choose or determine
these values. Let’s consider the covariance matrix of the stationary process u in the stochastic
differential equations of the form (5). It is known (see e.g.,A.H. Jazwinski (1970)) that covari-
ance function can now be described by

dP
dt

= FP + PFT + GQGT . (7)

The equation (7) can be equated zero so as to find the steady state covariance matrix P̄ which
will then be used to generate instances of coloured noise processes. Sampling of instances of
u vector by using a steady state matrix, ensures that the process is sampled at its stationary
phase thus removing any artefacts due to a certain choice of start values that would otherwise
be used. The auto-covariance is depicted in Figure 3(c). Note that the behaviour of a physical
process in this case depends on the parameters in the Lagrangian auto-covariance. Of course
short term diffusion behaviour is controlled by the auto-covariance function. This provides
room for the choice of parameters e.g.,α1, α2 · · · . The mean, variance and the auto-covariance
are not stationary for a finite time t but as t → ∞,they approach the limiting stationary distri-
bution values as shown in Figure 3(a)–(c).
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Fig. 3. (a)Shows that the mean goes to zero, while (b)-(c) shows that the variance and auto-
covariance of coloured noise processes started from non-stationary to stationary state

2.3 The particle model forced by coloured noise
The prediction of the dispersion of pollutants in shallow waters are modeled by the random
flight which is driven by coloured as in A. W. Heemink (1990). In this work, an extension
to the work by A. W. Heemink (1990) has been done by generalising the cloured noise to any
length that is, to (un(t), vn(t)). The coloured noise processes stand for the velocity of the par-
ticle at time t in respectively the x and y directions. This way the Lagrangian auto-covariance
processes can be modelled more realistically by taking into account the characteristics of the
turbulent fluid flow for t � TL. By using the following set of equations the random flight
model remains consistent with the advection-diffusion equation for t >> TL while modelling
realistically the short term correlation of the turbulent fluid flows. In this application, unlike
in W. M. Charles et al. (2005), Longer length of the coloured noise have been chosen, that is
n = 6 and more experiments are carried out in the whirl pool ideal domain for simulations
of the advection and diffusion of pollutants in shallow waters. Thus the following coloured

noise are used.
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(8)

dX(t) =
[
U + σu6(t) + ( ∂H

∂x D)/H + ∂D
∂x

]
dt

dY(t) =
[
V + σv6(t) + ( ∂H

∂y D)/H + ∂D
∂y

]
dt.

(9)

These systems of vector equations are Markovian, this set of equations are referred to as the
random flight model. The random flight model(8)–(9) is integrated for many different par-
ticles. Note that at the start of the simulation all particles have initial Gaussian velocities
(u6(0), v6(0)) with zero mean and variance that agrees with covariance matrix P̄ at a steady
state. For instance in this chapter, the following covariance matrix was obtained when the
parameters shown in Table 1 were used in the simulation;




25000 17500 2625 26.25 15.75 11.025
17500 24500 5512 73.50 55.125 46.305
2625 5512.5 1653.75 27.5625 24.806250 24.310125
26.25 73.5 27.5625 0.551250 0.578812 0.648270
15.75 55.125 24.80625 0.578812 0.694575 0.875164
11.025 46.305 24.310125 0.648270 0.875164 1.22523




3. The spreading behaviour of a cloud of contaminants

The characteristics of a spreading cloud of contaminants due to Brownian motion and
coloured noise processes are discussed in the following sections.

3.1 Long term spreading behaviour of clouds of particles due Brownian motion force
Consider, the following 1 dimensional stochastic differential equation in the Itô sense

dX(t) Itô
= f (t, Xt)dt + g(t, Xt)dW(t) (10)

where f (t, Xt) is the drift coefficient function and where g(t, Xt) is the diffusion coefficient
function. If it assumed that there is no drift term in eqn.(10) that is, f (X(t), t) = 0, gives

g(X(t), t) =
√

2D.

It follows that,

dX(t) Itô
=

√
2DdW(t). (11)

By applying following theorem which is found in H.M. Taylor et al. (1998), that for any con-
tinuous function the following theorem is applied.
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Fig. 3. (a)Shows that the mean goes to zero, while (b)-(c) shows that the variance and auto-
covariance of coloured noise processes started from non-stationary to stationary state

2.3 The particle model forced by coloured noise
The prediction of the dispersion of pollutants in shallow waters are modeled by the random
flight which is driven by coloured as in A. W. Heemink (1990). In this work, an extension
to the work by A. W. Heemink (1990) has been done by generalising the cloured noise to any
length that is, to (un(t), vn(t)). The coloured noise processes stand for the velocity of the par-
ticle at time t in respectively the x and y directions. This way the Lagrangian auto-covariance
processes can be modelled more realistically by taking into account the characteristics of the
turbulent fluid flow for t � TL. By using the following set of equations the random flight
model remains consistent with the advection-diffusion equation for t >> TL while modelling
realistically the short term correlation of the turbulent fluid flows. In this application, unlike
in W. M. Charles et al. (2005), Longer length of the coloured noise have been chosen, that is
n = 6 and more experiments are carried out in the whirl pool ideal domain for simulations
of the advection and diffusion of pollutants in shallow waters. Thus the following coloured
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∂x D)/H + ∂D
∂x

]
dt

dY(t) =
[
V + σv6(t) + ( ∂H

∂y D)/H + ∂D
∂y

]
dt.

(9)

These systems of vector equations are Markovian, this set of equations are referred to as the
random flight model. The random flight model(8)–(9) is integrated for many different par-
ticles. Note that at the start of the simulation all particles have initial Gaussian velocities
(u6(0), v6(0)) with zero mean and variance that agrees with covariance matrix P̄ at a steady
state. For instance in this chapter, the following covariance matrix was obtained when the
parameters shown in Table 1 were used in the simulation;




25000 17500 2625 26.25 15.75 11.025
17500 24500 5512 73.50 55.125 46.305
2625 5512.5 1653.75 27.5625 24.806250 24.310125
26.25 73.5 27.5625 0.551250 0.578812 0.648270
15.75 55.125 24.80625 0.578812 0.694575 0.875164
11.025 46.305 24.310125 0.648270 0.875164 1.22523




3. The spreading behaviour of a cloud of contaminants

The characteristics of a spreading cloud of contaminants due to Brownian motion and
coloured noise processes are discussed in the following sections.

3.1 Long term spreading behaviour of clouds of particles due Brownian motion force
Consider, the following 1 dimensional stochastic differential equation in the Itô sense

dX(t) Itô
= f (t, Xt)dt + g(t, Xt)dW(t) (10)

where f (t, Xt) is the drift coefficient function and where g(t, Xt) is the diffusion coefficient
function. If it assumed that there is no drift term in eqn.(10) that is, f (X(t), t) = 0, gives

g(X(t), t) =
√

2D.

It follows that,

dX(t) Itô
=

√
2DdW(t). (11)

By applying following theorem which is found in H.M. Taylor et al. (1998), that for any con-
tinuous function the following theorem is applied.
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Theorem 1. Let g(x) be continuous function and {W(t), t ≥ 0} be the standard Brownian motion
process H.M. Taylor et al. (1998). For each t > 0, there exits a random variable

F (g) =
∫ t

0
g(x)dW(x),

which is the limiting of approximating sums

Fn(g) =
2n

∑
k=1

g(
k

2n t)[W(
k

2n t)− W(
k − 1

2n t)],

as n → ∞. The random variable F (g) is normally distributed with mean zero and variance

Var[F (g)] =
∫ t

0
g2(u)du,

if f (x) is another continuous function of x then F ( f ) and F (g) have a joint normal distribution with
covariance

E[F ( f )F (g)] =
∫ t

0
f (x)g(x)dx.

to eqn.(11), it can be shown that the variance of a cloud of contaminants grows linearly with
time:

Var[X(t)] Itô
= 2Dt + constant. (12)

For more detailed information as well as the proof of this theorem, the reader is referred to
H.M. Taylor et al. (1998) for example.

3.2 Long term spreading behaviour of clouds of contaminants subject to coloured noise
forcing

As discussed in earlier, where for example, the first an exponential coloured u1(t) from eqn (2)
is used as forcing coloured noise, if it is assumed that there is no background flow, the position
of a particle at time t is given by

dX(t) = σu1(t)dt, =⇒ X(t) = X(0) + σ
∫ t

0
u1(m)dm. (13)

For simplicity, yet without loss of generality, let X(0) = ui(0) = 0, for i = 1, 2, · · · , n. Now,

eqn., (2) leads to u1(m) = α1
∫ m

0 e−
1

TL
(m−k)dW(k), and consequently,

X(t) Itô
= σα1TL

∫ t

0
(1 − e−

1
TL

(t−k)
)dW(k). (14)

Using Theorem 1, the position of a particle at time t is normally distributed with zero mean
and variance:

Var[X(t)]
t

= σ2α2
1T2

L

[
1 − 2TL

t
(1 − e

−t
TL ) +

TL
2t

(1 − e
−2t
TL )

]
.

Thus, a position of a particle observed over a long time span as modelled by the coloured noise
process u1(t) behaves much like the one driven by Brownian motion with variance parameter

σ2α2
1T2

L . Hence, the dispersion coefficient is related to variance parameters σ2α2
1T2

L = 2D.
Clarification are done by considering eqn.(14), where the second part is u1(t) itself;

X(t) = σTL [α1W(t)− u1(t)] , where u1(t) = α1

∫ t

0
e−

1
TL

(t−k)dW(k)

Let us now rescale the position process in order to better observe the changes over large time
spans. By doing so, for N > 0, yields,

XN(t) =
1√
N

X(Nt) = σTL

[
α1W̃(t) +

1√
N

u1(t)
]

, (15)

where B̃(t) = W(Nt)√
N

remains a standard Brownian motion process. For sufficiently large N it
becomes clear that eqn.(15) behaves like Brownian motion as in H.M. Taylor et al. (1998); W.
M. Charles et al. (2009):

XN(t) ≈ σα1TLW̃(t).

3.3 The analysis of short term spreading behaviour of a cloud of contaminants
The analysis of the coloured noise processes usually starts with a scalar coloured noise, it can
be shown using eqn.(4) that

Cov[ut+τut] = E[ut+τut] = E[vt+τvt] =
1
2

α2
1TLe

−|τ|
TL (16)

From equation (16), It follows that,

E[uτus] =
1
2

α2
1TLe

−|τ−s|
TL

Var[Xt] = σ2
∫ t

0

∫ t

0

1
2

α2
1TLe

−(τ−s)
TL dτds (17)

The integration of equation (17) can easily be yielded by separately considering the regions
τ < s and τ > s, and it can be shown that

Var[Xt] = σ2α2
1T3

L

(
t2

2T2
L
− t3

6T3
L
· · ·

)

=
σ2α2

1TLt2

2
−

σ2α2
1t3

6
+ · · · (18)

Since the short time analysis, eqn. (18) are of interest in this section and is considered only for
very small values of t in a sense that for t � TL the variance of a cloud of particles shortly
after deployment is then given by the following equation:

Var[Xt] =
1
2

σ2α2
1TLt2 (19)

With the constant dispersion coefficient D = 1
2 σ2α2

1T2
L , the variance of the cloud of particles,

therefore initially grows with the square of time:

Var[X(t)] =
D
TL

t2 (20)
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covariance

E[F ( f )F (g)] =
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to eqn.(11), it can be shown that the variance of a cloud of contaminants grows linearly with
time:
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= 2Dt + constant. (12)

For more detailed information as well as the proof of this theorem, the reader is referred to
H.M. Taylor et al. (1998) for example.
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forcing

As discussed in earlier, where for example, the first an exponential coloured u1(t) from eqn (2)
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∫ t

0
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(m−k)dW(k), and consequently,
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]
.

Thus, a position of a particle observed over a long time span as modelled by the coloured noise
process u1(t) behaves much like the one driven by Brownian motion with variance parameter

σ2α2
1T2

L . Hence, the dispersion coefficient is related to variance parameters σ2α2
1T2

L = 2D.
Clarification are done by considering eqn.(14), where the second part is u1(t) itself;

X(t) = σTL [α1W(t)− u1(t)] , where u1(t) = α1

∫ t

0
e−

1
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(t−k)dW(k)

Let us now rescale the position process in order to better observe the changes over large time
spans. By doing so, for N > 0, yields,

XN(t) =
1√
N

X(Nt) = σTL

[
α1W̃(t) +
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N

u1(t)
]

, (15)

where B̃(t) = W(Nt)√
N

remains a standard Brownian motion process. For sufficiently large N it
becomes clear that eqn.(15) behaves like Brownian motion as in H.M. Taylor et al. (1998); W.
M. Charles et al. (2009):

XN(t) ≈ σα1TLW̃(t).

3.3 The analysis of short term spreading behaviour of a cloud of contaminants
The analysis of the coloured noise processes usually starts with a scalar coloured noise, it can
be shown using eqn.(4) that

Cov[ut+τut] = E[ut+τut] = E[vt+τvt] =
1
2

α2
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−|τ|
TL (16)

From equation (16), It follows that,

E[uτus] =
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1TLe

−|τ−s|
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Var[Xt] = σ2
∫ t
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∫ t

0

1
2

α2
1TLe

−(τ−s)
TL dτds (17)

The integration of equation (17) can easily be yielded by separately considering the regions
τ < s and τ > s, and it can be shown that

Var[Xt] = σ2α2
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L

(
t2

2T2
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− t3

6T3
L
· · ·

)

=
σ2α2

1TLt2

2
−

σ2α2
1t3

6
+ · · · (18)

Since the short time analysis, eqn. (18) are of interest in this section and is considered only for
very small values of t in a sense that for t � TL the variance of a cloud of particles shortly
after deployment is then given by the following equation:

Var[Xt] =
1
2

σ2α2
1TLt2 (19)

With the constant dispersion coefficient D = 1
2 σ2α2

1T2
L , the variance of the cloud of particles,

therefore initially grows with the square of time:

Var[X(t)] =
D
TL

t2 (20)
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3.4 The general long term behaviour of a cloud of contaminants due to coloured noise
It is assumed that there is no flow in the model and therefore have

dX(t) = σu1(t)dt −→ X(t) =
∫ t

0
σu1(s)ds, u1(s) = α1

∫ s

0
e−

1
TL

(s−k)dW(k),

X(t) =
(

1
TL

)0
σα1

∫ t

0

∫ t−k

0
e−

1
TL

(s−k) (s − k)0

0!
dsdW(k), X(0) = 0

It can then be shown that

u2(s) = 1
TL

α1α2
∫ s

0 e−
1

TL
(s−k)

(s − k)dW(k), (21)

where 0 < m < s < t. Since k < s, the position of a particle due to coloured noise force
eqn.(21) is given by

X(t) =
(

1
TL

)1
σα1α2

∫ t

0

∫ t−k

0
e−

1
TL

(s−k) (s − k)1

1!
dsdW(k).

In general, a position due to un(t) force is: X(t) =
∫ t

0 σun(s)ds, and it follows that

X(t) Itô
=

(
1

TL

)n−1
σ

n

∏
i=1

αi

∫ t

0

[∫ t−k

0
e−

1
TL

(s−k) (s − k)n−1

(n − 1)!

]
dsdW(k) (22)

Careful manipulation using integration by parts of the integral within the square brackets of
eqn. (22), yields

X(t) Itô
= (TL)

n
(

1
TL

)n−1
σ

n

∏
i=1

αi

∫ t

0
[1 + . . .] dW(k), for n ≥ 1. (23)

Finally, with the aid of Theorem 1 whose proof is found in H.M. Taylor et al. (1998), the vari-
ance of a cloud of contaminants can be computed as described in the sections above. The
derivation of velocity vn(t) of the particle along the y direction proceeds completely anal-
ogously. Let us now compute the variance of the general equations for position given by
eqn.(23)

Var[X(t)] = σ2 (TL)
2 ∏n

i=1 α2
i
∫ t

0 [1 − . . .]2 dk (24)

For σ > 0, αi > 0, and TL > 0, the process again behaves like a Brownian process with
variance parameters T2

Lσ2 ∏n
i=1 α2

i as t → ∞. Thus the appropriate diffusion coefficient from

eqn.(12)is equals D =
σ2T2

L ∏n
i=1 α2

i
2 . This relation is important because it gives a criterion for

various choices of parameters αi , i = 1, · · · , n, TL > 0. In a simulation the constant dispersion
coefficient D often is specified whereas σ must be solved in terms of the other parameters. In
the following section we introduce the two dimensional particle model as in W. M. Charles et
al. (2009). This model will be used as a comparison with the random flight model during the
simulation of the dispersion of pollutants an ideal domain known as whirl pool.

4. Particle model due to Brownian motion force for dispersion of pollutants in shal-
low waters

The position of particles in water at time t, is designated by (X(t), Y(t)). Different random
locations of the particle are described with the aid of stochastic differential equation. The
integration of the movements of the particle in water is done in two steps. A deterministic
step consisting of velocity field of water and a random step known as diffusion modelled by
the stochastic process A. W. Heemink (1990);

dX(t) Itô
=

[
U +

D
H

∂H
∂x

+
∂D
∂x

]
dt +

√
2DdW1(t), X(0) = x0 (25)

dY(t) Itô
=

[
V +

D
H

∂H
∂y

+
∂D
∂y

]
dt +

√
2DdW2(t), Y(0) = y0. (26)

Here D is the dispersion coefficient in m2/s; U(x, y, t), V(x, y, t) are the averaged flow veloci-
ties (m/s) in respectively x, y directions; H(x, y, t) is the total depth in m at location (x, y), and
dW(t) is a Brownian motion with mean (0, 0)T and E[dW1(t)dW2(t)T] = Idt where I is a 2× 2
identity matrixP.E. Kloeden et al. (2003). Note that the advective part of the particle model
eqns.(25)–(26) is not only containing the averaged water flow velocities but also spatial varia-
tions of the diffusion coefficient and the averaged depth. This correction term makes sure that
particles are not allowed to be accumulated in regions of low diffusivity as demonstrated by
(see e.g., J. R. Hunter et al. (1993); R.W.Barber et al. (2005)). At closed boundaries particle bend-
ing is done by halving the time step sizes until the particle no longer crosses closed boundary.
As a result there is no loss of mass through such boundaries. The position (X(t), Y(t)) process
is Markovian and the evolution of its probability density function (p(x, y, t)), is described by
an advection-diffusion type of the partial differential equation known as the Fokker-Planck
equation (see e.g.,A.H. Jazwinski (1970))

5. Discrete version of the particle model driven by Brownian motion

Analytical solutions of stochastic differential equations do not always exist due to their com-
plexity and nonlinearity. Therefore, stochastic numerical integration schemes are often ap-
plied as in G.N. Milstein (1995); J.W. Stijnen et al. (2003). An example of a numerical scheme
is the Euler scheme which, although not optimal in terms of order of convergence, is easy to
implement and requires only O(∆t) in the weak sense P.E. Kloeden et al. (2003). Here the time
interval [t0, T] is discretised as t0 = 0 < t1 < t2 < · · · < tn−1 < tn = T, with ∆(tk) = tk+1 − tk,
∆W(tk) = W(tk+1)− W(tk), for k = 0, 1, · · · n.

X̄(tk+1) = X̄(tk) +
[
U + ( ∂H

∂x D)/H + ∂D
∂x

]
∆(tk) +

√
2D∆W(tk) (27)

Ȳ(tk+1) = Ȳ(tk) +
[
V + ( ∂H

∂y D)/H + ∂D
∂y

]
∆(tk) +

√
2D∆W(tk) (28)

Where X̄(tk+1) and Ȳ(tk+1) are the numerical approximations of the X(tk+1) and Y(tk+1)
positions respectively due to the traditional particle model. The noise increments ∆W(tk) are
independent and normally distributed N (0, ∆(tk)) random variables which can be generated
using e.g., pseudo-random number generators. The domain information consisting of flow
velocities and depth is computed using a hydrodynamic model known as WAQUA see G.S.
Stelling (1983). The flow averaged fields are only available on grid points of a rectangularly
discretised grid and therefore, interpolation methods are usually used to approximate the
values at other positions.
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3.4 The general long term behaviour of a cloud of contaminants due to coloured noise
It is assumed that there is no flow in the model and therefore have
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where 0 < m < s < t. Since k < s, the position of a particle due to coloured noise force
eqn.(21) is given by
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Finally, with the aid of Theorem 1 whose proof is found in H.M. Taylor et al. (1998), the vari-
ance of a cloud of contaminants can be computed as described in the sections above. The
derivation of velocity vn(t) of the particle along the y direction proceeds completely anal-
ogously. Let us now compute the variance of the general equations for position given by
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σ2T2

L ∏n
i=1 α2

i
2 . This relation is important because it gives a criterion for

various choices of parameters αi , i = 1, · · · , n, TL > 0. In a simulation the constant dispersion
coefficient D often is specified whereas σ must be solved in terms of the other parameters. In
the following section we introduce the two dimensional particle model as in W. M. Charles et
al. (2009). This model will be used as a comparison with the random flight model during the
simulation of the dispersion of pollutants an ideal domain known as whirl pool.

4. Particle model due to Brownian motion force for dispersion of pollutants in shal-
low waters

The position of particles in water at time t, is designated by (X(t), Y(t)). Different random
locations of the particle are described with the aid of stochastic differential equation. The
integration of the movements of the particle in water is done in two steps. A deterministic
step consisting of velocity field of water and a random step known as diffusion modelled by
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ties (m/s) in respectively x, y directions; H(x, y, t) is the total depth in m at location (x, y), and
dW(t) is a Brownian motion with mean (0, 0)T and E[dW1(t)dW2(t)T] = Idt where I is a 2× 2
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particles are not allowed to be accumulated in regions of low diffusivity as demonstrated by
(see e.g., J. R. Hunter et al. (1993); R.W.Barber et al. (2005)). At closed boundaries particle bend-
ing is done by halving the time step sizes until the particle no longer crosses closed boundary.
As a result there is no loss of mass through such boundaries. The position (X(t), Y(t)) process
is Markovian and the evolution of its probability density function (p(x, y, t)), is described by
an advection-diffusion type of the partial differential equation known as the Fokker-Planck
equation (see e.g.,A.H. Jazwinski (1970))

5. Discrete version of the particle model driven by Brownian motion

Analytical solutions of stochastic differential equations do not always exist due to their com-
plexity and nonlinearity. Therefore, stochastic numerical integration schemes are often ap-
plied as in G.N. Milstein (1995); J.W. Stijnen et al. (2003). An example of a numerical scheme
is the Euler scheme which, although not optimal in terms of order of convergence, is easy to
implement and requires only O(∆t) in the weak sense P.E. Kloeden et al. (2003). Here the time
interval [t0, T] is discretised as t0 = 0 < t1 < t2 < · · · < tn−1 < tn = T, with ∆(tk) = tk+1 − tk,
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Where X̄(tk+1) and Ȳ(tk+1) are the numerical approximations of the X(tk+1) and Y(tk+1)
positions respectively due to the traditional particle model. The noise increments ∆W(tk) are
independent and normally distributed N (0, ∆(tk)) random variables which can be generated
using e.g., pseudo-random number generators. The domain information consisting of flow
velocities and depth is computed using a hydrodynamic model known as WAQUA see G.S.
Stelling (1983). The flow averaged fields are only available on grid points of a rectangularly
discretised grid and therefore, interpolation methods are usually used to approximate the
values at other positions.
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5.1 Boundaries
Numerical schemes such as the Euler scheme often show very poor convergence be-
haviour G.N. Milstein (1995); P.E. Kloeden et al. (2003). This implies that, in order to get accu-
rate results, small time steps are needed thus requiring much computation. Another problem
with the Euler (or any other numerical scheme) is its undesirable behaviour in the vicinity
of boundaries; a time step that is too large may result in particles unintentionally crossing
boundaries. To tackle this problem two types of boundaries are prescribed. Closed bound-
aries representing boundaries intrinsic to the domain, and open boundaries which arise from
the modeller’s decision to artificially limit the domain at that location. Besides these boundary
types, the is of what what happens if, during integration, a particle crosses one of these two
borders is also considered as in J.W. Stijnen et al. (2003); W. M. Charles et al. (2009);

• In case an open boundary is crossed by a particle, the particle remains in the sea but is
now outside the scope of the model and is therefore removed;

• In case a closed boundary is crossed by a particle during the advective step of integra-
tion, the step taken is cancelled and the time step halved until the boundary is no longer
crossed. However, because of the halving, say n times, the integration time is reduced
to 2−n∆t, leaving a remaining (1− 2−n)∆t integration time. This means at least another
2n − 1 steps need to be taken at the new integration step in order to complete the full
time-step ∆t. This way, shear along the coastline is modelled;

• If a closed boundary is crossed during the diffusive part of integration, the step size
halving procedure described above is maintained with the modification that in addition
to the position, the white noise process is also restored to its state prior to the abandoned
integration step. Again the process of halving the time step and continuing integration
is repeated until no boundaries are crossed and the full ∆t time step has been integrated.

6. Numerical Experiments

Before applying both the traditional model(25)–(26) and the part model forced by coloured
noise(8)–(9) to a real life pollution problem, A whirl pool have been created as domain for test
problem. In this case a whirl pool domain with flow field and a constant total depth of 25 me-
tres is created. In order to compare the spreading behaviour of a cloud of contaminants some
experiments using both particle models have been carried out. The table 1 below summarises
the simulation parameters that have been used in the experiments:

Summary of the simulation parameters of particle for pollutants dispersion in shal-
low waters

Whirl pool Unit Value
# of steps - 89999
∆t s 86.4
Particles - 5000
α1, α2, α3 - α1 = 1, α2 = 1.4, α3 = 0.3
α4, α5, α6 - α4 = 0.02, α5 = 1.2, α6 = 1.4
Tracks - 5
Grid offset m (−20800,−20800)
Grid size - 105 × 105
Cell size m 400 × 400
Init. point m (−10000, 14899)
D m/s2 3
TL s 50000

Table 1. The simulation parameters of the particle model for the dispersion of pollutants in
shallow waters.

From now onwards in this section Brownian motion is denoted by BM and coloured noise
by CN. A bunch of 5000 particles are released at the location (−10000, 14899), the simulation
starts at time t0 = 0 in the whirl pool domain. The scattering of a cloud of contaminants
due to coloured noise or Brownian motions forces is followed at a specified time steps after
release. Generally a large number of particles are used P.S. Addison et al. (1997) in numerical
simulations. The simulations parameters that have been used for simulations of advection
and diffusion of pollutants in shallow waters in this article are summarised in the Table 1.
The results in the Figures 4(a)-(b) show that a cloud of 5000 particles have been deployed,
while Figure 4(c)-(d) shows that 5000 have spread to cover a certain distance 52 days later for
random flight model by CN and particle model by BM respectively. Whereas Figure5(a)-(b)
realisations of marked 5 tracks by CN and BM noised respectively while Figure5(c)-(d) show
a realisation of a single same marked particle for all the simulation period of 89999 time steps
each of 86.4s.
In this chapter a series of experiments are carried out in a stationary homogeneous turbulent
flow with zero mean velocity. The Lagrangian time scale as TL is introduced in the models.
Futhermore, an experiment was carried in the empty domain as in W. M. Charles et al. (2009)
using random flight model as well as the traditional particle model so as to show the differ-
ences between the small scale fluctuations and their similarity in the long scale fluctuations.
The simulation of the spreading of a cloud of 20, 000 particles is tracked in an empty domain
and its variance is computed. It has been shown that once the particles have been in the flow
longer than the time scale TL, the variance of the spreading cloud grows linearly with time
similar to the behaviour of the advection-diffusion equation. Before that time, the variance
grows with the square of time (quadratically), creating two different zones of diffusion see
Figure 6 as in W. M. Charles et al. (2009). In Section 3.4 it is suggested that for t � TL a tur-

bulent mixing coefficient similar to constant dispersion coefficient D such that D =
σ2T2

L ∏ α2
i

2
can be defined.
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problem. In this case a whirl pool domain with flow field and a constant total depth of 25 me-
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experiments using both particle models have been carried out. The table 1 below summarises
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Table 1. The simulation parameters of the particle model for the dispersion of pollutants in
shallow waters.

From now onwards in this section Brownian motion is denoted by BM and coloured noise
by CN. A bunch of 5000 particles are released at the location (−10000, 14899), the simulation
starts at time t0 = 0 in the whirl pool domain. The scattering of a cloud of contaminants
due to coloured noise or Brownian motions forces is followed at a specified time steps after
release. Generally a large number of particles are used P.S. Addison et al. (1997) in numerical
simulations. The simulations parameters that have been used for simulations of advection
and diffusion of pollutants in shallow waters in this article are summarised in the Table 1.
The results in the Figures 4(a)-(b) show that a cloud of 5000 particles have been deployed,
while Figure 4(c)-(d) shows that 5000 have spread to cover a certain distance 52 days later for
random flight model by CN and particle model by BM respectively. Whereas Figure5(a)-(b)
realisations of marked 5 tracks by CN and BM noised respectively while Figure5(c)-(d) show
a realisation of a single same marked particle for all the simulation period of 89999 time steps
each of 86.4s.
In this chapter a series of experiments are carried out in a stationary homogeneous turbulent
flow with zero mean velocity. The Lagrangian time scale as TL is introduced in the models.
Futhermore, an experiment was carried in the empty domain as in W. M. Charles et al. (2009)
using random flight model as well as the traditional particle model so as to show the differ-
ences between the small scale fluctuations and their similarity in the long scale fluctuations.
The simulation of the spreading of a cloud of 20, 000 particles is tracked in an empty domain
and its variance is computed. It has been shown that once the particles have been in the flow
longer than the time scale TL, the variance of the spreading cloud grows linearly with time
similar to the behaviour of the advection-diffusion equation. Before that time, the variance
grows with the square of time (quadratically), creating two different zones of diffusion see
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Fig. 4. Dispersion of a cloud of 5000 particles released in the idealised whirl pool domain. (a)
Due to coloured noise for t << TL, (b) Due to Brownian motion noise for t << TL, (c) Due to
coloured noise for t >> TL, (d) Due to Brownian motion noise for t >> TL.

7. Conclusions

The results obtained in this work suggest that coloured noised can be used to improve the
prediction of the dispersion of pollutants. This is possible when a short time correlation
is considered which is that case in most cases. Thus, random flight model can provide the
modeller with an enhanced tool for the short term simulation of the pollutants by providing
more flexibility to account for correlated physical processes of diffusion in the shallow wa-
ters. However, in this chapter a general analysis similar to those in W. M. Charles et al. (2009)
shows that a process observed over a long time spans as modelled by the coloured noise force
behaves much like a Brownian motion model with variance parameter σ2T2

L ∏n
i=1 α2

i . The use
of coloured noise however is more expensive in terms of computation and therefore it is ad-
visable to use the particle model driven by coloured for short term behaviour while adhering
to the traditional particle model for long-term simulations.
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Fig. 5. Tracking of a single marked particle in the whirl pool starting from the location
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Fig. 6. The variance of a cloud of 20,000 particles in the idealized empty domain. There are
two zones, one in which the variance grows quadratically with time for t << TL and another
one it grows linearly with time for t >> TL.
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7. Conclusions

The results obtained in this work suggest that coloured noised can be used to improve the
prediction of the dispersion of pollutants. This is possible when a short time correlation
is considered which is that case in most cases. Thus, random flight model can provide the
modeller with an enhanced tool for the short term simulation of the pollutants by providing
more flexibility to account for correlated physical processes of diffusion in the shallow wa-
ters. However, in this chapter a general analysis similar to those in W. M. Charles et al. (2009)
shows that a process observed over a long time spans as modelled by the coloured noise force
behaves much like a Brownian motion model with variance parameter σ2T2
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i . The use
of coloured noise however is more expensive in terms of computation and therefore it is ad-
visable to use the particle model driven by coloured for short term behaviour while adhering
to the traditional particle model for long-term simulations.
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1. Introduction

Nowadays the question ‘what is complexity?’ is a challenge to be answered. This question
is triggering a great quantity of works in the frontier of physics, biology, mathematics and
computer science. Even more when this century has been told to be the century of complexity
(Hawking, 2000). Although there seems to be no urgency to answer the above question, many
different proposals that have been developed to this respect can be found in the literature
(Perakh, 2004). In this context, several articles concerning statistical complexity and stochastic
processes are collected in this chapter.
Complex patterns generated by the time evolution of a one-dimensional digitalized coupled
map lattice are quantitatively analyzed in Section 2. A method for discerning complexity
among the different patterns is implemented. The quantitative results indicate two zones
in parameter space where the dynamics shows the most complex patterns. These zones are
located on the two edges of an absorbent region where the system displays spatio-temporal
intermittency.
The synchronization of two stochastically coupled one-dimensional cellular automata (CA) is
analyzed in Section 3. It is shown that the transition to synchronization is characterized by
a dramatic increase of the statistical complexity of the patterns generated by the difference
automaton. This singular behavior is verified to be present in several CA rules displaying
complex behavior.
In Sections 4 and 5, we are concerned with the stability analysis of patterns in extended sys-
tems. In general, it has been revealed to be a difficult task. The many nonlinearly interacting
degrees of freedom can destabilize the system by adding small perturbations to some of them.
The impossibility to control all those degrees of freedom finally drives the dynamics toward
a complex spatio-temporal evolution. Hence, it is of a great interest to develop techniques
able to compel the dynamics toward a particular kind of structure. The application of such
techniques forces the system to approach the stable manifold of the required pattern, and then
the dynamics finally decays to that target pattern.

4
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Synchronization strategies in extended systems can be useful in order to achieve such goal. In
Section 4, we implement stochastic synchronization between the present configurations of a
cellular automata and its precedent ones in order to search for constant patterns. In Section 5,
this type of synchronization is specifically used to find symmetrical patterns in the evolution
of a single automaton.

2. Complexity in Two-Dimensional Patterns Generated by Coupled Map Lattices

It should be kept in mind that in ancient epochs, time, space, mass, velocity, charge, color, etc.
were only perceptions. In the process they are becoming concepts, different tools and instru-
ments are invented for quantifying the perceptions. Finally, only with numbers the scientific
laws emerge. In this sense, if by complexity it is to be understood that property present in all
systems attached under the epigraph of ‘complex systems’, this property should be reasonably
quantified by the different measures that were proposed in the last years. This kind of indi-
cators is found in those fields where the concept of information is crucial. Thus, the effective
measure of complexity (Grassberger, 1986) and the thermodynamical depth (Lloyd & Pagels,
1988) come from physics and other attempts such as algorithmic complexity (Chaitin, 1966;
Kolmogorov, 1965), Lempel-Ziv complexity (Lempel & Ziv, 1976) and ε-machine complexity
(Cruthfield, 1989) arise from the field of computational sciences.
In particular, taking into account the statistical properties of a system, an indicator called
the LMC (LópezRuiz-Mancini-Calbet) complexity has been introduced (Lopez-Ruiz, 1994; Lopez-
Ruiz et al., 1995). This magnitude identifies the entropy or information stored in a system
and its disequilibrium i.e., the distance from its actual state to the probability distribution
of equilibrium, as the two basic ingredients for calculating its complexity. If H denotes the
information stored in the system and D is its disequilibrium, the LMC complexity C is given by
the formula:

C( p̄) = H( p̄) · D( p̄) =

= −k
(

∑N
i=1 pi log pi

)
·

(
∑N

i=1

(
pi −

1
N

)2
)

(1)

where p̄ = {pi}, with pi ≥ 0 and i = 1, · · · , N, represents the distribution of the N accessible
states to the system, and k is a constant taken as 1/ log N.
As well as the Euclidean distance D is present in the original LMC complexity, other kinds of
disequilibrium measures have been proposed in order to remedy some statistical character-
istics considered troublesome for some authors (Feldman & Crutchfield, 1998). In particular,
some attention has been focused (Lin, 1991; Martin et al., 2003) on the Jensen-Shannon di-
vergence DJS as a measure for evaluating the distance between two different distributions
( p̄1, p̄2). This distance reads:

DJS( p̄1, p̄2) = H(π1 p̄1 + π2 p̄2)− π1H( p̄1)− π2H( p̄2), (2)

with π1, π2 the weights of the two probability distributions ( p̄1, p̄2) verifying π1, π2 ≥ 0 and
π1 + π2 = 1. The ensuing statistical complexity

CJS = H · DJS (3)

becomes intensive and also keeps the property of distinguishing among distinct degrees of
periodicity (Lamberti et al., 2004). Here, we consider p̄2 the equiprobability distribution and
π1 = π2 = 0.5.
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Fig. 1. β versus p. The β-statistics (or BW density) for each p is the rate between the number
of black and white cells depicted by the system in the two-dimensional representation of its
after-transient time evolution. (Computations have been performed with ∆p = 0.005 for a
lattice of 10000 sites after a transient of 5000 iterations and a running of other 2000 iterations).

As it can be straightforwardly seen, all these LMC-like complexities vanish both for com-
pletely ordered and for completely random systems as it is required for the correct asymp-
totic properties of a such well-behaved measure. Recently, they have been successfully used
to discern situations regarded as complex in discrete systems out of equilibrium (Calbet &
Lopez-Ruiz, 2001; Lovallo et al., 2005; Rosso et al., 2003; 2005; Shiner et al., 1999; Yu & Chen,
2000).
As an example, the local transition to chaos via intermittency (Pomeau & Manneville, 1980) in
the logistic map, xn+1 = λxn(1 − xn) presents a sharp transition when C is plotted versus the
parameter λ in the region around the instability for λ ∼ λt = 3.8284. When λ < λt the system
approaches the laminar regime and the bursts become more unpredictable. The complexity
increases. When the point λ = λt is reached a drop to zero occurs for the magnitude C. The
system is now periodic and it has lost its complexity. The dynamical behavior of the system is
finally well reflected in the magnitude C (see (Lopez-Ruiz et al., 1995)).
When a one-dimensional array of such maps is put together a more complex behavior can be
obtained depending on the coupling among the units. Ergo the phenomenon called spatio-
temporal intermittency can emerge (Chate & Manneville, 1987; Houlrik, 1990; Rolf et al., 1998).
This dynamical regime corresponds with a situation where each unit is weakly oscillating
around a laminar state that is aperiodically and strongly perturbed for a traveling burst. In
this case, the plot of the one-dimensional lattice evolving in time gives rise to complex pat-
terns on the plane. If the coupling among units is modified the system can settle down in
an absorbing phase where its dynamics is trivial (Argentina & Coullet, 1997; Zimmermann
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Synchronization strategies in extended systems can be useful in order to achieve such goal. In
Section 4, we implement stochastic synchronization between the present configurations of a
cellular automata and its precedent ones in order to search for constant patterns. In Section 5,
this type of synchronization is specifically used to find symmetrical patterns in the evolution
of a single automaton.

2. Complexity in Two-Dimensional Patterns Generated by Coupled Map Lattices

It should be kept in mind that in ancient epochs, time, space, mass, velocity, charge, color, etc.
were only perceptions. In the process they are becoming concepts, different tools and instru-
ments are invented for quantifying the perceptions. Finally, only with numbers the scientific
laws emerge. In this sense, if by complexity it is to be understood that property present in all
systems attached under the epigraph of ‘complex systems’, this property should be reasonably
quantified by the different measures that were proposed in the last years. This kind of indi-
cators is found in those fields where the concept of information is crucial. Thus, the effective
measure of complexity (Grassberger, 1986) and the thermodynamical depth (Lloyd & Pagels,
1988) come from physics and other attempts such as algorithmic complexity (Chaitin, 1966;
Kolmogorov, 1965), Lempel-Ziv complexity (Lempel & Ziv, 1976) and ε-machine complexity
(Cruthfield, 1989) arise from the field of computational sciences.
In particular, taking into account the statistical properties of a system, an indicator called
the LMC (LópezRuiz-Mancini-Calbet) complexity has been introduced (Lopez-Ruiz, 1994; Lopez-
Ruiz et al., 1995). This magnitude identifies the entropy or information stored in a system
and its disequilibrium i.e., the distance from its actual state to the probability distribution
of equilibrium, as the two basic ingredients for calculating its complexity. If H denotes the
information stored in the system and D is its disequilibrium, the LMC complexity C is given by
the formula:

C( p̄) = H( p̄) · D( p̄) =

= −k
(

∑N
i=1 pi log pi

)
·

(
∑N

i=1

(
pi −

1
N

)2
)

(1)

where p̄ = {pi}, with pi ≥ 0 and i = 1, · · · , N, represents the distribution of the N accessible
states to the system, and k is a constant taken as 1/ log N.
As well as the Euclidean distance D is present in the original LMC complexity, other kinds of
disequilibrium measures have been proposed in order to remedy some statistical character-
istics considered troublesome for some authors (Feldman & Crutchfield, 1998). In particular,
some attention has been focused (Lin, 1991; Martin et al., 2003) on the Jensen-Shannon di-
vergence DJS as a measure for evaluating the distance between two different distributions
( p̄1, p̄2). This distance reads:

DJS( p̄1, p̄2) = H(π1 p̄1 + π2 p̄2)− π1H( p̄1)− π2H( p̄2), (2)

with π1, π2 the weights of the two probability distributions ( p̄1, p̄2) verifying π1, π2 ≥ 0 and
π1 + π2 = 1. The ensuing statistical complexity

CJS = H · DJS (3)

becomes intensive and also keeps the property of distinguishing among distinct degrees of
periodicity (Lamberti et al., 2004). Here, we consider p̄2 the equiprobability distribution and
π1 = π2 = 0.5.
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Fig. 1. β versus p. The β-statistics (or BW density) for each p is the rate between the number
of black and white cells depicted by the system in the two-dimensional representation of its
after-transient time evolution. (Computations have been performed with ∆p = 0.005 for a
lattice of 10000 sites after a transient of 5000 iterations and a running of other 2000 iterations).

As it can be straightforwardly seen, all these LMC-like complexities vanish both for com-
pletely ordered and for completely random systems as it is required for the correct asymp-
totic properties of a such well-behaved measure. Recently, they have been successfully used
to discern situations regarded as complex in discrete systems out of equilibrium (Calbet &
Lopez-Ruiz, 2001; Lovallo et al., 2005; Rosso et al., 2003; 2005; Shiner et al., 1999; Yu & Chen,
2000).
As an example, the local transition to chaos via intermittency (Pomeau & Manneville, 1980) in
the logistic map, xn+1 = λxn(1 − xn) presents a sharp transition when C is plotted versus the
parameter λ in the region around the instability for λ ∼ λt = 3.8284. When λ < λt the system
approaches the laminar regime and the bursts become more unpredictable. The complexity
increases. When the point λ = λt is reached a drop to zero occurs for the magnitude C. The
system is now periodic and it has lost its complexity. The dynamical behavior of the system is
finally well reflected in the magnitude C (see (Lopez-Ruiz et al., 1995)).
When a one-dimensional array of such maps is put together a more complex behavior can be
obtained depending on the coupling among the units. Ergo the phenomenon called spatio-
temporal intermittency can emerge (Chate & Manneville, 1987; Houlrik, 1990; Rolf et al., 1998).
This dynamical regime corresponds with a situation where each unit is weakly oscillating
around a laminar state that is aperiodically and strongly perturbed for a traveling burst. In
this case, the plot of the one-dimensional lattice evolving in time gives rise to complex pat-
terns on the plane. If the coupling among units is modified the system can settle down in
an absorbing phase where its dynamics is trivial (Argentina & Coullet, 1997; Zimmermann
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Fig. 2. Digitalized plot of the one-dimensional coupled map lattice (axe OX) evolving in time
(axe OY) according to Eq. (4): if xn

i > 0.5 the (i, n)-cell is put in white color and if xn
i < 0.5 the

(i, n)-cell is put in black color. The discrete time n is reset to zero after the transitory. (Lattices
of 300 × 300 sites, i.e., 0 < i < 300 and 0 < n < 300).

et al., 2000) and then homogeneous patterns are obtained. Therefore an abrupt transition to
spatio-temporal intermittency can be depicted by the system (Menon et al., 2003; Pomeau,
1986) when modifying the coupling parameter.
In this section, we are concerned with measuring C and CJS in a such transition for a coupled
map lattice of logistic type (Sanchez & Lopez-Ruiz, 2005-a). Our system will be a line of sites,
i = 1, . . . , L, with periodic boundary conditions. In each site i a local variable xn

i evolves in
time (n) according to a discrete logistic equation. The interaction with the nearest neighbors
takes place via a multiplicative coupling:

xn+1
i = (4 − 3pXn

i )x
n
i (1 − xn

i ), (4)

where p is the parameter of the system measuring the strength of the coupling (0 < p < 1).
The variable Xn

i is the digitalized local mean field,

Xn
i = nint

[
1

2
(xn

i+1 + xn
i−1)

]
, (5)

with nint(.) the integer function rounding its argument to the nearest integer. Hence Xn
i = 0

or 1.
There is a biological motivation behind this kind of systems (Lopez-Ruiz & Fournier-Prunaret,
2004; Lopez-Ruiz, 2005). It could represent a colony of interacting competitive individuals. They
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Fig. 3. (•) C versus p. Observe the peaks of the LMC complexity located just on the borders
of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have been
performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations and a
running of other 2000 iterations).

evolve randomly when they are independent (p = 0). If some competitive interaction (p > 0)
among them takes place the local dynamics loses its erratic component and becomes chaotic
or periodic in time depending on how populated the vicinity is. Hence, for bigger Xn

i more
populated is the neighborhood of the individual i and more constrained is its free action. At
a first sight, it would seem that some particular values of p could stabilize the system. In fact,
this is the case. Let us choose a number of individuals for the colony (L = 500 for instance),
let us initialize it randomly in the range 0 < xi < 1 and let it evolve until the asymptotic
regime is attained. Then the black/white statistics of the system is performed. That is, the state
of the variable xi is compared with the critical level 0.5 for i = 1, . . . , L: if xi > 0.5 the site i
is considered white (high density cell) and a counter Nw is increased by one, or if xi < 0.5 the
site i is considered black (low density cell) and a counter Nb is increased by one. This process
is executed in the stationary regime for a set of iterations. The black/white statistics is then the
rate β = Nb/Nw. If β is plotted versus the coupling parameter p the Figure 1 is obtained.
The region 0.258 < p < 0.335 where β vanishes is remarkable. As stated above, β represents
the rate between the number of black cells and the number of white cells appearing in the
two-dimensional digitalized representation of the colony evolution. A whole white pattern is
obtained for this range of p. The phenomenon of spatio-temporal intermittency is displayed
by the system in the two borders of this parameter region (Fig. 2). Bursts of low density (black
color) travel in an irregular way through the high density regions (white color). In this case
two-dimensional complex patterns are shown by the time evolution of the system (Fig. 2b-c).
If the coupling p is far enough from this region, i.e., p < 0.25 or p > 0.4, the absorbent region
loses its influence on the global dynamics and less structured and more random patterns than
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Fig. 2. Digitalized plot of the one-dimensional coupled map lattice (axe OX) evolving in time
(axe OY) according to Eq. (4): if xn

i > 0.5 the (i, n)-cell is put in white color and if xn
i < 0.5 the

(i, n)-cell is put in black color. The discrete time n is reset to zero after the transitory. (Lattices
of 300 × 300 sites, i.e., 0 < i < 300 and 0 < n < 300).

et al., 2000) and then homogeneous patterns are obtained. Therefore an abrupt transition to
spatio-temporal intermittency can be depicted by the system (Menon et al., 2003; Pomeau,
1986) when modifying the coupling parameter.
In this section, we are concerned with measuring C and CJS in a such transition for a coupled
map lattice of logistic type (Sanchez & Lopez-Ruiz, 2005-a). Our system will be a line of sites,
i = 1, . . . , L, with periodic boundary conditions. In each site i a local variable xn

i evolves in
time (n) according to a discrete logistic equation. The interaction with the nearest neighbors
takes place via a multiplicative coupling:

xn+1
i = (4 − 3pXn

i )x
n
i (1 − xn

i ), (4)

where p is the parameter of the system measuring the strength of the coupling (0 < p < 1).
The variable Xn

i is the digitalized local mean field,

Xn
i = nint

[
1

2
(xn

i+1 + xn
i−1)

]
, (5)

with nint(.) the integer function rounding its argument to the nearest integer. Hence Xn
i = 0

or 1.
There is a biological motivation behind this kind of systems (Lopez-Ruiz & Fournier-Prunaret,
2004; Lopez-Ruiz, 2005). It could represent a colony of interacting competitive individuals. They
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Fig. 3. (•) C versus p. Observe the peaks of the LMC complexity located just on the borders
of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have been
performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations and a
running of other 2000 iterations).

evolve randomly when they are independent (p = 0). If some competitive interaction (p > 0)
among them takes place the local dynamics loses its erratic component and becomes chaotic
or periodic in time depending on how populated the vicinity is. Hence, for bigger Xn

i more
populated is the neighborhood of the individual i and more constrained is its free action. At
a first sight, it would seem that some particular values of p could stabilize the system. In fact,
this is the case. Let us choose a number of individuals for the colony (L = 500 for instance),
let us initialize it randomly in the range 0 < xi < 1 and let it evolve until the asymptotic
regime is attained. Then the black/white statistics of the system is performed. That is, the state
of the variable xi is compared with the critical level 0.5 for i = 1, . . . , L: if xi > 0.5 the site i
is considered white (high density cell) and a counter Nw is increased by one, or if xi < 0.5 the
site i is considered black (low density cell) and a counter Nb is increased by one. This process
is executed in the stationary regime for a set of iterations. The black/white statistics is then the
rate β = Nb/Nw. If β is plotted versus the coupling parameter p the Figure 1 is obtained.
The region 0.258 < p < 0.335 where β vanishes is remarkable. As stated above, β represents
the rate between the number of black cells and the number of white cells appearing in the
two-dimensional digitalized representation of the colony evolution. A whole white pattern is
obtained for this range of p. The phenomenon of spatio-temporal intermittency is displayed
by the system in the two borders of this parameter region (Fig. 2). Bursts of low density (black
color) travel in an irregular way through the high density regions (white color). In this case
two-dimensional complex patterns are shown by the time evolution of the system (Fig. 2b-c).
If the coupling p is far enough from this region, i.e., p < 0.25 or p > 0.4, the absorbent region
loses its influence on the global dynamics and less structured and more random patterns than
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Fig. 4. (·) CJS versus p. The peaks of this modified LMC complexity are also evident just on
the borders of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have
been performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations
and a running of other 2000 iterations).

before are obtained (Fig. 2a-d). For p = 0 we have no coupling of the maps, and each map
generates so called fully developed chaos, where the invariant measure is well-known to be
symmetric around 0.5. From this we conclude that β(p = 0) = 1. Let us observe that this
symmetrical behavior of the invariant measure is broken for small p, and β decreases slightly
in the vicinity of p = 0.
If the LMC complexities are quantified as function of p, our intuition is confirmed. The
method proposed in (Lopez-Ruiz et al., 1995) to calculate C is now adapted to the case of
two-dimensional patterns. First, we let the system evolve until the asymptotic regime is at-
tained. This transient is discarded. Then, for each time n, we map the whole lattice in a binary
sequence: 0 if xn

i < 0.5 and 1 if xn
i > 0.5, for i = 1, . . . , L. This L-binary string is analyzed

by blocks of no bits, where no can be considered the scale of observation. For this scale, there
are 2no possible states but only some of them are accessible. These accessible states as well as
their probabilities are found in the L-binary string. Next, the magnitudes H, D, DJS, C and
CJS are directly calculated for this particular time n by applying the formulas (1-3). We repeat
this process for a set of successive time units (n, n + 1, · · · , n + m). The mean values of H, D,
DJS , C and CJS for these m time units are finally obtained and plotted in Fig. 3-4.
Figures 3,4 show the result for the case of no = 10. Let us observe that the highest C and CJS are
reached when the dynamics displays spatio-temporal intermittency, that is, the most complex
patterns are obtained for those values of p that are located on the borders of the absorbent
region 0.258 < p < 0.335. Thus the plot of C and CJS versus p shows two tight peaks around
the values p = 0.256 and p = 0.34 (Fig. 3,4). Let us remark that the LMC complexity C can be
neglected far from the absorbent region. Contrarily to this behavior, the magnitude CJS also

shows high peaks in some other sharp transition of β located in the region 0 < p < 25, and an
intriguing correlation with the black/white statistics in the region 0.4 < p < 1. All these facts
as well as the stability study of the different dynamical regions of system (4) are not the object
of the present writing but they deserve attention and a further study.
If the detection of complexity in the two-dimensional case requires to identify some sharp
change when comparing different patterns, those regions in the parameter space where an
abrupt transition happens should be explored in order to obtain the most complex patterns.
Smoothness seems not to be at the origin of complexity. As well as a selected few distinct
molecules among all the possible are in the basis of life (McKay, 2004), discreteness and its
spiky appearance could indicate the way towards complexity. Let us recall that the distribu-
tions with the highest LMC complexity are just those distributions with a spiky-like appear-
ance (Anteneodo & Plastino, 1996; Calbet & Lopez-Ruiz, 2001). In this line, the striking result
here exposed confirms the capability of the LMC-like complexities for signaling a transition to
complex behavior when regarding two-dimensional patterns (Sanchez & Lopez-Ruiz, 2005-b).

3. Detecting Synchronization in Cellular Automata by Complexity Measurements

Despite all the efforts devoted to understand the meaning of complexity, we still do not have an
instrument in the laboratories specially designed for quantifying this property. Maybe this is
not the final objective of all those theoretical attempts carried out in the most diverse fields of
knowledge in the last years (Bennett, 1985; Chaitin, 1966; Cruthfield, 1989; Grassberger, 1986;
Kolmogorov, 1965; Lempel & Ziv, 1976; Lloyd & Pagels, 1988; Shiner et al., 1999), but, for a
moment, let us think in that possibility.
Similarly to any other device, our hypothetical apparatus will have an input and an output.
The input could be the time evolution of some variables of the system. The instrument records
those signals, analyzes them with a proper program and finally screens the result in the form
of a complexity measurement. This process is repeated for several values of the parameters con-
trolling the dynamics of the system. If our interest is focused in the most complex configuration
of the system we have now the possibility of tuning such an state by regarding the complexity
plot obtained at the end of this process.
As a real applicability of this proposal, let us apply it to an à-la-mode problem. The clusteriza-
tion or synchronization of chaotic coupled elements was put in evidence at the beginning of
the nineties (Kaneko, 1989; Lopez-Ruiz & Perez-Garcia, 1991). Since then, a lot of publications
have been devoted to this subject (Boccaletti et al., 2002). Let us consider one particular of
these systems to illuminate our proposal.
(1) SYSTEM: We take two coupled elementary one dimensional cellular automata (CA: see
next section in which CA are concisely explained) displaying complex spatio-temporal dy-
namics (Wolfram, 1983). It has been shown that this system can undergo through a synchro-
nization transition (Morelli & Zanette, 1998). The transition to full synchronization occurs at
a critical value pc of a synchronization parameter p. Briefly the numerical experiment is as
follows. Two L-cell CA with the same evolution rule Φ are started from different random
initial conditions for each automaton. Then, at each time step, the dynamics of the coupled
CA is governed by the successive application of two evolution operators; the independent
evolution of each CA according to its corresponding rule Φ and the application of a stochastic
operator that compares the states σ1

i and σ2
i of all the cells, i = 1, ...L, in each automaton. If

σ1
i = σ2

i , both states are kept invariant. If σ1
i �= σ2

i , they are left unchanged with probability

1 − p, but both states are updated either to σ1
i or to σ2

i with equal probability p/2. It is shown
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Fig. 4. (·) CJS versus p. The peaks of this modified LMC complexity are also evident just on
the borders of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have
been performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations
and a running of other 2000 iterations).

before are obtained (Fig. 2a-d). For p = 0 we have no coupling of the maps, and each map
generates so called fully developed chaos, where the invariant measure is well-known to be
symmetric around 0.5. From this we conclude that β(p = 0) = 1. Let us observe that this
symmetrical behavior of the invariant measure is broken for small p, and β decreases slightly
in the vicinity of p = 0.
If the LMC complexities are quantified as function of p, our intuition is confirmed. The
method proposed in (Lopez-Ruiz et al., 1995) to calculate C is now adapted to the case of
two-dimensional patterns. First, we let the system evolve until the asymptotic regime is at-
tained. This transient is discarded. Then, for each time n, we map the whole lattice in a binary
sequence: 0 if xn

i < 0.5 and 1 if xn
i > 0.5, for i = 1, . . . , L. This L-binary string is analyzed

by blocks of no bits, where no can be considered the scale of observation. For this scale, there
are 2no possible states but only some of them are accessible. These accessible states as well as
their probabilities are found in the L-binary string. Next, the magnitudes H, D, DJS, C and
CJS are directly calculated for this particular time n by applying the formulas (1-3). We repeat
this process for a set of successive time units (n, n + 1, · · · , n + m). The mean values of H, D,
DJS , C and CJS for these m time units are finally obtained and plotted in Fig. 3-4.
Figures 3,4 show the result for the case of no = 10. Let us observe that the highest C and CJS are
reached when the dynamics displays spatio-temporal intermittency, that is, the most complex
patterns are obtained for those values of p that are located on the borders of the absorbent
region 0.258 < p < 0.335. Thus the plot of C and CJS versus p shows two tight peaks around
the values p = 0.256 and p = 0.34 (Fig. 3,4). Let us remark that the LMC complexity C can be
neglected far from the absorbent region. Contrarily to this behavior, the magnitude CJS also

shows high peaks in some other sharp transition of β located in the region 0 < p < 25, and an
intriguing correlation with the black/white statistics in the region 0.4 < p < 1. All these facts
as well as the stability study of the different dynamical regions of system (4) are not the object
of the present writing but they deserve attention and a further study.
If the detection of complexity in the two-dimensional case requires to identify some sharp
change when comparing different patterns, those regions in the parameter space where an
abrupt transition happens should be explored in order to obtain the most complex patterns.
Smoothness seems not to be at the origin of complexity. As well as a selected few distinct
molecules among all the possible are in the basis of life (McKay, 2004), discreteness and its
spiky appearance could indicate the way towards complexity. Let us recall that the distribu-
tions with the highest LMC complexity are just those distributions with a spiky-like appear-
ance (Anteneodo & Plastino, 1996; Calbet & Lopez-Ruiz, 2001). In this line, the striking result
here exposed confirms the capability of the LMC-like complexities for signaling a transition to
complex behavior when regarding two-dimensional patterns (Sanchez & Lopez-Ruiz, 2005-b).

3. Detecting Synchronization in Cellular Automata by Complexity Measurements

Despite all the efforts devoted to understand the meaning of complexity, we still do not have an
instrument in the laboratories specially designed for quantifying this property. Maybe this is
not the final objective of all those theoretical attempts carried out in the most diverse fields of
knowledge in the last years (Bennett, 1985; Chaitin, 1966; Cruthfield, 1989; Grassberger, 1986;
Kolmogorov, 1965; Lempel & Ziv, 1976; Lloyd & Pagels, 1988; Shiner et al., 1999), but, for a
moment, let us think in that possibility.
Similarly to any other device, our hypothetical apparatus will have an input and an output.
The input could be the time evolution of some variables of the system. The instrument records
those signals, analyzes them with a proper program and finally screens the result in the form
of a complexity measurement. This process is repeated for several values of the parameters con-
trolling the dynamics of the system. If our interest is focused in the most complex configuration
of the system we have now the possibility of tuning such an state by regarding the complexity
plot obtained at the end of this process.
As a real applicability of this proposal, let us apply it to an à-la-mode problem. The clusteriza-
tion or synchronization of chaotic coupled elements was put in evidence at the beginning of
the nineties (Kaneko, 1989; Lopez-Ruiz & Perez-Garcia, 1991). Since then, a lot of publications
have been devoted to this subject (Boccaletti et al., 2002). Let us consider one particular of
these systems to illuminate our proposal.
(1) SYSTEM: We take two coupled elementary one dimensional cellular automata (CA: see
next section in which CA are concisely explained) displaying complex spatio-temporal dy-
namics (Wolfram, 1983). It has been shown that this system can undergo through a synchro-
nization transition (Morelli & Zanette, 1998). The transition to full synchronization occurs at
a critical value pc of a synchronization parameter p. Briefly the numerical experiment is as
follows. Two L-cell CA with the same evolution rule Φ are started from different random
initial conditions for each automaton. Then, at each time step, the dynamics of the coupled
CA is governed by the successive application of two evolution operators; the independent
evolution of each CA according to its corresponding rule Φ and the application of a stochastic
operator that compares the states σ1

i and σ2
i of all the cells, i = 1, ...L, in each automaton. If
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i , both states are kept invariant. If σ1
i �= σ2

i , they are left unchanged with probability

1 − p, but both states are updated either to σ1
i or to σ2

i with equal probability p/2. It is shown
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Fig. 5. Spatio-temporal patterns just above the synchronization transition. The left and the
right plots show 250 successive states of the two coupled automata and the central plot is the
corresponding difference automaton for the rules 22, 30, 90 and 110. The number of sites is
L = 100 and the coupling probability is p = 0.23.

in reference (Morelli & Zanette, 1998) that there exists a critical value of the synchronization
parameter (pc = 0.193 for the rule 18) above for which full synchronization is achieved.
(2) DEVICE: We choose a particular instrument to perform our measurements, that is capable
of displaying the value of the LMC complexity (C) (Lopez-Ruiz et al., 1995) defined as in Eq. (1),
C({ρi}) = H({ρi}) · D({ρi}) , where {ρi} represents the set of probabilities of the N accessible
discrete states of the system, with ρi ≥ 0 , i = 1, · · · , N, and k is a constant. If k = 1/logN then
we have the normalized complexity. C is a statistical measure of complexity that identifies the
entropy or information stored in a system and its disequilibrium, i.e., the distance from its
actual state to the probability distribution of equilibrium, as the two basic ingredients for
calculating the complexity of a system. This quantity vanishes both for completely ordered
and for completely random systems giving then the correct asymptotic properties required
for a such well-behaved measure, and its calculation has been useful to successfully discern
many situations regarded as complex.
(3) INPUT: In particular, the evolution of two coupled CA evolving under the rules 22, 30, 90
and 110 is analyzed. The pattern of the difference automaton will be the input of our device.
In Fig. 5 it is shown for a coupling probability p = 0.23, just above the synchronization transi-
tion. The left and the right plots show 250 successive states of the two automata, whereas the
central plot displays the corresponding difference automaton. Such automaton is constructed
by comparing one by one all the sites (L = 100) of both automata and putting zero when the
states σ1

i and σ2
i , i = 1 . . . L, are equal or putting one otherwise. It is worth to observe that
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Fig. 6. The normalized complexity C versus the coupling probability p for different scales of
observation: no = 1 (◦),no = 4 (�) and no = 6 (�). C has been calculated over the last 300
iterations of a running of 600 of them for a lattice with L = 1000 sites. The synchronization
transition is clearly depicted around p ≈ 0.2 for the different rules.

the difference automaton shows an interesting complex structure close to the synchronization
transition. This complex pattern is only found in this region of parameter space. When the
system if fully synchronized the difference automaton is composed by zeros in all the sites,
while when there is no synchronization at all the structure of the difference automaton is com-
pletely random.
(4) METHOD OF MEASUREMENT: How to perform the measurement of C for such two-
dimensional patterns has been presented in the former section (Sanchez & Lopez-Ruiz, 2005-
a). We let the system evolve until the asymptotic regime is attained. The variable σd

i in each
cell of the difference pattern is successively translated to an unique binary sequence when the
variable i covers the spatial dimension of the lattice, i = 1, . . . , L, and the time variable n is
consecutively increased. This binary string is analyzed in blocks of no bits, where no can be
considered the scale of observation. The accessible states to the system among the 2no possible
states is found as well as their probabilities. Then, the magnitudes H, D and C are directly
calculated and screened by the device.
(5) OUTPUT: The results of the measurement are shown in Fig. 6. The normalized com-
plexity C as a function of the synchronization parameter p is plotted for different coupled
one-dimensional CA that evolve under the rules 22, 30, 90 and 110 , which are known to gen-
erate complex patterns. All the plots of Fig. 6 were obtained using the following parameters:
number of cell of the automata, L = 1000; total evolution time, T = 600 steps. For all the cases
and scales analyzed, the statistical complexity C shows a dramatic increase close to the syn-
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Fig. 5. Spatio-temporal patterns just above the synchronization transition. The left and the
right plots show 250 successive states of the two coupled automata and the central plot is the
corresponding difference automaton for the rules 22, 30, 90 and 110. The number of sites is
L = 100 and the coupling probability is p = 0.23.
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parameter (pc = 0.193 for the rule 18) above for which full synchronization is achieved.
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calculating the complexity of a system. This quantity vanishes both for completely ordered
and for completely random systems giving then the correct asymptotic properties required
for a such well-behaved measure, and its calculation has been useful to successfully discern
many situations regarded as complex.
(3) INPUT: In particular, the evolution of two coupled CA evolving under the rules 22, 30, 90
and 110 is analyzed. The pattern of the difference automaton will be the input of our device.
In Fig. 5 it is shown for a coupling probability p = 0.23, just above the synchronization transi-
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central plot displays the corresponding difference automaton. Such automaton is constructed
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the difference automaton shows an interesting complex structure close to the synchronization
transition. This complex pattern is only found in this region of parameter space. When the
system if fully synchronized the difference automaton is composed by zeros in all the sites,
while when there is no synchronization at all the structure of the difference automaton is com-
pletely random.
(4) METHOD OF MEASUREMENT: How to perform the measurement of C for such two-
dimensional patterns has been presented in the former section (Sanchez & Lopez-Ruiz, 2005-
a). We let the system evolve until the asymptotic regime is attained. The variable σd

i in each
cell of the difference pattern is successively translated to an unique binary sequence when the
variable i covers the spatial dimension of the lattice, i = 1, . . . , L, and the time variable n is
consecutively increased. This binary string is analyzed in blocks of no bits, where no can be
considered the scale of observation. The accessible states to the system among the 2no possible
states is found as well as their probabilities. Then, the magnitudes H, D and C are directly
calculated and screened by the device.
(5) OUTPUT: The results of the measurement are shown in Fig. 6. The normalized com-
plexity C as a function of the synchronization parameter p is plotted for different coupled
one-dimensional CA that evolve under the rules 22, 30, 90 and 110 , which are known to gen-
erate complex patterns. All the plots of Fig. 6 were obtained using the following parameters:
number of cell of the automata, L = 1000; total evolution time, T = 600 steps. For all the cases
and scales analyzed, the statistical complexity C shows a dramatic increase close to the syn-
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chronization transition. It reflects the complex structure of the difference automaton and the
capability of the measurement device here proposed for clearly signaling the synchronization
transition of two coupled CA.
These results are in agreement with the measurements of C performed in the patterns gen-
erated by a one-dimensional logistic coupled map lattice in the former section (Sanchez &
Lopez-Ruiz, 2005-a). There the LMC statistical complexity (C) also shows a singular behavior
close to the two edges of an absorbent region where the lattice displays spatio-temporal inter-
mittency. Hence, in our present case, the synchronization region of the coupled systems can
be interpreted as an absorbent region of the difference system. In fact, the highest complexity
is reached on the border of this region for p ≈ 0.2. The parallelism between both systems is
therefore complete.

4. Self-Synchronization of Cellular Automata

Cellular automata (CA) are discrete dynamical systems, discrete both in space and time. The
simplest one dimensional version of a cellular automaton is formed by a lattice of N sites or
cells, numbered by an index i = 1, . . . , N, and with periodic boundary conditions. In each site,
a local variable σi taking a binary value, either 0 or 1, is asigned. The binary string σ(t) formed
by all sites values at time t represents a configuration of the system. The system evolves in
time by the application of a rule Φ. A new configuration σ(t + 1) is obtained under the action
of the rule Φ on the state σ(t). Then, the evolution of the automata can be writen as

σ(t + 1) = Φ [σ(t)]. (6)

If coupling among nearest neighbors is used, the value of the site i, σi(t + 1), at time t + 1 is
a function of the value of the site itself at time t, σi(t), and the values of its neighbors σi−1(t)
and σi+1(t) at the same time. Then, the local evolution is expressed as

σi(t + 1) = φ(σi−1(t), σi(t), σi+1(t)), (7)

being φ a particular realization of the rule Φ. For such particular implementation, there will
be 23 different local input configurations for each site and, for each one of them, a binary value
can be assigned as output. Therefore there will be 28 different rules φ, also called the Wolfram
rules. Each one of these rules produces a different dynamical evolution. In fact, dynamical
behavior generated by all 256 rules were already classified in four generic classes. The reader
interested in the details of such classification is addressed to the original reference (Wolfram,
1983).
CA provide us with simple dynamical systems, in which we would like to essay differ-
ent methods of synchronization. A stochastic synchronization technique was introduced
in (Morelli & Zanette, 1998) that works in synchronizing two CA evolving under the same
rule Φ. The two CA are started from different initial conditions and they are supposed to
have partial knowledge about each other. In particular, the CA configurations, σ1(t) and
σ2(t), are compared at each time step. Then, a fraction p of the total different sites are made
equal (synchronized). The synchronization is stochastic since the location of the sites that
are going to be equal is decided at random. Hence, the dynamics of the two coupled CA,
σ(t) = (σ1(t), σ2(t)), is driven by the successive application of two operators:

1. the deterministic operator given by the CA evolution rule Φ, Φ[σ(t)] =
(Φ[σ1(t)], Φ[σ2(t)]), and

Fig. 7. Rule 90 has two stable patterns: one repeats the 011 string and the other one the
00 string. Such patterns are reached by the first self-synchronization method but there is a
dynamical competition between them. In this case p = 0.9. Binary value 0 is represented in
white and 1 in black. Time goes from top to bottom.

2. the stochastic operator Γp that produces the result Γp[σ(t)], in such way that, if the

sites are different (σ1
i �= σ2

i ), then Γp sets both sites equal to σ1
i with the probability

p/2 or equal to σ2
i with the same probability p/2. In any other case Γp leaves the sites

unchanged.

Therefore the temporal evolution of the system can be written as

σ(t + 1) = (Γp ◦ Φ)[σ(t)] = Γp[(Φ[σ1(t)], Φ[σ2(t)])]. (8)

A simple way to visualize the transition to synchrony can be done by displaying the evolution
of the difference automaton (DA),

δi(t) =| σ1
i (t)− σ2

i (t) | . (9)

The mean density of active sites for the DA

ρ(t) =
1

N

N

∑
i=1

δi(t), (10)

represents the Hamming distance between the automata and verifies 0 ≤ ρ ≤ 1. The automata
will be synchronized when limt→∞ ρ(t) = 0. As it has been described in (Morelli & Zanette,
1998) that two different dynamical regimes, controlled by the parameter p, can be found in
the system behavior:

p < pc → limt→∞ ρ(t) �= 0 (no synchronization),

p > pc → limt→∞ ρ(t) = 0 (synchronization),
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chronization transition. It reflects the complex structure of the difference automaton and the
capability of the measurement device here proposed for clearly signaling the synchronization
transition of two coupled CA.
These results are in agreement with the measurements of C performed in the patterns gen-
erated by a one-dimensional logistic coupled map lattice in the former section (Sanchez &
Lopez-Ruiz, 2005-a). There the LMC statistical complexity (C) also shows a singular behavior
close to the two edges of an absorbent region where the lattice displays spatio-temporal inter-
mittency. Hence, in our present case, the synchronization region of the coupled systems can
be interpreted as an absorbent region of the difference system. In fact, the highest complexity
is reached on the border of this region for p ≈ 0.2. The parallelism between both systems is
therefore complete.

4. Self-Synchronization of Cellular Automata

Cellular automata (CA) are discrete dynamical systems, discrete both in space and time. The
simplest one dimensional version of a cellular automaton is formed by a lattice of N sites or
cells, numbered by an index i = 1, . . . , N, and with periodic boundary conditions. In each site,
a local variable σi taking a binary value, either 0 or 1, is asigned. The binary string σ(t) formed
by all sites values at time t represents a configuration of the system. The system evolves in
time by the application of a rule Φ. A new configuration σ(t + 1) is obtained under the action
of the rule Φ on the state σ(t). Then, the evolution of the automata can be writen as

σ(t + 1) = Φ [σ(t)]. (6)

If coupling among nearest neighbors is used, the value of the site i, σi(t + 1), at time t + 1 is
a function of the value of the site itself at time t, σi(t), and the values of its neighbors σi−1(t)
and σi+1(t) at the same time. Then, the local evolution is expressed as

σi(t + 1) = φ(σi−1(t), σi(t), σi+1(t)), (7)

being φ a particular realization of the rule Φ. For such particular implementation, there will
be 23 different local input configurations for each site and, for each one of them, a binary value
can be assigned as output. Therefore there will be 28 different rules φ, also called the Wolfram
rules. Each one of these rules produces a different dynamical evolution. In fact, dynamical
behavior generated by all 256 rules were already classified in four generic classes. The reader
interested in the details of such classification is addressed to the original reference (Wolfram,
1983).
CA provide us with simple dynamical systems, in which we would like to essay differ-
ent methods of synchronization. A stochastic synchronization technique was introduced
in (Morelli & Zanette, 1998) that works in synchronizing two CA evolving under the same
rule Φ. The two CA are started from different initial conditions and they are supposed to
have partial knowledge about each other. In particular, the CA configurations, σ1(t) and
σ2(t), are compared at each time step. Then, a fraction p of the total different sites are made
equal (synchronized). The synchronization is stochastic since the location of the sites that
are going to be equal is decided at random. Hence, the dynamics of the two coupled CA,
σ(t) = (σ1(t), σ2(t)), is driven by the successive application of two operators:

1. the deterministic operator given by the CA evolution rule Φ, Φ[σ(t)] =
(Φ[σ1(t)], Φ[σ2(t)]), and

Fig. 7. Rule 90 has two stable patterns: one repeats the 011 string and the other one the
00 string. Such patterns are reached by the first self-synchronization method but there is a
dynamical competition between them. In this case p = 0.9. Binary value 0 is represented in
white and 1 in black. Time goes from top to bottom.

2. the stochastic operator Γp that produces the result Γp[σ(t)], in such way that, if the

sites are different (σ1
i �= σ2

i ), then Γp sets both sites equal to σ1
i with the probability

p/2 or equal to σ2
i with the same probability p/2. In any other case Γp leaves the sites

unchanged.

Therefore the temporal evolution of the system can be written as

σ(t + 1) = (Γp ◦ Φ)[σ(t)] = Γp[(Φ[σ1(t)], Φ[σ2(t)])]. (8)

A simple way to visualize the transition to synchrony can be done by displaying the evolution
of the difference automaton (DA),
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The mean density of active sites for the DA

ρ(t) =
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represents the Hamming distance between the automata and verifies 0 ≤ ρ ≤ 1. The automata
will be synchronized when limt→∞ ρ(t) = 0. As it has been described in (Morelli & Zanette,
1998) that two different dynamical regimes, controlled by the parameter p, can be found in
the system behavior:

p < pc → limt→∞ ρ(t) �= 0 (no synchronization),

p > pc → limt→∞ ρ(t) = 0 (synchronization),
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Fig. 8. Mean density ρ vs. pmax = p̃ for different rules evolving under the second synchro-
nization method. The existence of a transition to a synchronized state can be clearly observed
for rule 18.

being pc the parameter for which the transition to the synchrony occurs. When p � pc com-
plex structures can be observed in the DA time evolution. In Fig. 5, typical cases of such
behavior are shown near the synchronization transition. Lateral panels represent both CA
evolving in time where the central strip displays the evolution of the corresponding DA.
When p comes close to the critical value pc the evolution of δ(t) becomes rare and resem-
bles the problem of structures trying to percolate in the plane (Pomeau, 1986). A method to
detect this kind of transition, based in the calculation of a statistical measure of complexity for
patterns, has been proposed in the former sections (Sanchez & Lopez-Ruiz, 2005-a), (Sanchez
& Lopez-Ruiz, 2005-b).

4.1 First Self-Synchronization Method
Let us now take a single cellular automaton (Ilachinski, 2001; Toffoli & Margolus, 1987). If
σ1(t) is the state of the automaton at time t, σ1(t) = σ(t), and σ2(t) is the state obtained
from the application of the rule Φ on that state, σ2(t) = Φ[σ1(t)], then the operator Γp can be

applied on the pair (σ1(t), σ2(t)), giving rise to the evolution law

σ(t + 1) = Γp[(σ
1(t), σ2(t))] = Γp[(σ(t), Φ[σ(t)])]. (11)

The application of the Γp operator is as follows. When σ1
i �= σ2

i , the sites i of the state σ2(t) are

updated to the correspondent values taken in σ1(t) with a probability p. The updated array
σ2(t) is the new state σ(t + 1).

Fig. 9. Mean density ρ vs. p for rule 18 evolving under the third self-synchronization method.
The existence of a transition to a synchronized state can be observed despite of the random-
ness in the election of neighbors within a range L, up to L = 4.

It is worth to observe that if the system is initialized with a configuration constant in time
for the rule Φ, Φ[σ] = σ, then this state σ is not modified when the dynamic equation (11) is
applied. Hence the evolution will produce a pattern constant in time. However, in general,
this stability is marginal. A small modification of the initial condition gives rise to patterns
variable in time. In fact, as the parameter p increases, a competition among the different
marginally stable structures takes place. The dynamics drives the system to stay close to
those states, although oscillating continuously and randomly among them. Hence, a complex
spatio-temporal behavior is obtained. Some of these patterns can be seen in Fig. 7. However,
in rule 18, the pattern becomes stable and, independently of the initial conditions, the system
evolves toward this state, which is the null pattern in this case (Sanchez & Lopez-Ruiz, 2006).

4.2 Second Self-Synchronization Method
Now we introduce a new stochastic element in the application of the operator Γp. To differ-

entiate from the previous case we call it Γ̃ p̃. The action of this operator consists in applying at
each time the operator Γp, with p chosen at random in the interval (0, p̃). The evolution law
of the automaton is in this case:

σ(t + 1) = Γ̃ p̃[(σ
1(t), σ2(t))] = Γ̃ p̃[(σ(t), Φ[σ(t)])]. (12)

The DA density between the present state and the previous one, defined as δ(t) =| σ(t) −
σ(t − 1) |, is plotted as a function of p̃ for different rules Φ in Fig. 8. Only when the system
becomes self-synchronized there will be a fall to zero in the DA density. Let us observe again
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Fig. 8. Mean density ρ vs. pmax = p̃ for different rules evolving under the second synchro-
nization method. The existence of a transition to a synchronized state can be clearly observed
for rule 18.
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σ1(t) is the state of the automaton at time t, σ1(t) = σ(t), and σ2(t) is the state obtained
from the application of the rule Φ on that state, σ2(t) = Φ[σ1(t)], then the operator Γp can be

applied on the pair (σ1(t), σ2(t)), giving rise to the evolution law

σ(t + 1) = Γp[(σ
1(t), σ2(t))] = Γp[(σ(t), Φ[σ(t)])]. (11)

The application of the Γp operator is as follows. When σ1
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updated to the correspondent values taken in σ1(t) with a probability p. The updated array
σ2(t) is the new state σ(t + 1).

Fig. 9. Mean density ρ vs. p for rule 18 evolving under the third self-synchronization method.
The existence of a transition to a synchronized state can be observed despite of the random-
ness in the election of neighbors within a range L, up to L = 4.

It is worth to observe that if the system is initialized with a configuration constant in time
for the rule Φ, Φ[σ] = σ, then this state σ is not modified when the dynamic equation (11) is
applied. Hence the evolution will produce a pattern constant in time. However, in general,
this stability is marginal. A small modification of the initial condition gives rise to patterns
variable in time. In fact, as the parameter p increases, a competition among the different
marginally stable structures takes place. The dynamics drives the system to stay close to
those states, although oscillating continuously and randomly among them. Hence, a complex
spatio-temporal behavior is obtained. Some of these patterns can be seen in Fig. 7. However,
in rule 18, the pattern becomes stable and, independently of the initial conditions, the system
evolves toward this state, which is the null pattern in this case (Sanchez & Lopez-Ruiz, 2006).

4.2 Second Self-Synchronization Method
Now we introduce a new stochastic element in the application of the operator Γp. To differ-

entiate from the previous case we call it Γ̃ p̃. The action of this operator consists in applying at
each time the operator Γp, with p chosen at random in the interval (0, p̃). The evolution law
of the automaton is in this case:

σ(t + 1) = Γ̃ p̃[(σ
1(t), σ2(t))] = Γ̃ p̃[(σ(t), Φ[σ(t)])]. (12)

The DA density between the present state and the previous one, defined as δ(t) =| σ(t) −
σ(t − 1) |, is plotted as a function of p̃ for different rules Φ in Fig. 8. Only when the system
becomes self-synchronized there will be a fall to zero in the DA density. Let us observe again
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Fig. 10. Mean density ρ vs. p for different rules evolving under the third self-synchronization
method. The density of the system decreases linearly with p.

that the behavior reported in the first self-synchronization method is newly obtained in this
case. Rule 18 undergoes a phase transition for a critical value of p̃. For p̃ greater than the
critical value, the method is able to find the stable structure of the system (Sanchez & Lopez-
Ruiz, 2006). For the rest of the rules the freezing phase is not found. The dynamics generates
patterns where the different marginally stable structures randomly compete. Hence the DA
density decays linearly with p̃ (see Fig. 8).

4.3 Third Self-Synchronization Method
At last, we introduce another type of stochastic element in the application of the rule Φ. Given
an integer number L, the surrounding of site i at each time step is redefined. A site il is
randomly chosen among the L neighbors of site i to the left, (i − L, . . . , i − 1). Analogously,
a site ir is randomly chosen among the L neighbors of site i to the right, (i + 1, . . . , i + L).
The rule Φ is now applied on the site i using the triplet (il , i, ir) instead of the usual nearest
neighbors of the site. This new version of the rule is called ΦL, being ΦL=1 = Φ. Later the
operator Γp acts in identical way as in the first method. Therefore, the dynamical evolution
law is:

σ(t + 1) = Γp[(σ
1(t), σ2(t))] = Γp[(σ(t), ΦL[σ(t)])]. (13)

The DA density as a function of p is plotted in Fig. 9 for the rule 18 and in Fig. 10 for other
rules. It can be observed again that the rule 18 is a singular case that, even for different L,
maintains the memory and continues to self-synchronize. It means that the influence of the
rule is even more important than the randomness in the election of the surrounding sites. The
system self-synchronizes and decays to the corresponding stable structure. Contrary, for the
rest of the rules, the DA density decreases linearly with p even for L = 1 as shown in Fig. 10.

Rule 18 Rule 150

Fig. 11. Space-time configurations of automata with N = 100 sites iterated during T = 400
time steps evolving under rules 18 and 150 for p � pc. Left panels show the automaton
evolution in time (increasing from top to bottom) and the right panels display the evolution
of the corresponding DA.

The systems oscillate randomly among their different marginally stable structures as in the
previous methods (Sanchez & Lopez-Ruiz, 2006).

5. Symmetry Pattern Transition in Cellular Automata with Complex Behavior

In this section, the stochastic synchronization method introduced in the former sections
(Morelli & Zanette, 1998) for two CA is specifically used to find symmetrical patterns in the
evolution of a single automaton. To achieve this goal the stochastic operator, below described,
is applied to sites symmetrically located from the center of the lattice. It is shown that a sym-
metry transition take place in the spatio-temporal pattern. The transition forces the automaton
to evolve toward complex patterns that have mirror symmetry respect to the central axe of
the pattern. In consequence, this synchronization method can also be interpreted as a control
technique for stabilizing complex symmetrical patterns.
Cellular automata are extended systems, in our case one-dimensional strings composed of N
sites or cells. Each site is labeled by an index i = 1, . . . , N, with a local variable si carrying a
binary value, either 0 or 1. The set of sites values at time t represents a configuration (state
or pattern) σt of the automaton. During the automaton evolution, a new configuration σt+1 at
time t + 1 is obtained by the application of a rule or operator Φ to the present configuration
(see former section):

σt+1 = Φ [σt] . (14)
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Fig. 10. Mean density ρ vs. p for different rules evolving under the third self-synchronization
method. The density of the system decreases linearly with p.

that the behavior reported in the first self-synchronization method is newly obtained in this
case. Rule 18 undergoes a phase transition for a critical value of p̃. For p̃ greater than the
critical value, the method is able to find the stable structure of the system (Sanchez & Lopez-
Ruiz, 2006). For the rest of the rules the freezing phase is not found. The dynamics generates
patterns where the different marginally stable structures randomly compete. Hence the DA
density decays linearly with p̃ (see Fig. 8).

4.3 Third Self-Synchronization Method
At last, we introduce another type of stochastic element in the application of the rule Φ. Given
an integer number L, the surrounding of site i at each time step is redefined. A site il is
randomly chosen among the L neighbors of site i to the left, (i − L, . . . , i − 1). Analogously,
a site ir is randomly chosen among the L neighbors of site i to the right, (i + 1, . . . , i + L).
The rule Φ is now applied on the site i using the triplet (il , i, ir) instead of the usual nearest
neighbors of the site. This new version of the rule is called ΦL, being ΦL=1 = Φ. Later the
operator Γp acts in identical way as in the first method. Therefore, the dynamical evolution
law is:

σ(t + 1) = Γp[(σ
1(t), σ2(t))] = Γp[(σ(t), ΦL[σ(t)])]. (13)

The DA density as a function of p is plotted in Fig. 9 for the rule 18 and in Fig. 10 for other
rules. It can be observed again that the rule 18 is a singular case that, even for different L,
maintains the memory and continues to self-synchronize. It means that the influence of the
rule is even more important than the randomness in the election of the surrounding sites. The
system self-synchronizes and decays to the corresponding stable structure. Contrary, for the
rest of the rules, the DA density decreases linearly with p even for L = 1 as shown in Fig. 10.

Rule 18 Rule 150

Fig. 11. Space-time configurations of automata with N = 100 sites iterated during T = 400
time steps evolving under rules 18 and 150 for p � pc. Left panels show the automaton
evolution in time (increasing from top to bottom) and the right panels display the evolution
of the corresponding DA.

The systems oscillate randomly among their different marginally stable structures as in the
previous methods (Sanchez & Lopez-Ruiz, 2006).

5. Symmetry Pattern Transition in Cellular Automata with Complex Behavior

In this section, the stochastic synchronization method introduced in the former sections
(Morelli & Zanette, 1998) for two CA is specifically used to find symmetrical patterns in the
evolution of a single automaton. To achieve this goal the stochastic operator, below described,
is applied to sites symmetrically located from the center of the lattice. It is shown that a sym-
metry transition take place in the spatio-temporal pattern. The transition forces the automaton
to evolve toward complex patterns that have mirror symmetry respect to the central axe of
the pattern. In consequence, this synchronization method can also be interpreted as a control
technique for stabilizing complex symmetrical patterns.
Cellular automata are extended systems, in our case one-dimensional strings composed of N
sites or cells. Each site is labeled by an index i = 1, . . . , N, with a local variable si carrying a
binary value, either 0 or 1. The set of sites values at time t represents a configuration (state
or pattern) σt of the automaton. During the automaton evolution, a new configuration σt+1 at
time t + 1 is obtained by the application of a rule or operator Φ to the present configuration
(see former section):

σt+1 = Φ [σt] . (14)
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Rule 18                                         Rule 150

Fig. 12. Time configurations of automata with N = 100 sites iterated during T = 400 time
steps evolving under rules 18 and 150 using p > pc. The space symmetry of the evolving
patterns is clearly visible.

5.1 Self-Synchronization Method by Symmetry
Our present interest (Sanchez & Lopez-Ruiz, 2008) resides in those CA evolving under rules
capable to show asymptotic complex behavior (rules of class III and IV). The technique applied
here is similar to the synchronization scheme introduced by Morelli and Zanette (Morelli &
Zanette, 1998) for two CA evolving under the same rule Φ. The strategy supposes that the two
systems have a partial knowledge one about each the other. At each time step and after the
application of the rule Φ, both systems compare their present configurations Φ[σ1

t ] and Φ[σ2
t ]

along all their extension and they synchronize a percentage p of the total of their different sites.
The location of the percentage p of sites that are going to be put equal is decided at random
and, for this reason, it is said to be an stochastic synchronization. If we call this stochastic
operator Γp, its action over the couple (Φ[σ1

t ], Φ[σ2
t ]) can be represented by the expression:

(σ1
t+1, σ2

t+1) = Γp(Φ[σ1
t ], Φ[σ2

t ]) = (Γp ◦ Φ)(σ1
t , σ2

t ). (15)
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Fig. 13. Asymptotic density of the DA for different rules is plotted as a function of the coupling
probability p. Different values of pc for each rule appear clearly at the points where ρ → 0.
The automata with N = 4000 sites were iterated during T = 500 time steps. The mean values
of the last 100 steps were used for density calculations.

Rule 18 22 30 54 60 90 105 110 122 126 146 150 182

pc 0.25 0.27 1.00 0.20 1.00 0.25 0.37 1.00 0.27 0.30 0.25 0.37 0.25

Table 1. Numerically obtained values of the critical probability pc for different rules displaying
complex behavior. Rules that can not sustain symmetric patterns need fully coupling of the
symmetric sites, i.e. (pc = 1).

The same strategy can be applied to a single automaton with a even number of sites (Sanchez
& Lopez-Ruiz, 2008). Now the evolution equation, σt+1 = (Γp ◦Φ)[σt], given by the successive
action of the two operators Φ and Γp, can be applied to the configuration σt as follows:

1. the deterministic operator Φ for the evolution of the automaton produces Φ[σt], and,

2. the stochastic operator Γp, produces the result Γp(Φ[σt]), in such way that, if sites sym-
metrically located from the center are different, i.e. si �= sN−i+1, then Γp equals sN−i+1

to si with probability p. Γp leaves the sites unchanged with probability 1 − p.

A simple way to visualize the transition to a symmetric pattern can be done by splitting the
automaton in two subsystems (σ1

t , σ2
t ),

• σ1
t , composed by the set of sites s(i) with i = 1, . . . , N/2 and

• σ2
t , composed the set of symmetrically located sites s(N − i + 1) with i = 1, . . . , N/2,

and displaying the evolution of the difference automaton (DA), defined as

δt =| σ1
t − σ2

t | . (16)
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Fig. 12. Time configurations of automata with N = 100 sites iterated during T = 400 time
steps evolving under rules 18 and 150 using p > pc. The space symmetry of the evolving
patterns is clearly visible.
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Our present interest (Sanchez & Lopez-Ruiz, 2008) resides in those CA evolving under rules
capable to show asymptotic complex behavior (rules of class III and IV). The technique applied
here is similar to the synchronization scheme introduced by Morelli and Zanette (Morelli &
Zanette, 1998) for two CA evolving under the same rule Φ. The strategy supposes that the two
systems have a partial knowledge one about each the other. At each time step and after the
application of the rule Φ, both systems compare their present configurations Φ[σ1

t ] and Φ[σ2
t ]

along all their extension and they synchronize a percentage p of the total of their different sites.
The location of the percentage p of sites that are going to be put equal is decided at random
and, for this reason, it is said to be an stochastic synchronization. If we call this stochastic
operator Γp, its action over the couple (Φ[σ1

t ], Φ[σ2
t ]) can be represented by the expression:
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Fig. 13. Asymptotic density of the DA for different rules is plotted as a function of the coupling
probability p. Different values of pc for each rule appear clearly at the points where ρ → 0.
The automata with N = 4000 sites were iterated during T = 500 time steps. The mean values
of the last 100 steps were used for density calculations.
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Table 1. Numerically obtained values of the critical probability pc for different rules displaying
complex behavior. Rules that can not sustain symmetric patterns need fully coupling of the
symmetric sites, i.e. (pc = 1).

The same strategy can be applied to a single automaton with a even number of sites (Sanchez
& Lopez-Ruiz, 2008). Now the evolution equation, σt+1 = (Γp ◦Φ)[σt], given by the successive
action of the two operators Φ and Γp, can be applied to the configuration σt as follows:

1. the deterministic operator Φ for the evolution of the automaton produces Φ[σt], and,

2. the stochastic operator Γp, produces the result Γp(Φ[σt]), in such way that, if sites sym-
metrically located from the center are different, i.e. si �= sN−i+1, then Γp equals sN−i+1

to si with probability p. Γp leaves the sites unchanged with probability 1 − p.

A simple way to visualize the transition to a symmetric pattern can be done by splitting the
automaton in two subsystems (σ1

t , σ2
t ),

• σ1
t , composed by the set of sites s(i) with i = 1, . . . , N/2 and

• σ2
t , composed the set of symmetrically located sites s(N − i + 1) with i = 1, . . . , N/2,

and displaying the evolution of the difference automaton (DA), defined as

δt =| σ1
t − σ2

t | . (16)
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The mean density of active sites for the difference automaton, defined as

ρt =
2

N

N/2

∑
i=1

δt (17)

represents the Hamming distance between the sets σ1 and σ2. It is clear that the automaton
will display a symmetric pattern when limt→∞ ρt = 0. For class III and IV rules, a symmetry
transition controlled by the parameter p is found. The transition is characterized by the DA
behavior:

when p < pc → limt→∞ ρt �= 0 (complex non-symmetric patterns),

when p > pc → limt→∞ ρt = 0 (complex symmetric patterns).

The critical value of the parameter pc signals the transition point.
In Fig. 11 the space-time configurations of automata evolving under rules 18 and 150 are
shown for p � pc. The automata are composed by N = 100 sites and were iterated during
T = 400 time steps. Left panels show the automaton evolution in time (increasing from top
to bottom) and the right panels display the evolution of the corresponding DA. For p � pc,
complex structures can be observed in the evolution of the DA. As p approaches its critical
value pc, the evolution of the DA become more stumped and reminds the problem of struc-
tures trying to percolate the plane (Pomeau, 1986; Sanchez & Lopez-Ruiz, 2005-a). In Fig. 12
the space-time configurations of the same automata are displayed for p > pc. Now, the space
symmetry of the evolving patterns is clearly visible.
Table 1 shows the numerically obtained values of pc for different rules displaying complex be-
havior. It can be seen that some rules can not sustain symmetric patterns unless those patterns
are forced to it by fully coupling the totality of the symmetric sites (pc = 1). The rules whose
local dynamics verify φ(s1, s0, s2) = φ(s2, s0, s1) can evidently sustain symmetric patterns, and
these structures are induced for pc < 1 by the method here explained.
Finally, in Fig. 13 the asymptotic density of the DA, ρt for t → ∞, for different rules is plotted
as a function of the coupling probability p. The values of pc for the different rules appear
clearly at the points where ρ → 0.

6. Conclusion

A method to measure statistical complexity in extended systems has been implemented. It
has been applied to a transition to spatio-temporal complexity in a coupled map lattice and
to a transition to synchronization in two stochastically coupled cellular automata (CA). The
statistical indicator shows a peak just in the transition region, marking clearly the change of
dynamical behavior in the extended system.
Inspired in stochastic synchronization methods for CA, different schemes for self-
synchronization of a single automaton have also been proposed and analyzed. Self-
synchronization of a single automaton can be interpreted as a strategy for searching and con-
trolling the structures of the system that are constant in time. In general, it has been found
that a competition among all such structures is established, and the system ends up oscillat-
ing randomly among them. However, rule 18 is a unique position among all rules because,
even with random election of the neighbors sites, the automaton is able to reach the configu-
ration constant in time.
Also a transition from asymmetric to symmetric patterns in time-dependent extended systems
has been described. It has been shown that one dimensional cellular automata, started from

fully random initial conditions, can be forced to evolve into complex symmetrical patterns by
stochastically coupling a proportion p of pairs of sites located at equal distance from the center
of the lattice. A nontrivial critical value of p must be surpassed in order to obtain symmetrical
patterns during the evolution. This strategy could be used as an alternative to classify the
cellular automata rules -with complex behavior- between those that support time-dependent
symmetric patterns and those which do not support such kind of patterns.
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represents the Hamming distance between the sets σ1 and σ2. It is clear that the automaton
will display a symmetric pattern when limt→∞ ρt = 0. For class III and IV rules, a symmetry
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Abstract

We consider a zero-sum stopping game (Dynkin’s game) with a threshold probability criterion
in discrete time stochastic processes. We first obtain fundamental characterization of value
function of the game and optimal stopping times for both players as the result of the classical
Dynkin’s game, but the value function of the game and the optimal stopping time for each
player depend upon a threshold value. We also give properties of the value function of the
game with respect to threshold value. These are applied to an independent model and we
explicitly find a value function of the game and optimal stopping times for both players in a
special example.

1. Introduction

In the classical Dynkin’s game, a standard criterion function is the expected reward (e.g.
DynkinDynkin (1969) and NeveuNeveu (1975)). It is, however, known that the criterion is
quite insufficient to characterize the decision problem from the point of view of the decision
maker and it is necessary to select other criteria to reflect the variability of risk features for
the problem (e.g. WhiteWhite (1988)). In a optimal stopping problem, Denardo and Roth-
blumDenardo & Rothblum (1979) consider an optimal stopping problem with an exponential
utility function as a criterion function in finite Markov decision chain and use a linear pro-
gramming to compute an optimal policy. In Kadota et al.Kadota et al. (1996), they investigate
an optimal stopping problem with a general utility function in a denumerable Markov chain.
They give a sufficient condition for an one-step look ahead (OLA) stopping time to be optimal
and characterize a property of an OLA stopping time for risk-averse and risk-seeking utilities.
BojdeckiBojdecki (1979) formulates an optimal stopping problem which is concerned with
maximizing the probability of a certain event and give necessary and sufficient conditions for
existence of an optimal stopping time. He also applies the results to a version of the discrete-
time disorder problem. OhtsuboOhtsubo (2003) considers optimal stopping problems with
a threshold probability criterion in a Markov process, characterizes optimal values and finds
optimal stopping times for finite and infinite horizon cases, and he in Ohtsubo (2003) also
investigates optimal stopping problem with analogous objective for discrete time stochastic
process and these are applied to a secretary problem, a parking problem and job search prob-
lems.
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On the other hand, many authors propose a variety of criteria and investigate Markov deci-
sion processes for their criteria, instead of standard criteria, that is, the expected discounted
total reward and the average expected reward per unit (see WhiteWhite (1988) for survey).
Especially, WhiteWhite (1993), Wu and LinWu & Lin (1999), Ohtsubo and ToyonagaOhtsubo
& Toyonaga (2002) and OhtsuboOhtsubo (2004) consider a problem in which we minimize a
threshold probability. Such a problem is called risk minimizing problem and is available for
applications to the percentile of the losses or Value-at-Risk (VaR) in finance (e.g. FilarFilar et
al. (1995) and UryasevUryasev (2000)).
In this paper we consider Dynkin’s game with a threshold probability in a random sequence.
In Section 3 we characterize a value function of game and optimal stopping times for both
players and show that the value function of game has properties of a distribution function
with respect to a threshold value except a right continuity. In Section 4 we investigate an
independent model, as applications of our game, and we explicitly find a value function which
is right continuous and optimal stopping times for both players.

2. Formulation of problem

Let (Ω,F , P) be a probability space and (Fn)n∈N an increasing family of sub-σ-fields of F ,
where N = {0, 1, 2, · · · } is a discrete time space. Let X = (Xn)n∈N , Y = (Yn)n∈N , W =
(Wn)n∈N be sequences of random variables defined on (Ω,F , P) and adapted to (Fn) such
that Xn ≤ Wn ≤ Yn almost surely (a.s.) for all n ∈ N and P(supn X+

n + supn Y−
n < ∞) = 1,

where x+ = max(0, x) and x− = (−x)+. The second assumption holds if random vari-
ables supn X+

n and supn Y−
n are integrable, which are standard conditions given in the classi-

cal Dynkin’s game. Also let Z be an arbitrary integrable random variable on (Ω,F , P). For
each n ∈ N, we denote by Γn the class of (Fn)–stopping times τ such that τ ≥ n a. s..
We consider the following zero-sum stopping game. There are two players and the first and
the second players choose stopping times τ and σ in Γ0, respectively. Then the reward paid to
the first player from the second is equal to

g(τ, σ) = Xτ I(τ<σ) + Yσ I(σ<τ) + Wτ I(τ=σ<∞) + ZI(τ=σ=∞),

where IA is the indicator function of a set A in F . In the classical Dynkin’s game the aim of the
first player is to maximize the expected gain E[g(τ, σ)] with respect to τ ∈ Γ0 and that of the
second is to minimize this expectation with respect to σ ∈ Γ0. In our problem the objective of
the first player is to minimize the threshold probability P[g(τ, σ) ≤ r] with respect to τ ∈ Γ0
and the second maximizes the probability with respect to σ ∈ Γ0 for a given threshold value
r.
We can define processes of minimax and maxmin values corresponding to our problem by

Vn(r) = ess inf ess sup
τ∈Γn σ∈Γn

P[g(τ, σ) ≤ r|Fn],

Vn(r) = ess sup ess inf
σ∈Γn τ∈Γn

P[g(τ, σ) ≤ r|Fn],

respectively, where P[g(τ, σ) ≤ r|Fn] is a conditional probability of an event {g(τ, σ) ≤ r}
given Fn. See NeveuNeveu (1975) for the definition of ess sup and ess inf. We also define
sequences of minimax and maxmin values by

vn(r) = inf
τ∈Γn

sup
σ∈Γn

P[g(τ, σ) ≤ r], vn(r) = sup
σ∈Γn

inf
τ∈Γn

P[g(τ, σ) ≤ r],

respectively. For n ≥ 1 and ε ≥ 0, we say that a pair of stopping times (τε, σε) in Γn × Γn is
ε–saddle point at (n, r) if

P[g(τε, σ) ≤ r]− ε ≤ vn(r) ≤ P[g(τ, σε) ≤ r] + ε

for any τ ∈ Γn and any σ ∈ Γn, when vn(r) = vn(r), say vn(r). .

3. General results

In this section we give fundamental properties of the value function of the game and find a
saddle point.
We notice that P[g(τ, σ) ≤ r] = E[I(g(τ,σ)≤r)] and we easily see that

I(g(τ,σ)≤r) = X̃τ(r)I(τ<σ) + Ỹσ(r)I(σ<τ) + W̃τ(r)I(τ=σ<∞) + Z̃(r)I(τ=σ=∞),

where new sequences (X̃n(r)), (Ỹn(r)), (W̃n(r)) and random variable Z̃(r)) are defined by

X̃n(r) = I(Xn≤r), Ỹn(r) = I(Yn≤r), W̃n(r) = I(Wn≤r), Z̃(r) = I(Z≤r).

Since Xn ≤ Wn ≤ Yn, we see that Ỹn(r) ≤ W̃n(r) ≤ X̃n(r) for all r. Thus our problem is just a
special version of the classical Dynkin’s game for a fixed threshold value r.
We first have three propositions below for a fixed r from the result of Dynkin’s game (e.g. see
NeveuNeveu (1975) and OhtsuboOhtsubo (2000)). In the following proposition, the notation
mid(a, b, c) denotes the middle value among constants a, b and c. For example, when a < b < c
then mid(a, b, c) = b. If a < b, mid(a, b, c) = max(a, min(b, c)) = min(b, max(a, c)).
Proposition 3.1. Let r be arbitrary.
(a) For each n ∈ N, Vn(r) = Vn(r), say Vn(r), and vn(r) = vn(r) = E[Vn(r)], say vn(r).
(b) (Vn(r)) is the unique sequence of random variables satisfying the equalities

Vn = mid(X̃n(r), Ỹn(r), E[Vn+1|Fn]), n ∈ N

and the inequalities
X̂n(r) ≤ Vn ≤ Ŷn(r), n ∈ N,

where (X̂n(r)) is the largest submartingale dominated by min(X̃n(r), E[Z̃(r)|Fn]) and (Ŷn(r)) is the
smallest supermartingale dominating max(Ỹn(r), E[Z̃(r)|Fn]), that is,

X̂n(r) = ess inf
τ∈Γn

P[g(τ, ∞) ≤ r)|Fn], Ŷn(r) = ess sup
σ∈Γn

P[g(∞, σ) ≤ r|Fn].

(c) For ε > 0, let

τε
n(r) = inf{k ≥ n|Vk(r) ≥ X̃k(r)− ε},

σε
n(r) = inf{k ≥ n|Vk(r) ≤ Ỹk(r) + ε}

Then (τε
n(r), σε

n(r)) is ε-saddle point at (n, r).
For the value process X̂n(r) for the first player, we can obtain it as the following: for k ≥ n, let

γk
k(r) = min (X̃k(r), E[Z̃(r)|Fk]),

γk
n(r) = max (X̃n(r), E[γk

n+1(r)|Fn]), n < k.
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On the other hand, many authors propose a variety of criteria and investigate Markov deci-
sion processes for their criteria, instead of standard criteria, that is, the expected discounted
total reward and the average expected reward per unit (see WhiteWhite (1988) for survey).
Especially, WhiteWhite (1993), Wu and LinWu & Lin (1999), Ohtsubo and ToyonagaOhtsubo
& Toyonaga (2002) and OhtsuboOhtsubo (2004) consider a problem in which we minimize a
threshold probability. Such a problem is called risk minimizing problem and is available for
applications to the percentile of the losses or Value-at-Risk (VaR) in finance (e.g. FilarFilar et
al. (1995) and UryasevUryasev (2000)).
In this paper we consider Dynkin’s game with a threshold probability in a random sequence.
In Section 3 we characterize a value function of game and optimal stopping times for both
players and show that the value function of game has properties of a distribution function
with respect to a threshold value except a right continuity. In Section 4 we investigate an
independent model, as applications of our game, and we explicitly find a value function which
is right continuous and optimal stopping times for both players.

2. Formulation of problem

Let (Ω,F , P) be a probability space and (Fn)n∈N an increasing family of sub-σ-fields of F ,
where N = {0, 1, 2, · · · } is a discrete time space. Let X = (Xn)n∈N , Y = (Yn)n∈N , W =
(Wn)n∈N be sequences of random variables defined on (Ω,F , P) and adapted to (Fn) such
that Xn ≤ Wn ≤ Yn almost surely (a.s.) for all n ∈ N and P(supn X+

n + supn Y−
n < ∞) = 1,

where x+ = max(0, x) and x− = (−x)+. The second assumption holds if random vari-
ables supn X+

n and supn Y−
n are integrable, which are standard conditions given in the classi-

cal Dynkin’s game. Also let Z be an arbitrary integrable random variable on (Ω,F , P). For
each n ∈ N, we denote by Γn the class of (Fn)–stopping times τ such that τ ≥ n a. s..
We consider the following zero-sum stopping game. There are two players and the first and
the second players choose stopping times τ and σ in Γ0, respectively. Then the reward paid to
the first player from the second is equal to

g(τ, σ) = Xτ I(τ<σ) + Yσ I(σ<τ) + Wτ I(τ=σ<∞) + ZI(τ=σ=∞),

where IA is the indicator function of a set A in F . In the classical Dynkin’s game the aim of the
first player is to maximize the expected gain E[g(τ, σ)] with respect to τ ∈ Γ0 and that of the
second is to minimize this expectation with respect to σ ∈ Γ0. In our problem the objective of
the first player is to minimize the threshold probability P[g(τ, σ) ≤ r] with respect to τ ∈ Γ0
and the second maximizes the probability with respect to σ ∈ Γ0 for a given threshold value
r.
We can define processes of minimax and maxmin values corresponding to our problem by

Vn(r) = ess inf ess sup
τ∈Γn σ∈Γn

P[g(τ, σ) ≤ r|Fn],

Vn(r) = ess sup ess inf
σ∈Γn τ∈Γn

P[g(τ, σ) ≤ r|Fn],

respectively, where P[g(τ, σ) ≤ r|Fn] is a conditional probability of an event {g(τ, σ) ≤ r}
given Fn. See NeveuNeveu (1975) for the definition of ess sup and ess inf. We also define
sequences of minimax and maxmin values by

vn(r) = inf
τ∈Γn

sup
σ∈Γn

P[g(τ, σ) ≤ r], vn(r) = sup
σ∈Γn

inf
τ∈Γn

P[g(τ, σ) ≤ r],

respectively. For n ≥ 1 and ε ≥ 0, we say that a pair of stopping times (τε, σε) in Γn × Γn is
ε–saddle point at (n, r) if

P[g(τε, σ) ≤ r]− ε ≤ vn(r) ≤ P[g(τ, σε) ≤ r] + ε

for any τ ∈ Γn and any σ ∈ Γn, when vn(r) = vn(r), say vn(r). .

3. General results

In this section we give fundamental properties of the value function of the game and find a
saddle point.
We notice that P[g(τ, σ) ≤ r] = E[I(g(τ,σ)≤r)] and we easily see that

I(g(τ,σ)≤r) = X̃τ(r)I(τ<σ) + Ỹσ(r)I(σ<τ) + W̃τ(r)I(τ=σ<∞) + Z̃(r)I(τ=σ=∞),

where new sequences (X̃n(r)), (Ỹn(r)), (W̃n(r)) and random variable Z̃(r)) are defined by

X̃n(r) = I(Xn≤r), Ỹn(r) = I(Yn≤r), W̃n(r) = I(Wn≤r), Z̃(r) = I(Z≤r).

Since Xn ≤ Wn ≤ Yn, we see that Ỹn(r) ≤ W̃n(r) ≤ X̃n(r) for all r. Thus our problem is just a
special version of the classical Dynkin’s game for a fixed threshold value r.
We first have three propositions below for a fixed r from the result of Dynkin’s game (e.g. see
NeveuNeveu (1975) and OhtsuboOhtsubo (2000)). In the following proposition, the notation
mid(a, b, c) denotes the middle value among constants a, b and c. For example, when a < b < c
then mid(a, b, c) = b. If a < b, mid(a, b, c) = max(a, min(b, c)) = min(b, max(a, c)).
Proposition 3.1. Let r be arbitrary.
(a) For each n ∈ N, Vn(r) = Vn(r), say Vn(r), and vn(r) = vn(r) = E[Vn(r)], say vn(r).
(b) (Vn(r)) is the unique sequence of random variables satisfying the equalities

Vn = mid(X̃n(r), Ỹn(r), E[Vn+1|Fn]), n ∈ N

and the inequalities
X̂n(r) ≤ Vn ≤ Ŷn(r), n ∈ N,

where (X̂n(r)) is the largest submartingale dominated by min(X̃n(r), E[Z̃(r)|Fn]) and (Ŷn(r)) is the
smallest supermartingale dominating max(Ỹn(r), E[Z̃(r)|Fn]), that is,

X̂n(r) = ess inf
τ∈Γn

P[g(τ, ∞) ≤ r)|Fn], Ŷn(r) = ess sup
σ∈Γn

P[g(∞, σ) ≤ r|Fn].

(c) For ε > 0, let

τε
n(r) = inf{k ≥ n|Vk(r) ≥ X̃k(r)− ε},

σε
n(r) = inf{k ≥ n|Vk(r) ≤ Ỹk(r) + ε}

Then (τε
n(r), σε

n(r)) is ε-saddle point at (n, r).
For the value process X̂n(r) for the first player, we can obtain it as the following: for k ≥ n, let

γk
k(r) = min (X̃k(r), E[Z̃(r)|Fk]),

γk
n(r) = max (X̃n(r), E[γk

n+1(r)|Fn]), n < k.
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Proposition 3.2. Let r be arbitrary. For each k, n : k ≥ n, γk
n(r) ≥ γk+1

n (r) and for each n ∈ N,
limk→∞ γk

n(r) = X̂n(r).
For k ≥ n, let

βk
k(r) = X̂k(r),

βk
n(r) = mid(X̃n(r), Ỹn(r), E[βk

n+1(r)|Fn]), n < k,

Proposition 3.3. Let r be arbitrary. For each k ≥ n, βk
n(r) ≤ βk+1

n and for each n, limk→∞ βk
n(r) =

Vn(r).
Theorem 3.1. For each n, Vn(·) has properties of a distribution function on R except for the
right continuity.
Proof. We first notice that Z̃(r) = I(Z≤r) is a nondecreasing function in r. From the definition
of a conditional expectation and the dominated convergence theorem, E[Z̃(r)|Fk] for each k
is also nondecreasing at r. Since X̃k(r) = I(Xk≤r) is nondecreasing at r for each k ∈ N, we see
that γk

k(r) = min(X̃k(r), E[Z̃(r)|Fk]) is a nondecreasing function in r. By induction, γk
n(r) is

nondecreasing in r for each k ≥ n. Since a sequence {γk
n(r)}∞

k=n of functions is nonincreasing
and X̂n(r) = limk→∞ γk

n(r), it follows that βn
n(r) = X̂n(r) is nondecreasing for each n. Sim-

ilarly, it follows by induction that βk
n(r) is nondecreasing at r for each n ≤ k, since Ỹn(r) is

nondecreasing at r. From Proposition 2.3, the monotonicity of a sequence {βk
n(r)}∞

k=n implies
that Vn(r) = limk→∞ βk

n(r) is a nondecreasing function in r.
Next, since we have Vn(r) ≤ X̃n(r) and we see that X̃n(r) = I(Xn≤r) = 0 for a sufficiently
small r, it follows that limr→−∞ Vn(r) = 0. Similarly, we see that limr→∞ Vn(r) = 1, since we
have Vn(r) ≥ Ỹn(r) and we see that Ỹn(r) = 1 for a sufficiently large r. Thus this theorem is
completely proved.
We give an example below in which the value function Vn(r) is not right continuous at some
r.
Example 3.1. Let Xn = Wn = −1, Yn = 1/n for each n and let Z = 1. We shall obtain the value
function Vn(r) by Propositions 3.2 and 3.3. Since X̃k(r) = I[−1,∞)(r) and Z̃(r) = I[1,∞)(r),
we have γk

k(r) = I[1,∞)(r). By induction, we easily see that γk
n(r) = I[1,∞)(r) for each k ≥ n

and hence βn
n(r) = X̂n(r) = limk→∞ γk

n = I[1,∞)(r). Next, since Ỹk−1(r) = I[1/(k−1),∞)(r),
we have βk

k−1(r) = I[1/(k−1),∞)(r). By induction, we see that βk
n(r) = I[1/(k−1),∞)(r) for each

k > n. Thus we have Vn(r) = limk→∞ βk
n(r) = I(0,∞)(r), which yields that Vn(r) is not right

continuous at r = 0.

4. Independent model

We shall consider an independent sequences as a special model. Let
(Wn)n∈N be a sequence of independent distributed random variables with
P(supn |Wn| < ∞) = 1, and let Z be a random variable which is independent of (Wn)n∈N .
For each n ∈ N let Fn be the σ-field generated by {Wk; k ≤ n}. Also, for each n ∈ N, let
Xn = Wn − c and Yn = Wn + d, where c and d are positive constants.
Since Fn is independent of {Wk; k > n}, the relation in Proposition 3.1 (b) is represented as
follows:

Vn(r) = mid(X̃n(r), Ỹn(r), E[Vn+1(r)])
= mid(I(Wn≤r+c), I(Wn≤r−d), E[Vn+1(r)]).

From Proposition 3.1 (b) and argument analogous to classical optimal stopping problem, we
have also

X̂n(r) = min(X̃n(r), E[Z̃(r)|Fn], E[X̂n+1(r)|Fn]),

Ŷn(r) = max(Ỹn(r), E[Z̃(r)|Fn], E[Ŷn+1(r)|Fn]).

Hence we obtain

X̂n(r) = min(X̃n(r), P(Z ≤ r), E[X̂n+1(r)]),

Ŷn(r) = max(Ỹn(r), P(Z ≤ r), E[Ŷn+1(r)]),

since E[Z̃(r)|Fn] = E[Z̃(r)] = P(Z ≤ r).
Example 4.1. Let W be a uniformly distributed random variable on an interval [0, 1] and
assume that Wn has the same distribution as W for all n ∈ N and that 0 < c, d < 1/2. Then
since (Wn)n∈N is a sequence of independently and identically distributed random variables,
Vn(r) does not depend on n. Hence, letting V(r) = Vn(r), n ∈ N and v(r) = E[V(r)], we have

V(r) = mid(I(W≤r+c), I(W≤r−d), v(r)).

When W < r − d, we have I(W≤r+c) = I(W≤r−d) = 1, so V(r) = 1. When W ≥ r + c, we have
V(r) = 0, since I(W≤r+c) = I(W≤r−d) = 0. Thus we obtain

V(r) = I(W≤r−d) + v(r)I(r−d≤W<r+c).

Taking the expectation on the both sides, we see that

v(r) = P(W ≤ r − d) + v(r)P(r − d ≤ W < r + c).

If r < d then we have v(r) = v(r)P(0 ≤ W < r + c). Since r < d < 1/2 < 1 − c, P(0 ≤ W <
r + c) < 1 and hence v(r) = 0. If d ≤ r < 1 − c, then we obtain v(r) = (r − d)/(1 − c − d),
since P(W ≤ r − d) = r − d and P(r − d ≤ W < r + c) = c + d. Similarly, if r ≥ 1 − c then we
have v(r) = 1. Thus it follows that

v(r) = I[1−c,∞)(r) + (r − d)/(1 − c − d)I[d,1−c)(r).

We completely obtained the values V(r) and v(r). By the way we easily see that X̂(r) =

X̂n(r) = E[X̂(r)]I(W≤r+c), where

E[X̂(r)] = rI[1−c,1)(r) + I[1,∞)(r),

and
E[Ŷ(r)] = Ŷ(r) = Ŷn(r) = P[Z ≤ r]I(−∞,d)(r) + I[d,∞)(r).

Now v(r) is a distribution function in r. Let U is a random variable corresponding to v(r).
Then we see that E[U] = (1 − c + d))/2.
We shall next compare our model with the classical Dynkin’s game in this example. Let

Jn = ess inf ess sup
τ∈Γn σ∈Γn

E[g(τ, σ)|Fn],

Jn = ess sup ess inf
σ∈Γn τ∈Γn

E[g(τ, σ)|Fn],
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Proposition 3.2. Let r be arbitrary. For each k, n : k ≥ n, γk
n(r) ≥ γk+1

n (r) and for each n ∈ N,
limk→∞ γk

n(r) = X̂n(r).
For k ≥ n, let

βk
k(r) = X̂k(r),

βk
n(r) = mid(X̃n(r), Ỹn(r), E[βk

n+1(r)|Fn]), n < k,

Proposition 3.3. Let r be arbitrary. For each k ≥ n, βk
n(r) ≤ βk+1

n and for each n, limk→∞ βk
n(r) =

Vn(r).
Theorem 3.1. For each n, Vn(·) has properties of a distribution function on R except for the
right continuity.
Proof. We first notice that Z̃(r) = I(Z≤r) is a nondecreasing function in r. From the definition
of a conditional expectation and the dominated convergence theorem, E[Z̃(r)|Fk] for each k
is also nondecreasing at r. Since X̃k(r) = I(Xk≤r) is nondecreasing at r for each k ∈ N, we see
that γk

k(r) = min(X̃k(r), E[Z̃(r)|Fk]) is a nondecreasing function in r. By induction, γk
n(r) is

nondecreasing in r for each k ≥ n. Since a sequence {γk
n(r)}∞

k=n of functions is nonincreasing
and X̂n(r) = limk→∞ γk

n(r), it follows that βn
n(r) = X̂n(r) is nondecreasing for each n. Sim-

ilarly, it follows by induction that βk
n(r) is nondecreasing at r for each n ≤ k, since Ỹn(r) is

nondecreasing at r. From Proposition 2.3, the monotonicity of a sequence {βk
n(r)}∞

k=n implies
that Vn(r) = limk→∞ βk

n(r) is a nondecreasing function in r.
Next, since we have Vn(r) ≤ X̃n(r) and we see that X̃n(r) = I(Xn≤r) = 0 for a sufficiently
small r, it follows that limr→−∞ Vn(r) = 0. Similarly, we see that limr→∞ Vn(r) = 1, since we
have Vn(r) ≥ Ỹn(r) and we see that Ỹn(r) = 1 for a sufficiently large r. Thus this theorem is
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We give an example below in which the value function Vn(r) is not right continuous at some
r.
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we have γk

k(r) = I[1,∞)(r). By induction, we easily see that γk
n(r) = I[1,∞)(r) for each k ≥ n

and hence βn
n(r) = X̂n(r) = limk→∞ γk

n = I[1,∞)(r). Next, since Ỹk−1(r) = I[1/(k−1),∞)(r),
we have βk

k−1(r) = I[1/(k−1),∞)(r). By induction, we see that βk
n(r) = I[1/(k−1),∞)(r) for each

k > n. Thus we have Vn(r) = limk→∞ βk
n(r) = I(0,∞)(r), which yields that Vn(r) is not right

continuous at r = 0.

4. Independent model

We shall consider an independent sequences as a special model. Let
(Wn)n∈N be a sequence of independent distributed random variables with
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= mid(I(Wn≤r+c), I(Wn≤r−d), E[Vn+1(r)]).
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since P(W ≤ r − d) = r − d and P(r − d ≤ W < r + c) = c + d. Similarly, if r ≥ 1 − c then we
have v(r) = 1. Thus it follows that

v(r) = I[1−c,∞)(r) + (r − d)/(1 − c − d)I[d,1−c)(r).

We completely obtained the values V(r) and v(r). By the way we easily see that X̂(r) =

X̂n(r) = E[X̂(r)]I(W≤r+c), where

E[X̂(r)] = rI[1−c,1)(r) + I[1,∞)(r),

and
E[Ŷ(r)] = Ŷ(r) = Ŷn(r) = P[Z ≤ r]I(−∞,d)(r) + I[d,∞)(r).

Now v(r) is a distribution function in r. Let U is a random variable corresponding to v(r).
Then we see that E[U] = (1 − c + d))/2.
We shall next compare our model with the classical Dynkin’s game in this example. Let

Jn = ess inf ess sup
τ∈Γn σ∈Γn

E[g(τ, σ)|Fn],

Jn = ess sup ess inf
σ∈Γn τ∈Γn

E[g(τ, σ)|Fn],
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be minimax and maxmin value processes, respectively. Then we have Jn = Jn = J, say, since
Jn = Jn does not depend upon n in this example. Also, by solving the relation

J = mid(W − c, W + d, E[J]),

we have E[J] = (1 − c + d)/2, which coincide with E[U]. However, the distribution function
of J is represented by

P(J ≤ x) = (x − d)I[d,(1−c+d)/2)(x) + (x + c)I[(1−c+d)/2,1−c)(x) + I[1−c,∞)(x),

which is different from that of U, that is, v(r).
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1. Introduction

A new model of coherent upper conditional prevision is proposed in a metric space. It is
defined by the Choquet integral with respect to the s-dimensional Hausdorff outer measure
if the conditioning event has positive and finite Hausdorff outer measure in its dimension s.
Otherwise if the conditioning event has Hausdorff outer measure in its dimension equal to
zero or infinity it is defined by a 0-1 valued finitely, but not countably, additive probability.
If the conditioning event has positive and finite Hausdorff outer measure in its dimension the
coherent upper conditional prevision is proven to be monotone, comonotonically additive,
submodular and continuous from below.
Given a coherent upper conditional prevision the coherent lower conditional prevision is de-
fined as its conjugate.
In Doria (2007) coherent upper and lower conditional probablities are obtained when only 0-1
valued random variables are considered.
The aim of this chapter is to introduce a new definition of stochastic independence with re-
spect to coherent upper and lower conditional probabilities defined by Hausdorff outer and
inner measures.
A concept related to the definition of conditional probability is stochastic independence. In
a continuous probability space where probability is usually assumed equal to the Lebesgue
measure, we have that finite, countable and fractal sets (i.e. the sets with non-integer Haus-
dorff dimension) have probability equal to zero. For these sets the standard definition of
independence given by the factorization property is always satisfied since both members of
the equality are zero.
The notion of s-independence with respect to Hausdorff outer and inner measures is intro-
duced to check probabilistic dependence for sets with probability equal to zero, which are
always independent according to the standard definition given by the factorization property.
Moreover s-independence is compared with the notion of epistemic independence with re-
spect to upper and lower conditional probabilities (Walley, 1991).
The outline of the chapter is the following.
In Section 2 it is proven that a conditional prevision defined by the Radon-Nikodym derivative
may be not coherent and examples are given.
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In Section 3 coherent upper conditional previsions are defined in a metric space by the Cho-
quet integral with respect to Hausdorff outer measure if the conditioning event has positive
and finite Hausdorff outer measure in its dimension. Otherwise they are defined by a 0-1
valued finitely, but not countably, additive probability. Their properties are proven.
In Section 4 the notion of s-irrelevance and s-independence with respect to coherent upper
and lower conditional probabilities defined by Hausdorff outer and inner measures are intro-
duced. It is proven that the notions of epistemic irrelevance and s-irrelevance are not always
related. In particular we give conditions for which an event B is epistemically irrelevant to an
event A, but it is not s-irrelevant. In the Euclidean metric space it is proven that a necessary
condition for s-irrelevance between events is that the Hausdorff dimension of the two events
and their intersection is equal to the Hausdorff dimension of Ω. Finally sufficient conditions
for s-irrelevance between Souslin subsets of �n are given.
In Section 5 some fractal sets are proven to be s-dependent since they do not satisfy the neces-
sary condition for s-independence. In particular the attractor of a finite family of similitudes
and its boundary are proven to be s-dependent if the open set condition holds. Moreover a
condition for which two middle Cantor sets are s-dependent is given.
It is important to note that all these sets are stochastically independent according the axiomatic
definition given by the factorization property if probability is defined by the Lebesgue mea-
sure.
In Section 6 curves filling the space, such as Peano curve and Hilbert curve are proven to be
s-independent.

2. Conditional expectation and coherent conditional prevision

Partial knowledge is a natural interpretation of conditional probability. This interpretation
can be formalized in a different way in the axiomatic approach and in the subjective approach
where conditional probability is respectively defined by the Radon-Nikodym derivative or by
the axioms of coherence. In both cases conditional probability is obtained as the restriction of
conditional expectation or conditional prevision to the class of indicator functions of events.
Some critical situations, which highlight as the axiomatic definition of conditional probability
is not always a useful tool to represent partial knoweledge, are proposed in literature and ana-
lyzed in this section. In particular the role of the Radon-Nikodym derivative in the assessment
of a coherent conditional prevision is investigated.
It is proven that, every time that the σ-field of the conditioning events is properly contained in
the σ-field of the probability space and it contains all singletons, the Radon-Nikodym deriva-
tive cannot be used as a tool to define coherent conditional previsions. This is due to the fact
that one of the defining properties of the Radon-Nikodym derivative, that is to be measurable
with respect to the σ-field of the conditioning events, contradicts a necessary condition for the
coherence.
Analysis done points out the necessity to introduce a different tool to define coherent condi-
tional previsions.

2.1 Conditional expectation and Radon-Nikodym derivative
In the axiomatic approach Billingsley (1986) conditional expectation is defined with respect
to a σ-field G of conditioning events by the Radon-Nikodym derivative. Let (Ω, F, P) be a
probability space and let F and G be two σ-fields of subsets of Ω with G contained in F and let
X be an integrable random variable on (Ω, F, P). Let P be a probability measure on F; define
a measure ν on G by ν(G) =

∫
G XdP. This measure is finite and absolutely continuous with

respect to P. So there exists a function, the Radon-Nikodym derivative denoted by E[X|G],
defined on Ω, G-measurable, integrable and satisfying the functional equation

∫
G E[X|G]dP =

∫
G XdP with G in G.

This function is unique up to a set of P-measure zero and it is a version of the conditional
expected value.
If X is the indicator function of any event A belonging to F then E[X|G] = E[A|G] = P[A|G]
is a version of the conditional probability.
Conditional probability can be used to represent partial information (Billingsley, 1986, Section
33).
A probability space (Ω, F, P) can be use to represent a random phenomenon or an experiment
whose outcome is drawn from according to the probability given by P. Partial information
about the experiment can be represented by a sub σ-field G of F in the following way: an
observer does not know which ω has been drawn but he knows for each H ∈ G, if ω belongs
to H or if ω belongs to Hc. A sub σ-field G of F can be identified as partial information about
the random experiment, and, fixed A in F, conditional probability can be used to represent
partial knowledge about A given the information on G. If conditional probability is defined
by the Radon-Nykodim derivative, denoted by P[A|G], by the standard definition (Billings-
ley, 1986, p.52) we have that an event A is independent from the σ-field G if it is independent
from each H ∈ G, that is P[A|G] = P(A) with probability 1. In (Billingsley, 1986, Example
33.11) it is shown that the interpretation of conditional probability in terms of partial knowl-
edge breaks down in certain cases. Let Ω = [0,1], let F be the Borel σ-field of [0,1] and let
P be the Lebesgue measure on F. Let G be the sub σ-field of sets that are either countable
or co-countable. Then P(A) is a version of the conditional probability P[A|G] define by the
Radon-Nikodym derivative because P(G) is either 0 or 1 for evey G ∈ G. So an event A is
independent from the information represented by G and this is a contradiction according to
the fact that the information represented by G is complete since G contains all the singletons
of Ω.

2.2 Coherent upper conditional previsions
In the subjective probabilistic approach (de Finetti 1970, Dubins 1975 and Walley 1991) coher-
ent upper conditional previsions P(·|B) are functionals, defined on a linear space of bounded
random variables, satisfying the axioms of coherence.
In Walley (1991) coherent upper conditional previsions are defined when the conditioning
events are sets of a partition.

Definition 1. Let Ω be a non-empty set let B be a partition of Ω. For every B ∈ B let K(B) be a linear
space of bounded random variables defined on B. Then separately coherent upper conditional previsions
are functionals P(·|B) defined on K(B), such that the following conditions hold for every X and Y in
K(B) and every strictly positive constant λ:

• 1) P (X|B) ≤ sup(X|B);

• 2) P(λ X|B) = λ P(X|B) (positive homogeneity);

• 3) P(X + Y)|B) ≤ P(X|B) + P(Y|B);
• 4) P(B|B) = 1.
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In Section 3 coherent upper conditional previsions are defined in a metric space by the Cho-
quet integral with respect to Hausdorff outer measure if the conditioning event has positive
and finite Hausdorff outer measure in its dimension. Otherwise they are defined by a 0-1
valued finitely, but not countably, additive probability. Their properties are proven.
In Section 4 the notion of s-irrelevance and s-independence with respect to coherent upper
and lower conditional probabilities defined by Hausdorff outer and inner measures are intro-
duced. It is proven that the notions of epistemic irrelevance and s-irrelevance are not always
related. In particular we give conditions for which an event B is epistemically irrelevant to an
event A, but it is not s-irrelevant. In the Euclidean metric space it is proven that a necessary
condition for s-irrelevance between events is that the Hausdorff dimension of the two events
and their intersection is equal to the Hausdorff dimension of Ω. Finally sufficient conditions
for s-irrelevance between Souslin subsets of �n are given.
In Section 5 some fractal sets are proven to be s-dependent since they do not satisfy the neces-
sary condition for s-independence. In particular the attractor of a finite family of similitudes
and its boundary are proven to be s-dependent if the open set condition holds. Moreover a
condition for which two middle Cantor sets are s-dependent is given.
It is important to note that all these sets are stochastically independent according the axiomatic
definition given by the factorization property if probability is defined by the Lebesgue mea-
sure.
In Section 6 curves filling the space, such as Peano curve and Hilbert curve are proven to be
s-independent.

2. Conditional expectation and coherent conditional prevision

Partial knowledge is a natural interpretation of conditional probability. This interpretation
can be formalized in a different way in the axiomatic approach and in the subjective approach
where conditional probability is respectively defined by the Radon-Nikodym derivative or by
the axioms of coherence. In both cases conditional probability is obtained as the restriction of
conditional expectation or conditional prevision to the class of indicator functions of events.
Some critical situations, which highlight as the axiomatic definition of conditional probability
is not always a useful tool to represent partial knoweledge, are proposed in literature and ana-
lyzed in this section. In particular the role of the Radon-Nikodym derivative in the assessment
of a coherent conditional prevision is investigated.
It is proven that, every time that the σ-field of the conditioning events is properly contained in
the σ-field of the probability space and it contains all singletons, the Radon-Nikodym deriva-
tive cannot be used as a tool to define coherent conditional previsions. This is due to the fact
that one of the defining properties of the Radon-Nikodym derivative, that is to be measurable
with respect to the σ-field of the conditioning events, contradicts a necessary condition for the
coherence.
Analysis done points out the necessity to introduce a different tool to define coherent condi-
tional previsions.

2.1 Conditional expectation and Radon-Nikodym derivative
In the axiomatic approach Billingsley (1986) conditional expectation is defined with respect
to a σ-field G of conditioning events by the Radon-Nikodym derivative. Let (Ω, F, P) be a
probability space and let F and G be two σ-fields of subsets of Ω with G contained in F and let
X be an integrable random variable on (Ω, F, P). Let P be a probability measure on F; define
a measure ν on G by ν(G) =

∫
G XdP. This measure is finite and absolutely continuous with

respect to P. So there exists a function, the Radon-Nikodym derivative denoted by E[X|G],
defined on Ω, G-measurable, integrable and satisfying the functional equation

∫
G E[X|G]dP =

∫
G XdP with G in G.

This function is unique up to a set of P-measure zero and it is a version of the conditional
expected value.
If X is the indicator function of any event A belonging to F then E[X|G] = E[A|G] = P[A|G]
is a version of the conditional probability.
Conditional probability can be used to represent partial information (Billingsley, 1986, Section
33).
A probability space (Ω, F, P) can be use to represent a random phenomenon or an experiment
whose outcome is drawn from according to the probability given by P. Partial information
about the experiment can be represented by a sub σ-field G of F in the following way: an
observer does not know which ω has been drawn but he knows for each H ∈ G, if ω belongs
to H or if ω belongs to Hc. A sub σ-field G of F can be identified as partial information about
the random experiment, and, fixed A in F, conditional probability can be used to represent
partial knowledge about A given the information on G. If conditional probability is defined
by the Radon-Nykodim derivative, denoted by P[A|G], by the standard definition (Billings-
ley, 1986, p.52) we have that an event A is independent from the σ-field G if it is independent
from each H ∈ G, that is P[A|G] = P(A) with probability 1. In (Billingsley, 1986, Example
33.11) it is shown that the interpretation of conditional probability in terms of partial knowl-
edge breaks down in certain cases. Let Ω = [0,1], let F be the Borel σ-field of [0,1] and let
P be the Lebesgue measure on F. Let G be the sub σ-field of sets that are either countable
or co-countable. Then P(A) is a version of the conditional probability P[A|G] define by the
Radon-Nikodym derivative because P(G) is either 0 or 1 for evey G ∈ G. So an event A is
independent from the information represented by G and this is a contradiction according to
the fact that the information represented by G is complete since G contains all the singletons
of Ω.

2.2 Coherent upper conditional previsions
In the subjective probabilistic approach (de Finetti 1970, Dubins 1975 and Walley 1991) coher-
ent upper conditional previsions P(·|B) are functionals, defined on a linear space of bounded
random variables, satisfying the axioms of coherence.
In Walley (1991) coherent upper conditional previsions are defined when the conditioning
events are sets of a partition.

Definition 1. Let Ω be a non-empty set let B be a partition of Ω. For every B ∈ B let K(B) be a linear
space of bounded random variables defined on B. Then separately coherent upper conditional previsions
are functionals P(·|B) defined on K(B), such that the following conditions hold for every X and Y in
K(B) and every strictly positive constant λ:

• 1) P (X|B) ≤ sup(X|B);

• 2) P(λ X|B) = λ P(X|B) (positive homogeneity);

• 3) P(X + Y)|B) ≤ P(X|B) + P(Y|B);
• 4) P(B|B) = 1.
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Coherent conditional upper previsions can always be extended to coherent upper previsions
on the class L(B) of all bounded random variables defined on B.
Suppose that P(X|B) is a coherent upper conditional prevision on K then its conjugate coher-
ent lower conditional prevision is defined by P(−X|B) = −P(X|B). If for every X belonging
to K we have P(X|B) = P(X|B) = P(X|B) then P(X|B) is called a coherent linear conditional
prevision de Finetti (1970) and it is a linear positive functional on K.

Definition 2. Let Ω be a non-empty set let B be a partition of Ω. For every B ∈ B let K(B) be a
linear space of bounded random variables defined on B. Then linear coherent conditional previsions are
functionals P(·|B) defined on K(B), such that the following conditions hold for every X and Y in K(B)
and every strictly positive constant λ:

• 1) if X > 0 then P(X|B) ≥ 0 (positivity);

• 2) P(λX|B) = λP(X|B) (positive homogeneity);

• 3) P(X + Y)|B) = P(X|B) + P(Y|B) (linearity);

• 4) P(B|B) = 1.

Upper conditional probabilities are obtained when only 0-1 valued random variables are con-
sidered;
In Dubins (1975) coherent conditional probabilities are defined when the family of the condi-
tioning events is a field of subsets of Ω.

Definition 3. Let Ω be a non-empty set and let F and G be two fields of subsets of Ω , with G ⊆ F. P
is a finitely additive conditional probability on (F, G) if it is a real function defined on F × G0, where
G0 = G −� such that the following conditions hold:

• I) given any H ∈ G0 and A1, ..., An ∈ F and Ai ∩ Aj = � for i �= j, the function P(·|H)
defined on F is such that P(A|H) ≥ 0, P(

⋃n
k=1 Ak|H) = ∑n

k=1 P(Ak|H), P(Ω|H) = 1

• II) P(H|H) = 1 if H ∈ G0

• III) given E ∈ F, H ∈ F with A ∈ G0 and EA ∈ G0 then P(EH|A) = P(E|A)P(H|EA).

From conditions I) and II) we have
II’) P(A|H) = 1 if A ∈ F, H ∈ G0 and H ⊂ A.
These conditional probabilities are coherent in the sense of de Finetti, since conditions I), II),
III) are sufficient for the coherence of P on C = F×G0 when F and G are fields of subsets of Ω
with G ⊆ F or G is an additive subclass of F; otherwise if F and G are two arbitrary families
of subsets of Ω, such that Ω ∈ F the previous conditions are necessary for the coherence but
not sufficient.

2.3 Coherent conditional previsions and the Radon-Nikodym derivative
In this subsection the role of the Radon-Nikodym derivative in the assessment of a coherent
conditional prevision is analyzed.
The definitions of conditional expectation and coherent linear conditional prevision can be
compared when the σ-field G is generated by the partition B. Let G be equal or contained in
the σ-field generated by a countable class C of subsets of F and let B be the partition generated
by the class C. Denote Ω’ = B and ϕB the function from Ω to Ω’ that associates to every ω ∈ Ω
the atom B of the partition B that contains ω; then we have that P(A|G) = P(A|B) ◦ ϕB for
every A ∈ F (Koch, 1997, 262).

The next theorem shows that every time that the σ-field G of the conditioning events is prop-
erly contained in F and it contains all singletons of [0, 1] then the conditional prevision, de-
fined by the Radon-Nikodym derivative is not coherent. It occurs because one of the defining
properties of conditional expectation that is to be measurable with respect to the σ-field of
conditioning events contradicts a necessary condition for coherence of a linear conditional
prevision. A bounded random variable is called B-measurable or measurable with respect to
the partition B (Walley, 1991, p.291) if it is constant on the atoms B of the partition. If for every
B belonging to B P(X|B) are coherent linear conditional previsions and X is B-measurable
then P(X|B) = X (Walley, 1991, p.292). This necessary condition for coherence is not always
satisfied if P(X|B) is defined by the Radon-Nikodym derivative.

Theorem 1. Let Ω = [0,1], let F be the Borel σ-field of [0,1] and let P be the Lebesgue measure on F. Let
G be a sub σ-field properly contained in F and containing all singletons of [0,1]. Let B be the partition
of all singletons of [0,1] and let X be the indicator function of an event A belonging to F - G. If we
define the conditional prevision P(X| {ω}) equal to the Radon-Nikodym derivative with probability 1,
that is

P(X| {ω}) = E[X|G]

except on a subset N of [0,1] of P-measure zero, then the conditional prevision P(X| {ω}) is not
coherent.

Proof. If the equality P(X| {ω}) = E[X|G] holds with probability 1, then we have that, with
probability 1, the linear conditional prevision P(X| {ω}) is different from X, the indicator
function of A; in fact having fixed A in F − G the indicator function X is not G-measurable,
it does not verify a property of the Radon-Nikodym derivative and therefore it cannot be
assumed as conditional expectation according to axiomatic definition. So the linear con-
ditional prevision P(X| {ω}) does not satisfy the necessary condition for being coherent,
P(X| {ω}) = X for every singleton {ω} of G. �

Example 1. (Billingsley, 1986, Example 33.11) Let Ω = [0,1], let F be the Borel σ-field of Ω, let P
be the Lebesgue measure on F and let G be the sub σ-field of F of sets that are either countable
or co-countable. Let B be the partition of all singletons of Ω; if the linear conditional prevision
is defined equal, with probability 1, to conditional expectation defined by the Radon-Nikodym
derivative, we have that

P(X|B) = E[X|G] = P(X).

So when X is the indicator function of an event A = [a, b] with 0 < a < b < 1 then P(X|B) =
P(A) and it does not satisfy the necessary condition for coherence that is P(X| {ω}) = X for
every singleton {ω} of G.
Evident from Theorem 1 and Example 1 is the necessity to introduce a new tool to define
coherent linear conditional previsions.

3. Coherent upper conditional previsions defined by Hausdorff outer measures

In this section coherent upper conditional previsions are defined by the Choquet integral with
respect to Hausdorff outer measures if the conditioning event B has positive and finite Haus-
dorff outer measure in its dimension. Otherwise if the conditioning event B has Hausdorff
outer measure in its dimension equal to zero or infinity they are defined by a 0-1 valued
finitely, but not countably, additive probability.



Stochastic independence with respect to upper and lower  
conditional probabilities defined by Hausdorff outer and inner measures 91

Coherent conditional upper previsions can always be extended to coherent upper previsions
on the class L(B) of all bounded random variables defined on B.
Suppose that P(X|B) is a coherent upper conditional prevision on K then its conjugate coher-
ent lower conditional prevision is defined by P(−X|B) = −P(X|B). If for every X belonging
to K we have P(X|B) = P(X|B) = P(X|B) then P(X|B) is called a coherent linear conditional
prevision de Finetti (1970) and it is a linear positive functional on K.

Definition 2. Let Ω be a non-empty set let B be a partition of Ω. For every B ∈ B let K(B) be a
linear space of bounded random variables defined on B. Then linear coherent conditional previsions are
functionals P(·|B) defined on K(B), such that the following conditions hold for every X and Y in K(B)
and every strictly positive constant λ:

• 1) if X > 0 then P(X|B) ≥ 0 (positivity);

• 2) P(λX|B) = λP(X|B) (positive homogeneity);

• 3) P(X + Y)|B) = P(X|B) + P(Y|B) (linearity);

• 4) P(B|B) = 1.

Upper conditional probabilities are obtained when only 0-1 valued random variables are con-
sidered;
In Dubins (1975) coherent conditional probabilities are defined when the family of the condi-
tioning events is a field of subsets of Ω.

Definition 3. Let Ω be a non-empty set and let F and G be two fields of subsets of Ω , with G ⊆ F. P
is a finitely additive conditional probability on (F, G) if it is a real function defined on F × G0, where
G0 = G −� such that the following conditions hold:

• I) given any H ∈ G0 and A1, ..., An ∈ F and Ai ∩ Aj = � for i �= j, the function P(·|H)
defined on F is such that P(A|H) ≥ 0, P(

⋃n
k=1 Ak|H) = ∑n

k=1 P(Ak|H), P(Ω|H) = 1

• II) P(H|H) = 1 if H ∈ G0

• III) given E ∈ F, H ∈ F with A ∈ G0 and EA ∈ G0 then P(EH|A) = P(E|A)P(H|EA).

From conditions I) and II) we have
II’) P(A|H) = 1 if A ∈ F, H ∈ G0 and H ⊂ A.
These conditional probabilities are coherent in the sense of de Finetti, since conditions I), II),
III) are sufficient for the coherence of P on C = F×G0 when F and G are fields of subsets of Ω
with G ⊆ F or G is an additive subclass of F; otherwise if F and G are two arbitrary families
of subsets of Ω, such that Ω ∈ F the previous conditions are necessary for the coherence but
not sufficient.

2.3 Coherent conditional previsions and the Radon-Nikodym derivative
In this subsection the role of the Radon-Nikodym derivative in the assessment of a coherent
conditional prevision is analyzed.
The definitions of conditional expectation and coherent linear conditional prevision can be
compared when the σ-field G is generated by the partition B. Let G be equal or contained in
the σ-field generated by a countable class C of subsets of F and let B be the partition generated
by the class C. Denote Ω’ = B and ϕB the function from Ω to Ω’ that associates to every ω ∈ Ω
the atom B of the partition B that contains ω; then we have that P(A|G) = P(A|B) ◦ ϕB for
every A ∈ F (Koch, 1997, 262).

The next theorem shows that every time that the σ-field G of the conditioning events is prop-
erly contained in F and it contains all singletons of [0, 1] then the conditional prevision, de-
fined by the Radon-Nikodym derivative is not coherent. It occurs because one of the defining
properties of conditional expectation that is to be measurable with respect to the σ-field of
conditioning events contradicts a necessary condition for coherence of a linear conditional
prevision. A bounded random variable is called B-measurable or measurable with respect to
the partition B (Walley, 1991, p.291) if it is constant on the atoms B of the partition. If for every
B belonging to B P(X|B) are coherent linear conditional previsions and X is B-measurable
then P(X|B) = X (Walley, 1991, p.292). This necessary condition for coherence is not always
satisfied if P(X|B) is defined by the Radon-Nikodym derivative.

Theorem 1. Let Ω = [0,1], let F be the Borel σ-field of [0,1] and let P be the Lebesgue measure on F. Let
G be a sub σ-field properly contained in F and containing all singletons of [0,1]. Let B be the partition
of all singletons of [0,1] and let X be the indicator function of an event A belonging to F - G. If we
define the conditional prevision P(X| {ω}) equal to the Radon-Nikodym derivative with probability 1,
that is

P(X| {ω}) = E[X|G]

except on a subset N of [0,1] of P-measure zero, then the conditional prevision P(X| {ω}) is not
coherent.

Proof. If the equality P(X| {ω}) = E[X|G] holds with probability 1, then we have that, with
probability 1, the linear conditional prevision P(X| {ω}) is different from X, the indicator
function of A; in fact having fixed A in F − G the indicator function X is not G-measurable,
it does not verify a property of the Radon-Nikodym derivative and therefore it cannot be
assumed as conditional expectation according to axiomatic definition. So the linear con-
ditional prevision P(X| {ω}) does not satisfy the necessary condition for being coherent,
P(X| {ω}) = X for every singleton {ω} of G. �

Example 1. (Billingsley, 1986, Example 33.11) Let Ω = [0,1], let F be the Borel σ-field of Ω, let P
be the Lebesgue measure on F and let G be the sub σ-field of F of sets that are either countable
or co-countable. Let B be the partition of all singletons of Ω; if the linear conditional prevision
is defined equal, with probability 1, to conditional expectation defined by the Radon-Nikodym
derivative, we have that

P(X|B) = E[X|G] = P(X).

So when X is the indicator function of an event A = [a, b] with 0 < a < b < 1 then P(X|B) =
P(A) and it does not satisfy the necessary condition for coherence that is P(X| {ω}) = X for
every singleton {ω} of G.
Evident from Theorem 1 and Example 1 is the necessity to introduce a new tool to define
coherent linear conditional previsions.

3. Coherent upper conditional previsions defined by Hausdorff outer measures

In this section coherent upper conditional previsions are defined by the Choquet integral with
respect to Hausdorff outer measures if the conditioning event B has positive and finite Haus-
dorff outer measure in its dimension. Otherwise if the conditioning event B has Hausdorff
outer measure in its dimension equal to zero or infinity they are defined by a 0-1 valued
finitely, but not countably, additive probability.
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3.1 Hausdorff outer measures
Given a non-empty set Ω an outer measure is a function µ∗ : ℘(Ω) → [0,+∞] such that
µ∗(�) = 0, µ∗(A) ≤ µ∗(A′) if A ⊆ A′ and µ∗(

⋃∞
i=1 Ai) ≤ ∑∞

i=1 µ∗(Ai).
Examples of outer set functions or outer measures are the Hausdorff outer measures (Falconer
1986, Rogers 1998).
Let (Ω, d) be a metric space. A topology, called the metric topology, can be introduced into any
metric space by defining the open sets of the space as the sets G with the property:
if x is a point of G, then for some r > 0 all points y with d(x, y) < r also belong to G.
It is easy to verify that the open sets defined in this way satisfy the standard axioms of the
system of open sets belonging to a topology (Rogers, 1998, p.26).
The diameter of a non empty set U of Ω is defined as |U| = sup {d(x, y) : x, y ∈ U} and if a
subset A of Ω is such that A ⊂ ⋃

i Ui and 0 < |Ui| < δ for each i, the class {Ui} is called a
δ-cover of A.
Let s be a non-negative number. For δ > 0 we define hs,δ (A) = inf ∑+∞

i=1 |Ui|
s
, where the

infimum is over all δ-covers {Ui}.
The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined as

hs(A) = limδ→0 hs,δ(A).

This limit exists, but may be infinite, since hs,δ(A) increases as δ decreases because less δ-
covers are available. The Hausdorff dimension of a set A, dimH(A), is defined as the unique
value, such that

hs(A) = +∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < +∞.

We can observe that if 0 < hs(A) < +∞ then dimH(A) = s, but the converse is not true.
Denote by r the Hausdorff dimension of Ω, if an event A is such that dimH(A) = s < r then
the Hausdorff dimension of the complementary set Ac is equal to r since the following relation
holds:

dimH(A ∪ B) = max {dimH(A), dimH(B)} .

Hausdorff outer measures are metric outer measures, that is
hs(E ∪ F) = hs(E) + hs(F) whenever E and F are positively separated, i.e.
d(E, F) = inf {d(x, y) : x ∈ E, y ∈ F} > 0.
A subset A of Ω is called measurable with respect to the outer measure hs if it decomposes
every subset of Ω additively, that is if hs(E) = hs(A ∩ E) + hs(E − A) for all sets E ⊆ Ω.
All Borel subsets of Ω are measurable with respect to a metric outer measure (Falconer, 1986,
Theorem 1.5). So every Borel subset of Ω is measurable with respect to every Hausdorff outer
measure hs since Hausdorff outer measures are metric.
The restriction of hs to the σ-field of hs-measurable sets, containing the σ-field of the Borel
sets, is called Hausdorff s-dimensional measure. The Borel σ-field is the σ-field generated
by all open sets. The Borel sets include the closed sets (as complement of the open sets), the
Fσ-sets (countable unions of closed sets) the Gσ-sets (countable intersections of open sets), etc.
In particular the Hausdorff 0-dimensional measure is the counting measure and the Hausdorff
1-dimensional measure is the Lebesgue measure.
The Hausdorff s-dimensional measures are modular on the Borel σ-field, that is hs(A ∪ B) +
hs(A ∩ B) = hs(A) + hs(B) for every pair of Borelian sets A and B; so that (Denneberg,

1994, Proposition 2.4) the Hausdorff outer measures are submodular (hs(A ∪ B) + hs(A ∩ B) ≤
hs(A) + hs(B)).
In (Rogers, 1998, p.50) and (Falconer, 1986, Theorem 1.6 (a)) it has been proven that if A is any
subset of Ω there is a Gσ-set G containing A with hs(A) = hs(G). In particular hs is an outer
regular measure.
Moreover Hausdorff outer measures are continuous from below (Falconer, 1986, Lemma 1.3),
that is for any increasing sequences of sets {Ai} we have limi→∞ hs(Ai) = hs(limi→∞ Ai).

3.2 The Choquet integral
We recall the definition of the Choquet integral (Denneberg, 1994) with the aim to define upper
conditional previsions by Choquet integral with respect to Hausdorff outer measures and to
prove their properties. The Choquet integral is an integral with respect to a monotone set
function. Given a non-empty set Ω and denoted by S a set system, containing the empty set
and properly contained in ℘(Ω), the family of all subsets of Ω , a monotone set function µ:
S → �+ = �+ ∪ {+∞} is such that µ(�) = 0 and if A, B ∈ S with A ⊆ B then µ(A) ≤ µ(B).
Given a monotone set function µ on S, its outer set function is the set function µ∗ defined on
the whole power set ℘(Ω) by

µ∗(A) = inf {µ(B) : B ⊃ A; B ∈ S} , A ∈ ℘(Ω)

The inner set function of µ is the set function µ∗ defined on the whole power set ℘(Ω) by

µ∗(A) = sup {µ(B)|B ⊂ A; B ∈ S} , A ∈ ℘(Ω)

Let µ be a monotone set function defined on S properly contained in ℘(Ω) and X : Ω → � =
� ∪ {−∞,+∞} an arbitrary function on Ω. Then the set function

Gµ,X(x) = µ {ω ∈ Ω : X(ω) > x}

is decreasing and it is called decreasing distribution function of X with respect to µ. If µ is
continuous from below then Gµ,X(x) is right continuous. In particular the decreasing distri-
bution function of X with respect to the Hausdorff outer measures is right continuous since
these outer measures are continuous from below. A function X : Ω → � is called upper µ-
measurable if Gµ∗ ,X(x) = Gµ∗ ,X(x). Given an upper µ-measurable function X :Ω → R with
decreasing distribution function Gµ,X(x), if µ(Ω) < +∞, the asymmetric Choquet integral of X
with respect to µ is defined by

∫
Xdµ =

∫ 0
−∞(Gµ,X(x)− µ(Ω))dx +

∫ ∞
0 Gµ,X(x)dx

The integral is in �, can assume the values −∞, +∞ or is undefined when the right-hand side
is ∞ − ∞.
If X ≥ 0 or X ≤ 0 the integral always exists. In particular for X ≥ 0 we obtain

∫
Xdµ =

∫ +∞
0 Gµ,X(x)dx

If X is bounded and µ(Ω) = 1 we have that

•
∫

Xdµ =
∫ 0

inf X(Gµ,X(x)− 1)dx +
∫ sup X

0 Gµ,X(x)dx =
∫ sup X

inf X Gµ,X(x)dx + inf X.
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3.1 Hausdorff outer measures
Given a non-empty set Ω an outer measure is a function µ∗ : ℘(Ω) → [0,+∞] such that
µ∗(�) = 0, µ∗(A) ≤ µ∗(A′) if A ⊆ A′ and µ∗(

⋃∞
i=1 Ai) ≤ ∑∞

i=1 µ∗(Ai).
Examples of outer set functions or outer measures are the Hausdorff outer measures (Falconer
1986, Rogers 1998).
Let (Ω, d) be a metric space. A topology, called the metric topology, can be introduced into any
metric space by defining the open sets of the space as the sets G with the property:
if x is a point of G, then for some r > 0 all points y with d(x, y) < r also belong to G.
It is easy to verify that the open sets defined in this way satisfy the standard axioms of the
system of open sets belonging to a topology (Rogers, 1998, p.26).
The diameter of a non empty set U of Ω is defined as |U| = sup {d(x, y) : x, y ∈ U} and if a
subset A of Ω is such that A ⊂ ⋃

i Ui and 0 < |Ui| < δ for each i, the class {Ui} is called a
δ-cover of A.
Let s be a non-negative number. For δ > 0 we define hs,δ (A) = inf ∑+∞

i=1 |Ui|
s
, where the

infimum is over all δ-covers {Ui}.
The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined as

hs(A) = limδ→0 hs,δ(A).

This limit exists, but may be infinite, since hs,δ(A) increases as δ decreases because less δ-
covers are available. The Hausdorff dimension of a set A, dimH(A), is defined as the unique
value, such that

hs(A) = +∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < +∞.

We can observe that if 0 < hs(A) < +∞ then dimH(A) = s, but the converse is not true.
Denote by r the Hausdorff dimension of Ω, if an event A is such that dimH(A) = s < r then
the Hausdorff dimension of the complementary set Ac is equal to r since the following relation
holds:

dimH(A ∪ B) = max {dimH(A), dimH(B)} .

Hausdorff outer measures are metric outer measures, that is
hs(E ∪ F) = hs(E) + hs(F) whenever E and F are positively separated, i.e.
d(E, F) = inf {d(x, y) : x ∈ E, y ∈ F} > 0.
A subset A of Ω is called measurable with respect to the outer measure hs if it decomposes
every subset of Ω additively, that is if hs(E) = hs(A ∩ E) + hs(E − A) for all sets E ⊆ Ω.
All Borel subsets of Ω are measurable with respect to a metric outer measure (Falconer, 1986,
Theorem 1.5). So every Borel subset of Ω is measurable with respect to every Hausdorff outer
measure hs since Hausdorff outer measures are metric.
The restriction of hs to the σ-field of hs-measurable sets, containing the σ-field of the Borel
sets, is called Hausdorff s-dimensional measure. The Borel σ-field is the σ-field generated
by all open sets. The Borel sets include the closed sets (as complement of the open sets), the
Fσ-sets (countable unions of closed sets) the Gσ-sets (countable intersections of open sets), etc.
In particular the Hausdorff 0-dimensional measure is the counting measure and the Hausdorff
1-dimensional measure is the Lebesgue measure.
The Hausdorff s-dimensional measures are modular on the Borel σ-field, that is hs(A ∪ B) +
hs(A ∩ B) = hs(A) + hs(B) for every pair of Borelian sets A and B; so that (Denneberg,

1994, Proposition 2.4) the Hausdorff outer measures are submodular (hs(A ∪ B) + hs(A ∩ B) ≤
hs(A) + hs(B)).
In (Rogers, 1998, p.50) and (Falconer, 1986, Theorem 1.6 (a)) it has been proven that if A is any
subset of Ω there is a Gσ-set G containing A with hs(A) = hs(G). In particular hs is an outer
regular measure.
Moreover Hausdorff outer measures are continuous from below (Falconer, 1986, Lemma 1.3),
that is for any increasing sequences of sets {Ai} we have limi→∞ hs(Ai) = hs(limi→∞ Ai).

3.2 The Choquet integral
We recall the definition of the Choquet integral (Denneberg, 1994) with the aim to define upper
conditional previsions by Choquet integral with respect to Hausdorff outer measures and to
prove their properties. The Choquet integral is an integral with respect to a monotone set
function. Given a non-empty set Ω and denoted by S a set system, containing the empty set
and properly contained in ℘(Ω), the family of all subsets of Ω , a monotone set function µ:
S → �+ = �+ ∪ {+∞} is such that µ(�) = 0 and if A, B ∈ S with A ⊆ B then µ(A) ≤ µ(B).
Given a monotone set function µ on S, its outer set function is the set function µ∗ defined on
the whole power set ℘(Ω) by

µ∗(A) = inf {µ(B) : B ⊃ A; B ∈ S} , A ∈ ℘(Ω)

The inner set function of µ is the set function µ∗ defined on the whole power set ℘(Ω) by

µ∗(A) = sup {µ(B)|B ⊂ A; B ∈ S} , A ∈ ℘(Ω)

Let µ be a monotone set function defined on S properly contained in ℘(Ω) and X : Ω → � =
� ∪ {−∞,+∞} an arbitrary function on Ω. Then the set function

Gµ,X(x) = µ {ω ∈ Ω : X(ω) > x}

is decreasing and it is called decreasing distribution function of X with respect to µ. If µ is
continuous from below then Gµ,X(x) is right continuous. In particular the decreasing distri-
bution function of X with respect to the Hausdorff outer measures is right continuous since
these outer measures are continuous from below. A function X : Ω → � is called upper µ-
measurable if Gµ∗ ,X(x) = Gµ∗ ,X(x). Given an upper µ-measurable function X :Ω → R with
decreasing distribution function Gµ,X(x), if µ(Ω) < +∞, the asymmetric Choquet integral of X
with respect to µ is defined by

∫
Xdµ =

∫ 0
−∞(Gµ,X(x)− µ(Ω))dx +

∫ ∞
0 Gµ,X(x)dx

The integral is in �, can assume the values −∞, +∞ or is undefined when the right-hand side
is ∞ − ∞.
If X ≥ 0 or X ≤ 0 the integral always exists. In particular for X ≥ 0 we obtain

∫
Xdµ =

∫ +∞
0 Gµ,X(x)dx

If X is bounded and µ(Ω) = 1 we have that

•
∫

Xdµ =
∫ 0

inf X(Gµ,X(x)− 1)dx +
∫ sup X

0 Gµ,X(x)dx =
∫ sup X

inf X Gµ,X(x)dx + inf X.
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3.3 A new model of coherent upper conditional prevision
A new model of coherent upper conditional prevision is introduced and its properties are
proven.

Theorem 2. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by
s the Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer
measure. Let L(B) be the class of all bounded random variables on B. Moreover, let m be a 0-1 valued
finitely additive, but not countably additive, probability on ℘(B). Then for each B ∈ B the functionals
P(X|B) defined on L(B) by

P(X|B) = 1
hs(B)

∫
B Xdhs if 0 < hs(B) < +∞

and by

P(X|B) = m(XB) if hs(B) =0, +∞

are coherent upper conditional previsions.

Proof. Since L(B) is a linear space we have to prove that, for every B ∈ B P(X|B) satisfies
conditions 1), 2), 3), 4) of Definition 1.
If B has finite and positive Hausdorff outer measure in its dimension s then P(X|B) = 1

hs(B)

∫
B Xdhs,

so properties 1) and 2) are satisfied since they hold for the Choquet integral (Denneberg, 1994,
Proposition 5.1). Property 3) follows from the Subadditivity Theorem (Denneberg, 1994, The-
orem 6.3) since Hausdorff outer measures are monotone, submodular and continuous from
below. Property 4) holds since P(B|B) = 1

hs(B)

∫
B dhs = 1. If B has Hausdorff outer measure

in its dimension equal to zero or infinity we have that the class of all coherent (upper) previ-
sions on L(B) is equivalent to the class of 0-1 valued additive probabilities defined on ℘(B)
then P(X|B) = m(XB). Then properties 1), 2), 3) are satisfied since m is a 0-1 valued finitely
additive probability on ℘(B). Moreover since a different m is choosen for each B we have that
P(B|B) = m(B) = 1. �
The lower conditional previsions P(A|B) can be defined as the previous theorem if hs denotes
the Hausdorff s-dimensional inner measure. The unconditional upper prevision is obtained
as a particular case when the conditioning event is Ω, that is P(A) = P(A|Ω) and P(A) =
P(A|Ω).
A class of bounded random variables is called a lattice if it is closed under point-wise maxi-
mum ∨ and point-wise minimum ∧.
In the following theorem it is proven that, if the conditioning event has positive and finite
Hausdorff outer measure in its dimension s and L(B) is a linear lattice of bounded random
variables defined on B, necessary conditions for the functional P(X|B) to be represented
as Choquet integral with respect to the upper conditional probability µ∗

B, i.e. P(X|B) =
1

hs(B)

∫
Xdhs, are that P(X|B) is monotone, comonotonically additive, submodular and con-

tinuous from below.

Theorem 3. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by
s the Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer
measure. Let L(B) be a linear lattice of bounded random variables defined on B. If the conditioning
event B has positive and finite Hausdorff s-dimensional outer measure in its dimension then the upper
conditional prevision P(·|B) defined on L(B) as in Theorem 2 satisfies the following properties:

• i) X ≤ Y implies P(X|B) ≤ P(Y|B) (monotonicity);

• ii) if X and Y are comonotonic, i.e.(X(ω1)− X(ω2))(Y(ω1)− (Y(ω2)) ≥ 0 ∀ω1, ω2 ∈ B,
then P(X + Y|B) = P(X|B) + P(Y|B) (comonotonic additivity);

• iii) P(X ∨ Y|B) + P(X ∧ Y|B) ≤ P(X|B) + P(Y|B) (submodularity);

• iv) limn→∞P(Xn|B) = P(X|B) if Xn is an increasing sequence of random variables converging
to X (continuity from below).

Proof. Since the conditioning event B has positive and finite Hausdorff outer measure in its
dimension s then the functional P(·|B) is defined on L(B) by the Choquet integral with respect
to the upper conditional probability µ∗

B(A) = hs(AB)
hs(B) ; so conditions i) and ii) are satisfied

because they are properties of the Choquet integral (Denneberg, 1994, Proposition 5.2).
Condition iii) is equivalent to require that the monotone set function that represents the func-
tional P(·|B) is submodular and it is satisfied since Hausdorff outer measures are submodular.
Moreover every s-dimensional Hausdorff measure is continuous from below then from the
Monotone Convergence Theorem (Denneberg, 1994, Theorem 8.1) we have that the functional
P(·|B) is continuous from below, that is condition iv). �

Coherent upper conditional probabilities are obtained when only 0-1 valued random variables
are considered;

Theorem 4. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by s the
Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer measure.
Let m be a 0-1 valued finitely additive, but not countably additive, probability on ℘(B). Then, for each
B ∈ B, the functions defined on ℘(B) by

P(A|B) = hs(AB)
hs(B) if 0 < hs(B) < +∞

and by

P(A|B) = m(AB) if hs(B) = 0, +∞

are coherent upper conditional probabilities.

Coherent upper conditional probabilities can be defined in the general case where the family
of the conditioning events is an additive class of events; they have been defined in Doria
(2007):

Theorem 5. Let (Ω, d) be a metric space, let F be the σ-field of all subsets of Ω and let G be an additive
subclass of F. For every H ∈ G0 = G − � and A ∈ F denote by s the Hausdorff dimension of the
conditioning event H, by t the Hausdorff dimension of AH and by hs the Hausdorff s-dimensional outer
measure. Let m be a 0-1 valued finitely additive, but not countably additive, probability on ℘(H) such
that if 0 < ht(AH) < +∞ then m(AH) = 0 . Then, for each H ∈ G0, the functions defined on ℘(H)
by

P(A|H) = hs(AH)
hs(H)

if 0 < hs(H) < +∞

and by

P(A|H) = m(AH) if hs(H) = 0, +∞

are coherent upper conditional probabilities.
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3.3 A new model of coherent upper conditional prevision
A new model of coherent upper conditional prevision is introduced and its properties are
proven.

Theorem 2. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by
s the Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer
measure. Let L(B) be the class of all bounded random variables on B. Moreover, let m be a 0-1 valued
finitely additive, but not countably additive, probability on ℘(B). Then for each B ∈ B the functionals
P(X|B) defined on L(B) by

P(X|B) = 1
hs(B)

∫
B Xdhs if 0 < hs(B) < +∞

and by

P(X|B) = m(XB) if hs(B) =0, +∞

are coherent upper conditional previsions.

Proof. Since L(B) is a linear space we have to prove that, for every B ∈ B P(X|B) satisfies
conditions 1), 2), 3), 4) of Definition 1.
If B has finite and positive Hausdorff outer measure in its dimension s then P(X|B) = 1

hs(B)

∫
B Xdhs,

so properties 1) and 2) are satisfied since they hold for the Choquet integral (Denneberg, 1994,
Proposition 5.1). Property 3) follows from the Subadditivity Theorem (Denneberg, 1994, The-
orem 6.3) since Hausdorff outer measures are monotone, submodular and continuous from
below. Property 4) holds since P(B|B) = 1

hs(B)

∫
B dhs = 1. If B has Hausdorff outer measure

in its dimension equal to zero or infinity we have that the class of all coherent (upper) previ-
sions on L(B) is equivalent to the class of 0-1 valued additive probabilities defined on ℘(B)
then P(X|B) = m(XB). Then properties 1), 2), 3) are satisfied since m is a 0-1 valued finitely
additive probability on ℘(B). Moreover since a different m is choosen for each B we have that
P(B|B) = m(B) = 1. �
The lower conditional previsions P(A|B) can be defined as the previous theorem if hs denotes
the Hausdorff s-dimensional inner measure. The unconditional upper prevision is obtained
as a particular case when the conditioning event is Ω, that is P(A) = P(A|Ω) and P(A) =
P(A|Ω).
A class of bounded random variables is called a lattice if it is closed under point-wise maxi-
mum ∨ and point-wise minimum ∧.
In the following theorem it is proven that, if the conditioning event has positive and finite
Hausdorff outer measure in its dimension s and L(B) is a linear lattice of bounded random
variables defined on B, necessary conditions for the functional P(X|B) to be represented
as Choquet integral with respect to the upper conditional probability µ∗

B, i.e. P(X|B) =
1

hs(B)

∫
Xdhs, are that P(X|B) is monotone, comonotonically additive, submodular and con-

tinuous from below.

Theorem 3. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by
s the Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer
measure. Let L(B) be a linear lattice of bounded random variables defined on B. If the conditioning
event B has positive and finite Hausdorff s-dimensional outer measure in its dimension then the upper
conditional prevision P(·|B) defined on L(B) as in Theorem 2 satisfies the following properties:

• i) X ≤ Y implies P(X|B) ≤ P(Y|B) (monotonicity);

• ii) if X and Y are comonotonic, i.e.(X(ω1)− X(ω2))(Y(ω1)− (Y(ω2)) ≥ 0 ∀ω1, ω2 ∈ B,
then P(X + Y|B) = P(X|B) + P(Y|B) (comonotonic additivity);

• iii) P(X ∨ Y|B) + P(X ∧ Y|B) ≤ P(X|B) + P(Y|B) (submodularity);

• iv) limn→∞P(Xn|B) = P(X|B) if Xn is an increasing sequence of random variables converging
to X (continuity from below).

Proof. Since the conditioning event B has positive and finite Hausdorff outer measure in its
dimension s then the functional P(·|B) is defined on L(B) by the Choquet integral with respect
to the upper conditional probability µ∗

B(A) = hs(AB)
hs(B) ; so conditions i) and ii) are satisfied

because they are properties of the Choquet integral (Denneberg, 1994, Proposition 5.2).
Condition iii) is equivalent to require that the monotone set function that represents the func-
tional P(·|B) is submodular and it is satisfied since Hausdorff outer measures are submodular.
Moreover every s-dimensional Hausdorff measure is continuous from below then from the
Monotone Convergence Theorem (Denneberg, 1994, Theorem 8.1) we have that the functional
P(·|B) is continuous from below, that is condition iv). �

Coherent upper conditional probabilities are obtained when only 0-1 valued random variables
are considered;

Theorem 4. Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by s the
Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer measure.
Let m be a 0-1 valued finitely additive, but not countably additive, probability on ℘(B). Then, for each
B ∈ B, the functions defined on ℘(B) by

P(A|B) = hs(AB)
hs(B) if 0 < hs(B) < +∞

and by

P(A|B) = m(AB) if hs(B) = 0, +∞

are coherent upper conditional probabilities.

Coherent upper conditional probabilities can be defined in the general case where the family
of the conditioning events is an additive class of events; they have been defined in Doria
(2007):

Theorem 5. Let (Ω, d) be a metric space, let F be the σ-field of all subsets of Ω and let G be an additive
subclass of F. For every H ∈ G0 = G − � and A ∈ F denote by s the Hausdorff dimension of the
conditioning event H, by t the Hausdorff dimension of AH and by hs the Hausdorff s-dimensional outer
measure. Let m be a 0-1 valued finitely additive, but not countably additive, probability on ℘(H) such
that if 0 < ht(AH) < +∞ then m(AH) = 0 . Then, for each H ∈ G0, the functions defined on ℘(H)
by

P(A|H) = hs(AH)
hs(H)

if 0 < hs(H) < +∞

and by

P(A|H) = m(AH) if hs(H) = 0, +∞

are coherent upper conditional probabilities.
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The lower conditional probability P(A|H) can be defined as in the previous theorem by the
Hausdorff inner measures.
The new model of upper and lower conditional probabilities defined as in Theoren 5 can be
used to assess coherent upper and lower conditional probabilities when the extensions of the
conditional probability, defined in the axiomatic way, are not coherent.
Example 2. Let Ω = [0,1], let F be the class of all subsets of Ω and let G be the σ-field of
countable and co-countable subsets of Ω. From Theorem 5 we have that a coherent upper
conditional probability on C = F × G0 can be defined by

P(A|H) = h1(AH)
h1(H)

if H is co-countable

P(A|H) = h0(AH)
h0(H)

if H is finite

P(A|H) = m(AH) if H is countable.

4. s-Irrelevance and s-independence

In a recent paper (Doria, 2007) the new definitions of s-irrelevance and s-independence with
respect to upper and lower conditional probabilities assigned by outer and inner Hausdorff
measures have been proposed. They are based on the fact that epistemic independence and
irrelevance, introduced by Walley, must be tested for events A and B, such that they and their
intersection AB, have the same Hausdorff dimension. The concept of epistemic independence
(Walley, 1991) is based on the notion of irrelevence; given two events A and B, we say that B
is irrelevant to A when P(A|B) = P(A|Bc)= P(A) and P(A|B) = P(A|Bc) = P(A).
The events A and B are epistemically independent when B is irrelevant to A and A is irrel-
evant to B. As a consequence of this definition we can obtain that the factorization property
P(AB) = P(A)P(B), which constitutes the standard definition of independence for events,
holds either for P = P and P = P. In a continuous probabilistic space (Ω, F, P), where Ω is
equal to [0,1]n and the probability is usually assumed equal to the Lebesgue measure on Ω,
we have that the finite, countable and fractal sets (i.e. the sets with Hausdorff dimension non
integer) have probability equal to zero. For these sets the standard definition of independence,
given by the factorization property, is always satisfied since both members of the equality are
zero. In Theorem 6 of this Section we prove that an event B is always irrelevant, according to
the definition of Walley, to an event A if dimH(A) < dimH(B) < dimH(Ω) and A and B have
positive and finite Hausdorff outer measures in their dimensions; moreover if A and B are
disjoint then they are epistemically independent. Nevertheless B is not s-irrelevant to A.
To avoid these problems the notions of s-irrelevance and s-independence with respect to upper
and lower conditional probabilities assigned by a class of Hausdorff outer and inner measures
are proposed to test independence. The definitions of s-independence and s-irrelevance are
based on the fact that epistemic independence and irrelevance, must be tested for events A and
B, such that they and their intersection AB, have the same Hausdorff dimension. According to
this approach to independence, sets that represent events can be imagined divided in different
layers; in each layer there are sets with the same Hausdorff dimension; two events A and B
are s-independent if and only if the events A and B and their intersection AB belong to the
same layer and they are epistemically independent.
Definition 4 Let (Ω, d) be a metric space. Denote by F the σ-field of all subsets of Ω and by
G0 = F −�. Denoted by P and P the upper and lower conditional probabilities defined as in

Theorem 5 and given A and B in G0, then they are s-independent if the following conditions
hold:

• 1s) dimH(AB) = dimH(B)= dimH(A)

• 2s) P(A|B) = P(A|Bc) = P(A) and P(A|B) = P(A|Bc) = P(A);

• 3s) P(B|A) = P(B|Ac) = P(B) and P(B|A) = P(B|Ac) = P(B);

B is s-irrelevant to A if conditions 1s) and 2s) hold and A is s-irrelevant to B if conditions 1s)
and 3s) hold.
Remark 1 Two disjoint events A and B are s-dependent since the Hausdorff dimension of the
empty set cannot be equal to that one of any other set so condition 1s) is never satisfied.
Given the Euclidean metric space ([0, 1]n, d) in Doria (2007) it is proven that logical indepen-
dence is a necessary condition for s-independence for events with Hausdorff dimension less
then n.
Example 3 Let Ω = [0,1] let A be the Cantor set and let B be a finite subset of Ω such that
intersection AB is equal to the empty set. We recall the definition of the Cantor set.
Let E0 = [0,1], E1 = [0,1/3] ∪ [2/3,1], E2 = [0,1/9] ∪ [2/9, 1/3] ∪ [2/3,7/9] ∪ [8/9,1], etc., where
En is obtained by removing the open middle third of each interval in En−1, so En is the union
of 2n intervals, each of length 1

3n .
The Cantor’s set is the perfect set E =

⋂∞
n=0 En. The Hausdorff dimension of the Cantor set is

s = ln2
ln3 and hs(E) = 1.

If P and P are the upper and lower conditional probabilities defined as in Theorem 5, then they
satisfy the factorization property. Moreover B is irrelevant to A according to the definition
given by Walley, but B is not s-irrelevant to A since condition 1s) of Definition 4 is not satisfied.
The previous example shows that the notion of irrelevance and s-irrelevance are not related if
Ω is an infinite set. The next theorem put in evidence this problem in a more general frame-
work.

Theorem 6. Let Ω be a non-empty set with positive and finite Hausdorff outer measure in its dimen-
sion and let P and P be the upper and lower conditional probabilities defined as in Theorem 5. If A and
B are two subsets of Ω such that dimH(A) < dimH(B) < dimH(Ω) and they have positive and finite
Hausdorff outer measures in their dimensions then B is irrelevant to A, but B is not s-irrelevant to A.

Proof. Denote by t, s and r respectively the Hausdoff dimension of AB, B and Ω; since
dimH(A) < dimH(B) < dimH(Ω) then we have that the Hausdorff dimension of Bc is equal
to r and t < s. Moreover since A and B and their complements have positive and finite Haus-
dorff outer measures in their dimensions and upper conditional probability is defined as in
Theorem 5 the condition P(A|B) = P(A|Bc)= P(A) becomes hs(AB)

hs(B) = hr(ABc)
hr(Bc)

= hr(A)
hr(Ω)

.
These equalities are satisfied since they vanish to 0 = 0 = 0.
In the same way we can prove the equalities P(A|B) = P(A|Bc) = P(A).
Since dimH(A) < dimH(B) then the event B is not s-irrelevant to A since condition 1s) of
Definition 4 is not satisfied. �
In the sequel the notions of s-irrelevance and s-independence are investigated in the Euclidean
metric space.
Given a non-empty subset Ω of �n with Hausdorff dimension equal to n and positive and
finite Hausdorff outer measure in its dimension and given two subsets A and B of Ω, we
want to find conditions under which B is s-relevant to A. Condition 1s) of the Definition 4
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The lower conditional probability P(A|H) can be defined as in the previous theorem by the
Hausdorff inner measures.
The new model of upper and lower conditional probabilities defined as in Theoren 5 can be
used to assess coherent upper and lower conditional probabilities when the extensions of the
conditional probability, defined in the axiomatic way, are not coherent.
Example 2. Let Ω = [0,1], let F be the class of all subsets of Ω and let G be the σ-field of
countable and co-countable subsets of Ω. From Theorem 5 we have that a coherent upper
conditional probability on C = F × G0 can be defined by

P(A|H) = h1(AH)
h1(H)

if H is co-countable

P(A|H) = h0(AH)
h0(H)

if H is finite

P(A|H) = m(AH) if H is countable.

4. s-Irrelevance and s-independence

In a recent paper (Doria, 2007) the new definitions of s-irrelevance and s-independence with
respect to upper and lower conditional probabilities assigned by outer and inner Hausdorff
measures have been proposed. They are based on the fact that epistemic independence and
irrelevance, introduced by Walley, must be tested for events A and B, such that they and their
intersection AB, have the same Hausdorff dimension. The concept of epistemic independence
(Walley, 1991) is based on the notion of irrelevence; given two events A and B, we say that B
is irrelevant to A when P(A|B) = P(A|Bc)= P(A) and P(A|B) = P(A|Bc) = P(A).
The events A and B are epistemically independent when B is irrelevant to A and A is irrel-
evant to B. As a consequence of this definition we can obtain that the factorization property
P(AB) = P(A)P(B), which constitutes the standard definition of independence for events,
holds either for P = P and P = P. In a continuous probabilistic space (Ω, F, P), where Ω is
equal to [0,1]n and the probability is usually assumed equal to the Lebesgue measure on Ω,
we have that the finite, countable and fractal sets (i.e. the sets with Hausdorff dimension non
integer) have probability equal to zero. For these sets the standard definition of independence,
given by the factorization property, is always satisfied since both members of the equality are
zero. In Theorem 6 of this Section we prove that an event B is always irrelevant, according to
the definition of Walley, to an event A if dimH(A) < dimH(B) < dimH(Ω) and A and B have
positive and finite Hausdorff outer measures in their dimensions; moreover if A and B are
disjoint then they are epistemically independent. Nevertheless B is not s-irrelevant to A.
To avoid these problems the notions of s-irrelevance and s-independence with respect to upper
and lower conditional probabilities assigned by a class of Hausdorff outer and inner measures
are proposed to test independence. The definitions of s-independence and s-irrelevance are
based on the fact that epistemic independence and irrelevance, must be tested for events A and
B, such that they and their intersection AB, have the same Hausdorff dimension. According to
this approach to independence, sets that represent events can be imagined divided in different
layers; in each layer there are sets with the same Hausdorff dimension; two events A and B
are s-independent if and only if the events A and B and their intersection AB belong to the
same layer and they are epistemically independent.
Definition 4 Let (Ω, d) be a metric space. Denote by F the σ-field of all subsets of Ω and by
G0 = F −�. Denoted by P and P the upper and lower conditional probabilities defined as in

Theorem 5 and given A and B in G0, then they are s-independent if the following conditions
hold:

• 1s) dimH(AB) = dimH(B)= dimH(A)

• 2s) P(A|B) = P(A|Bc) = P(A) and P(A|B) = P(A|Bc) = P(A);

• 3s) P(B|A) = P(B|Ac) = P(B) and P(B|A) = P(B|Ac) = P(B);

B is s-irrelevant to A if conditions 1s) and 2s) hold and A is s-irrelevant to B if conditions 1s)
and 3s) hold.
Remark 1 Two disjoint events A and B are s-dependent since the Hausdorff dimension of the
empty set cannot be equal to that one of any other set so condition 1s) is never satisfied.
Given the Euclidean metric space ([0, 1]n, d) in Doria (2007) it is proven that logical indepen-
dence is a necessary condition for s-independence for events with Hausdorff dimension less
then n.
Example 3 Let Ω = [0,1] let A be the Cantor set and let B be a finite subset of Ω such that
intersection AB is equal to the empty set. We recall the definition of the Cantor set.
Let E0 = [0,1], E1 = [0,1/3] ∪ [2/3,1], E2 = [0,1/9] ∪ [2/9, 1/3] ∪ [2/3,7/9] ∪ [8/9,1], etc., where
En is obtained by removing the open middle third of each interval in En−1, so En is the union
of 2n intervals, each of length 1

3n .
The Cantor’s set is the perfect set E =

⋂∞
n=0 En. The Hausdorff dimension of the Cantor set is

s = ln2
ln3 and hs(E) = 1.

If P and P are the upper and lower conditional probabilities defined as in Theorem 5, then they
satisfy the factorization property. Moreover B is irrelevant to A according to the definition
given by Walley, but B is not s-irrelevant to A since condition 1s) of Definition 4 is not satisfied.
The previous example shows that the notion of irrelevance and s-irrelevance are not related if
Ω is an infinite set. The next theorem put in evidence this problem in a more general frame-
work.

Theorem 6. Let Ω be a non-empty set with positive and finite Hausdorff outer measure in its dimen-
sion and let P and P be the upper and lower conditional probabilities defined as in Theorem 5. If A and
B are two subsets of Ω such that dimH(A) < dimH(B) < dimH(Ω) and they have positive and finite
Hausdorff outer measures in their dimensions then B is irrelevant to A, but B is not s-irrelevant to A.

Proof. Denote by t, s and r respectively the Hausdoff dimension of AB, B and Ω; since
dimH(A) < dimH(B) < dimH(Ω) then we have that the Hausdorff dimension of Bc is equal
to r and t < s. Moreover since A and B and their complements have positive and finite Haus-
dorff outer measures in their dimensions and upper conditional probability is defined as in
Theorem 5 the condition P(A|B) = P(A|Bc)= P(A) becomes hs(AB)

hs(B) = hr(ABc)
hr(Bc)

= hr(A)
hr(Ω)

.
These equalities are satisfied since they vanish to 0 = 0 = 0.
In the same way we can prove the equalities P(A|B) = P(A|Bc) = P(A).
Since dimH(A) < dimH(B) then the event B is not s-irrelevant to A since condition 1s) of
Definition 4 is not satisfied. �
In the sequel the notions of s-irrelevance and s-independence are investigated in the Euclidean
metric space.
Given a non-empty subset Ω of �n with Hausdorff dimension equal to n and positive and
finite Hausdorff outer measure in its dimension and given two subsets A and B of Ω, we
want to find conditions under which B is s-relevant to A. Condition 1s) of the Definition 4
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is a necessary condition for s-irrelevance and s-independence. We focus the attention on this
condition with the aim to investigate s-relevance.
In (Mattila, 1984, Theorem 6.13) an important result is proven for Souslin sets that is a class of
sets, which are defined in terms of unions and intersections of closed sets.
In a metric space the Souslin sets are the sets of the form

E =
⋃

i1,i2,...
⋂∞

k=1 Ei1,i2,...,ik

where Ei1,i2,...,ik
is a closed set or each finite sequence of positive integers.

Every Borelian set is a Souslin set.

Theorem 7 (Mattila, 1984). Let (�n, d) be the Euclidean metric space and let A and B be two Souslin
subsets of �n, with dimH(A)= s, dimH(B) = t and with positive Hausdorff measure in their dimen-
sion; denote by Ψ(x, δ) the closed ball with centre x and radius δ and suppose that the following lower
density assumption on B holds

lim infδ→0 δ−tht (B∩Ψ(x,δ) )> 0 f or all x∈B.

Then we have that dimH(AB) = s + t − n.

As a consequence of the previous theorem we obtain that a necessary condition for s-irrelevance
between Souslin sets of �n is that the two sets and their intersection have the Hausdorff di-
mension equal to n.
Proposition 1 Let (�n, d) be the Euclidean metric space and let A and B be two Souslin sub-
sets of �n with dimH(A)= s, dimH(B) = t, with positive and finite Hausdorff measure in their
dimension and such that the lower density assumption on B is satisfied; then B is s-relevant
to A if s �= n or t �= n.
Proof. Since A and B are two Souslin subsets of �n such that lower density assumption on B
holds then we have that dimH(AB) = s + t − n. So condition 1s) of Definition 4 is satisfied if
and only if s = t = s + t − n, that is s = t = n. �
In the next section the previous result is used to find examples of s-dependent events.
Given a non-empty subset Ω of �n with Hausdorff dimension equal to n and positive and
finite Hausdorff outer measure in its dimension, conditions such that B is s-irrelevant to A are
proven. Under regular conditions such as those ones of Theorem 7 we have that condition
1s) of the Definition 4 is satisfied if and only if dimH(A) = dimH(B) = dimH(AB) = n. In
the next theorem we assume that these equalities hold and sufficient conditions such that B is
s-irrelevant to A are proven.

Theorem 8. Let (�n, d) be the Euclidean metric space and let A and B be two Souslin subsets of �n

with positive and finite Hausdorff measure in their dimension, such that the following lower density
assumption on B holds

lim infδ→0 δ−nhn(B ∩ Ψ(x, δ)) > 0 for all x ∈ B

and such that dimH(A) = dimH(B) = dimH(AB) = n.
Denoted by t the Hausdorff dimension of Bc then B is s-irrelevant to A in the following cases:

• a) t = n, hn(Bc) > 0 and hn(Bc)hn(AB)− hn(B)hn(ABc) = 0
• b) t = n, hn(Bc) = 0 and hn(A) = 0 or
• t = n, hn(Bc) = 0 and hn(A) = hn(AB) = hn(Ω)

• c) t < n and hn(A) = 0 or

• t < n and ht(ABc)
ht(Bc)

= hn(A)
hn(B)

Proof. We have to prove that condition 2s) of Definition 4 is satisfied. We consider the following
cases:

• a) t = n and ht(Bc) > 0;

• b) t = n and ht(Bc) = 0;

• c) t < n

In the case a) condition 2s) of the definition of s-irrelevance is hn(AB)
hn(B) = hn(ABc)

hn(Bc)
= hn(A)

hn(Ω)
.

Since Souslin sets are measurable with respect to every Hausdorff outer measure (Falconer,
1986, p.6) we have that hn is additive so that hn(A) = hn(AB) + hn(ABc) and condition 2s)
is satisfied if and only if hn(Bc)hn(AB) − hn(B)hn(ABc) = 0. In the case b) condition 2s) is
hn(AB)
hn(B) = m(ABc) = hn(A)

hn(Ω)
.

Two cases are possible m(ABc) = 0 or m(ABc) = 1.
If m(ABc) = 0 condition 2s) is satisfied if and only if hn(A)

hn(Ω)
= 0.

If m(ABc) = 1 condition 2s) is satisfied if and only if hn(A) = hn(AB) = hn(Ω)
In the case c) two cases are possible: 0 < ht(Bc) < +∞ or ht(Bc) = 0.
If 0 < ht(Bc) < ∞ then:
if dimH(ABc) < t then ht(ABc) = 0 and condition 2s) is satisfied if and only if hn(A) = 0;
if dimH(ABc) = t and ht(ABc) = 0 and condition 2s) is satisfied if and only if hn(A) = 0;
if dimH(ABc) = t and 0 < ht(ABc) < ∞ then hn(A) = hn(AB) since hn(ABc) = 0; so
condition 2s) is saisfied if and only if ht(ABc)

ht(Bc)
= hn(A)

hn(B) .

If ht(Bc) = 0 then ht(ABc) = 0 and we obtain the same condition of case b). �
Example 4 Let Ω = [0, 1], let A = [0, 1]− 1

2 and let B be the complement of the Cantor set. We
are in case c) of the previous theorem so B is s-irrelevant to A.

5. Stochastic s-dependence for self-similar sets

In this section some fractal sets are proven to be s-dependent showing that they do not satisfy
condition 1s) of Definition 4.
Conditions under which the attractor of a finite family of similitudes and its boundary are
s-dependent and two middle third Cantor sets are s-dependent are found. If coherent up-
per conditional probability is defined as in Theorem 5 we have that all these sets satisfy the
factorization property, which is the standard definition of probabilistic dependence.

5.1 s-Dependence of the attractor of a finite family of similitudes on its boundary
Let (�n, d) be the Euclidean metric space. A function f : �n → �n is called a contraction if
d( f (x), f (y)) ≤ rd(x, y) for all x, y ∈ �n, where 0 < r < 1 is a constant. The infimum value for
which this inequality holds for all x, y is called the ratio of the contraction. A contraction that
trasforms every subset of �n to a geometrically similar set is called a similitude. A similitude
is a composition of a dilation, a rotation and translation. A set E is called invariant for a finite
set of contractions { f1, f2, ..., fm} if E=

⋃m
i=1 fi(E).

If the contractions are similitudes and for some s we have hs(E) > 0 but hs( fi(E) ∩ f j(E)) = 0
for i �= j then E is self similar. For any finite set of contractions there exists a unique non-empty
compact invariant set K (Falconer, 1986, Theorem 8.3), called attractor.
Given a finite set of contractions { f1, f2, ..., fm} we say that the open set condition (OSC) holds if
there exists a bounded open set O such that O ⊂ ⋃m

i=1 fi(O) and fi(O) ∩ f j(O) = � for i �=j.
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is a necessary condition for s-irrelevance and s-independence. We focus the attention on this
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E =
⋃

i1,i2,...
⋂∞

k=1 Ei1,i2,...,ik

where Ei1,i2,...,ik
is a closed set or each finite sequence of positive integers.

Every Borelian set is a Souslin set.

Theorem 7 (Mattila, 1984). Let (�n, d) be the Euclidean metric space and let A and B be two Souslin
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lim infδ→0 δ−tht (B∩Ψ(x,δ) )> 0 f or all x∈B.
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are in case c) of the previous theorem so B is s-irrelevant to A.

5. Stochastic s-dependence for self-similar sets

In this section some fractal sets are proven to be s-dependent showing that they do not satisfy
condition 1s) of Definition 4.
Conditions under which the attractor of a finite family of similitudes and its boundary are
s-dependent and two middle third Cantor sets are s-dependent are found. If coherent up-
per conditional probability is defined as in Theorem 5 we have that all these sets satisfy the
factorization property, which is the standard definition of probabilistic dependence.

5.1 s-Dependence of the attractor of a finite family of similitudes on its boundary
Let (�n, d) be the Euclidean metric space. A function f : �n → �n is called a contraction if
d( f (x), f (y)) ≤ rd(x, y) for all x, y ∈ �n, where 0 < r < 1 is a constant. The infimum value for
which this inequality holds for all x, y is called the ratio of the contraction. A contraction that
trasforms every subset of �n to a geometrically similar set is called a similitude. A similitude
is a composition of a dilation, a rotation and translation. A set E is called invariant for a finite
set of contractions { f1, f2, ..., fm} if E=

⋃m
i=1 fi(E).

If the contractions are similitudes and for some s we have hs(E) > 0 but hs( fi(E) ∩ f j(E)) = 0
for i �= j then E is self similar. For any finite set of contractions there exists a unique non-empty
compact invariant set K (Falconer, 1986, Theorem 8.3), called attractor.
Given a finite set of contractions { f1, f2, ..., fm} we say that the open set condition (OSC) holds if
there exists a bounded open set O such that O ⊂ ⋃m

i=1 fi(O) and fi(O) ∩ f j(O) = � for i �=j.
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If { f1, f2, ..., fm} are similitudes with similarity ratios ri for i = 1...m the similarity dimension,
which has the advantage of being easily calculable, is the unique positive number s for which
∑m

i=1 rs
i = 1. If the OSC holds then the compact invariant set K is self-similar and the Hausdorff

dimension and the similarity dimension of K are equal. If the similarity dimension is equal
to n then the interior of K, K0 is non empty. In Lau (1999) it has been proven that, given a
finite family of similitudes and the corresponding attractor K, if K0 is non-void and Hausdorff
dimension of K is equal to n then the Hausdorff dimension of the boundary of K is less than
n. Moreover since the lower density assumption holds for a self-similar set, from Proposition
1 of Section 4 we have that K and its boundary are s-dependent. We can observe that if upper
and lower probabilities are defined as in Theorem 5 then K and its boundary satisfy the the
factorization property.

5.2 s-Dependence for Cantor sets
In this subsection two middle third Cantor sets are proven to be s-dependent.
Let ([0, 1], d) be the Euclidean metric space and let E be the Cantor set. For every x ∈ [0, 1] we
consider the Cantor set x + E that is the the translation of E.
In Davis (1995) it has been proven that for every α ∈ [0, 1] there exists an x ∈ (0, 1) such that
the Hausdorff dimension of the intersection x + E ∩ E = (1 − α) ln2

ln3 . So for every α ∈ (0, 1] we
have that the two middle third Cantor sets x + E and E are s-dependent since condition 1s) of
Definition 4 is not satisfied.
We can observe that if upper conditional probability is defined as in Theorem 5 the factor-
ization property is satisfied and so the two middle Cantor sets are stochastically independent
according to the axiomatic definition of independence.

6. s-Independence for curves filling the space

In this section the notions of s-irrelevance and s-independence for events A and B that are rep-
resented by curves filling the space are analyzed.In particular Peano curve, Hilbert curve and
Peano-Sierpinski curve are proven to be s-independent. Curves filling the space Sagan (1994)
can be defined as the limit of a Cauchy sequence of continuous functions fn, each mapping the
unit interval into the unit square. The convergence is uniform so that the limit is a continuous
function, i.e. a curve. The definition of irrelevance given by Walley, which is condition 2s) of
s-irrelevance, holds when the two events A and B are not the trivial events (Ω,�). If the con-
ditioning event B is represented by a curve filling the space, we have that the complement of
B is the empty-set and so in this case the notion of irrelevance becomes P(A|B) = P(A); and
P(A|B) = P(A). If A and B are represented by curves filling the space we obtain the following
definition of s-independence.
Definition 5 Let (Ω, d) be a metric space and let A and B be two curves filling the space Ω.
Then A and B are s-independent if the following conditions hold

• 1s) dimH(AB) = dimH(B)= dimH(A)

• 2s) P(A|B) = P(A) and P(A|B) = P(A);

• 3s) P(B|A) = P(B) and P(B|A) = P(B);

Moreover B is s-irrelevant to A if conditions 1s) and 2s) are satisfied.

Theorem 9. Let Ω = [0, 1]n and let P and P be the upper and lower conditional probabilities defined
as in Theorem 4. If A and B are two curves filling the space then A and B are s-independent.

Proof. Since A and B are curves filling the space then they and their intersection have Haus-
dorff dimension equal to n. Moreover since A and B are measurable we have that P = P = P
and conditions 2s) and 3s) of Definition 5 become

hn(AB)
hn(B) = hn(A)

hn(Ω)
and hn(AB)

hn(A)
= hn(B)

hn(Ω)

that are satisfied since they vanish to 1 = 1. �
As a consequence of the previous theorem we have that the Peano curve and the Hilbert curve
are s-independent. Moreover if B is a curve filling the space Ω = [0, 1]n and A is any event
with Hausdorff dimension equal to n, then B is s-irrelevant to A.

7. Conclusions

In this chapter the notions of s-irrelevance and s-independence with respect to upper and
lower conditional probabilities defined by Hausdorff outer and inner measures are intro-
duced. They are used to discover probabilistic dependence for events, which are probabilistic
independent with respect to the standard definition given by the factorization property or
with respect to the notion of epistemic independence.
Results and examples are given for fractal sets (i.e. sets with non-integer Hausdorff dimen-
sion) which often model complex phenomena. In particular the attractor of a finite family of
similitudes and its boundary are proven to be s-dependent if the open set condition holds and
a sufficient condition is given such that two middle Cantor sets are s-dependent.
Moreover two curves filling the space, such as Peano curve and Hilbert curve, are proven to
be s-independent.
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Abstract

The Stochastic Dynamic Programming method often used to solve some stochastic optimiza-
tion problems is only usable in low dimension, being plagued by the curse of dimensionality.
In this article, we explain how to postpone this limit by using High Performance Computing:
parallel and distributed algorithms design, optimized implementations and usage of large
scale distributed architectures (PC clusters and Blue Gene/P).

1. Introduction and objectives

Stochastic optimization is used in many industries to take decisions facing some uncertainties
in the future. The asset to optimize can be a network (railway, telecommunication [Charalam-
bous et al. (2005)] ), some exotic financial options of american type [Hull (2008)]. In the energy
industry, a gaz company may want to optimize the use of a gaz storage [Chen & Forsyth
(2009)], [Ludkovski & Carmona (2010, to appear)]. An electricity company may want to op-
timize the value of a powerplant [Porchet et al. (2009)] facing a price signal and dealing with
operational contraints: ramp contraints, minimum on-off times, maximum number of start up
during a period.
An integrated energy company may want to maximize an expected revenue coming from
many decisions take:

• which thermal assets to use ?

• how should be managed the hydraulic reservoirs ?

• which customers options to exercice ?

• how should the physical portfolio be hedged with future contracts ?

In the previous example, due to the structure of the energy market with limited liquidity, the
management of a future position on the market can be seen as the management of a stock
of energy available at a given price. So the problem can be seen as an optimization problem

7
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with many stocks to deal with. This example will be taken as a test case for our performance
studies.
In order to solve stochastic optimization problems, some methods have be developed in the
case of convex continuous optimization: The Stochastic Dual Dynamic Programming method
[Rotting & Gjelsvik (1992)] is widely used for compagnies having large stocks of water to
manage. When the company portfolio is composed of many stocks of water and many power
plants a decomposition method can be used [Culioli & Cohen (1990)] and the bundle method
may be used for coordination [Bacaud et al. (2001)]. The uncertainty is usually modeled with
trees [Heitsch & Romisch (2003)].
In realistic modelization of the previous problem, the convexity is not assured. The constraints
may be non linear as for gaz storage for example where injection and withdrawal capacities
depend on the position in the stock (and for thermodynamic reason depends on the past con-
trols in accurate model). Most of the time, the problem is not continuous and is in fact a mixed
integer stochastic problem: the commands associated to a stock of water can only take some
discrete values due to the fact that a turbine has only on-off positions, financial positions are
taken for discrete number of stocks... If the constraints and the objectif function are linearized,
the stochastic problem can be discretized on the tree and a mixed integer programming solver
can be used. In order to be able to use this kind of modelization a non recombining tree has
to be build. The explosion of the number of leaves of the tree leads to a huge mixed integer
problem to solve.
Therefore when the constraints are non linear or when the problem is non convex, the dy-
namic programming method developed in 1957 [Bellman (1957)] may be the most attractive.
This simple approach faces one flaw: it is an enumerative method and the computational
cost goes up exponentially with the number of state variable to manage. This approach is
currently used for a number of state variable below 5 or 6. This article introduces the paral-
lelization scheme developed to implement the dynamic programming method, details some
improvements required to run large benchmarks on large scale architectures, and presents
the serial optimizations achieved to efficiently run on each node of a PC cluster and an IBM
Blue Gene/P supercomputer. This approach allows us to tackle a simplified problem with 3
random factors to face and 7 stocks to manage.

2. Stochastic control optimization and simulation

We give a simplified view of a stochastic control optimization problem. Supposing that the
problem we propose to solve can be set as:

minimize E

(
N

∑
t=1

φ(t, ξt, nct)

)
(1)

where φ is a cost function depending on time, the state variable ξt (stock and uncertainty,)
and depending on the command nct realized at date t. For simplicity, we suppose that the
control only acts on the deterministic stocks and that the uncertainties are uncontrolled. Some
additional constraints are added defining at date t the possible commands nct depending on
ξt.
The software used to manage the energy assets are usually separated into two parts. A first
software, an optimization solver is used to calculate the so-called Bellman value until maturity
T. The second one will test the Bellman values calculated during the first software run on
some scenarios.

2.1 Optimization part
In our implementation of the Bellman method, we store the Bellman values J at a given time
step t, for a given uncertainty factor occurring at time t and for some stocks levels. These
Bellman values represent the expected gains remaining for the optimal asset management
from the date t until the date T starting optimization with a given state. Instead of using
usual non recombining trees, we have chosen to use Monte Carlo scenarios to achieve our
optimization following [Longstaff & Schwartz (2001)] methodology. The uncertainties are here
simplified so that the model is Markovian. The number of scenarios used during this part is
rather small (less than a thousand). This part is by far the most time consuming. The algorithm
1 gives the Bellman values J for each time step t calculated by backward recursion. In the
algorithm 1, due to the Markovian property of the uncertainty, s∗ = f (s, w) is a realization at
date t + ∆t of an uncertainty whose value is equal to s at date t, where w is a random factor
independent on s.

For t := (nbstep − 1)∆t to 0
For c ∈ admissible stock levels (nbstate levels)

For s ∈ all uncertainty (nbtrajectory)
J̃∗(s, c) = ∞
For nc ∈ all possible commands for stocks (nbcommand)

J̃∗(s, c) = min( J̃∗(s, c), φ(nc) + E (J(t + ∆t, s∗, c + nc)|s))
J∗(t, :, :) := J̃∗

Fig. 1. Bellman algorithm, with a backward computation loop.

In our modelization, uncertainties are driven by brownian processus and conditional expec-
tation in the algorithm 1 are calculated by regression methods as explained in [Longstaff &
Schwartz (2001)]. Using Monte Carlo, it could have been possible to use Malliavin methods
[Bouchard et al. (2004)], or it could have been possible to use a recombining quantization tree
[Bally et al. (2005)].

2.2 Simulation part
A second software called a simulator is then used to accurately compute some financial indi-
cators (VaR, EEaR, expected gains on some given periods). The optimization part only gives
the Bellman values in each possible state of the system. In the simulation part, the uncertain-
ties are accurately described with using many scenarios (many tens of thousand) to accurately
test the previously calculated Bellman values. Besides, the modelization in the optimizer is
often a simplified one so that calculation are made possible by a reduction in the number of
state variable. In the simulator it is often much more easier to deal with far more complicated
constraints so that the modelization is more realistic. In the simulator, all the simulations can
be achieved in parallel, so we could think that this part is embarrassingly parallel as shown
by algorithm 2. However, we will see in the sequel that the parallelization scheme used dur-
ing the optimization will bring some difficulties during simulations that will lead to some
parallelization task to achieve.

3. Distributed algorithm

Our goal was to develop a distributed application efficiently running both on large PC cluster
(using Linux and classic NFS) and on IBM Blue Gene supercomputers. To achieve this goal,
we have designed some main mechanisms and sub-algorithms to manage data distribution
and load balancing, data routage planning and data routage execution, and file accesses. Next
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with many stocks to deal with. This example will be taken as a test case for our performance
studies.
In order to solve stochastic optimization problems, some methods have be developed in the
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plants a decomposition method can be used [Culioli & Cohen (1990)] and the bundle method
may be used for coordination [Bacaud et al. (2001)]. The uncertainty is usually modeled with
trees [Heitsch & Romisch (2003)].
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trols in accurate model). Most of the time, the problem is not continuous and is in fact a mixed
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can be used. In order to be able to use this kind of modelization a non recombining tree has
to be build. The explosion of the number of leaves of the tree leads to a huge mixed integer
problem to solve.
Therefore when the constraints are non linear or when the problem is non convex, the dy-
namic programming method developed in 1957 [Bellman (1957)] may be the most attractive.
This simple approach faces one flaw: it is an enumerative method and the computational
cost goes up exponentially with the number of state variable to manage. This approach is
currently used for a number of state variable below 5 or 6. This article introduces the paral-
lelization scheme developed to implement the dynamic programming method, details some
improvements required to run large benchmarks on large scale architectures, and presents
the serial optimizations achieved to efficiently run on each node of a PC cluster and an IBM
Blue Gene/P supercomputer. This approach allows us to tackle a simplified problem with 3
random factors to face and 7 stocks to manage.

2. Stochastic control optimization and simulation

We give a simplified view of a stochastic control optimization problem. Supposing that the
problem we propose to solve can be set as:

minimize E

(
N

∑
t=1

φ(t, ξt, nct)

)
(1)

where φ is a cost function depending on time, the state variable ξt (stock and uncertainty,)
and depending on the command nct realized at date t. For simplicity, we suppose that the
control only acts on the deterministic stocks and that the uncertainties are uncontrolled. Some
additional constraints are added defining at date t the possible commands nct depending on
ξt.
The software used to manage the energy assets are usually separated into two parts. A first
software, an optimization solver is used to calculate the so-called Bellman value until maturity
T. The second one will test the Bellman values calculated during the first software run on
some scenarios.

2.1 Optimization part
In our implementation of the Bellman method, we store the Bellman values J at a given time
step t, for a given uncertainty factor occurring at time t and for some stocks levels. These
Bellman values represent the expected gains remaining for the optimal asset management
from the date t until the date T starting optimization with a given state. Instead of using
usual non recombining trees, we have chosen to use Monte Carlo scenarios to achieve our
optimization following [Longstaff & Schwartz (2001)] methodology. The uncertainties are here
simplified so that the model is Markovian. The number of scenarios used during this part is
rather small (less than a thousand). This part is by far the most time consuming. The algorithm
1 gives the Bellman values J for each time step t calculated by backward recursion. In the
algorithm 1, due to the Markovian property of the uncertainty, s∗ = f (s, w) is a realization at
date t + ∆t of an uncertainty whose value is equal to s at date t, where w is a random factor
independent on s.

For t := (nbstep − 1)∆t to 0
For c ∈ admissible stock levels (nbstate levels)

For s ∈ all uncertainty (nbtrajectory)
J̃∗(s, c) = ∞
For nc ∈ all possible commands for stocks (nbcommand)

J̃∗(s, c) = min( J̃∗(s, c), φ(nc) + E (J(t + ∆t, s∗, c + nc)|s))
J∗(t, :, :) := J̃∗

Fig. 1. Bellman algorithm, with a backward computation loop.

In our modelization, uncertainties are driven by brownian processus and conditional expec-
tation in the algorithm 1 are calculated by regression methods as explained in [Longstaff &
Schwartz (2001)]. Using Monte Carlo, it could have been possible to use Malliavin methods
[Bouchard et al. (2004)], or it could have been possible to use a recombining quantization tree
[Bally et al. (2005)].

2.2 Simulation part
A second software called a simulator is then used to accurately compute some financial indi-
cators (VaR, EEaR, expected gains on some given periods). The optimization part only gives
the Bellman values in each possible state of the system. In the simulation part, the uncertain-
ties are accurately described with using many scenarios (many tens of thousand) to accurately
test the previously calculated Bellman values. Besides, the modelization in the optimizer is
often a simplified one so that calculation are made possible by a reduction in the number of
state variable. In the simulator it is often much more easier to deal with far more complicated
constraints so that the modelization is more realistic. In the simulator, all the simulations can
be achieved in parallel, so we could think that this part is embarrassingly parallel as shown
by algorithm 2. However, we will see in the sequel that the parallelization scheme used dur-
ing the optimization will bring some difficulties during simulations that will lead to some
parallelization task to achieve.

3. Distributed algorithm

Our goal was to develop a distributed application efficiently running both on large PC cluster
(using Linux and classic NFS) and on IBM Blue Gene supercomputers. To achieve this goal,
we have designed some main mechanisms and sub-algorithms to manage data distribution
and load balancing, data routage planning and data routage execution, and file accesses. Next
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stock(1:nbtrajectory) = initialStock
For t := 0 to (nbstep − 1)∆t

For s ∈ all uncertainty (nbtrajectory)
Gain = - ∞
For nc ∈ all possible commands for stocks (nbcommand)

GainA = phi(nc) + E (J∗(t + ∆t, s∗, stock(s) + nc)|s)
if GainA > Gain

com = nc
Gain = GainA

stock(s) += com

Fig. 2. Simulation on some scenarios.

sections introduce our parallelization strategy, detail the most important issues and describe
our global distributed algorithm.

3.1 Parallelization overview of the optimization part
As explained in section 2 we use a backward loop to achieve the optimization part of our
stochastic control application. This backward loop is applied to calculate the Bellman values
at discrete points belonging to a set of N stocks, which form some N-dimensional cube of data,
or data N-cubes.
Considering one stock X, its stock levels at tn and tn+1 are linked by the equation:

Xn+1 = Xn + Commandn + Supplyn (2)

Where:

• Xn and Xn+1 are possible levels of the X stock, and belong to intervals of possible values
([Xmin

n ; Xmax
n ] and [Xmin

n+1; Xmax
n+1]), function of scenarios and physical constraints.

• The Command is the change of stock level due to the execution of a command on the
stock X between tn and tn+1. It belongs to an interval of values: [Cmin

n ; Cmax
n ], function

of scenarios and physical constraints.

• The Supplyn is the change of stock level due to an external supply (in our test case
with hydraulic energy stocks, snow melting and rain represent this supply). Again, it
belongs to an interval of values: [Smin

n ; Smax
n ], function of scenarios and physical con-

straints.

Considering the equation 2, the backward loop algorithm introduced in section 2, a set of
scenarios and physical constraints, and N stocks, the following 6 sub-steps algorithm is run
on each computing node at each time step:

1. When finishing the tn+1 computing step and entering tn one (backward loop), minimal
and maximal stock levels of all stocks are computed on each computing node, according
to scenarios and physical constraints on each stock. So, each node easily computes N
minimal and maximal stock levels that defines the minimal and maximal vertexes of
the N-cube of points where the Bellman values have to be calculated at date tn.

2. Each node runs its splitting algorithm of the tn N-cube to distribute the tn Bellman values
that will be to computed at step tn on P = 2dp computing nodes. Each node computes
the entire map of this distribution: the tn data map. See section 3.4 for details about the
splitting algorithm.

3. Using scenarios and physical constraints set for the application, each node computes
the Commands and Supplies to apply to each stock of each tn N-subcube of the tn data
map. Using equation 2 each node computes the tn+1 N-subcube of points where the
tn+1 Bellman values are required by each node to process the calculation of the Bellman
values at the stocks points belonging to its tn N-subcube. So, each node easily computes
the coordinates of the P′ tn+1 data influence areas or tn shadow regions, and builds the
entire tn shadow region map without any communication with others nodes. This solution
has appeared faster than to compute only local data partition and local shadow region
on each node and to exchange messages on the communication network to gather the
complete maps on each node.

4. Now each node has the entire tn shadow region map computed at the previous sub-step,
and the entire tn+1 data map computed at the previous time step of the backward loop.
Some basic computations of N-cube intersections allow each node to compute the P N-
subcubes of points associated to the Bellman values to receive from others nodes and
from itself, and the P N-subcubes of points associated to the Bellman values to send
to other nodes. Some of these N-subcubes can be empty and have a null size, when
some nodes have no N-subcubes of data at time step tn or tn+1. So, each node builds its
tn routing plan, still without any communications with other nodes. See section 3.5 for
details about the computation of this routing plan.

5. Using MPI communication routines, each node executes its tn routing plan and brings
back the Bellman values associated to points belonging to its tn+1 shadow region in its
local memory. Function of the underlying interconnection network and the machine
size, it can be interesting to overlap all communications, or it can be necessary to spread
the numerous communications and to achieve several communication sub-steps. See
section 3.6 for details about the routing plan execution.

6. Using the tn+1 Bellman brought back in its memory, each node can achieve the compu-
tation of the optimal commands for all stock points (according to the stochastic control
algorithm) and calculate its tn Bellman value.

7. Then, each node save on disk the tn Bellman values and some others step results that
will be used in the simulation part of the application. They are temporary results stored
on local disks when exist, or in global storage area, depending of the underlying parallel
architecture. Finally, each node cancels its tn+1 data map, tn shadow region map and tn
routing plan. Only its tn data map and tn data N-subcube have to remain to process the
following time step.

This time step algorithm is repeated in the backward loop up to time step 0. Then some global
results are saved, and the simulation part of the application is run.

3.2 Parallelization overview of the simulation part
In usual sequential software, simulations is achieved scenario by scenario: the stock levels
and the commands are calculated from date 0 to date T for each scenario sequentially. This
approach is obviously easy to parallelize when the Bellman values are shared by each node. In
our case, doing so will mean a lot of time spent in IO. In the algorithm 2, it has been chosen to
advance time step by time step and to do the calculation at each time step for all simulations.
So Bellman temporary files stored in the optimization part are opened and closed only once
by time step to read Bellman values of the next time step.
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stock(1:nbtrajectory) = initialStock
For t := 0 to (nbstep − 1)∆t

For s ∈ all uncertainty (nbtrajectory)
Gain = - ∞
For nc ∈ all possible commands for stocks (nbcommand)

GainA = phi(nc) + E (J∗(t + ∆t, s∗, stock(s) + nc)|s)
if GainA > Gain

com = nc
Gain = GainA

stock(s) += com

Fig. 2. Simulation on some scenarios.

sections introduce our parallelization strategy, detail the most important issues and describe
our global distributed algorithm.

3.1 Parallelization overview of the optimization part
As explained in section 2 we use a backward loop to achieve the optimization part of our
stochastic control application. This backward loop is applied to calculate the Bellman values
at discrete points belonging to a set of N stocks, which form some N-dimensional cube of data,
or data N-cubes.
Considering one stock X, its stock levels at tn and tn+1 are linked by the equation:

Xn+1 = Xn + Commandn + Supplyn (2)

Where:

• Xn and Xn+1 are possible levels of the X stock, and belong to intervals of possible values
([Xmin

n ; Xmax
n ] and [Xmin

n+1; Xmax
n+1]), function of scenarios and physical constraints.

• The Command is the change of stock level due to the execution of a command on the
stock X between tn and tn+1. It belongs to an interval of values: [Cmin

n ; Cmax
n ], function

of scenarios and physical constraints.

• The Supplyn is the change of stock level due to an external supply (in our test case
with hydraulic energy stocks, snow melting and rain represent this supply). Again, it
belongs to an interval of values: [Smin

n ; Smax
n ], function of scenarios and physical con-

straints.

Considering the equation 2, the backward loop algorithm introduced in section 2, a set of
scenarios and physical constraints, and N stocks, the following 6 sub-steps algorithm is run
on each computing node at each time step:

1. When finishing the tn+1 computing step and entering tn one (backward loop), minimal
and maximal stock levels of all stocks are computed on each computing node, according
to scenarios and physical constraints on each stock. So, each node easily computes N
minimal and maximal stock levels that defines the minimal and maximal vertexes of
the N-cube of points where the Bellman values have to be calculated at date tn.

2. Each node runs its splitting algorithm of the tn N-cube to distribute the tn Bellman values
that will be to computed at step tn on P = 2dp computing nodes. Each node computes
the entire map of this distribution: the tn data map. See section 3.4 for details about the
splitting algorithm.

3. Using scenarios and physical constraints set for the application, each node computes
the Commands and Supplies to apply to each stock of each tn N-subcube of the tn data
map. Using equation 2 each node computes the tn+1 N-subcube of points where the
tn+1 Bellman values are required by each node to process the calculation of the Bellman
values at the stocks points belonging to its tn N-subcube. So, each node easily computes
the coordinates of the P′ tn+1 data influence areas or tn shadow regions, and builds the
entire tn shadow region map without any communication with others nodes. This solution
has appeared faster than to compute only local data partition and local shadow region
on each node and to exchange messages on the communication network to gather the
complete maps on each node.

4. Now each node has the entire tn shadow region map computed at the previous sub-step,
and the entire tn+1 data map computed at the previous time step of the backward loop.
Some basic computations of N-cube intersections allow each node to compute the P N-
subcubes of points associated to the Bellman values to receive from others nodes and
from itself, and the P N-subcubes of points associated to the Bellman values to send
to other nodes. Some of these N-subcubes can be empty and have a null size, when
some nodes have no N-subcubes of data at time step tn or tn+1. So, each node builds its
tn routing plan, still without any communications with other nodes. See section 3.5 for
details about the computation of this routing plan.

5. Using MPI communication routines, each node executes its tn routing plan and brings
back the Bellman values associated to points belonging to its tn+1 shadow region in its
local memory. Function of the underlying interconnection network and the machine
size, it can be interesting to overlap all communications, or it can be necessary to spread
the numerous communications and to achieve several communication sub-steps. See
section 3.6 for details about the routing plan execution.

6. Using the tn+1 Bellman brought back in its memory, each node can achieve the compu-
tation of the optimal commands for all stock points (according to the stochastic control
algorithm) and calculate its tn Bellman value.

7. Then, each node save on disk the tn Bellman values and some others step results that
will be used in the simulation part of the application. They are temporary results stored
on local disks when exist, or in global storage area, depending of the underlying parallel
architecture. Finally, each node cancels its tn+1 data map, tn shadow region map and tn
routing plan. Only its tn data map and tn data N-subcube have to remain to process the
following time step.

This time step algorithm is repeated in the backward loop up to time step 0. Then some global
results are saved, and the simulation part of the application is run.

3.2 Parallelization overview of the simulation part
In usual sequential software, simulations is achieved scenario by scenario: the stock levels
and the commands are calculated from date 0 to date T for each scenario sequentially. This
approach is obviously easy to parallelize when the Bellman values are shared by each node. In
our case, doing so will mean a lot of time spent in IO. In the algorithm 2, it has been chosen to
advance time step by time step and to do the calculation at each time step for all simulations.
So Bellman temporary files stored in the optimization part are opened and closed only once
by time step to read Bellman values of the next time step.
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Similarly to the optimization part, at each time step tn the following algorithm is achieved by
each computing node:

1. Each computing node reads some temporary files of optimization results: the tn+1 data
map and the tn+1 data (Bellman values). All these reading operations are achieved in
parallel from the P computing nodes.

2. For each trajectory (up to the number of trajectories managed by each node):

(a) Each node simulates the hazard trajectory from time step tn to time step tn+1.

(b) From the current N dimensional stock point SPn, using equation 2, each node com-
putes the tn+1 N-subcube of points where the tn+1 Bellman values are required to
process the calculation of the optimal command at SPn: the tn shadow region coor-
dinates of the current trajectory.

(c) All nodes exchange their tn shadow region coordinates using MPI communication
routines and achieving a all_gather communication scheme. So, each node can
build a complete tn+1 shadow region map in its local memory. In the optimization
part each node could compute the entire tn+1 shadow region map, but in the simula-
tion part inter-node communications are mandatory.

(d) Each node computes its routing plan, computing N-subcubes intersections of tn+1
data map and tn+1 shadow region map. We apply again the 2-step algorithm de-
scribed on figure 6 and used in the optimization part.

(e) Each node executes its routing plan using MPI communication routines, and and
brings back the Bellman values associated to points belonging to its tn+1 shadow
region in its local memory. Like in the optimization part, depending on the underly-
ing interconnection network and the machine size, it can be interesting to overlap
all communications, or it can be necessary to spread the numerous communica-
tions and to achieve several communication sub-steps (see section 3.6).

(f) Using the tn+1 Bellman value brought back in its memory, each node can compute
the optimal command according to algorithm introduced on figure 2.

3. If required by user, data of the current time step are gathered on computing node 0, and
written on disk (see section 3.7).

Finally, some complete results are computed and saved by node 0, like the global gain com-
puted by the entire application.

3.3 Global distributed algorithm
Figure 3 summarizes the main three parts of our complete algorithm to compute optimal
commands of a N dimensional optimization problem and to test them in simulation. The
first part is the reading of input data files according to the IO strategy introduced in section
3.7. The second part is the optimization solver execution, computing some Bellman values in a
backward loop (see sections 1 and 3.1). At each step, a N-cube of Bellman values to compute is
split on an hypercube of computing nodes to load balance the computations, a shadow region
is identified and gathered on each node, some multithreaded local computations of optimal
commands are achieved for each point of the N-cube (see section 4.3), and some temporary
results are stored on disk. Then, the third part tests the previously computed commands.
This simulation part runs a forward time step loop (see sections 1 and 3.2) and a Monte-Carlo
trajectory sub-loop (see section 4.3), and uses the same previous mechanisms than the second

I - Sequential reading and parallel broadcast 
     of initialization data

II - Backward time step loop optimization:

        - data and computations distribution 
        - shadow regions rapatriement with communications
        - (multithreaded) optimal command research for all stock points
        - temporary data writing on disk

III  - Forward time step loop simulation:

        - temporary data reading from disk
        - Monte-Carlo trajectory sub-loop
              - shadow regions rapatriement with communications
              - trajectory computation
        - optimal control result saving
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Fig. 3. Main steps of the complete application algorithm.

part. At each time step, each node reads some temporary results it has stored during the
optimization part, gather some shadow regions, achieves some local computations, and stores
the final results on disk.

3.4 Data N-cube splitting and data map setting
During the backward computation loop of the Bellman algorithm (see figure 1) of the opti-
mization part of our application, we need to compute a N-dimensional cube of Bellman values
at each time step. This computation is long and requires a large amount of memory to store
the N-cube data. So we have to split this N-cube data on a set of computing nodes both to
speedup (using more processors) and to size up (using more memory). Moreover, each di-
mension of this N-cube represents the stock levels of one stock that can change from time step
tn+1 to tn. Each stock level range can be translated, and/or enlarged or shrunk. So, we have
to redistribute our problem at each time step: we have to split a new N-cube of stock point
when entering a new time step. Our N-cube splitting algorithm is a critical component of our
distributed application that must run quickly. During the forward loop of the simulation part
we reread on disk the maps stored during optimization.
The computation of one Bellman value at one point of the tn N-cube requires the influence
area of this value given by equation 2: the tn+1 Bellman values at stocks points belonging to a
small sub-cube of the tn+1 N-cube. Computation of the entire tn N-sub-cube attached to one
computing node requires an influence area that can be a large shadow region, leading to MPI
communication of Bellman values stored on many other computing nodes (see figure 4). To
minimize the size of this N-dimensional shadow region we favor cubic N-sub-cubes in place of
flat ones. So, we aim to achieve cubic split of the N-cube data at each time step.
We decided to split our N-cube data on Pmax = 2dmax computing nodes. We successively split
in two equal parts some dimensions of the N-cube, up to obtain 2dmax sub-cubes, or to have
reach the limits of the division of the N-cube. Our algorithm includes 3 sub-steps:
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Similarly to the optimization part, at each time step tn the following algorithm is achieved by
each computing node:

1. Each computing node reads some temporary files of optimization results: the tn+1 data
map and the tn+1 data (Bellman values). All these reading operations are achieved in
parallel from the P computing nodes.

2. For each trajectory (up to the number of trajectories managed by each node):

(a) Each node simulates the hazard trajectory from time step tn to time step tn+1.

(b) From the current N dimensional stock point SPn, using equation 2, each node com-
putes the tn+1 N-subcube of points where the tn+1 Bellman values are required to
process the calculation of the optimal command at SPn: the tn shadow region coor-
dinates of the current trajectory.

(c) All nodes exchange their tn shadow region coordinates using MPI communication
routines and achieving a all_gather communication scheme. So, each node can
build a complete tn+1 shadow region map in its local memory. In the optimization
part each node could compute the entire tn+1 shadow region map, but in the simula-
tion part inter-node communications are mandatory.

(d) Each node computes its routing plan, computing N-subcubes intersections of tn+1
data map and tn+1 shadow region map. We apply again the 2-step algorithm de-
scribed on figure 6 and used in the optimization part.

(e) Each node executes its routing plan using MPI communication routines, and and
brings back the Bellman values associated to points belonging to its tn+1 shadow
region in its local memory. Like in the optimization part, depending on the underly-
ing interconnection network and the machine size, it can be interesting to overlap
all communications, or it can be necessary to spread the numerous communica-
tions and to achieve several communication sub-steps (see section 3.6).

(f) Using the tn+1 Bellman value brought back in its memory, each node can compute
the optimal command according to algorithm introduced on figure 2.

3. If required by user, data of the current time step are gathered on computing node 0, and
written on disk (see section 3.7).

Finally, some complete results are computed and saved by node 0, like the global gain com-
puted by the entire application.

3.3 Global distributed algorithm
Figure 3 summarizes the main three parts of our complete algorithm to compute optimal
commands of a N dimensional optimization problem and to test them in simulation. The
first part is the reading of input data files according to the IO strategy introduced in section
3.7. The second part is the optimization solver execution, computing some Bellman values in a
backward loop (see sections 1 and 3.1). At each step, a N-cube of Bellman values to compute is
split on an hypercube of computing nodes to load balance the computations, a shadow region
is identified and gathered on each node, some multithreaded local computations of optimal
commands are achieved for each point of the N-cube (see section 4.3), and some temporary
results are stored on disk. Then, the third part tests the previously computed commands.
This simulation part runs a forward time step loop (see sections 1 and 3.2) and a Monte-Carlo
trajectory sub-loop (see section 4.3), and uses the same previous mechanisms than the second
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part. At each time step, each node reads some temporary results it has stored during the
optimization part, gather some shadow regions, achieves some local computations, and stores
the final results on disk.

3.4 Data N-cube splitting and data map setting
During the backward computation loop of the Bellman algorithm (see figure 1) of the opti-
mization part of our application, we need to compute a N-dimensional cube of Bellman values
at each time step. This computation is long and requires a large amount of memory to store
the N-cube data. So we have to split this N-cube data on a set of computing nodes both to
speedup (using more processors) and to size up (using more memory). Moreover, each di-
mension of this N-cube represents the stock levels of one stock that can change from time step
tn+1 to tn. Each stock level range can be translated, and/or enlarged or shrunk. So, we have
to redistribute our problem at each time step: we have to split a new N-cube of stock point
when entering a new time step. Our N-cube splitting algorithm is a critical component of our
distributed application that must run quickly. During the forward loop of the simulation part
we reread on disk the maps stored during optimization.
The computation of one Bellman value at one point of the tn N-cube requires the influence
area of this value given by equation 2: the tn+1 Bellman values at stocks points belonging to a
small sub-cube of the tn+1 N-cube. Computation of the entire tn N-sub-cube attached to one
computing node requires an influence area that can be a large shadow region, leading to MPI
communication of Bellman values stored on many other computing nodes (see figure 4). To
minimize the size of this N-dimensional shadow region we favor cubic N-sub-cubes in place of
flat ones. So, we aim to achieve cubic split of the N-cube data at each time step.
We decided to split our N-cube data on Pmax = 2dmax computing nodes. We successively split
in two equal parts some dimensions of the N-cube, up to obtain 2dmax sub-cubes, or to have
reach the limits of the division of the N-cube. Our algorithm includes 3 sub-steps:
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1. We split the dimensions of the N-cube in order to obtain sub-cubes with close dimension
sizes. We start to sort the N′ divisible dimensions in decreasing order, and attempt to
split the first one in 2 equal parts with sizes close to size of the second dimension. Then
we attempt to split again the size of the 2 first dimensions to reduce their sizes close to
the size of the third one. This splitting operation fails if it leads to a sub-cube dimension
size smaller than a minimal size, set to avoid to process too small data sub-cubes. The
splitting operation is repeated up to achieve dmax splits, or up to reduce the sizes of
the N′ − 1 first dimensions close to the size of the smallest one. Then, if we have not
obtained 2dmax sub-cubes we run the second sub-step.

2. Previously we have obtained sub-cubes with N′ close dimension sizes. Now we sort
these N′ divisible dimensions in decreasing order, considering their split dimension
sizes. We attempt to split again in 2 equal parts each divisible dimension in a round
robin way, up to achieve dmax splits, or up to reach the limit of the minimal size for each
divisible dimension. Then, if we have not obtained 2dmax sub-cubes we run the third
sub-step.

3. If it is specified to exceed the minimal size limit, then we split again in 2 equal parts
each divisible dimension in a round robin way, up to achieve dmax splits, or up to reach
dimension sizes equal to 1. In our application, the minimal size value is set before to
split a N-cube, and a command line option allows the user to respect or to exceed this
limit. So, when processing small problems on large numbers of computing nodes, some
experiments are required and can be rapidly conducted to point out the right tuning of
our splitting algorithm.

Finally, after running our splitting algorithm at time step tn we obtain 2d sub-cubes, and we
can give data and work up to P = 2d computing nodes. When processing small problems on

// Input variable datatypes and declarations on node Me
N-cube-coord_t DataMaptn+1 [P]
N-cube-coord_t ShadowRegiontn [P]
// Output variable datatypes and declarations on node Me
N-cube-coord_t LocalRoutingPlanRecv

tn
[P]

N-cube-coord_t LocalRoutingPlanSend
tn

[P]

// Coordinates computation of the N-subcubes to receive on node Me from all nodes
For i := 0 to (P − 1)

LocalRoutingPlanRecv
tn

[i] := DataMaptn+1 [i] ∩ ShadowRegionMaptn [Me]

// Coordinates computation of the N-subcubes to send to all nodes from node Me
For i := 0 to (P − 1)

LocalRoutingPlanSend
tn

[i] := DataMaptn+1 [Me] ∩ ShadowRegionMaptn [i]

Fig. 6. Computation of tn routing plan on computing node Me (0 ≤ Me < P)

large parallel machines, it is possible not all computing nodes will have some computations to
achieve at time step tn (P < Pmax) (a too fine grained data distribution would lead to inefficient
parallelization). This splitting algorithm is run on each computing node at the beginning of
time step tn. They all compute the same N-cube splitting and deduce the same number of
provisioned nodes P and the same data map.

3.5 Shadow region map and routing plan computations
Different data N-subcubes located on different nodes, or existing at different time steps, can
have shadow regions with different sizes. Moreover, depending on the time step, the problem
size and the number of used computing nodes, the shadow region N-subcube of one computing
node can reach only its direct neighbors or can encompass these nodes. So, the exact routing
plan of each node has to be dynamically established at each time step before to retrieve data
from other nodes.
As explained in section 3.1, each node computes the entire shadow region map: a table of P
coordinates of N-subcubes. In our application these entire maps can be deduced from tn and
tn+1 data maps, and from scenarios and physical constraints on commands and supplies of
each stock. For example, node 1 on figure 4 knows its shadow region (light gray cube) in this
3-cube, the shadow region of node 0 (dotted line) and of nodes 2 to 7 (not drawn on figure 4).
Then, using both its tn shadow region map and its tn+1 data maps, each computing node can
easily compute its local tn routing plan in two sub-steps:

1. Each node computes the coordinates of the N-subcubes of Bellman values it has to re-
ceive from other nodes: the receive part of its local routing plan. The intersection of the
tn shadow region N-subcube of node Me with the tn+1 N-subcube of another node gives
the tn+1 N-subcube of Bellman values the node Me has to receive from this node. So,
each node achieve the first loop of the algorithm described on figure 6, and computes
P intersections of N-subcubes coordinates, to get the coordinates of the P N-subcube
of Bellman values it has to receive. When the shadow regions are not too large, many of
these P N-subcubes are empty.

2. Each node computes the coordinates of the N-subcubes of Bellman values it has to send
to other nodes: the send part of its local routing plan. The intersection of the tn+1 N-
subcube of node Me with the tn shadow region N-subcube of another node gives the
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1. We split the dimensions of the N-cube in order to obtain sub-cubes with close dimension
sizes. We start to sort the N′ divisible dimensions in decreasing order, and attempt to
split the first one in 2 equal parts with sizes close to size of the second dimension. Then
we attempt to split again the size of the 2 first dimensions to reduce their sizes close to
the size of the third one. This splitting operation fails if it leads to a sub-cube dimension
size smaller than a minimal size, set to avoid to process too small data sub-cubes. The
splitting operation is repeated up to achieve dmax splits, or up to reduce the sizes of
the N′ − 1 first dimensions close to the size of the smallest one. Then, if we have not
obtained 2dmax sub-cubes we run the second sub-step.

2. Previously we have obtained sub-cubes with N′ close dimension sizes. Now we sort
these N′ divisible dimensions in decreasing order, considering their split dimension
sizes. We attempt to split again in 2 equal parts each divisible dimension in a round
robin way, up to achieve dmax splits, or up to reach the limit of the minimal size for each
divisible dimension. Then, if we have not obtained 2dmax sub-cubes we run the third
sub-step.

3. If it is specified to exceed the minimal size limit, then we split again in 2 equal parts
each divisible dimension in a round robin way, up to achieve dmax splits, or up to reach
dimension sizes equal to 1. In our application, the minimal size value is set before to
split a N-cube, and a command line option allows the user to respect or to exceed this
limit. So, when processing small problems on large numbers of computing nodes, some
experiments are required and can be rapidly conducted to point out the right tuning of
our splitting algorithm.

Finally, after running our splitting algorithm at time step tn we obtain 2d sub-cubes, and we
can give data and work up to P = 2d computing nodes. When processing small problems on
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// Coordinates computation of the N-subcubes to receive on node Me from all nodes
For i := 0 to (P − 1)

LocalRoutingPlanRecv
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[i] := DataMaptn+1 [i] ∩ ShadowRegionMaptn [Me]

// Coordinates computation of the N-subcubes to send to all nodes from node Me
For i := 0 to (P − 1)

LocalRoutingPlanSend
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[i] := DataMaptn+1 [Me] ∩ ShadowRegionMaptn [i]
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large parallel machines, it is possible not all computing nodes will have some computations to
achieve at time step tn (P < Pmax) (a too fine grained data distribution would lead to inefficient
parallelization). This splitting algorithm is run on each computing node at the beginning of
time step tn. They all compute the same N-cube splitting and deduce the same number of
provisioned nodes P and the same data map.

3.5 Shadow region map and routing plan computations
Different data N-subcubes located on different nodes, or existing at different time steps, can
have shadow regions with different sizes. Moreover, depending on the time step, the problem
size and the number of used computing nodes, the shadow region N-subcube of one computing
node can reach only its direct neighbors or can encompass these nodes. So, the exact routing
plan of each node has to be dynamically established at each time step before to retrieve data
from other nodes.
As explained in section 3.1, each node computes the entire shadow region map: a table of P
coordinates of N-subcubes. In our application these entire maps can be deduced from tn and
tn+1 data maps, and from scenarios and physical constraints on commands and supplies of
each stock. For example, node 1 on figure 4 knows its shadow region (light gray cube) in this
3-cube, the shadow region of node 0 (dotted line) and of nodes 2 to 7 (not drawn on figure 4).
Then, using both its tn shadow region map and its tn+1 data maps, each computing node can
easily compute its local tn routing plan in two sub-steps:

1. Each node computes the coordinates of the N-subcubes of Bellman values it has to re-
ceive from other nodes: the receive part of its local routing plan. The intersection of the
tn shadow region N-subcube of node Me with the tn+1 N-subcube of another node gives
the tn+1 N-subcube of Bellman values the node Me has to receive from this node. So,
each node achieve the first loop of the algorithm described on figure 6, and computes
P intersections of N-subcubes coordinates, to get the coordinates of the P N-subcube
of Bellman values it has to receive. When the shadow regions are not too large, many of
these P N-subcubes are empty.

2. Each node computes the coordinates of the N-subcubes of Bellman values it has to send
to other nodes: the send part of its local routing plan. The intersection of the tn+1 N-
subcube of node Me with the tn shadow region N-subcube of another node gives the
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tn+1 N-subcube of Bellman values the node Me has to send to this node. So, each node
achieve the second loop of the algorithm described on figure 6, and computes P intersec-
tions of N-subcubes coordinates, to get the coordinates of the P N-subcube of Bellman
values it has to send. Again, many of these N-subcubes are empty when the shadow
regions are not too large.

Figure 5 shows an example of local routing plan computed on node 1, considering the data
distribution partially illustrated on figure 4. This entire routing plan computation consists in
2.P intersections of N-subcube coordinates. Finally, this is a very fast integer computation,
run at each time step.

3.6 Routing plan execution
Node communications are implemented with non-blocking communications and are over-
lapped, in order to use the maximal abilities of the interconnection network. However, for
large number of nodes we can get small sub-cubes of data on each node, and the influence
areas can reach many nodes (not only direct neighbor nodes). Then, the routing plan exe-
cution achieves a huge number of communications, and some node interconnexion network
could saturate and slow down. So, we have parameterized the routing plan execution with
the number of nodes that a node can attempt to contact simultaneously. This mechanism
spreads the execution of the communication plan, and the spreading out is controlled by two
application options (specified on the command line): one for the optimization part, and one for
the simulation part.
When running our benchmark (see section 5) on our 256 dual-core PC cluster it has been faster
not to spread these communications, but on our 8192 quad-core Blue Gene/P it has been really
faster to spread the communications of the simulation part. Each Blue Gene node has to contact
only 128 or 256 other nodes at the same time, to prevent the simulation time to double. When
running larger benchmarks (closer to future real case experiments), the size of the data and
of the shadow regions could increase. Moreover, each shadow region could spread on a little bit
more nodes. So, the total size and number of communications could increase, and it seems
necessary to be able to temporally spread both communications of optimization and simulation
parts, on both our PC-cluster and our Blue Gene/P supercomputer.
So, we have maintained our communication spreading strategy. When running the applica-
tion, an option on the command line allows to limit the number of simultaneous asynchronous
communications a computing node can start. If a saturation of the communication system ap-
pears, it is possible to use it sparingly, spreading the communications.

3.7 File IO constraints and adopted solutions
Our application deals with input data files, temporary output and input files, and final result
files. These files can be large, and our main target systems have very different file access
mechanisms. Computing nodes of IBM Blue Gene supercomputers do not have local disks,
but an efficient parallel file system and hardware allows all nodes to concurrently access a
global remote disk storage. At the opposite, nodes of our Linux PC cluster have local disks
but use basic Linux NFS mechanisms to access global remote disks. All nodes of our cluster
can not make their disk accesses at the same time. When increasing the number of used nodes,
IO execution times become longer, and finally they freeze.
Temporary files are written and read at each time step. However, each temporary result file is
written during the optimization part by only one node, and is read during the simulation part by
only the same node. These files do not require concurrent accesses and their management is

easy. Depending on their path specified on the command line when running the application,
they are stored on local disks (fastest solution on PC cluster), or on a remote global disk (IBM
Blue Gene solution). When using a unique global disk it is possible to store some temporary
index files only once, to reduce the total amount of data stored.
Input data files are read only once at the beginning, but have to be read by each computing
node. Final result files are written at each time step of the simulation part and have to store
data from each computing node. In both cases, we have favored the genericity of the file access
mechanism: node 0 opens, accesses and closes files, and sends data to or receives data from
other nodes across the interconnection network (using MPI communication routines). This IO
strategy is an old one and is not always the most efficient, but is highly portable. It has been
implemented in the first version of our distributed application. A new strategy, relying on a
Parallel File System and an efficient hardware, will be designed in future versions.

4. Parallel and distributed implementation issues

4.1 N-cube implementation
Our implementation includes 3 main kinds of arrays: MPI communication buffers, N-cube
data maps and N-cube data. We have used classic dynamic C arrays to implement the first kind,
and the blitz++ generic C++ library [Veldhuizen (2001)] to implement the second and third
kinds. However, in order to compile the same source code independently of the number of
energy stocks to process, we have flattened the N-cubes required by our algorithms. Any
N-dimensional array of stock point values becomes a one dimensional array of values.
Our implementation includes the following kind of variables:

• A stock level range is a one dimensional array of 2 values, implemented with a
blitz::TinyVector of 2 integer values.

• The coordinates of a N-cube of stock points is an array of N stock level ranges, implemented
with a one dimensional blitz::Array of N blitz::TinyVector of 2 integer values.

• A map of N-cube data is implemented with a two dimensional array of P × N
stock level ranges. It is implemented with a two dimensional blitz::Array of
blitz::TinyVector).

• A Bellman value is depending on the stock point considered and on the alea considered.
Our N-cube data are arrays of Bellman values function of different aleas in a N-cube of
stock points. A N-cube data is implemented with a two dimensional blitz::Array of
double: the first dimension index is the flattened N dimensional coordinate of the stock
point, and the second dimension index is the alea index.

• Some one dimensional arrays of double are used to store data to send to or to receive
from another node, and some two dimensional arrays of double are used to store data
to send to or to receive from all computing nodes. Communications are implemented
with the MPI library and its C API, that was available on all our testbed architectures.
This API requires addresses of contiguous memory areas, to read data to send or to
store received data. So, classic C dynamic arrays appeared a nice solution to implement
communication buffers with sizes updated at each time step.

Finally, blitz access mechanism to blitz array elements appeared slow. So, inside the com-
puting loop we prefer to get the address of the first element to access using a blitz function,
and to access the next elements incrementing a pointer like it is possible for a classic C array.
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spreads the execution of the communication plan, and the spreading out is controlled by two
application options (specified on the command line): one for the optimization part, and one for
the simulation part.
When running our benchmark (see section 5) on our 256 dual-core PC cluster it has been faster
not to spread these communications, but on our 8192 quad-core Blue Gene/P it has been really
faster to spread the communications of the simulation part. Each Blue Gene node has to contact
only 128 or 256 other nodes at the same time, to prevent the simulation time to double. When
running larger benchmarks (closer to future real case experiments), the size of the data and
of the shadow regions could increase. Moreover, each shadow region could spread on a little bit
more nodes. So, the total size and number of communications could increase, and it seems
necessary to be able to temporally spread both communications of optimization and simulation
parts, on both our PC-cluster and our Blue Gene/P supercomputer.
So, we have maintained our communication spreading strategy. When running the applica-
tion, an option on the command line allows to limit the number of simultaneous asynchronous
communications a computing node can start. If a saturation of the communication system ap-
pears, it is possible to use it sparingly, spreading the communications.

3.7 File IO constraints and adopted solutions
Our application deals with input data files, temporary output and input files, and final result
files. These files can be large, and our main target systems have very different file access
mechanisms. Computing nodes of IBM Blue Gene supercomputers do not have local disks,
but an efficient parallel file system and hardware allows all nodes to concurrently access a
global remote disk storage. At the opposite, nodes of our Linux PC cluster have local disks
but use basic Linux NFS mechanisms to access global remote disks. All nodes of our cluster
can not make their disk accesses at the same time. When increasing the number of used nodes,
IO execution times become longer, and finally they freeze.
Temporary files are written and read at each time step. However, each temporary result file is
written during the optimization part by only one node, and is read during the simulation part by
only the same node. These files do not require concurrent accesses and their management is
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Input data files are read only once at the beginning, but have to be read by each computing
node. Final result files are written at each time step of the simulation part and have to store
data from each computing node. In both cases, we have favored the genericity of the file access
mechanism: node 0 opens, accesses and closes files, and sends data to or receives data from
other nodes across the interconnection network (using MPI communication routines). This IO
strategy is an old one and is not always the most efficient, but is highly portable. It has been
implemented in the first version of our distributed application. A new strategy, relying on a
Parallel File System and an efficient hardware, will be designed in future versions.

4. Parallel and distributed implementation issues

4.1 N-cube implementation
Our implementation includes 3 main kinds of arrays: MPI communication buffers, N-cube
data maps and N-cube data. We have used classic dynamic C arrays to implement the first kind,
and the blitz++ generic C++ library [Veldhuizen (2001)] to implement the second and third
kinds. However, in order to compile the same source code independently of the number of
energy stocks to process, we have flattened the N-cubes required by our algorithms. Any
N-dimensional array of stock point values becomes a one dimensional array of values.
Our implementation includes the following kind of variables:

• A stock level range is a one dimensional array of 2 values, implemented with a
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• The coordinates of a N-cube of stock points is an array of N stock level ranges, implemented
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• A map of N-cube data is implemented with a two dimensional array of P × N
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• A Bellman value is depending on the stock point considered and on the alea considered.
Our N-cube data are arrays of Bellman values function of different aleas in a N-cube of
stock points. A N-cube data is implemented with a two dimensional blitz::Array of
double: the first dimension index is the flattened N dimensional coordinate of the stock
point, and the second dimension index is the alea index.

• Some one dimensional arrays of double are used to store data to send to or to receive
from another node, and some two dimensional arrays of double are used to store data
to send to or to receive from all computing nodes. Communications are implemented
with the MPI library and its C API, that was available on all our testbed architectures.
This API requires addresses of contiguous memory areas, to read data to send or to
store received data. So, classic C dynamic arrays appeared a nice solution to implement
communication buffers with sizes updated at each time step.

Finally, blitz access mechanism to blitz array elements appeared slow. So, inside the com-
puting loop we prefer to get the address of the first element to access using a blitz function,
and to access the next elements incrementing a pointer like it is possible for a classic C array.
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4.2 MPI communications
Our distributed application consists in loops of local computations and internode communi-
cations, and communications have to be achieved before to run the next local computations.
So, we do not attempt to overlap computations and communications. However, in a com-
munication step each node can exchange messages with many others, so it is important to
attempt to overlap all message exchanges and to avoid to serialize these exchanges.
When routing the Bellman values of the shadow region the communication schemes can be
different on each node and at each time step (see sub-steps 5 of section 3.1 and 2.e of sec-
tion 3.2), and data to send is not contiguous in memory. So, we have not used collective
communications (easier to use with regular communication schemes), but asynchronous MPI
point-to-point communication routines. Our communication sub-algorithm is the following:

• compute the size of each message to send or to receive,

• allocate message buffers, for messages to send and to receive,

• make local copy of data to send in the corresponding send buffers,

• start all asynchronous MPI point-to-point receive and send operations,

• wait until all receive operations have completed (synchronization operation),

• store received data in the corresponding application variables (blitz++ arrays),

• wait until all send operations have completed (synchronization operation),

• delete all communication buffers.

As we have chosen to fill explicit communication buffers to store data to exchange, we have
used in place asynchronous communication routines to exchange these buffers (avoiding to
re-copy data in other buffers with buffered communications). We have used MPI_Irecv,
and MPI_Isend or MPI_Issend, depending on the architecture and MPI library used. The
MPI_Isend routines is usually faster but has a non standard behavior, function of the MPI
library and architecture used. The MPI_Issend is a little bit longer but has a standardized be-
havior. On Linux PC clusters where different MPI libraries are installed, we use MPI_Issend

/ MPI_Irecv routines. On IBM Blue Gene supercomputer, with an IBM MPI library, we suc-
cessfully experimented MPI_Isend / MPI_Irecv routines.
Internode communications required in IO operations to send initial data to each node, or to
save final results on disk in each time step of simulation part (see sub-step 7 of section 3.1), are
implemented with some collective MPI communications: MPI_Bcast, MPI_Gather.
Exchange of local shadow region coordinates in each time step of the simulation part (see sub-step
2.c of section 3.2) is implemented with a collective MPI_Allgather operation. All these com-
munication have very regular schemes and can be efficiently implemented with MPI collective
communication routines.

4.3 Nested loops multithreading
In order to take advantage of multi-core processors we have multithreaded, in order to create
only one MPI process per node and one thread per core in place of one MPI process per core.
Depending on the application and the computations achieved, this strategy can be more or less
efficient. We will see in section 5.4 it leads to serious performance increase of our application.
To achieve multithreading we have split some nested loops using OpenMP standard tool or
the Intel Thread Building Block library (TBB). We maintain these two multithreaded imple-
mentations to improve the portability of our code. For example, in the past we encountered

some problems at execution time using OpenMP with ICC compiler, and TBB was not avail-
able on Blue Gene supercomputers. Using OpenMP or Intel TBB, we have adopted an in-
cremental and pragmatic approach to identify the nested loops to parallelize. First, we have
multithreaded the optimization part of our application (the most time consuming), and second
we attempted to multithread the simulation part.
In the optimization part of our application we have easily multithreaded two nested loops: the
first prepares data and the second computes the Bellman values (see section 2). However, only
the second has a significant execution time and leads to an efficient multithreaded paralleliza-
tion. A computing loop in the routing plan execution, packing some data to prepare messages,
could be parallelized too. But, it would lead to seriously more complex code while this loop is
only 0.15− 0.20% of the execution time on a 256 dual-core PC cluster and on several thousand
nodes of a Blue Gene/P. So, we have not multithreaded this loop.
In the simulation part each node processes some independent Monte-Carlo trajectories, and
parallelization with multithreading has to be achieved while testing the commands in the
algorithm 2. But this application part is not bounded by the amount of computations, but by
the amount of data to get back from other nodes and to store in the node memory, because
each MC trajectory follows an unpredictable path and requires a specific shadow region. So, the
impact of multithreading will be limited on the simulation part until we improve this part (see
section 6).

4.4 Serial optimizations
Beyond the parallel aspects the serial optimization is a critical point to tackle the current and
coming processor complexity as well as to exploit the entirely capabilities of the compilers.
Three types of serial optimization were carried out to match the processor architecture and to
simplify the language complexity, in order to help the compiler to generate the best binary:

1. Substitution or coupling of the main computing parts including blitz++ classes by stan-
dard C operations or basic C functions.

2. Loops unrolling with backward technique to ease SIMD or SSE (Streaming SIMD Ex-
tension for x86 processor architecture) instructions generation and optimization by the
compiler while reducing the number of branches.

3. Moving local data allocations outside the parallel multithreaded sections, to minimize
memory fragmentation, to reduce C++ constructor/destructor classes overhead and to
control data alignment (to optimize memory bandwidth depending on the memory
architecture).

Most of the data are stored and computed within blitz++ classes. The blitz++ streamlines
the overall implementation by providing arrays operations whatever the data type. Overload-
ing operator is one of the main inhibitor for the compilers to generate an optimal binary. To
get round this inhibitor the operations including blitz classes were replaced by standard C
pointers and C operations for the most time consuming routines. C pointers and operators of
code C are very simple to couple with blitz++ arrays, and whatever the processor architec-
ture we have got a significant speedup greater than a factor 3 with this technique. See [Vezolle
et al. (2009)] for more details about these optimizations.
With the current and future processors it is compulsory to generate vector instructions to reach
a good ratio of the serial peak performance. 30− 40% of the total elapsed time of our software
is spent in while loops including a break test. For a medium case the minimum number of
iterations is around 100. A simple look at the assembler code shows that, whatever the level of
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4.2 MPI communications
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munication step each node can exchange messages with many others, so it is important to
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tion 3.2), and data to send is not contiguous in memory. So, we have not used collective
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• wait until all send operations have completed (synchronization operation),

• delete all communication buffers.
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MPI_Isend routines is usually faster but has a non standard behavior, function of the MPI
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some problems at execution time using OpenMP with ICC compiler, and TBB was not avail-
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the second has a significant execution time and leads to an efficient multithreaded paralleliza-
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impact of multithreading will be limited on the simulation part until we improve this part (see
section 6).

4.4 Serial optimizations
Beyond the parallel aspects the serial optimization is a critical point to tackle the current and
coming processor complexity as well as to exploit the entirely capabilities of the compilers.
Three types of serial optimization were carried out to match the processor architecture and to
simplify the language complexity, in order to help the compiler to generate the best binary:

1. Substitution or coupling of the main computing parts including blitz++ classes by stan-
dard C operations or basic C functions.

2. Loops unrolling with backward technique to ease SIMD or SSE (Streaming SIMD Ex-
tension for x86 processor architecture) instructions generation and optimization by the
compiler while reducing the number of branches.

3. Moving local data allocations outside the parallel multithreaded sections, to minimize
memory fragmentation, to reduce C++ constructor/destructor classes overhead and to
control data alignment (to optimize memory bandwidth depending on the memory
architecture).

Most of the data are stored and computed within blitz++ classes. The blitz++ streamlines
the overall implementation by providing arrays operations whatever the data type. Overload-
ing operator is one of the main inhibitor for the compilers to generate an optimal binary. To
get round this inhibitor the operations including blitz classes were replaced by standard C
pointers and C operations for the most time consuming routines. C pointers and operators of
code C are very simple to couple with blitz++ arrays, and whatever the processor architec-
ture we have got a significant speedup greater than a factor 3 with this technique. See [Vezolle
et al. (2009)] for more details about these optimizations.
With the current and future processors it is compulsory to generate vector instructions to reach
a good ratio of the serial peak performance. 30− 40% of the total elapsed time of our software
is spent in while loops including a break test. For a medium case the minimum number of
iterations is around 100. A simple look at the assembler code shows that, whatever the level of
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the compiler optimization, the structure of the loop and the break test do not allow to unroll
techniques and therefore to generate vector instructions. So, we have explicitly loop unrolled
these while-and-break loops, with extra post-computing iterations then unrolling back to
get the break point. This method enables vector instructions while reducing the number of
branches.
In the shared memory parallel implementation (with Intel TBB library or OpenMP directives)
each thread independently allocates local blitz++ classes (arrays or vectors). The memory
allocations are requested concurrently in the heap zone and can generate memory fragmen-
tation as well as potential bank conflicts. In order to reduce the overhead due to memory
management between the threads the main local arrays were moved outside the parallel ses-
sion and indexed per the thread numbers. This optimization decreases the number of memory
allocations while allowing a better control of the array alignment between the threads. More-
over, a singleton C++ class was added to blitz++ library to synchronize the thread memory
constructors/destructors and therefore minimize memory fragmentation (this feature can be
deactivated depending on the operating system).

5. Experimental performances

5.1 User case introduction
We consider the situation of a power utility that has to satisfy customer load, using the power
plants and one reservoir to manage. The utility equally disposes of a trading entity being able
to take positions on both the spot market and futures market. We do neither consider the
market complete, nor that market-depth is infinite.

5.1.1 Load and price model
The price model will be a two factor model [Clewlow & Strickland (2000)] driven by two
brownian motions, and we will use a one factor model for load. In this modelization, the
price future F̃(t, T) corresponding to the price of one MWh seen at date t for delivery at date
T evolves around an initial forward curve F̃(T0, T) and the load D(t) corresponding to the
demand at date t randomly evolves around an average load D0(t) depending on time. The
following SDE describes our uncertainty model for the forward curve F̃(t, T):

dF̃(t, T)
F̃(t, T)

= σS(t)e−aS(T−t)dzS
t + σL(t)dzL

t , (3)

with zS
t and zL

t two brownian motions, σi some volatility parameters.

With the following notations:

V(t1, t2, t3) =
∫ t2

t1

σS(u)2e−2aS(t3−u) + σL(u)2 + 2ρσS(u)e−aS(t3−u)σL(u)du,

WS(t0, t) =
∫ t

t0

σS(u)e−aS(t−u)dzS
u,

WL(t0, t) =
∫ t

t0

σL(u)dzL
u ,

(4)

the integration of the previous equation gives:

F̃(t, T) = F̃(t0, T)e
−

1
2

V(t0, t, T) + eaS(T−t)WS(t0, t) + WL(t0, t)
. (5)

Noting zD
t a third brownian motion correlated to zS

t and zL
t , σD the volatility, and noting

VD(t1, t2) =
∫ t2

t1

σD(u)2e−2aD(t2−u)du,

WD(t0, t) =
∫ t

t0

σD(u)e−aD(t−u)dzD
u ,

(6)

the load curve follows the following equation:

D(t) = D0(t)e
−

1
2

VD(t0, t) + WD(t0, t)
. (7)

With this modelization, the spot price is defined as the limit of the future price:

S(t) = lim
T↓t

F̃(t, T) (8)

The dynamic of a financial product p for a delivery period of one month [tb(p), te(p)] can be
approximated by:

dF(t, p)
F(t, p)

= σ̃S(t, p)e−aS(tb(p)−t)dzS
t + σL(t)dzL

t , (9)

where:

σ̃S(t, p) = σS(t)

∑
ti∈[tb(p),te(p)]

e−aS(ti−tb(p))

∑
ti∈[tb(p),te(p)]

1
(10)

5.1.2 Test case
We first introduce some notation for our market products:
P(t) = {p : t < tb(p)} all futures with delivery after t,
L(t, p) = {τ : τ < t, p ∈ P(τ)} all time steps τ before t for which the futures product p

is available on the market,
P t = {p : t ∈ [tb(p), te(p)]} all products in delivery at t,
P = ∪t∈[0,T]P(t) all futures products considered.

Now we can write the problem to be solved:

min E


 T

∑
t=0

[
npal

∑
i=1

ci,tui,t − vtSt + ∑
p∈P(t)

(te(p)− tb(p))(q(t, p)F(t, p) + |q(t, p)| Bt)]




s.t. Dt =
npal

∑
i=1

ui,t − vt + wt + ∑
p∈P t

∑
s∈L(t,p)

q(s, p)

Rt+1 = Rt + ∆t(−wt + At) (11)

Rmin ≤ Rt ≤ Rmax

qp,min ≤ q(s, p) ≤ qp,max ∀s ∈ [0, T] ∀p ∈ P

yp,min ≤
τ

∑
s=0

q(s, p) ≤ yp,max ∀τ < tb(p) ∀p ∈ P

vt,min ≤ vt ≤ vt,max

0 ≤ ui,t ≤ ui,t,max, (12)
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the compiler optimization, the structure of the loop and the break test do not allow to unroll
techniques and therefore to generate vector instructions. So, we have explicitly loop unrolled
these while-and-break loops, with extra post-computing iterations then unrolling back to
get the break point. This method enables vector instructions while reducing the number of
branches.
In the shared memory parallel implementation (with Intel TBB library or OpenMP directives)
each thread independently allocates local blitz++ classes (arrays or vectors). The memory
allocations are requested concurrently in the heap zone and can generate memory fragmen-
tation as well as potential bank conflicts. In order to reduce the overhead due to memory
management between the threads the main local arrays were moved outside the parallel ses-
sion and indexed per the thread numbers. This optimization decreases the number of memory
allocations while allowing a better control of the array alignment between the threads. More-
over, a singleton C++ class was added to blitz++ library to synchronize the thread memory
constructors/destructors and therefore minimize memory fragmentation (this feature can be
deactivated depending on the operating system).

5. Experimental performances

5.1 User case introduction
We consider the situation of a power utility that has to satisfy customer load, using the power
plants and one reservoir to manage. The utility equally disposes of a trading entity being able
to take positions on both the spot market and futures market. We do neither consider the
market complete, nor that market-depth is infinite.

5.1.1 Load and price model
The price model will be a two factor model [Clewlow & Strickland (2000)] driven by two
brownian motions, and we will use a one factor model for load. In this modelization, the
price future F̃(t, T) corresponding to the price of one MWh seen at date t for delivery at date
T evolves around an initial forward curve F̃(T0, T) and the load D(t) corresponding to the
demand at date t randomly evolves around an average load D0(t) depending on time. The
following SDE describes our uncertainty model for the forward curve F̃(t, T):
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the integration of the previous equation gives:
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the load curve follows the following equation:
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VD(t0, t) + WD(t0, t)
. (7)

With this modelization, the spot price is defined as the limit of the future price:

S(t) = lim
T↓t

F̃(t, T) (8)

The dynamic of a financial product p for a delivery period of one month [tb(p), te(p)] can be
approximated by:
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F(t, p)
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t + σL(t)dzL

t , (9)

where:
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ti∈[tb(p),te(p)]

1
(10)
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We first introduce some notation for our market products:
P(t) = {p : t < tb(p)} all futures with delivery after t,
L(t, p) = {τ : τ < t, p ∈ P(τ)} all time steps τ before t for which the futures product p

is available on the market,
P t = {p : t ∈ [tb(p), te(p)]} all products in delivery at t,
P = ∪t∈[0,T]P(t) all futures products considered.

Now we can write the problem to be solved:
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where

• Dt is the customer Load at time t in MW

• ui,t is the production of unit i at time t in MW

• vt is spot transactions in MW (counted positive for sales)

• q(t, p) is the power of the futures product p bought at time t in MW

• Bt is the spread bid-ask in euros/MWh taking into account the illiquidity of the market:
its double value is the price gap purchase/sale of one MWh

• Rt is the level of the reservoir at time t in MWh

• St = F(t, t) is the spot price in euros/Mwh

• F(t, p) is the futures price of the product p at time t in euros/MWh

• wt is the production of the reservoir at time t in MW

• At are the reservoir inflows in MW

• ∆t the time step in hours

• qp,min, qp,max are bounds on what can be bought and sold per time step on the futures
market in MW

• yp,min, yp,max are the bounds on the size of the portfolio for futures product p

• Rmin, Rmax are (natural) bounds on the energy the reservoir can contain.

Some additional values for the initial stocks are also given, and some final values are set for
the reservoir stock remaining at date T.

5.1.3 Numerical data
We consider at the begin of a month a four months optimization, where the operator can take
position in the future market twice a month using month ahead futures peak and offpeak, two
month ahead futures peak and off peak, and three month ahead futures base and peak. So the
user has at date 0 6 future products at disposal. The number of trajectories for optimization
is 400. The depth of the market for the 6 future products is set to 2000 MW for purchase and
sales (yp,min = −2000, yp,max = 2000). Every two weeks, the company is allowed to change its
position in the futures market within the limits of 1000 MW (qp,min = −1000, qp,max = 1000).
All the commands for the futures stocks are tested from -1000 MW to 1000 MW with a step
of 1000 MW. The hydraulic command is tested with a step of 1000MW. All the stocks are
discretized with a 1000MW step leading to a maximum of 225 ∗ 56 points to explore for the
stock state variables. The maximum number of commands tested is 5 ∗ 36 at day 30 for each
point stock not saturating the constraints. This discretization is a very accurate one leading
to a huge problem to solve. Notice that the number of stocks is decreasing with time. After
two months, the two first future delivery periods are past so the problem becomes a 5 stocks
problem. After three months , we are left with a three stocks problems and no command to
test (delivery of the two last future contracts has begun). The global problem is solved with 6
steps per days, defining the reservoir strategy, and the future commands are tested every two
weeks.
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Fig. 7. Evolution of the number of stock points (problem size) and of the number of working
nodes (useful size of the machine)

5.2 Testbeds introduction
We used two different parallel machines to test our application and measure its performances:
a PC cluster and a supercomputer.

• Our PC cluster was a 256-node cluster of SUPELEC (from CARRI Systems company)
with a total of 512 cores. Each node hosts one dual-core processor: INTEL Xeon-3075 at
2.66 GHz, with a front side bus at 1333 MHz. The two cores of each processor share 4 GB
of RAM, and the interconnection network is a Gigabit Ethernet network built around a
large and fast CISCO 6509 switch.

• Our supercomputer was the IBM Blue Gene/P supercomputer of EDF R&D. It pro-
vides up to 8192 nodes and a total of 32768 cores, which communicate through propri-
etary high-speed networks. Each node hosts one quad-core PowerPC 450 processor at
850 MHz, and the 4 cores share 2 GB of RAM.

5.3 Experimental provisioning of the computing nodes
Figure 7 shows the evolution of the number of stock points of our benchmark application, and
the evolution of the number of available nodes that have some work to achieve: the number
of provisioned nodes. The number of stock points defines the problem size. It can evolve at
each time step of the optimization part and the splitting algorithm that distributes the N-cube
data and the associated work has to be run at the beginning of each time step (see section 3.1).
This algorithm determines the number of available nodes to use at the current time step. The
number of stock points of this benchmark increases up to 3 515 625, and we can see on figure
7 the evolution of their distribution on a 256-nodes PC cluster, and on 4096 and 8192 nodes
of a Blue Gene supercomputer. Excepted at time step 0 that has only one stock point, it has
been possible to use the 256 nodes of our PC cluster at each time step. But it has not been
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where

• Dt is the customer Load at time t in MW

• ui,t is the production of unit i at time t in MW

• vt is spot transactions in MW (counted positive for sales)

• q(t, p) is the power of the futures product p bought at time t in MW

• Bt is the spread bid-ask in euros/MWh taking into account the illiquidity of the market:
its double value is the price gap purchase/sale of one MWh

• Rt is the level of the reservoir at time t in MWh

• St = F(t, t) is the spot price in euros/Mwh

• F(t, p) is the futures price of the product p at time t in euros/MWh

• wt is the production of the reservoir at time t in MW

• At are the reservoir inflows in MW

• ∆t the time step in hours

• qp,min, qp,max are bounds on what can be bought and sold per time step on the futures
market in MW

• yp,min, yp,max are the bounds on the size of the portfolio for futures product p

• Rmin, Rmax are (natural) bounds on the energy the reservoir can contain.

Some additional values for the initial stocks are also given, and some final values are set for
the reservoir stock remaining at date T.

5.1.3 Numerical data
We consider at the begin of a month a four months optimization, where the operator can take
position in the future market twice a month using month ahead futures peak and offpeak, two
month ahead futures peak and off peak, and three month ahead futures base and peak. So the
user has at date 0 6 future products at disposal. The number of trajectories for optimization
is 400. The depth of the market for the 6 future products is set to 2000 MW for purchase and
sales (yp,min = −2000, yp,max = 2000). Every two weeks, the company is allowed to change its
position in the futures market within the limits of 1000 MW (qp,min = −1000, qp,max = 1000).
All the commands for the futures stocks are tested from -1000 MW to 1000 MW with a step
of 1000 MW. The hydraulic command is tested with a step of 1000MW. All the stocks are
discretized with a 1000MW step leading to a maximum of 225 ∗ 56 points to explore for the
stock state variables. The maximum number of commands tested is 5 ∗ 36 at day 30 for each
point stock not saturating the constraints. This discretization is a very accurate one leading
to a huge problem to solve. Notice that the number of stocks is decreasing with time. After
two months, the two first future delivery periods are past so the problem becomes a 5 stocks
problem. After three months , we are left with a three stocks problems and no command to
test (delivery of the two last future contracts has begun). The global problem is solved with 6
steps per days, defining the reservoir strategy, and the future commands are tested every two
weeks.

1E7

1E6

1E5

1E4

1E3

1E2

1E1

1E0
 0  20  40  60  80  100  120

nu
m

be
r o

f s
to

ck
 p

oi
nt

s a
nd

 w
or

ki
ng

 n
od

es

time steps

nb of stock points
nb of working nodes on BG with 8192 nodes
nb of working nodes on BG with 4096 nodes

nb of working nodes on PC cluster with 256 nodes

Fig. 7. Evolution of the number of stock points (problem size) and of the number of working
nodes (useful size of the machine)

5.2 Testbeds introduction
We used two different parallel machines to test our application and measure its performances:
a PC cluster and a supercomputer.

• Our PC cluster was a 256-node cluster of SUPELEC (from CARRI Systems company)
with a total of 512 cores. Each node hosts one dual-core processor: INTEL Xeon-3075 at
2.66 GHz, with a front side bus at 1333 MHz. The two cores of each processor share 4 GB
of RAM, and the interconnection network is a Gigabit Ethernet network built around a
large and fast CISCO 6509 switch.

• Our supercomputer was the IBM Blue Gene/P supercomputer of EDF R&D. It pro-
vides up to 8192 nodes and a total of 32768 cores, which communicate through propri-
etary high-speed networks. Each node hosts one quad-core PowerPC 450 processor at
850 MHz, and the 4 cores share 2 GB of RAM.

5.3 Experimental provisioning of the computing nodes
Figure 7 shows the evolution of the number of stock points of our benchmark application, and
the evolution of the number of available nodes that have some work to achieve: the number
of provisioned nodes. The number of stock points defines the problem size. It can evolve at
each time step of the optimization part and the splitting algorithm that distributes the N-cube
data and the associated work has to be run at the beginning of each time step (see section 3.1).
This algorithm determines the number of available nodes to use at the current time step. The
number of stock points of this benchmark increases up to 3 515 625, and we can see on figure
7 the evolution of their distribution on a 256-nodes PC cluster, and on 4096 and 8192 nodes
of a Blue Gene supercomputer. Excepted at time step 0 that has only one stock point, it has
been possible to use the 256 nodes of our PC cluster at each time step. But it has not been
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possible to achieve this efficiency on the Blue Gene. We succeeded to use up to 8192 nodes of
this architecture, but sometimes we used only 2048 or 512 nodes.
However, section 5.4 will introduce the good scalability achieved by the optimization part of
our application, both on our 256-nodes PC cluster and our 8192-nodes Blue Gene. In fact, time
steps with small numbers of stock points are not the most time consuming. They do not make
up a significant part of the execution time, and to use a limited number of nodes to process
these time steps does not limit the performances. But it is critical to be able to use a large
number of nodes to process time steps with a great amount of stock points. This dynamic
load balancing and adaptation of the number of working nodes is achieved by our splitting
algorithm, as illustrated by figure 7.
Section 3.4 introduces our splitting strategy, aiming to create and distribute cubic subcubes and
avoiding flat ones. When the backward loop of the optimization part leaves step 61 and enters
step 60 the cube of stock points increases a lot (from 140 625 to 3 515 625 stock points) because
dimensions two and five enlarge from 1 to 5 stock levels. In both steps the cube is split in 8192
subcubes, but this division evolves to take advantage of the enlargement of dimensions two
and five. The following equations resume this evolution:

step 61 : 140625 stock points = 225 × 1 × 5 × 5 × 1 × 5 × 5 stock points (13)

step 60 : 3515625 stock points = 225 × 5 × 5 × 5 × 5 × 5 × 5 stock points (14)

step 61 : 8192 subcubes = 128 × 1 × 4 × 4 × 1 × 2 × 2 subcubes (15)

step 60 : 8192 subcubes = 128 × 2 × 2 × 2 × 2 × 2 × 2 subcubes (16)
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At time step 61, equations 13 and 15 show the dimension one has a stock level range of size 225
split in 128 subranges. This leads to subcubes with 1 (min) or 2 (max) stock levels in dimension
one on the different nodes, as summarized by equation 17. Similarly, the dimension two has
a stock level range of size 1 split in 1 subrange of size 1, the dimension three has a stock level
range of 5 split in 4 subranges of size 1 or 2. . . At time step 60, equations 14 and 16 show the
range of dimensions two and five enlarge from 1 to 5 stock levels and their division increases
from 1 to 2 subparts, while the division of dimensions three and four decreases from 4 to
2 subparts. Finally, equation 18 shows the 8192 subcubes are more cubic: they have similar
minimal and maximal sizes in their last six dimensions and only their first dimension can
have a smaller size. This kind of data re-distribution can happen each time the global N-cube
of data evolves, even if the number of provisioned nodes remains unchanged, in order to
optimize the computation load balancing and the communication amount.

5.4 Performances function of deployment and optimization mechanisms
Figure 8 shows the different total execution times on the two testbeds introduced in section
5.2 for the following parallelizations:
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Fig. 8. Total execution times function of the deployment and optimization mechanisms

• implementing no serial optimization and using no thread but running several MPI pro-
cesses per node (one MPI process per core),

• implementing no serial optimization but using multithreading (one MPI process per
node and one thread per core),

• implementing serial optimizations and multithreading (one MPI process per node and
one thread per core).

Without multithreading the execution time decreases slowly on the PC-cluster or reaches an
asymptote on the Blue Gene/P. When using multithreading the execution time is smaller and
decreases regularly up to 256 nodes and 512 cores on PC cluster, and up to 8192 nodes and
32768 cores on Blue Gene/P. So, the deployment strategy has a large impact on performances
of our application. Performance curves of figure 8 show we have to deploy only one MPI
process per node and to run threads to efficiently use the different cores of each node. The
multithreading development introduced in section 4.3 has been easy to achieve (parallelizing
only some nested loops), and has reduced the execution time and extended the scalability of
the application.
These results confirm some previous experiments achieved on our PC cluster and on the Blue
Gene/L of EDF without serial optimizations. Multithreading was not available on the Blue
Gene/L. Using all cores of each nodes decreased the execution time but did not allowed to
reach a good scalability on our Blue Gene/L [(Vialle et al., 2008)].
Serial optimizations introduced in section 4.4 have also an important impact on the perfor-
mances. We can see on figure 8 they divide the execution time by a factor 1.63 to 2.14 on the
PC cluster of SUPELEC, and by a factor 1.88 to 2.79 on the Blue Gene/P supercomputer of
EDF (depending on the number of used nodes). Moreover, they lead to reach the scalability
limit of our distributed application: the execution time decreases but reaches a new asymptote
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At time step 61, equations 13 and 15 show the dimension one has a stock level range of size 225
split in 128 subranges. This leads to subcubes with 1 (min) or 2 (max) stock levels in dimension
one on the different nodes, as summarized by equation 17. Similarly, the dimension two has
a stock level range of size 1 split in 1 subrange of size 1, the dimension three has a stock level
range of 5 split in 4 subranges of size 1 or 2. . . At time step 60, equations 14 and 16 show the
range of dimensions two and five enlarge from 1 to 5 stock levels and their division increases
from 1 to 2 subparts, while the division of dimensions three and four decreases from 4 to
2 subparts. Finally, equation 18 shows the 8192 subcubes are more cubic: they have similar
minimal and maximal sizes in their last six dimensions and only their first dimension can
have a smaller size. This kind of data re-distribution can happen each time the global N-cube
of data evolves, even if the number of provisioned nodes remains unchanged, in order to
optimize the computation load balancing and the communication amount.

5.4 Performances function of deployment and optimization mechanisms
Figure 8 shows the different total execution times on the two testbeds introduced in section
5.2 for the following parallelizations:
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• implementing no serial optimization and using no thread but running several MPI pro-
cesses per node (one MPI process per core),

• implementing no serial optimization but using multithreading (one MPI process per
node and one thread per core),

• implementing serial optimizations and multithreading (one MPI process per node and
one thread per core).

Without multithreading the execution time decreases slowly on the PC-cluster or reaches an
asymptote on the Blue Gene/P. When using multithreading the execution time is smaller and
decreases regularly up to 256 nodes and 512 cores on PC cluster, and up to 8192 nodes and
32768 cores on Blue Gene/P. So, the deployment strategy has a large impact on performances
of our application. Performance curves of figure 8 show we have to deploy only one MPI
process per node and to run threads to efficiently use the different cores of each node. The
multithreading development introduced in section 4.3 has been easy to achieve (parallelizing
only some nested loops), and has reduced the execution time and extended the scalability of
the application.
These results confirm some previous experiments achieved on our PC cluster and on the Blue
Gene/L of EDF without serial optimizations. Multithreading was not available on the Blue
Gene/L. Using all cores of each nodes decreased the execution time but did not allowed to
reach a good scalability on our Blue Gene/L [(Vialle et al., 2008)].
Serial optimizations introduced in section 4.4 have also an important impact on the perfor-
mances. We can see on figure 8 they divide the execution time by a factor 1.63 to 2.14 on the
PC cluster of SUPELEC, and by a factor 1.88 to 2.79 on the Blue Gene/P supercomputer of
EDF (depending on the number of used nodes). Moreover, they lead to reach the scalability
limit of our distributed application: the execution time decreases but reaches a new asymptote
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Fig. 9. Details of the best execution times of the application

when using 4096 nodes and 16384 cores on our Blue Gene/P. We can not speedup more this
benchmark application with our current algorithms and implementation.
These experiments have allowed to identify the right deployment strategy (running one MPI
process per node and multithreading) and the right implementation (using all our serial opti-
mizations). We analyze our best performances in the next section.

5.5 Detailed best performances of the application and its subparts
Figure 9 shows the details of the best execution times (using multithreading and implement-
ing serial optimizations). First, we can observe the optimization part of our application scales
while the simulation part does not speedup and limits the global performances and scaling of
the application. So, our N-cube distribution strategy, our shadow region map and routing plan
computations, and our routing plan executions appear to be efficient and not to penalize the
speedup of the optimization part. But our distribution strategy of Monte carlo trajectories in
the simulation part does not speedup, and limits the performances of the entire application.
Second, we observe on figure 9 our distributed and parallel algorithm, serial optimizations
and portable implementation allow to run our complete application on a 7-stocks and 10-
state-variables in less than 1h on our PC-cluster with 256 nodes and 512 cores, and in less
than 30mn on our Blue Gene/P supercomputer used with 4096 nodes and 16384 cores. These
performances allow to plan some computations we could not run before.
Finally, considering some real and industrial use cases, with bigger data set, the optimization
part will increase more than the simulation part, and our implementation should scale both on
our PC cluster and our Blue Gene/P. Our current distributed and parallel implementation is
operational to process many of our real problems.

6. Conclusion and perspectives

Our parallel algorithm, serial optimizations and portable implementation allow to run our
complete application on a 7-stocks and 10-state-variables in less than 1h on our PC-cluster
with 256 nodes and 512 cores, and in less than 30mn on our Blue Gene/P supercomputer used
with 4096 nodes and 16384 cores. On both testbeds, the interest of multithreading and serial
optimizations have been measured and emphasized. Then, a detailed analysis has shown the
optimization part scales while the simulation part reaches its limits. These current performances
promise high performances for future industrial use cases where the optimization part will
increase (achieving more computations in one time step) and will become a more significant
part of the application.
However, for some high dimension problems, the communications during the simulation part
could become predominant. We plan to modify this part by reorganizing trajectories so that
trajectories with similar stocks levels are treated by the same processor. This will allow us to
identify and to bring back the shadow region only once per processor at each time step and to
decrease the number of communication needed.
Previously our paradigm has been successfully tested too on a smaller case for gaz storage
[Makassikis et al. (2008)]. Currently it is used to valuate power plants facing the market prices
and for different problems of asset liability management. In order to make easier the devel-
opment of new stochastic control applications, we aim to develop a generic library to rapidly
and efficiently distribute N dimensional cubes of data on large size architectures.
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1. Introduction

Methods for estimating, assessing and monitoring processes are illustrated using the software
package Mathematica7 (Wolfram (2009)). Graphical techniques that allow the dynamic assess-
ment of underlying distributional properties as well as capabilities are presented and illus-
trated. In addition, innovative procedures associated with compositional data in the L3 space
are examined and expanded to the L1 constrained space for two variables and the L2 space for
three variables. Several new conventions are proposed that attempt to provide insights into a
variety of processes, all with diagnostic tools useful for, but not limited to the manufacturing
sector. Several estimation and inferential techniques are presented with tools for determining
associated estimates and the resulting inferences. The manuscript is accompanied by a Mathe-
matica7 notebook best viewed using Mathematica7 or Mathematica7 Player. Mathematica7 Player
is a free download available at www.Wolfram.com/products/player/ that allows all features
of the notebook to be viewed.

2. Creating Probability Plots

Probability plots are graphical expressions used in examining data structures. Plots provide
insights into the suitability of a particular probability density function (pdf) in describing
the stochastic behavior of the data and estimates of the unknown parameters of the pdf.
Although generally very powerful, the inferences drawn from probability plots are subjective.

The underlying principle behind probability plots is simple and consistent. The order statis-
tics, with Y[i] denoting the ith largest observation, such that

Y[1] ≤ Y[2] ≤ ... ≤ Y[i] ≤ ... ≤ Y[n]

are plotted versus their expected values E(Y[i]). A linear relationship between the order
statistics and their expected values indicates the pdf used in determining the expected values
provides a reasonable representation of the behavior of the observed data. A non-linear plot
suggests that other pdf(s) may be more suitable in describing the stochastic structure of the
data.

The expected value of the ith order statistic is

E(Y[i]) = n!/[(i − 1)!(n − i)!]
∫ 1

0 Y[i]

[
F
(

y[i]
)](i−1) [

1 − F
(

y[i]
)](n−i)

dF(y[i])

8
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where f(y) denotes the pdf being considered, F(y) the associated cumulative distribution func-
tion (cdf) and n the size of the dataset under investigation. Because numerical solutions for
this equation can be difficult, the approximation E(Y[i]) = F−1[(i − c)/(n − 2c − 1)], where
F−1 denotes the inverse cdf and c a constant (0 ≤ c ≤ 1) is frequently used. Setting c=0.5 (for
discussion see Kimball (1960)) results in

E(Y[i]) = F−1[(i − 0.5)/n]

and is the approximation used here. Mathematica will be used to evaluate the E(Y[i]), create
the resulting probability plot, assist in assessing linearity and determine parameter estimates.

Mathematica’s Quantile functions are used to find the E(Y[i])’s for specific pdfs and create the
plot of Y[i] versus E(Y[i]). If the resulting plot is considered linear then the pdf used to deter-
mine the E(Y[i])’s can be used to describe the stochastic structure of the data. Assuming the
plot is deemed linear, estimates for the unknown parameters can be determined from the plot.

y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,
186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,
197, 197, 208};197, 197, 208};197, 197, 208};

pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]"

}
,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]
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For the normal family of density functions, f (y) = (2πσ2)−1/2exp(−(y − µ)2/(2σ2)),−∞ <
y < ∞, the standard pdf is identified in the routine by NormalDistribution[0,1] and the
data denoted by y. If the resulting normal probability plot is considered linear, then the
intersection of the plot with the E(Y[i]) = 0 asymptote provides an estimate for the location
parameter µ (in this case 187) and the slope provides an estimate for the scale parameter σ.
Using the plot’s intersection points with the vertical asymptotes ±1 and dividing by 2 results
in an estimate, in this case, of 10 for σ.

The addition of a least squares line and the resulting coefficient of determination (R2) provide
insights into the linearity of the probability plot. The least squares line provides visual
assistance in assessing the linearity, while R2 provides numerical assessment (as R2 increases,
the more linear the probability plot). The least squares line and R2 are included in subsequent
plots.

y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,
186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,
197, 197, 208};197, 197, 208};197, 197, 208};

pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
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where f(y) denotes the pdf being considered, F(y) the associated cumulative distribution func-
tion (cdf) and n the size of the dataset under investigation. Because numerical solutions for
this equation can be difficult, the approximation E(Y[i]) = F−1[(i − c)/(n − 2c − 1)], where
F−1 denotes the inverse cdf and c a constant (0 ≤ c ≤ 1) is frequently used. Setting c=0.5 (for
discussion see Kimball (1960)) results in

E(Y[i]) = F−1[(i − 0.5)/n]

and is the approximation used here. Mathematica will be used to evaluate the E(Y[i]), create
the resulting probability plot, assist in assessing linearity and determine parameter estimates.

Mathematica’s Quantile functions are used to find the E(Y[i])’s for specific pdfs and create the
plot of Y[i] versus E(Y[i]). If the resulting plot is considered linear then the pdf used to deter-
mine the E(Y[i])’s can be used to describe the stochastic structure of the data. Assuming the
plot is deemed linear, estimates for the unknown parameters can be determined from the plot.

y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,
186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,
197, 197, 208};197, 197, 208};197, 197, 208};

pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]"

}
,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]
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For the normal family of density functions, f (y) = (2πσ2)−1/2exp(−(y − µ)2/(2σ2)),−∞ <
y < ∞, the standard pdf is identified in the routine by NormalDistribution[0,1] and the
data denoted by y. If the resulting normal probability plot is considered linear, then the
intersection of the plot with the E(Y[i]) = 0 asymptote provides an estimate for the location
parameter µ (in this case 187) and the slope provides an estimate for the scale parameter σ.
Using the plot’s intersection points with the vertical asymptotes ±1 and dividing by 2 results
in an estimate, in this case, of 10 for σ.

The addition of a least squares line and the resulting coefficient of determination (R2) provide
insights into the linearity of the probability plot. The least squares line provides visual
assistance in assessing the linearity, while R2 provides numerical assessment (as R2 increases,
the more linear the probability plot). The least squares line and R2 are included in subsequent
plots.

y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,y = {163, 174, 174, 175, 176, 176, 179, 181, 181, 183, 183,
186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,186, 188, 188, 189, 190, 190, 191, 192, 192, 195, 195,
197, 197, 208};197, 197, 208};197, 197, 208};

pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];{x,−3.0, 3.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
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PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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If the resulting probability plot is not considered linear then alternative pdfs may be consid-
ered. Simply changing the pdf used in determining the E(Y[i])’s will allow different stochastic
structures to be examined. Replacing NormalDistribution[0,1] with ExponentialDistribu-
tion[1] in the routine determines the E(Y[i])’s for the pdf f(y) = (1/θ )exp[-y/θ ], 0<y<∞.
Altering the PlotRange and position of the asymptotes results in an exponential probability
plot.

pdfs = ExponentialDistribution[1];pdfs = ExponentialDistribution[1];pdfs = ExponentialDistribution[1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 4.0}, DisplayFunction->Identity];{x, 0, 4.0}, DisplayFunction->Identity];{x, 0, 4.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 4}, Automatic},PlotRange->{{0, 4}, Automatic},PlotRange->{{0, 4}, Automatic},

Frame->True,Frame->True,Frame->True,
GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],
Quantile[pdfs, .8]}, Automatic},Quantile[pdfs, .8]}, Automatic},Quantile[pdfs, .8]}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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In the case of the standard exponential distribution, if the resulting probability plot is con-
sidered linear then an estimate of θ can be determined as 1.504/(y.8 − y.1) (Shapiro (1980)),
where y.8 is the 80th percentile and y.1 is the 10th percentile of the distribution. Vertical
asymptotes have been included at the 10th and 80th percentiles to facilitate determining the
points of intersection with these asymptotes.

Creating a probability plot for the standard uniform distribution, f(y) = 1/θ, -θ/2 ≤ y ≤ θ/2
requires changing the routine to UniformDistribution[0, 1]. In addition the PlotRange is
altered to (0, 1) and asymptotes added at .25, .5, .75 . If the resulting uniform probability plot
is considered linear, then an estimate of θ is determined using the plot’s intersection with the
25th and 75th percentiles (i.e., y.25, y.75) as follows (y.75 − y.25)/.5.

pdfs = UniformDistribution[{0, 1}];pdfs = UniformDistribution[{0, 1}];pdfs = UniformDistribution[{0, 1}];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 1.0}, DisplayFunction->Identity];{x, 0, 1.0}, DisplayFunction->Identity];{x, 0, 1.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
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PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},PlotRange->{{−3, 3}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},GridLines->{{−1, 0, 1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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If the resulting probability plot is not considered linear then alternative pdfs may be consid-
ered. Simply changing the pdf used in determining the E(Y[i])’s will allow different stochastic
structures to be examined. Replacing NormalDistribution[0,1] with ExponentialDistribu-
tion[1] in the routine determines the E(Y[i])’s for the pdf f(y) = (1/θ )exp[-y/θ ], 0<y<∞.
Altering the PlotRange and position of the asymptotes results in an exponential probability
plot.

pdfs = ExponentialDistribution[1];pdfs = ExponentialDistribution[1];pdfs = ExponentialDistribution[1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 4.0}, DisplayFunction->Identity];{x, 0, 4.0}, DisplayFunction->Identity];{x, 0, 4.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 4}, Automatic},PlotRange->{{0, 4}, Automatic},PlotRange->{{0, 4}, Automatic},

Frame->True,Frame->True,Frame->True,
GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],
Quantile[pdfs, .8]}, Automatic},Quantile[pdfs, .8]}, Automatic},Quantile[pdfs, .8]}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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In the case of the standard exponential distribution, if the resulting probability plot is con-
sidered linear then an estimate of θ can be determined as 1.504/(y.8 − y.1) (Shapiro (1980)),
where y.8 is the 80th percentile and y.1 is the 10th percentile of the distribution. Vertical
asymptotes have been included at the 10th and 80th percentiles to facilitate determining the
points of intersection with these asymptotes.

Creating a probability plot for the standard uniform distribution, f(y) = 1/θ, -θ/2 ≤ y ≤ θ/2
requires changing the routine to UniformDistribution[0, 1]. In addition the PlotRange is
altered to (0, 1) and asymptotes added at .25, .5, .75 . If the resulting uniform probability plot
is considered linear, then an estimate of θ is determined using the plot’s intersection with the
25th and 75th percentiles (i.e., y.25, y.75) as follows (y.75 − y.25)/.5.

pdfs = UniformDistribution[{0, 1}];pdfs = UniformDistribution[{0, 1}];pdfs = UniformDistribution[{0, 1}];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 1.0}, DisplayFunction->Identity];{x, 0, 1.0}, DisplayFunction->Identity];{x, 0, 1.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
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probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=
ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 1}, Automatic},PlotRange->{{0, 1}, Automatic},PlotRange->{{0, 1}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{.25, .5, .75}, Automatic},GridLines->{{.25, .5, .75}, Automatic},GridLines->{{.25, .5, .75}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]
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Other pdfs can be examined by changing the distribution function specified in the routine.
Probability plots for the LogNormalDistribution[0,1] and WeibullDistribution[1, 3.25] distri-
butions are illustrated.

pdfs = LogNormalDistribution[0, 1];pdfs = LogNormalDistribution[0, 1];pdfs = LogNormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 8}, DisplayFunction->Identity];{x, 0, 8}, DisplayFunction->Identity];{x, 0, 8}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 8}, Automatic},PlotRange->{{0, 8}, Automatic},PlotRange->{{0, 8}, Automatic},

Frame->True,Frame->True,Frame->True,
GridLines->{{1}, Automatic},GridLines->{{1}, Automatic},GridLines->{{1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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pdfs = WeibullDistribution[1, 3.25];pdfs = WeibullDistribution[1, 3.25];pdfs = WeibullDistribution[1, 3.25];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−.5, 14}, DisplayFunction->Identity];{x,−.5, 14}, DisplayFunction->Identity];{x,−.5, 14}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{−.5, 14}, Automatic},PlotRange->{{−.5, 14}, Automatic},PlotRange->{{−.5, 14}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],
Quantile[pdfs, .9]}, Automatic},Quantile[pdfs, .9]}, Automatic},Quantile[pdfs, .9]}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]
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probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=
ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 1}, Automatic},PlotRange->{{0, 1}, Automatic},PlotRange->{{0, 1}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{.25, .5, .75}, Automatic},GridLines->{{.25, .5, .75}, Automatic},GridLines->{{.25, .5, .75}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]
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Other pdfs can be examined by changing the distribution function specified in the routine.
Probability plots for the LogNormalDistribution[0,1] and WeibullDistribution[1, 3.25] distri-
butions are illustrated.

pdfs = LogNormalDistribution[0, 1];pdfs = LogNormalDistribution[0, 1];pdfs = LogNormalDistribution[0, 1];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x, 0, 8}, DisplayFunction->Identity];{x, 0, 8}, DisplayFunction->Identity];{x, 0, 8}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{0, 8}, Automatic},PlotRange->{{0, 8}, Automatic},PlotRange->{{0, 8}, Automatic},

Frame->True,Frame->True,Frame->True,
GridLines->{{1}, Automatic},GridLines->{{1}, Automatic},GridLines->{{1}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,Show[probabilityPlot[yList, pdfList], linePlot,
Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]Prolog->AbsolutePointSize[4]]
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pdfs = WeibullDistribution[1, 3.25];pdfs = WeibullDistribution[1, 3.25];pdfs = WeibullDistribution[1, 3.25];
EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=

With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n],
Sort[y]}]]Sort[y]}]]Sort[y]}]]

linePlot:=linePlot:=linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−.5, 14}, DisplayFunction->Identity];{x,−.5, 14}, DisplayFunction->Identity];{x,−.5, 14}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,FrameLabel->

{
"E(Y[i]))","Y[i]","= R2"r2["RSquared"]

}
,

RotateLabel->False,RotateLabel->False,RotateLabel->False,
PlotRange->{{−.5, 14}, Automatic},PlotRange->{{−.5, 14}, Automatic},PlotRange->{{−.5, 14}, Automatic},
Frame->True,Frame->True,Frame->True,
GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],GridLines->{{Quantile[pdfs, .1],
Quantile[pdfs, .9]}, Automatic},Quantile[pdfs, .9]}, Automatic},Quantile[pdfs, .9]}, Automatic},
DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];

Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]Show[probabilityPlot[yList, pdfList], linePlot, Prolog->AbsolutePointSize[4]]
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Probability plots are generally restricted to the class of pdfs characterized by location and

scale parameters. The Weibull distribution of the form f (y) = αβyβ−1 exp
(
−αyβ

)
, α, β >

0, 0 ≤ y < ∞, is an exception in that α and β are considered scale and shape parameters. In
the previous example the values of the parameters were set at 1 and 3.25 respectively. A linear
relationship in a Weibull probability plot suggests that the Weibull distribution with specific
parameter values is appropriate in describing the stochastic nature of the data. However a
non-linear relationship does not necessarily rule out the Weibull family of distributions but
may be a reflection on the value(s) of the parameters chosen.

In the case of the Weibull distribution, taking the natural logarithm twice and plotting allows
the distribution (with scale and shape parameters) to be examined analogous to those distri-
butions characterized by location and scale parameters (Hahn and Shapiro (1967)). However,
in general, probability plots can assess only those distributions with no (or at least a con-
stant) shape parameter. Cheng and Spiring (1990) used rotation to illustrate techniques that
extend the use of probability plots to a class of pdfs characterized by location, scale and shape
parameters. Of particular interest were the Weibull and Tukey’s-λ distributions as both are
characterized by a location, scale and single shape parameter.

2.1 Creating & Interpreting 3-D Probability Surfaces
Dynamic graphic techniques have opened new frontiers in data display and analysis. With
a basic understanding of simple probability plots, subjective interpretation of distributional
assumptions can be made for families of distributions that contain a shape parameter. Strong
visual results are possible for relatively small sample sizes. In the examples that follow,
sample sizes of 25 provide good insights into the distributional properties of the observed
data.

Let Y denote a random variable with pdf f(y; µ, σ, λ) and cdf F(y; µ, σ, λ) where µ, σ and λ
denote the location, scale and shape parameters of the distribution respectively. Cheng and
Spiring (1990) defined the X-axis as E(Y[i]; λ), scaled the Z-axis arithmetically and defined it
as the order statistics Y[i] and let the Y axis denote values of the shape parameter λ, to create

a surface in 3 space. Examination of the resulting surface allowed inferences regarding the
stochastic nature of the data as well as estimates for location, scale and shape parameters of
the associated pdf.

The resulting surface is essentially an infinite number of traditional probability plots laid
side by side. These probability plots are ordered by the value of the shape parameter used in
calculating the E(Y[i])’s. Slicing the surface along planes parallel to the XZ plane at various
points along the Y axis, allows viewing of the “linearity” of the surface by considering the
resultant projection on the XZ plane. The projection is a univariate probability plot of the
data for a particular value of the shape parameter. The goal then is to slice the surface such
that the most linear projection on the XZ plane is found.

Rotation allows viewing of the created surface from several perspectives, enhancing the
ability to determine where the surface appears most linear and the associated value of the
shape parameter. From the most linear portion of the surface, estimates for the location, scale
and shape parameters can be determined. The 50th percentile (or midpoint of the X-axis
provides an estimate for the location, the value of the Y-axis where the surface is most linear
provides an estimate for the shape parameter and the slope of the surface (in the X-direction)
an estimate of the scale.

In practice the order statistics are plotted versus the expected value of the ordered statistics
for various values of the shape parameter. Then examining various views of the surface
allows one to determine the value of the shape parameter associated with the most linear
portion of the curve. From there estimates for the location and scale parameters are possible.

Animation permits a series of univariate probability plots (for specific values of the shape pa-
rameter) to be viewed in a sequential fashion, highlighting changes in the probability plots
resulting from changes in the shape parameter. This results in a quick and reliable method for
determining the most linear portion of the surface. The procedure creates a series of univari-
ate probability plots representing various values of the shape parameter. The observer must
determine which of the plots (if any) is most linear. If the surface provides no linear results,
then one concludes that the data do not arise from the family of distributions considered.

2.2 Example
Letting y denote the 25 simulated normal distribution results, E(Y[i]; λ) the expected value
of the associated order statistics and λ the shape parameter, a surface in three space can be
created using the following routine.

y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,
−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};
n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];
t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)

/lambda), lambda}], {j, 1, n}];/lambda), lambda}], {j, 1, n}];/lambda), lambda}], {j, 1, n}];
Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,

AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},
ViewPoint->{1, 0,−2}]]ViewPoint->{1, 0,−2}]]ViewPoint->{1, 0,−2}]]
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Probability plots are generally restricted to the class of pdfs characterized by location and

scale parameters. The Weibull distribution of the form f (y) = αβyβ−1 exp
(
−αyβ

)
, α, β >

0, 0 ≤ y < ∞, is an exception in that α and β are considered scale and shape parameters. In
the previous example the values of the parameters were set at 1 and 3.25 respectively. A linear
relationship in a Weibull probability plot suggests that the Weibull distribution with specific
parameter values is appropriate in describing the stochastic nature of the data. However a
non-linear relationship does not necessarily rule out the Weibull family of distributions but
may be a reflection on the value(s) of the parameters chosen.

In the case of the Weibull distribution, taking the natural logarithm twice and plotting allows
the distribution (with scale and shape parameters) to be examined analogous to those distri-
butions characterized by location and scale parameters (Hahn and Shapiro (1967)). However,
in general, probability plots can assess only those distributions with no (or at least a con-
stant) shape parameter. Cheng and Spiring (1990) used rotation to illustrate techniques that
extend the use of probability plots to a class of pdfs characterized by location, scale and shape
parameters. Of particular interest were the Weibull and Tukey’s-λ distributions as both are
characterized by a location, scale and single shape parameter.

2.1 Creating & Interpreting 3-D Probability Surfaces
Dynamic graphic techniques have opened new frontiers in data display and analysis. With
a basic understanding of simple probability plots, subjective interpretation of distributional
assumptions can be made for families of distributions that contain a shape parameter. Strong
visual results are possible for relatively small sample sizes. In the examples that follow,
sample sizes of 25 provide good insights into the distributional properties of the observed
data.

Let Y denote a random variable with pdf f(y; µ, σ, λ) and cdf F(y; µ, σ, λ) where µ, σ and λ
denote the location, scale and shape parameters of the distribution respectively. Cheng and
Spiring (1990) defined the X-axis as E(Y[i]; λ), scaled the Z-axis arithmetically and defined it
as the order statistics Y[i] and let the Y axis denote values of the shape parameter λ, to create

a surface in 3 space. Examination of the resulting surface allowed inferences regarding the
stochastic nature of the data as well as estimates for location, scale and shape parameters of
the associated pdf.

The resulting surface is essentially an infinite number of traditional probability plots laid
side by side. These probability plots are ordered by the value of the shape parameter used in
calculating the E(Y[i])’s. Slicing the surface along planes parallel to the XZ plane at various
points along the Y axis, allows viewing of the “linearity” of the surface by considering the
resultant projection on the XZ plane. The projection is a univariate probability plot of the
data for a particular value of the shape parameter. The goal then is to slice the surface such
that the most linear projection on the XZ plane is found.

Rotation allows viewing of the created surface from several perspectives, enhancing the
ability to determine where the surface appears most linear and the associated value of the
shape parameter. From the most linear portion of the surface, estimates for the location, scale
and shape parameters can be determined. The 50th percentile (or midpoint of the X-axis
provides an estimate for the location, the value of the Y-axis where the surface is most linear
provides an estimate for the shape parameter and the slope of the surface (in the X-direction)
an estimate of the scale.

In practice the order statistics are plotted versus the expected value of the ordered statistics
for various values of the shape parameter. Then examining various views of the surface
allows one to determine the value of the shape parameter associated with the most linear
portion of the curve. From there estimates for the location and scale parameters are possible.

Animation permits a series of univariate probability plots (for specific values of the shape pa-
rameter) to be viewed in a sequential fashion, highlighting changes in the probability plots
resulting from changes in the shape parameter. This results in a quick and reliable method for
determining the most linear portion of the surface. The procedure creates a series of univari-
ate probability plots representing various values of the shape parameter. The observer must
determine which of the plots (if any) is most linear. If the surface provides no linear results,
then one concludes that the data do not arise from the family of distributions considered.

2.2 Example
Letting y denote the 25 simulated normal distribution results, E(Y[i]; λ) the expected value
of the associated order statistics and λ the shape parameter, a surface in three space can be
created using the following routine.

y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,−2.054,
−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−.2025,−.1, 0};
n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];n = Count[y, _]; s = Min[y]; l = Max[y]; d = 4(l − s)/n; x = Sort[y];
t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)t[lambda_] = Table[Point[{x[[j]], ((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)

/lambda), lambda}], {j, 1, n}];/lambda), lambda}], {j, 1, n}];/lambda), lambda}], {j, 1, n}];
Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,Show[Graphics3D[Table[{t[lambda]}, {lambda, 0.05, 1, .05}], Axes->True,

AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},AxesLabel->{Y,"E(Y)"," lambda"}, BoxRatios->{2, 2, 4},
ViewPoint->{1, 0,−2}]]ViewPoint->{1, 0,−2}]]ViewPoint->{1, 0,−2}]]
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The pdf of the lambda distribution can be determined for specific values of λ, however it
is generally given as the pdf of Z under the transformation Z = ((Xλ) − (1 − X)λ))/λ
where X ∼ U[0, 1]. The transformation is also the percentile function for the dis-
tribution and results in the expected value of the order statistics being of the form
E(Y[i]; λ) = (((i − 0.5)/n)λ − (1 − (i − 0.5)/n)λ)/λ While rotation allows different views of
this surface, determining the most linear portion can still be difficult. Rather than rotating,
slicing and viewing the resulting plots, the following routine creates a series of probability
plots enhanced with a regression line and R2, as well as the associated value of λ that can be
viewed using the animation function of Mathematica.

y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,
−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,
−.2025,−.1, 0};−.2025,−.1, 0};−.2025,−.1, 0};
n = Length[y];n = Length[y];n = Length[y];
s = Min[y];s = Min[y];s = Min[y];
t = Max[y];t = Max[y];t = Max[y];
d = 4(t − s)/n;d = 4(t − s)/n;d = 4(t − s)/n;

l:=Text[Style[lambda "= λ"], {−3, t}];l:=Text[Style[lambda "= λ"], {−3, t}];l:=Text[Style[lambda "= λ"], {−3, t}];
pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);
EYpairs[y_, pdfs_]:=With[{n = Length[y]},EYpairs[y_, pdfs_]:=With[{n = Length[y]},EYpairs[y_, pdfs_]:=With[{n = Length[y]},

Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];

linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−4.0, 4.0}, DisplayFunction->Identity];{x,−4.0, 4.0}, DisplayFunction->Identity];{x,−4.0, 4.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,

PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,
GridLines− > {{−1, 0, 1},Automatic},GridLines− > {{−1, 0, 1},Automatic},GridLines− > {{−1, 0, 1},Automatic},

DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];
rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;

SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,
Graphics[l], Graphics[rr],Graphics[l], Graphics[rr],Graphics[l], Graphics[rr],
DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],
Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],
AppearanceElements → All]AppearanceElements → All]AppearanceElements → All]



    

  

  

    















The resulting series of plots represent the projections associated with slices of the surface
taken at λ=0.05(.05)1.0. Using the animation keys to sequentially examine the plots, it quickly
becomes apparent that the most linear probability plot occurs at λ=0.15. The R2 value
supports the visual assessment reaching its maximum of 0.999994 at λ=0.15. The asymptote
E(Y[i]) = 0 suggests an estimated mean of 0, while the slope of the plot suggests an estimated
standard deviation of (0.8 - (-0.8))/2 = 0.8. This example highlights the relationship that exists
between the normal and the symmetric lambda families. The symmetric lambda distribution
with λ=0.14 is used as an approximation to the normal distribution.

The pdf of the standard Weibull distribution is of the form f (y) = λyλ−1e−yλ
, 0 < y < ∞, and

the expected value of the order statistics can be approximated by
(
− ln

[
2n+1−2i

2n

]) 1
λ . The

subsequent routine creates a series of univariate probability plots that permits examination
of the Weibull family of distributions for values of the shape parameter λ=1(.25)5. Again the
goal is to find the most linear portion of the surface or most linear slice of the surface for the
values of the shape parameter considered. In those cases where the “most” linear probability
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The pdf of the lambda distribution can be determined for specific values of λ, however it
is generally given as the pdf of Z under the transformation Z = ((Xλ) − (1 − X)λ))/λ
where X ∼ U[0, 1]. The transformation is also the percentile function for the dis-
tribution and results in the expected value of the order statistics being of the form
E(Y[i]; λ) = (((i − 0.5)/n)λ − (1 − (i − 0.5)/n)λ)/λ While rotation allows different views of
this surface, determining the most linear portion can still be difficult. Rather than rotating,
slicing and viewing the resulting plots, the following routine creates a series of probability
plots enhanced with a regression line and R2, as well as the associated value of λ that can be
viewed using the animation function of Mathematica.

y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,y = {.1, .2025, .3045, .4124, .523, .6433, .7723, .9154, 1.08, 1.282, 1.555, 2.054,
−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,−2.054,−1.555,−1.282,−1.08,−.9154,−.7723,−.6433,−.523,−.4124,−.3045,
−.2025,−.1, 0};−.2025,−.1, 0};−.2025,−.1, 0};
n = Length[y];n = Length[y];n = Length[y];
s = Min[y];s = Min[y];s = Min[y];
t = Max[y];t = Max[y];t = Max[y];
d = 4(t − s)/n;d = 4(t − s)/n;d = 4(t − s)/n;

l:=Text[Style[lambda "= λ"], {−3, t}];l:=Text[Style[lambda "= λ"], {−3, t}];l:=Text[Style[lambda "= λ"], {−3, t}];
pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);pdfs[j_]:=((((j − .5)/n)∧lambda − (1 − ((j − .5)/n))∧lambda)/lambda);
EYpairs[y_, pdfs_]:=With[{n = Length[y]},EYpairs[y_, pdfs_]:=With[{n = Length[y]},EYpairs[y_, pdfs_]:=With[{n = Length[y]},

Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,Transpose[{Map[pdfs[#]&, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}], Sort[y]}]];

linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,−4.0, 4.0}, DisplayFunction->Identity];{x,−4.0, 4.0}, DisplayFunction->Identity];{x,−4.0, 4.0}, DisplayFunction->Identity];

r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],ListPlot[EYpairs[y, pdfs],

FrameLabel->
{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel->False,

PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,PlotRange->{{−4, 4}, {s − d, t + d}}, Frame->True,
GridLines− > {{−1, 0, 1},Automatic},GridLines− > {{−1, 0, 1},Automatic},GridLines− > {{−1, 0, 1},Automatic},

DisplayFunction->Identity];DisplayFunction->Identity];DisplayFunction->Identity];
rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {3,−t}

]
;

SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,SlideView[Table[Show[probabilityPlot[yList, pdfList], linePlot,
Graphics[l], Graphics[rr],Graphics[l], Graphics[rr],Graphics[l], Graphics[rr],
DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction->$DisplayFunction, ImageSize → Scaled[0.9],
Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],Prolog->AbsolutePointSize[4]], {lambda, 0.05, 1.00, 0.05}],
AppearanceElements → All]AppearanceElements → All]AppearanceElements → All]



    

  

  

    















The resulting series of plots represent the projections associated with slices of the surface
taken at λ=0.05(.05)1.0. Using the animation keys to sequentially examine the plots, it quickly
becomes apparent that the most linear probability plot occurs at λ=0.15. The R2 value
supports the visual assessment reaching its maximum of 0.999994 at λ=0.15. The asymptote
E(Y[i]) = 0 suggests an estimated mean of 0, while the slope of the plot suggests an estimated
standard deviation of (0.8 - (-0.8))/2 = 0.8. This example highlights the relationship that exists
between the normal and the symmetric lambda families. The symmetric lambda distribution
with λ=0.14 is used as an approximation to the normal distribution.

The pdf of the standard Weibull distribution is of the form f (y) = λyλ−1e−yλ
, 0 < y < ∞, and

the expected value of the order statistics can be approximated by
(
− ln

[
2n+1−2i

2n

]) 1
λ . The

subsequent routine creates a series of univariate probability plots that permits examination
of the Weibull family of distributions for values of the shape parameter λ=1(.25)5. Again the
goal is to find the most linear portion of the surface or most linear slice of the surface for the
values of the shape parameter considered. In those cases where the “most” linear probability
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plot is deemed non-linear then either the Weibull family is inappropriate and/or the value of
the shape parameter has not been included.

A Weibull distribution with shape parameter of approximately 3.25 is often cited as a
reasonable approximation to the normal distribution. Again using the animation keys to
sequentially examine the plots, it quickly becomes apparent that the most linear plot of the
series visually appears to occur at λ=3.25 or λ=3.50 while the R2 value suggests that the most
linear plot occurs at λ=3.50.

y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,
−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,
−0.3045,−0.2025,−0.1, 0};−0.3045,−0.2025,−0.1, 0};−0.3045,−0.2025,−0.1, 0};
n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)

n ;n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)
n ;n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)
n ;

l:=Text[Style[lambda"= λ"], {"0.5", t}];l:=Text[Style[lambda"= λ"], {"0.5", t}];l:=Text[Style[lambda"= λ"], {"0.5", t}];

pdfs[j_]:=
(
−Log

[
2n+1−2j

2n

])1/lambda
pdfs[j_]:=

(
−Log

[
2n+1−2j

2n

])1/lambda
pdfs[j_]:=

(
−Log

[
2n+1−2j

2n

])1/lambda

EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=
With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[Transpose[Transpose[
{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25}, Sort[y]}]]21, 22, 23, 24, 25}, Sort[y]}]]21, 22, 23, 24, 25}, Sort[y]}]]
linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];
r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot
[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,ListPlot

[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,ListPlot

[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,

PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];
rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;

SlideView[SlideView[SlideView[
Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],
DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],
Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]



    

  

  

    















3. Process Capability Paper

Chan, Cheng and Spiring (1988) proposed a graphical technique for examining process
capability by combining the concepts that process capability indices assume the underlying
distribution is normal and the graphical assessment of normality derived from normal prob-
ability plots. The result was Process Capability Paper. An example where 23 observations
were gathered from a process with USL=200, T=180 and LSL=160 is illustrated below.

Mathematica can be used to a) evaluate the E(Y[i])
′s, b) create the resulting Process Capability

Paper plot and c) assist in assessing linearity and determining parameter estimates. The
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plot is deemed non-linear then either the Weibull family is inappropriate and/or the value of
the shape parameter has not been included.

A Weibull distribution with shape parameter of approximately 3.25 is often cited as a
reasonable approximation to the normal distribution. Again using the animation keys to
sequentially examine the plots, it quickly becomes apparent that the most linear plot of the
series visually appears to occur at λ=3.25 or λ=3.50 while the R2 value suggests that the most
linear plot occurs at λ=3.50.

y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,y = {0.1, 0.2025, 0.3045, 0.4124, 0.523, 0.6433, 0.7723, 0.9154, 1.08, 1.282, 1.555, 2.054,
−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,−2.054,−1.555,−1.282,−1.08,−0.9154,−0.7723,−0.6433,−0.523,−0.4124,
−0.3045,−0.2025,−0.1, 0};−0.3045,−0.2025,−0.1, 0};−0.3045,−0.2025,−0.1, 0};
n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)

n ;n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)
n ;n = Length[y]; s = Min[y]; t = Max[y]; d = 4(t−s)
n ;

l:=Text[Style[lambda"= λ"], {"0.5", t}];l:=Text[Style[lambda"= λ"], {"0.5", t}];l:=Text[Style[lambda"= λ"], {"0.5", t}];

pdfs[j_]:=
(
−Log

[
2n+1−2j

2n

])1/lambda
pdfs[j_]:=

(
−Log

[
2n+1−2j

2n

])1/lambda
pdfs[j_]:=

(
−Log

[
2n+1−2j

2n

])1/lambda

EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=EYpairs[y_, pdfs_]:=
With[{n = Length[y]},With[{n = Length[y]},With[{n = Length[y]},
Transpose[Transpose[Transpose[
{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,{(pdfs[#1]&)/@{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25}, Sort[y]}]]21, 22, 23, 24, 25}, Sort[y]}]]21, 22, 23, 24, 25}, Sort[y]}]]
linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];linePlot:=Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]], {x, 0,"4."}, DisplayFunction → Identity];
r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];r2:=LinearModelFit[EYpairs[y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=probabilityPlot[yList_, pdfList_]:=

ListPlot
[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,ListPlot

[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,ListPlot

[
EYpairs[y, pdfs], FrameLabel->

{
"E(Y[i]))","Y[i]"

}
, RotateLabel → False,

PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];PlotRange → {{0, 4}, {s − d, t + d}}, Frame → True, DisplayFunction → Identity];
rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;rr:=Text

[
Style

[
"= R2"r2["RSquared"]

]
, {2.5,−2}

]
;

SlideView[SlideView[SlideView[
Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],Table[Show[probabilityPlot[yList, pdfList], linePlot, Graphics[rr], Graphics[l],
DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],DisplayFunction → $DisplayFunction, ImageSize → Scaled[0.9],
Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]Prolog → AbsolutePointSize[4]], {lambda,"1.","5.","0.25"}], AppearanceElements → All]



    

  

  

    















3. Process Capability Paper

Chan, Cheng and Spiring (1988) proposed a graphical technique for examining process
capability by combining the concepts that process capability indices assume the underlying
distribution is normal and the graphical assessment of normality derived from normal prob-
ability plots. The result was Process Capability Paper. An example where 23 observations
were gathered from a process with USL=200, T=180 and LSL=160 is illustrated below.

Mathematica can be used to a) evaluate the E(Y[i])
′s, b) create the resulting Process Capability

Paper plot and c) assist in assessing linearity and determining parameter estimates. The
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addition of a least squares line and the resulting coefficient of determination (R2) provide
insights into linearity of the probability plot. The least squares line provides visual assistance
in assessing the linearity, while R2 provides numerical assessment. The least squares line
and R2 (i.e., RSquared) are included in subsequent plots. If the resulting capability plot
is not considered linear then the various process capability indices may not provide valid
indications of process capability.

Mathematica can be used to create the basic format for the Process Capability Paper by
inputting the basic information from the process including the study results (data), upper
specification limit (USL), lower specification limit (LSL), Target and Target Cpm (TCpm). The
following Mathematica code will create an updated version of the Process Capability Paper.

data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,
191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};

USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;
(* code to create plots *)(* code to create plots *)(* code to create plots *)
m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];
cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));
sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);
mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);
pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=
With[{n = Length[data]},With[{n = Length[data]},With[{n = Length[data]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]
linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],
{x,−3.0, 3.0}];{x,−3.0, 3.0}];{x,−3.0, 3.0}];
r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]
probabilityPlot[dataList_, pdfList_]:=probabilityPlot[dataList_, pdfList_]:=probabilityPlot[dataList_, pdfList_]:=
ListPlot[EYpairs[data, pdfs],ListPlot[EYpairs[data, pdfs],ListPlot[EYpairs[data, pdfs],

FrameLabel →
{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,

RotateLabel → False,RotateLabel → False,RotateLabel → False,
PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,
GridLines → {{−1, 0, 1}, {Target}}];GridLines → {{−1, 0, 1}, {Target}}];GridLines → {{−1, 0, 1}, {Target}}];
Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],
Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],
Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],
Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],
Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],
Dashing[{.01, .05, .05, .05}],Dashing[{.01, .05, .05, .05}],Dashing[{.01, .05, .05, .05}],
Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],
probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]
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The resulting plot represents 23 observations from a process with a target (T) of 185, upper
specification limits (USL) of 200, lower specification limit (LSL) of 160. A Target Cpm (TCpm)
value of 1 is used to illustrate some of the features included in this enhanced version of Process
Capability paper. The enhanced Process Capability paper continues to be a normal probabil-
ity plot with the y-axis representing the value of the order statistics (Y[i]) and the x-axis the
expected value of the order statistics (E(Y[i])) assuming the underlying distribution is normal.

The resulting plot includes T, USL and LSL with the areas beyond the specifiation limits high-
lighted in red. The difference between the process target (T) and the process average (µ) is
indicated by the green box. An ordinary least squares (OLS) line (solid line) and the R2 value
(top of the plot frame) are included in order to facilitate the assessment of normality through
the linearity of the points and their strength of association. The value of Cpm associated with
the data is included along with the OLS line (dashed) representing a process that is on target
with a Cpm = 1.

3.1 Process Capability Paper Enhancements
The Mathematica-produced Process Capbility Paper has several enhancements. The output
includes the basic features of Process Capability Paper including a normal probability plot of
the data including asymptotes at -1, 0 and 1; an OLS line and R2 in an attempt to enhance the
"linearity" assessment of the probability plot; a dashed line reflecting the the slope of the line
associated with the target Cpm; identified regions beyond the specification limits highlighted
in red; and a graphics box indicating the distance the mean is from the target highlighted in
green. A second example is illustrated below.

data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,
0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",
0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};
USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;
m:=Mean[data];m:=Mean[data];m:=Mean[data];
s:=StandardDeviation[data];s:=StandardDeviation[data];s:=StandardDeviation[data];

cpm:= Min[{USL−Target},{Target−LSL}]
3
√

s2+(m−Target)2
cpm:= Min[{USL−Target},{Target−LSL}]

3
√

s2+(m−Target)2
cpm:= Min[{USL−Target},{Target−LSL}]

3
√

s2+(m−Target)2
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addition of a least squares line and the resulting coefficient of determination (R2) provide
insights into linearity of the probability plot. The least squares line provides visual assistance
in assessing the linearity, while R2 provides numerical assessment. The least squares line
and R2 (i.e., RSquared) are included in subsequent plots. If the resulting capability plot
is not considered linear then the various process capability indices may not provide valid
indications of process capability.

Mathematica can be used to create the basic format for the Process Capability Paper by
inputting the basic information from the process including the study results (data), upper
specification limit (USL), lower specification limit (LSL), Target and Target Cpm (TCpm). The
following Mathematica code will create an updated version of the Process Capability Paper.

data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,data = {173, 174, 175, 176, 177, 179, 181, 181, 183, 183, 186, 188, 188, 189, 190, 190,
191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};191, 192, 192, 195, 195, 197, 197};

USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;USL:=200; LSL:=160; Target:=185; TCpm:=1.00;
(* code to create plots *)(* code to create plots *)(* code to create plots *)
m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];m:=Mean[data]; s:=StandardDeviation[data];
cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));cpm:=Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s∧2 + (m − Target)∧2)∧(1/2));
sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);sig:=(((Min[{USL − Target}, {Target − LSL}])∧2)/(9 ∗ (TCpm∧2)))∧(1/2);
mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);mut:=(m − Target);
pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=
With[{n = Length[data]},With[{n = Length[data]},With[{n = Length[data]},
Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]Transpose[{Map[Quantile[pdfs, #]&, (Range[n]− 0.5)/n], Sort[data]}]]
linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],
{x,−3.0, 3.0}];{x,−3.0, 3.0}];{x,−3.0, 3.0}];
r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]
probabilityPlot[dataList_, pdfList_]:=probabilityPlot[dataList_, pdfList_]:=probabilityPlot[dataList_, pdfList_]:=
ListPlot[EYpairs[data, pdfs],ListPlot[EYpairs[data, pdfs],ListPlot[EYpairs[data, pdfs],

FrameLabel →
{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,

RotateLabel → False,RotateLabel → False,RotateLabel → False,
PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,PlotRange → {{−3.0, 3.0}, {LSL − 1.5 ∗ s, USL + 1.5 ∗ s}}, Frame → True,
GridLines → {{−1, 0, 1}, {Target}}];GridLines → {{−1, 0, 1}, {Target}}];GridLines → {{−1, 0, 1}, {Target}}];
Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],
Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor[.2, .3, 0], Rectangle[{−3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − 1.5 ∗ s}, {3, LSL}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + 1.5 ∗ s}]}],
Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],Graphics[Text["USL", {−2.5, USL}]], Graphics[Text["LSL", {−2.5, LSL}]],
Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=T.Cpm"N[TCpm], {2.5, USL}]}],
Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness[1.5],
Dashing[{.01, .05, .05, .05}],Dashing[{.01, .05, .05, .05}],Dashing[{.01, .05, .05, .05}],
Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],Line[{{−3, Target − 3 ∗ sig}, {3, Target + 3 ∗ sig}}]}],
probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]probabilityPlot[dataList, pdfList], linePlot, ImageSize → Scaled[1]]
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The resulting plot represents 23 observations from a process with a target (T) of 185, upper
specification limits (USL) of 200, lower specification limit (LSL) of 160. A Target Cpm (TCpm)
value of 1 is used to illustrate some of the features included in this enhanced version of Process
Capability paper. The enhanced Process Capability paper continues to be a normal probabil-
ity plot with the y-axis representing the value of the order statistics (Y[i]) and the x-axis the
expected value of the order statistics (E(Y[i])) assuming the underlying distribution is normal.

The resulting plot includes T, USL and LSL with the areas beyond the specifiation limits high-
lighted in red. The difference between the process target (T) and the process average (µ) is
indicated by the green box. An ordinary least squares (OLS) line (solid line) and the R2 value
(top of the plot frame) are included in order to facilitate the assessment of normality through
the linearity of the points and their strength of association. The value of Cpm associated with
the data is included along with the OLS line (dashed) representing a process that is on target
with a Cpm = 1.

3.1 Process Capability Paper Enhancements
The Mathematica-produced Process Capbility Paper has several enhancements. The output
includes the basic features of Process Capability Paper including a normal probability plot of
the data including asymptotes at -1, 0 and 1; an OLS line and R2 in an attempt to enhance the
"linearity" assessment of the probability plot; a dashed line reflecting the the slope of the line
associated with the target Cpm; identified regions beyond the specification limits highlighted
in red; and a graphics box indicating the distance the mean is from the target highlighted in
green. A second example is illustrated below.

data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,data = {0.101, 0.105, 0.099, 0.098, 0.097, 0.101, 0.098, 0.095,
0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",0.099, 0.103, 0.096, 0.104, 0.096, 0.098, 0.097, 0.096,"0.097",
0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};0.099, 0.098, 0.097, 0.095, 0.096, 0.1, 0.097, 0.097};
USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;USL:="0.111"; LSL:="0.089"; Target:="0.1"; TCpm:=2;
m:=Mean[data];m:=Mean[data];m:=Mean[data];
s:=StandardDeviation[data];s:=StandardDeviation[data];s:=StandardDeviation[data];

cpm:= Min[{USL−Target},{Target−LSL}]
3
√

s2+(m−Target)2
cpm:= Min[{USL−Target},{Target−LSL}]

3
√

s2+(m−Target)2
cpm:= Min[{USL−Target},{Target−LSL}]

3
√

s2+(m−Target)2
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sig:=
√

Min[{USL−Target},{Target−LSL}]2
9TCpm2sig:=

√
Min[{USL−Target},{Target−LSL}]2

9TCpm2sig:=
√

Min[{USL−Target},{Target−LSL}]2
9TCpm2

mut:=m − Targetmut:=m − Targetmut:=m − Target
pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=
With[{n = Length[data]},With[{n = Length[data]},With[{n = Length[data]},

Transpose
[{

(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"
n , Sort[data]

}]]
Transpose

[{
(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"

n , Sort[data]
}]]

Transpose
[{

(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"
n , Sort[data]

}]]

linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],
{x,−"4.","4."}, DisplayFunction → Identity];{x,−"4.","4."}, DisplayFunction → Identity];{x,−"4.","4."}, DisplayFunction → Identity];
r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]
probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],

FrameLabel →
{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,

RotateLabel → False,RotateLabel → False,RotateLabel → False,
PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,
Axes → None, GridLines → {{−1, 0, 1}, {Target}},Axes → None, GridLines → {{−1, 0, 1}, {Target}},Axes → None, GridLines → {{−1, 0, 1}, {Target}},
DisplayFunction → Identity];DisplayFunction → Identity];DisplayFunction → Identity];
Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],
Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],
Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],
Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],
Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],
Dashing[{"0.01","0.05","0.05","0.05"}],Dashing[{"0.01","0.05","0.05","0.05"}],Dashing[{"0.01","0.05","0.05","0.05"}],
Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],
probabilityPlot[dataList, pdfList], linePlot,probabilityPlot[dataList, pdfList], linePlot,probabilityPlot[dataList, pdfList], linePlot,
DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],
ImageSize → Scaled[1]]ImageSize → Scaled[1]]ImageSize → Scaled[1]]
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3.2 Additional Views of Process Capability
Mathematica can be used to enhance the inferences from the Enhanced Process Capability Pa-
per by examining departures from the target and incorporating target Capability values with
their associated curves.

Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],
Circle

[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),
{0, 180◦}]}],{0, 180◦}]}],{0, 180◦}]}],
Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],
Circle

[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),
{0, 180◦}]}], Frame → True,{0, 180◦}]}], Frame → True,{0, 180◦}]}], Frame → True,
PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},
FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,
Prolog → {AbsolutePointSize[6], Point[{mut, s}],Prolog → {AbsolutePointSize[6], Point[{mut, s}],Prolog → {AbsolutePointSize[6], Point[{mut, s}],
Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},
ImageSize → Scaled[1]]ImageSize → Scaled[1]]ImageSize → Scaled[1]]
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This plot illustrates the various combinations of a process’s variability and off-targetness
associated with a particular value of Cpm. All points lying on the blue (Target Cpm) semi-circle
represent combinations of off-tagetness (µ - T) and variability (σ) that result in the Target
Cpm= 2. The black semi-circle represents all combinations of off-targetness and variability
that have a Cpm value equivalent to that exhibited by the process under investigation. The
point represents the observed off-targetness and variability combination associated with the
process.

Animation permits a series of plots to be viewed in a sequential fashion resulting in a reliable
method for examining a) different views of a single sample or b) multiple samples from
comparable processes. The following creates an animated view of multiple samples from a
single process. The plot includes the observed Cpm, min Cpm (red semicircle) and Target Cpm
for five samples of size five taken from a process.

mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;
data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};
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sig:=
√

Min[{USL−Target},{Target−LSL}]2
9TCpm2sig:=

√
Min[{USL−Target},{Target−LSL}]2

9TCpm2sig:=
√

Min[{USL−Target},{Target−LSL}]2
9TCpm2

mut:=m − Targetmut:=m − Targetmut:=m − Target
pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];pdfs = NormalDistribution[0, 1];
EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=EYpairs[data_, pdfs_]:=
With[{n = Length[data]},With[{n = Length[data]},With[{n = Length[data]},

Transpose
[{

(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"
n , Sort[data]

}]]
Transpose

[{
(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"

n , Sort[data]
}]]

Transpose
[{

(Quantile[pdfs, #1]&)/@ Range[n]−"0.5"
n , Sort[data]

}]]

linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],linePlot:=Plot[Evaluate[Fit[EYpairs[data, pdfs], {1, x}, x]],
{x,−"4.","4."}, DisplayFunction → Identity];{x,−"4.","4."}, DisplayFunction → Identity];{x,−"4.","4."}, DisplayFunction → Identity];
r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]r2:=LinearModelFit[EYpairs[data, pdfs], {1, x}, x]
probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],probabilityPlot[dataList_, pdfList_]:=ListPlot[EYpairs[data, pdfs],

FrameLabel →
{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,FrameLabel →

{
"E(Y[i])","Y[i]", r2["RSquared"]"=","=Cpm"N[cpm]

}
,

RotateLabel → False,RotateLabel → False,RotateLabel → False,
PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,PlotRange → {{−"3.","3."}, {LSL − "1.5"s, USL + "1.5"s}}, Frame → True,
Axes → None, GridLines → {{−1, 0, 1}, {Target}},Axes → None, GridLines → {{−1, 0, 1}, {Target}},Axes → None, GridLines → {{−1, 0, 1}, {Target}},
DisplayFunction → Identity];DisplayFunction → Identity];DisplayFunction → Identity];
Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],Show[probabilityPlot[dataList, pdfList],
Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],Graphics[{RGBColor["0.2","0.3", 0], Rectangle[{−3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, LSL − "1.5"s}, {3, LSL}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],Graphics[{RGBColor[1, 0, 0], Rectangle[{−3, USL}, {3, USL + "1.5"s}]}],
Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],Graphics[Text["USL", {−"2.5", USL}]], Graphics[Text["LSL", {−"2.5", LSL}]],
Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],Graphics[{RGBColor[0, 0, 1], Text["=Target Cpm"N[TCpm], {"2.", USL}]}],
Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],Graphics[{RGBColor[0, 0, 1], AbsoluteThickness["1.5"],
Dashing[{"0.01","0.05","0.05","0.05"}],Dashing[{"0.01","0.05","0.05","0.05"}],Dashing[{"0.01","0.05","0.05","0.05"}],
Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],Line[{{−3, Target − 3sig}, {3, Target + 3sig}}]}],
probabilityPlot[dataList, pdfList], linePlot,probabilityPlot[dataList, pdfList], linePlot,probabilityPlot[dataList, pdfList], linePlot,
DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],DisplayFunction → $DisplayFunction, Prolog → AbsolutePointSize[8],
ImageSize → Scaled[1]]ImageSize → Scaled[1]]ImageSize → Scaled[1]]
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3.2 Additional Views of Process Capability
Mathematica can be used to enhance the inferences from the Enhanced Process Capability Pa-
per by examining departures from the target and incorporating target Capability values with
their associated curves.

Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],Show[Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {0, sig}],
Circle

[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗TCpm (Min[{USL − Target}, {Target − LSL}]),
{0, 180◦}]}],{0, 180◦}]}],{0, 180◦}]}],
Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],Graphics[{Black, Text["Observed Cpm", {Abs[mut], s}],
Circle

[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),Circle
[
{0, 0}, 1

3∗cpm (Min[{USL − Target}, {Target − LSL}]),
{0, 180◦}]}], Frame → True,{0, 180◦}]}], Frame → True,{0, 180◦}]}], Frame → True,
PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},PlotRange → {{−3 ∗ Abs[mut], 3 ∗ Abs[mut]}, {0, 1.5 ∗ s}},
FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,FrameLabel → {"(µ-T)","σ"}, RotateLabel → False,
Prolog → {AbsolutePointSize[6], Point[{mut, s}],Prolog → {AbsolutePointSize[6], Point[{mut, s}],Prolog → {AbsolutePointSize[6], Point[{mut, s}],
Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},Line[{{0, 0}, {0, (1/(3 ∗ cpm))(Min[{USL − Target}, {Target − LSL}])}}]},
ImageSize → Scaled[1]]ImageSize → Scaled[1]]ImageSize → Scaled[1]]
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This plot illustrates the various combinations of a process’s variability and off-targetness
associated with a particular value of Cpm. All points lying on the blue (Target Cpm) semi-circle
represent combinations of off-tagetness (µ - T) and variability (σ) that result in the Target
Cpm= 2. The black semi-circle represents all combinations of off-targetness and variability
that have a Cpm value equivalent to that exhibited by the process under investigation. The
point represents the observed off-targetness and variability combination associated with the
process.

Animation permits a series of plots to be viewed in a sequential fashion resulting in a reliable
method for examining a) different views of a single sample or b) multiple samples from
comparable processes. The following creates an animated view of multiple samples from a
single process. The plot includes the observed Cpm, min Cpm (red semicircle) and Target Cpm
for five samples of size five taken from a process.

mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;
data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};data[1] = {0.101, 0.105, 0.099, 0.098, 0.097};
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data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};
data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};
data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};
data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};
Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,
cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),
n[i] = Length[data[i]]}, {i, groups}];n[i] = Length[data[i]]}, {i, groups}];n[i] = Length[data[i]]}, {i, groups}];
maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];
maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];
SlideView[SlideView[SlideView[
Table[Table[Table[
Show[Show[Show[
Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),
{0, 180◦}]], Frame → True,{0, 180◦}]], Frame → True,{0, 180◦}]], Frame → True,
Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],
Line[{{0, 0}, {0, 1.5 ∗ maxs}}],Line[{{0, 0}, {0, 1.5 ∗ maxs}}],Line[{{0, 0}, {0, 1.5 ∗ maxs}}],
{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],
Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),
{0, 180◦}]}, {RGBColor[0, 0, 1],{0, 180◦}]}, {RGBColor[0, 0, 1],{0, 180◦}]}, {RGBColor[0, 0, 1],
Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],
Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),
{0, 180◦}]}},{0, 180◦}]}},{0, 180◦}]}},
PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},
FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},
RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],
AppearanceElements → All]AppearanceElements → All]AppearanceElements → All]
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A stationary plot of the observed Cpm, min Cpm and Target Cpm for five samples of size five
taken from a process can be created using the following code.

Show[Show[Show[
Graphics[Graphics[Graphics[
Circle[{0, 0},Circle[{0, 0},Circle[{0, 0},
(((Min[{USL − Target}, {Target − LSL}]))/(((Min[{USL − Target}, {Target − LSL}]))/(((Min[{USL − Target}, {Target − LSL}]))/
(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],
Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],
Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],
Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],
Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],

Frame → True,Frame → True,Frame → True,
FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},

"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},
"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},
PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,
Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],
Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],
Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]
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4. Compositional Data

Compositional data refers to the group of constrained space metrics that take the form

X1 + X2 + X3 + X4 + ... + Xd = a

where 0 ≤ Xi ≤ a for all i and each Xi represents a proportion of the total composition
a. Setting d=2 results in all possible combinations of R+2 (shaded region in Figure 4.1) that
satisfy the equation X1 + X2 = a. Graphically these combinations represent a line in R+2 and
referred to as the L1 space.
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data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};data[2] = {0.101, 0.098, 0.095, 0.099, 0.103};
data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};data[3] = {0.096, 0.104, 0.096, 0.098, 0.097};
data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};data[4] = {0.096, 0.097, 0.099, 0.098, 0.097};
data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};data[5] = {0.095, 0.096, 0.1, 0.097, 0.097};
Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,Do[{mu[i] = Mean[data[i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i]− Target,
cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),cpm[i] = (Min[{USL − Target}, {Target − LSL}]/(3 ∗ (s[i]∧2 + (mu[i]− Target)∧2)∧(1/2))),
n[i] = Length[data[i]]}, {i, groups}];n[i] = Length[data[i]]}, {i, groups}];n[i] = Length[data[i]]}, {i, groups}];
maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];maxmut:=Max[{Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]]}];
maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];maxs:=Max[{s[1], s[2], s[3], s[4], s[5]}];
SlideView[SlideView[SlideView[
Table[Table[Table[
Show[Show[Show[
Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),Graphics[Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3cpm[j]),
{0, 180◦}]], Frame → True,{0, 180◦}]], Frame → True,{0, 180◦}]], Frame → True,
Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],Prolog → {AbsolutePointSize[6], Point[{mut[j], s[j]}],
Line[{{0, 0}, {0, 1.5 ∗ maxs}}],Line[{{0, 0}, {0, 1.5 ∗ maxs}}],Line[{{0, 0}, {0, 1.5 ∗ maxs}}],
{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],{RGBColor[1, 0, 0], Text["Minimum Cpm", {0.9 ∗ maxmut, 1.45 ∗ maxs}],
Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ mincpm),
{0, 180◦}]}, {RGBColor[0, 0, 1],{0, 180◦}]}, {RGBColor[0, 0, 1],{0, 180◦}]}, {RGBColor[0, 0, 1],
Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],Text["Target Cpm", {0.9 ∗ maxmut, 1.35 ∗ maxs}],
Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),Circle[{0, 0}, Min[{USL − Target}, {Target − LSL}]/(3 ∗ TCpm),
{0, 180◦}]}},{0, 180◦}]}},{0, 180◦}]}},
PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},PlotRange → {{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}},
FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},FrameLabel → {"(µ-T)","σ","=Cpm"cpm[j], {"= n"n[j]}},
RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],RotateLabel → False, ImageSize → Scaled[1]], {j, groups}],
AppearanceElements → All]AppearanceElements → All]AppearanceElements → All]

� � � � 1�5

Minimum Cpm
Target Cpm

�0.004 �0.002 0.000 0.002 0.004
0.000

0.001

0.002

0.003

0.004

0.005

�Μ�T�

Σ

1.1595�Cpm

�5� n�

A stationary plot of the observed Cpm, min Cpm and Target Cpm for five samples of size five
taken from a process can be created using the following code.

Show[Show[Show[
Graphics[Graphics[Graphics[
Circle[{0, 0},Circle[{0, 0},Circle[{0, 0},
(((Min[{USL − Target}, {Target − LSL}]))/(((Min[{USL − Target}, {Target − LSL}]))/(((Min[{USL − Target}, {Target − LSL}]))/
(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],(3 ∗ Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}])), {0, 180Degree}]],
Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 ∗ maxmut, 1.4 ∗ maxs}],
Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ mincpm)), {0, 180Degree}]}],
Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],Graphics[{RGBColor[0, 0, 1], Text["Target Cpm", {.9 ∗ maxmut, 1.3 ∗ maxs}],
Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],Circle[{0, 0}, (((Min[{USL − Target}, {Target − LSL}]))/(3 ∗ TCpm)), {0, 180Degree}]}],

Frame → True,Frame → True,Frame → True,
FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},FrameLabel->{"(µ-T)","σ", {"= n-max"{Max[n[1], n[2], n[3], n[4], n[5]]},

"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},"= n-min"{Min[n[1], n[2], n[3], n[4], n[5]]}},
"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},"=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm[4], cpm[5]}]},
PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,PlotRange->{{−1.5 ∗ maxmut, 1.5 ∗ maxmut}, {0, 1.5 ∗ maxs}}, RotateLabel->False,
Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],Prolog → {AbsolutePointSize[4], Point[{mut[1], s[1]}], Point[{mut[2], s[2]}],
Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],Point[{mut[3], s[3]}], Point[{mut[4], s[4]}], Point[{mut[5], s[5]}],
Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]Line[{{0, 0}, {0, (1.5 ∗ maxs)}}]}, ImageSize → Scaled[1]]
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4. Compositional Data

Compositional data refers to the group of constrained space metrics that take the form

X1 + X2 + X3 + X4 + ... + Xd = a

where 0 ≤ Xi ≤ a for all i and each Xi represents a proportion of the total composition
a. Setting d=2 results in all possible combinations of R+2 (shaded region in Figure 4.1) that
satisfy the equation X1 + X2 = a. Graphically these combinations represent a line in R+2 and
referred to as the L1 space.
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Figure 4.1 The L1
a Constrained Space

All observations in the L1
a space lie on the line X1 + X2 = a, with different values of a,

moving the line either closer of further from the origin. The Euclidean distance along the
perpendicular from the origin to the L1

a constrained space is a
√

2. In addition the points
where the L1

a space intersects the axes are exactly a units from the origin (see Figure 4.2).















Figure 4.2 Distance from Origin to L1
a along perpindicular

4.1 The L2 Space
The triple X1, X2, X3 subject to the constraint X1 + X2 + X3 = a, represents a point in
R+3 space. Ternary paper, also referred to as Triangular coordinate paper, is available for
observations of the form X1, X2, X3 where X1 + X2 + X3 = a and uses a planar view (see
Figure 4.3) of the constrained space. Most commercial ternary paper adds scaling and axes to
enhance the plotting procedure with the resulting region referred to as the L2 space.

An alternative view of the L2 space rewrites the equation in the form X1 + X2 = a − X3
and makes use of the L1 space. The points X1, X2 are located on the L1

a−X3 line, which is√
2(a − X3) units (along the perpendicular) from the origin. As the compositional make-up

varies (i.e., as we observe different values of the triple X1, X2, X3), the L1
a−X3 line will vary as

will the location (i.e., X1, X2) on the line. The L2 space consists of the set of subspaces L1
a−X3

where 0 ≤ X3 ≤ a. When using normal arithemetic paper, the values can be determined
directly from the plot (see Figure 4.4). X1 and X2 are the usual projections onto their
appropriate axes, while X3 is the distance from the intersection of L1

a−X3 (with either of the
axes) to a on the same axis.


















































 



Figure 4.3 The L2 space as a plane in Three Space

















Figure 4.4 Geometric Interpretations of the Constrained Triple

The general L2
a space is easily created using arithmetic graph paper requiring no special

scaling or plotting procedures. The plot is easily generalized to allow for various values of a
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and the creation of a general form of the constrained space paper. The Mathematica code to
create the L2

a constrained space paper and plot an observed points (i.e., 0.7, 0.2, 0.1 with a =
1.0) follows.

a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;
Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],
Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],
Line[{{a, 0}, {0, a}}],Line[{{a, 0}, {0, a}}],Line[{{a, 0}, {0, a}}],
{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},
AbsoluteThickness[2],AbsoluteThickness[2],AbsoluteThickness[2],
Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],
Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]
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The L2 space is the area bounded by the X1, X2 axes and the solid line that intersects the
axes at the value of a=1. The L1

a−X3 space is denoted by the dashed line parallel to solid line
intersecting the axes exactly X3 units from a (again 1 in this case). A heavier line has been
drawn along the X1 axis from a towards the origin that is exactly X3 units in length (0.1 in
this case). X1, X2, X3 (in this case 0.7, 0.2, 0.1) has been highlighted at the appropriate point
on the solid line (i.e., the L1

a−X3 space). In addition the projections onto the axes have been
included to facilitate reading the values of X1, X2 directly from the plot.

Commercial Ternary paper scales the plane characterized by the points (a, 0, 0), (0, a,
0) and (0, 0, a) in a triangular co-ordinate system. Analogous to the L1 case where
we added a third variable to the mix, the L3

a space can be considered when we add a
fourth variable. Similar to the L2 space development, X1, X2, X3, X4 where 0 ≤ Xi ≤ a
for all i such that X1 + X2 + X3 + X4 = a can be written as X1 + X2 + X3 = a − X4 and
the perpendicular distance between the origin and the L2 plane to reflect the magnitude of X4.

Alternatively we could use other techniques to provide the inference regarding Ternary plots
in the L2 xD1 domain. Consider the case where X1, X2, X3, X4 where 0 ≤ Xi ≤ a for all i

such that X1 + X2 + X3 + X4 = 100 and where X4 = 0. This is equivalent to looking at the
standard L2 Ternary plot and in this case would be scaled similar to commercial Ternary
paper. The point (30, 30, 40, 0) would appear as follows (see Figure 4.5). This plane would be√

2(100 − 0) units along the perpendicular from the origin.



  







Figure 4.5 Planar view of L3
a Space with point (30, 30, 40, 0)

The following Mathematica code results in a plane
√

2(100 − 0) units along the perpindicaular
from the origin and point at (30, 30, 40, 0).

x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;
pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};
oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};
oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}
oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}
oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}
Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],
Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},
{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,
AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]
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and the creation of a general form of the constrained space paper. The Mathematica code to
create the L2

a constrained space paper and plot an observed points (i.e., 0.7, 0.2, 0.1 with a =
1.0) follows.

a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;a = 1; x1 = 0.7; x2 = 0.2; x3 = a − x1 − x2;
Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],
Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],Point[{x1, x2}], Point[{a − x3, 0}], Point[{a, 0}],
Line[{{a, 0}, {0, a}}],Line[{{a, 0}, {0, a}}],Line[{{a, 0}, {0, a}}],
{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},{Dashing[{0.05, 0.05}], Line[{{a − x3, 0}, {0, a − x3}}]},
AbsoluteThickness[2],AbsoluteThickness[2],AbsoluteThickness[2],
Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],Line[{{x1, x2}, {x1, 0}}], Line[{{x1, x2}, {0, x2}}],
Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]Line[{{a, 0}, {a − x3, 0}}]}, AxesOrigin->{0.0, 0.0}, Axes->True]]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The L2 space is the area bounded by the X1, X2 axes and the solid line that intersects the
axes at the value of a=1. The L1
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intersecting the axes exactly X3 units from a (again 1 in this case). A heavier line has been
drawn along the X1 axis from a towards the origin that is exactly X3 units in length (0.1 in
this case). X1, X2, X3 (in this case 0.7, 0.2, 0.1) has been highlighted at the appropriate point
on the solid line (i.e., the L1

a−X3 space). In addition the projections onto the axes have been
included to facilitate reading the values of X1, X2 directly from the plot.

Commercial Ternary paper scales the plane characterized by the points (a, 0, 0), (0, a,
0) and (0, 0, a) in a triangular co-ordinate system. Analogous to the L1 case where
we added a third variable to the mix, the L3

a space can be considered when we add a
fourth variable. Similar to the L2 space development, X1, X2, X3, X4 where 0 ≤ Xi ≤ a
for all i such that X1 + X2 + X3 + X4 = a can be written as X1 + X2 + X3 = a − X4 and
the perpendicular distance between the origin and the L2 plane to reflect the magnitude of X4.

Alternatively we could use other techniques to provide the inference regarding Ternary plots
in the L2 xD1 domain. Consider the case where X1, X2, X3, X4 where 0 ≤ Xi ≤ a for all i

such that X1 + X2 + X3 + X4 = 100 and where X4 = 0. This is equivalent to looking at the
standard L2 Ternary plot and in this case would be scaled similar to commercial Ternary
paper. The point (30, 30, 40, 0) would appear as follows (see Figure 4.5). This plane would be√

2(100 − 0) units along the perpendicular from the origin.



  







Figure 4.5 Planar view of L3
a Space with point (30, 30, 40, 0)

The following Mathematica code results in a plane
√

2(100 − 0) units along the perpindicaular
from the origin and point at (30, 30, 40, 0).

x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 40; constraint = 100; a = constraint − x − y − z;
pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};
oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};
oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}
oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}
oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}
Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],
Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},
{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,
AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]
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Suppose now that we observe the point (30, 30, 20, 20) under the constraint that
X1 + X2 + X3 + X4 = 100. The quadruple is represented by a point on the plane that
is

√
2(100 − 20) units form the origin. The point and its associated plane can be depicted

as wholly contained within the plane associated with X4 = 0 (dashed triangle below).
Mathematica produces the above plot of the Planar view of the L3

a space with point (30, 30,
40, 20).

x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;
pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};pts = {{0, 100 − a, 0}, {100 − a, 0, 0}, {0, 0, 100 − a}, {0, 100 − a, 0}};
oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};
oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}
oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}
oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}
Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],
Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},
{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,
AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]

5. Comments

We have attempted to show how Mathematica can provide practitioners with the ability to
quickly and simply examine data. In conjunction with functions found in Mathematica, the
graphical methods developed may provide powerful inferences when assessing distribu-
tional forms, estimating parameter values, investigating process capability and examining
constrained data.
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Suppose now that we observe the point (30, 30, 20, 20) under the constraint that
X1 + X2 + X3 + X4 = 100. The quadruple is represented by a point on the plane that
is

√
2(100 − 20) units form the origin. The point and its associated plane can be depicted

as wholly contained within the plane associated with X4 = 0 (dashed triangle below).
Mathematica produces the above plot of the Planar view of the L3

a space with point (30, 30,
40, 20).

x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;x = 30; y = 30; z = 20; constraint = 100; a = constraint − x − y − z;
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oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};oldpts = {{0, 100, 0}, {100, 0, 0}, {0, 0, 100}, {0, 100, 0}};
oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}oldpts11:={{50 − a/2, 0, 50 − a/2}, {0, 100 − a, 0}}
oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}oldpts12:={{0, 50 − a/2, 50 − a/2}, {100 − a, 0, 0}}
oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}oldpts13:={{50 − a/2, 50 − a/2, 0}, {0, 0, 100 − a}}
Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],Show[Graphics3D[{AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],Line[pts], {{Dashing[{0.01, 0.01}],
Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],Line[oldpts11]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],{Line[oldpts12]}}, {Dashing[{0.01, 0.01}],
{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},{Line[oldpts13]}}, {Dashing[{0.03, 0.03}], Line[oldpts]}},
{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,{Boxed->False, Ticks->None, Axes->False,
AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]AxesEdge->{{1, 1}, {1, 1}, {1, 1}}, ViewPoint->{−2,−2,−2}}]]
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1. Introduction  

The Back-propagation network(BP network) is the most representative model and has wide 
application in artificial neural network(J. L. McClelland, D. E. Rumelhart & the PDP 
Research Group). Owing to the hidden layer and learning rules in the BP network and the 
Error Back-propagation algorithm, the BP network can be used to recognize and classify 
nonlinear pattern(Zhou zhihua, Cao Cungen, 2004). Currently, the applications include 
handwritings recognition, speech recognition, text - language conversion, image recognition 
and intelligent control. As the BP algorithm is based on gradient descent learning algorithm, 
it has some drawbacks such as slow convergence speed and easily falling into local 
minimum, as well as poor robustness. In the last decade, a series of intelligent algorithms, 
which is developed from nature simulation, are got wide attention, especially the global 
stochastic optimization algorithm based on the individual organisms and groups makes a 
rapid development and gets remarkable achievements in the field of engineering design and 
intelligent control. The most famous are genetic algorithm, the PSO algorithm (Particle 
Swarm Optimization, PSO), etc. In this chapter, the research focuses on the integration of the 
improved PSO algorithm and the Levenberg-Marquardt (L-M) algorithm of neural network, 
and its application in solving the parity problem, which enhances the optimization property 
of the algorithm, and solves the problems such as slow convergence speed and easily falling 
into local minimum. 

 
2. Particle Swarm Optimization (PSO) 

2.1 Standard Particle Swarm Optimization 
Dr. Kennedy and Dr. Eberhart proposed the PSO algorithm in 1995(Kennedy, & Eberhart, 
1995), which derived from the behavior research of flock foraging, and the research found 
out that the PSO theory can be applied to the function optimization, then it was developed 
into a universal optimization algorithm gradually. As the concept of PSO is simple and easy 
to implement, at the same time, it has profound intelligence background, the PSO algorithm 
attracted extensive attention when it was first proposed and has become a hot topic of 

9
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research. The search of PSO spreads all over the solution space, so the global optimal 
solution can be easily got, what is more, the PSO requires neither continuity nor 
differentiability for the target function, even doesn’t require the format of explicit function, 
the only requirement is that the problem should be computable. In order to realize the PSO 
algorithm, a swarm of random particles should be initialized at first, and then get the 
optimal solution through iteration calculation. For each iteration calculation, the particles 
found out their individual optimal value of pbest through tracking themselves and the global 
optimal value of gbest through tracking the whole swarm. The following formula is used to 
update the velocity and position. 
 

1
1 2( ) ( )k k k k

id id id id gd idv wv c rand p x c rand p x            (1) 

1 1k k k
id id idx x v    (2) 

 
In the formula (1) and (2), i=1, 2, …, m, m refers to the total number of the particles in the 

swarm; d=1, 2,…, n, d refers to the dimension of the particle; k
idv is the No. d dimension 

component of the flight velocity vector of iteration particle i of the No. k times. k
idx is the No. 

d dimension component of the position vector of iteration particle i of the No. k times; idp is 

the No. d dimension component of the optimization position (pbest) of particle i ; gdp is the 

No. d dimension component of the optimization position (gbest) of the swarm; w is the 
inertia weight; c1,c2 refer to the acceleration constants; rand() refers to the random function, 
which generates random number between [0, 1]. Moreover, in order to prevent excessive 
particle velocity, set the speed limit for Vmax, when accelerating the particle velocity into the 
level: vid > Vmax , set vid = Vmax; In contrast, on the condition of vid < -Vmax, set vid = -Vmax. 
The specific steps of the PSO algorithm are as follows: 

(1) Setting the number of particles m, the acceleration constant c1,c2，inertia weight 
coefficient w and the maximum evolution generation Tmax，in the n-dimensional 
space, generating the initial position X(t) and velocity V (t)of m-particles at random. 

(2) Evaluation of Swarm X(t) 
i. Calculating the fitness value fitness of each particle. 

ii. Comparing the fitness value of the current particle with its optimal value fpbest. If 
fitness < fpbest, update pbest for the current location, and set the location of pbest for 
the current location of the particle in the n-dimensional space. 

iii. Comparing the fitness value of the current particle with the optimal value fGbest 
of the swarm. If fitness < fGbest, update gbest for the current location, and set the 
fGbest for the optimal fitness value of the swarm, then the current location gbest of 
the particle is referred to as the optimal location of the swarm in the n-
dimensional space. 

(3) In accordance with the formula (1) and (2), updating the location and velocity of the 
particles and generating a new swarm X(t＋1). 

 

(4) Checking the end condition, if meet the end condition, then stop optimizing; 
Otherwise, t=t＋1 and turn to step (2). 

In addition, the end condition is referred to as the following two situations: when the 
optimizing reaches the maximum evolution generation Tmax or the fitness value of gbest 
meets the requirement of the given precision. 

 
2.2 Improved Particle Swarm Optimization Algorithm 
The PSO algorithm is simple, but research shows that, when the particle swarm is over 
concentrated, the global search capability of particle swarm will decline and the algorithm is 
easy to fall into local minimum. If the aggregation degree of the particle swarm can be 
controlled effectively, the capability of the particle swarm optimizing to the global 
minimum will be improved. According to the formula (1), the velocity v of the particle will 
become smaller gradually as the particles move together in the direction of the global 
optimal location gbest. Supposed that both the social and cognitive parts of the velocity 
become smaller, the velocity of the particles will not become larger, when both of them are 
close to zero, as w<1, the velocity will be rapidly reduced to 0, which leads to the loss of the 
space exploration ability. When the initial velocity of the particle is not equal to zero, the 
particles will move away from the global optimal location of gbest by inertial movement. 
When the velocity is close to zero, all the particles will move closer to the location of gbest 
and stop movement. Actually, the PSO algorithm does not guarantee convergence to the 
global optimal location, but to the optimal location gbest of the swarm(LU Zhensu & HOU 
Zhirong, 2004). Furthermore, as shown in the formula (2), the value of the particle velocity 
also represents the distance of particle relative to the optimal location gbest. When the 
particles become farther from the gbest, the particle velocity will be greater, on the contrary, 
when the particles become closer to the gbest, the velocity will be smaller gradually. 
Therefore, as shown in the formula (1), by means of the extreme variation of the swarm 
individual, the velocity of the particles can be controlled in order to prevent the particles 
from gathering at the location gbest quickly, which can control the swarm diversity 
effectively. Known from the formula (1), when the variability measures are taken, both the 
social and cognitive parts of each particle velocity are improved, which enhances the 
particle activity and increases the global search capability of particle swarm to a large extent. 
The improved PSO(MPSO) is carried out on the basis of standard PSO, which increases the 
variation operation of optimal location for the swarm individual. The method includes the 
following steps: 

(1) Initializing the position and velocity of particle swarm at random;   
(2) The value pbest of the particle is set as the current value, and the gbest for the optimal 

particle location of the initial swarm；  
(3) Determining whether to meet the convergence criteria or not, if satisfied, turn to step 

6; Otherwise, turn to step 4; 
(4) In accordance with the formula (1) and (2), updating the location and velocity of the 

particles, and determining the current location of pbest and gbest； 
(5) Determining whether to meet the convergence criteria or not, if satisfied, turn to 

step 6; Otherwise, carrying out the optimal location variation operation of swarm 
individuals according to the formula (3), then turn to step 4; 
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coefficient w and the maximum evolution generation Tmax，in the n-dimensional 
space, generating the initial position X(t) and velocity V (t)of m-particles at random. 

(2) Evaluation of Swarm X(t) 
i. Calculating the fitness value fitness of each particle. 

ii. Comparing the fitness value of the current particle with its optimal value fpbest. If 
fitness < fpbest, update pbest for the current location, and set the location of pbest for 
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iii. Comparing the fitness value of the current particle with the optimal value fGbest 
of the swarm. If fitness < fGbest, update gbest for the current location, and set the 
fGbest for the optimal fitness value of the swarm, then the current location gbest of 
the particle is referred to as the optimal location of the swarm in the n-
dimensional space. 

(3) In accordance with the formula (1) and (2), updating the location and velocity of the 
particles and generating a new swarm X(t＋1). 

 

(4) Checking the end condition, if meet the end condition, then stop optimizing; 
Otherwise, t=t＋1 and turn to step (2). 

In addition, the end condition is referred to as the following two situations: when the 
optimizing reaches the maximum evolution generation Tmax or the fitness value of gbest 
meets the requirement of the given precision. 

 
2.2 Improved Particle Swarm Optimization Algorithm 
The PSO algorithm is simple, but research shows that, when the particle swarm is over 
concentrated, the global search capability of particle swarm will decline and the algorithm is 
easy to fall into local minimum. If the aggregation degree of the particle swarm can be 
controlled effectively, the capability of the particle swarm optimizing to the global 
minimum will be improved. According to the formula (1), the velocity v of the particle will 
become smaller gradually as the particles move together in the direction of the global 
optimal location gbest. Supposed that both the social and cognitive parts of the velocity 
become smaller, the velocity of the particles will not become larger, when both of them are 
close to zero, as w<1, the velocity will be rapidly reduced to 0, which leads to the loss of the 
space exploration ability. When the initial velocity of the particle is not equal to zero, the 
particles will move away from the global optimal location of gbest by inertial movement. 
When the velocity is close to zero, all the particles will move closer to the location of gbest 
and stop movement. Actually, the PSO algorithm does not guarantee convergence to the 
global optimal location, but to the optimal location gbest of the swarm(LU Zhensu & HOU 
Zhirong, 2004). Furthermore, as shown in the formula (2), the value of the particle velocity 
also represents the distance of particle relative to the optimal location gbest. When the 
particles become farther from the gbest, the particle velocity will be greater, on the contrary, 
when the particles become closer to the gbest, the velocity will be smaller gradually. 
Therefore, as shown in the formula (1), by means of the extreme variation of the swarm 
individual, the velocity of the particles can be controlled in order to prevent the particles 
from gathering at the location gbest quickly, which can control the swarm diversity 
effectively. Known from the formula (1), when the variability measures are taken, both the 
social and cognitive parts of each particle velocity are improved, which enhances the 
particle activity and increases the global search capability of particle swarm to a large extent. 
The improved PSO(MPSO) is carried out on the basis of standard PSO, which increases the 
variation operation of optimal location for the swarm individual. The method includes the 
following steps: 

(1) Initializing the position and velocity of particle swarm at random;   
(2) The value pbest of the particle is set as the current value, and the gbest for the optimal 

particle location of the initial swarm；  
(3) Determining whether to meet the convergence criteria or not, if satisfied, turn to step 

6; Otherwise, turn to step 4; 
(4) In accordance with the formula (1) and (2), updating the location and velocity of the 

particles, and determining the current location of pbest and gbest； 
(5) Determining whether to meet the convergence criteria or not, if satisfied, turn to 

step 6; Otherwise, carrying out the optimal location variation operation of swarm 
individuals according to the formula (3), then turn to step 4; 
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(6) Outputting the optimization result, and end the algorithm.  
In the formula (3), the parameter  refers to random number which meets the standard 
Gaussian distribution, the initial value of the parameter  is 1.0, and set = every 50 
generations, where the  refers to the random number between [0.01, 0.9]. From above 
known, the method not only produces a small range of disturbance to achieve the local 
search with high probability, but also produces a significant disturbance to step out of the 
local minimum area with large step migration in time. 

 
2.3 Simulation and Result Analysis of the Improved Algorithm 
 

2.3.1 Test Functions 
The six frequently used Benchmark functions of the PSO and GA(genetic algorithm) (Wang 
Xiaoping & Cao Liming, 2002)are selected as the test functions, where the Sphere and 
Rosenbrock functions are unimodal functions, and the other four functions are multimodal 
functions. The Table 1 indicates the definition, the value range and the maximum speed 
limit Vmax of these Benchmark functions, where: x refers to real type vector and its 
dimension is n, xi refers to the No. i element. 
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Table 1. Benchmark functions 

 

 

2.3.2 Simulation and Analysis of the Algorithm 
In order to study the property of the improved algorithm, the different performances are 
compared between the standard PSO and the improved PSO (mPSO) for Benchmark 
functions, which adopt linear decreased inertia weight coefficient. The optimal contrast test 
is performed on the common functions as shown in Table 1. For each algorithm, the 
maximum evolution generation is 3000, the number of the particles is 30 and the dimension 
is 10, 20 and 30 respectively, where the dimension of Schaffer function is 2. As for the inertia 
weight coefficient w, the initial value is 0.9 and the end value is 0.4 in the PSO algorithm, 
while in the mPSO algorithm, the value of w is fixed and taken to 0.375.The optimum point 
of the Rosenbrock function is in the position X=1 in theory, while for the other functions, the 
optimum points are in the position X=0 and the optimum value are f(x)= 0. The 50 different 
optimization search tests are performed on different dimensions of each function. The 
results are shown in Table 2, where the parameter Avg/Std refers to the average and 
variance of the optimal fitness value respectively during the 50 tests, iterAvg is the average 
number of evolution, Ras is the ratio of the number up to target value to the total test 
number. The desired value of function optimization is set as 1.0e-10, as the fitness value is 
less than 10e-10, set as 0. 
 

 PSO mPSO 
Fun. Dim Avg/Std iterAvg Ras Avg/Std iterAvg Ras 

f1 
10 0/0 1938.52 50/50 0/0 340.18 50/50 
20 0/0 2597.24 50/50 0/0 397.64 50/50 
30 0/0 3000 1/50 0/0 415.02 50/50 

f2 
10 2.706/1.407 3000 0/50 0/0 315.24 50/50 
20 15.365/4.491 3000 0/50 0/0 354.10 50/50 
30 41.514/11.200 3000 0/50 0/0 395.22 50/50 

f3 
10 0.071/0.033 3000 0/50 0/0 294.32 50/50 
20 0.031/0.027 2926.94 8/50 0/0 343.42 50/50 
30 0.013/0.015 2990.52 13/50 0/0 370.06 50/50 

f4 
10 13.337/25.439 3000 0/50 8.253/0.210 3000 0/50 
20 71.796/175.027 3000 0/50 18.429/0.301 3000 0/50 
30 122.777/260.749 3000 0/50 28.586/0.2730 3000 0/50 

f5 
10 0/0 2197.40 50/50 0/0 468.08 50/50 
20 0/0 2925.00 47/50 0/0 532.78 50/50 
30 0.027/0.190 3000 0/50 0/0 562.60 50/50 

f6 2 0.0001/0.002 857.58 47/50 0/0 67.98 50/50 
Table 2. Performance comparison between mPSO and PSO for Benchmark problem 
 
As shown in Table 2, except for the Rosenbrock function, the optimization results of the 
other functions reach the given target value and the average evolutionary generation is also 
very little. For the Schaffer function, the optimization test is performed on 2-dimension, 
while for the other functions, the tests are performed on from 10 dimensions to 30 
dimensions. Compared with the standard PSO algorithm, whether the convergence 
accuracy or the convergence speed of the mPSO algorithm has been significantly improved, 
and the mPSO algorithm has excellent stability and robustness. 
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(6) Outputting the optimization result, and end the algorithm.  
In the formula (3), the parameter  refers to random number which meets the standard 
Gaussian distribution, the initial value of the parameter  is 1.0, and set = every 50 
generations, where the  refers to the random number between [0.01, 0.9]. From above 
known, the method not only produces a small range of disturbance to achieve the local 
search with high probability, but also produces a significant disturbance to step out of the 
local minimum area with large step migration in time. 

 
2.3 Simulation and Result Analysis of the Improved Algorithm 
 

2.3.1 Test Functions 
The six frequently used Benchmark functions of the PSO and GA(genetic algorithm) (Wang 
Xiaoping & Cao Liming, 2002)are selected as the test functions, where the Sphere and 
Rosenbrock functions are unimodal functions, and the other four functions are multimodal 
functions. The Table 1 indicates the definition, the value range and the maximum speed 
limit Vmax of these Benchmark functions, where: x refers to real type vector and its 
dimension is n, xi refers to the No. i element. 
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2.3.2 Simulation and Analysis of the Algorithm 
In order to study the property of the improved algorithm, the different performances are 
compared between the standard PSO and the improved PSO (mPSO) for Benchmark 
functions, which adopt linear decreased inertia weight coefficient. The optimal contrast test 
is performed on the common functions as shown in Table 1. For each algorithm, the 
maximum evolution generation is 3000, the number of the particles is 30 and the dimension 
is 10, 20 and 30 respectively, where the dimension of Schaffer function is 2. As for the inertia 
weight coefficient w, the initial value is 0.9 and the end value is 0.4 in the PSO algorithm, 
while in the mPSO algorithm, the value of w is fixed and taken to 0.375.The optimum point 
of the Rosenbrock function is in the position X=1 in theory, while for the other functions, the 
optimum points are in the position X=0 and the optimum value are f(x)= 0. The 50 different 
optimization search tests are performed on different dimensions of each function. The 
results are shown in Table 2, where the parameter Avg/Std refers to the average and 
variance of the optimal fitness value respectively during the 50 tests, iterAvg is the average 
number of evolution, Ras is the ratio of the number up to target value to the total test 
number. The desired value of function optimization is set as 1.0e-10, as the fitness value is 
less than 10e-10, set as 0. 
 

 PSO mPSO 
Fun. Dim Avg/Std iterAvg Ras Avg/Std iterAvg Ras 

f1 
10 0/0 1938.52 50/50 0/0 340.18 50/50 
20 0/0 2597.24 50/50 0/0 397.64 50/50 
30 0/0 3000 1/50 0/0 415.02 50/50 

f2 
10 2.706/1.407 3000 0/50 0/0 315.24 50/50 
20 15.365/4.491 3000 0/50 0/0 354.10 50/50 
30 41.514/11.200 3000 0/50 0/0 395.22 50/50 

f3 
10 0.071/0.033 3000 0/50 0/0 294.32 50/50 
20 0.031/0.027 2926.94 8/50 0/0 343.42 50/50 
30 0.013/0.015 2990.52 13/50 0/0 370.06 50/50 

f4 
10 13.337/25.439 3000 0/50 8.253/0.210 3000 0/50 
20 71.796/175.027 3000 0/50 18.429/0.301 3000 0/50 
30 122.777/260.749 3000 0/50 28.586/0.2730 3000 0/50 

f5 
10 0/0 2197.40 50/50 0/0 468.08 50/50 
20 0/0 2925.00 47/50 0/0 532.78 50/50 
30 0.027/0.190 3000 0/50 0/0 562.60 50/50 

f6 2 0.0001/0.002 857.58 47/50 0/0 67.98 50/50 
Table 2. Performance comparison between mPSO and PSO for Benchmark problem 
 
As shown in Table 2, except for the Rosenbrock function, the optimization results of the 
other functions reach the given target value and the average evolutionary generation is also 
very little. For the Schaffer function, the optimization test is performed on 2-dimension, 
while for the other functions, the tests are performed on from 10 dimensions to 30 
dimensions. Compared with the standard PSO algorithm, whether the convergence 
accuracy or the convergence speed of the mPSO algorithm has been significantly improved, 
and the mPSO algorithm has excellent stability and robustness. 
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In order to illustrate the relationship between the particle activity and the algorithm 
performance in different algorithms, the diversity of particle swarm indicates the particle 
activity. The higher the diversity of particle swarm is, the greater the particle activity is, and 
the stronger the global search capability of particles is. The diversity of particle swarm is 
represented as the average distance of the particles, which is defined by Euclidean distance, 
and the distance L refers to the maximum diagonal length in the search space; The 
parameters of S and N represent the population size and the solution space dimension, 
respectively; pid refers to the No.d dimension coordinate of the No.i particle; dp is the 
average of the No.d dimension coordinate of all particles, so the average distance of the 
particles is defined as followed:  
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For the 30-D functions (Schaffer function is 2-D), the optimal fitness value and particles’ 
average distance are shown in Fig.1-6, which indicates the optimization result contrast of the 
mPSO and PSO algorithm performed on different functions. 
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Fig. 1. Minima value and particles’ average distance for 30-D Sphere 
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Fig. 2. Minima value and particles’ average distance for 30-D Rastrigin 

 

0 500 1000 1500 2000 2500 3000

10
0

Griewank function with popu.=30,dim=30

generations

lo
g1

0(
fit

ne
ss

)

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5
Average Distance Between Particles

generation

D
(t)

MPSO
PSO

MPSO
PSO

 
Fig. 3. Minima value and particles’ average distance for 30-D Griewank 

 

500 1000 1500 2000 2500 3000
10

0

10
5

10
10 Rosenbrock function with popu.=30,dim=30

generations

lo
g1

0(
fit

ne
ss

)

500 1000 1500 2000 2500 3000
0

5

10
Average Distance Between Particles

generation

D
(t

)

MPSO
PSO

MPSO
PSO

 
Fig. 4. Minima value and particles’ average distance for 30-D Rosenbrock 
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In order to illustrate the relationship between the particle activity and the algorithm 
performance in different algorithms, the diversity of particle swarm indicates the particle 
activity. The higher the diversity of particle swarm is, the greater the particle activity is, and 
the stronger the global search capability of particles is. The diversity of particle swarm is 
represented as the average distance of the particles, which is defined by Euclidean distance, 
and the distance L refers to the maximum diagonal length in the search space; The 
parameters of S and N represent the population size and the solution space dimension, 
respectively; pid refers to the No.d dimension coordinate of the No.i particle; dp is the 
average of the No.d dimension coordinate of all particles, so the average distance of the 
particles is defined as followed:  
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For the 30-D functions (Schaffer function is 2-D), the optimal fitness value and particles’ 
average distance are shown in Fig.1-6, which indicates the optimization result contrast of the 
mPSO and PSO algorithm performed on different functions. 
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Fig. 1. Minima value and particles’ average distance for 30-D Sphere 
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Fig. 6. Minima value and particles’ average distance for 2-D Schaffer 
 
As can be seen from the Figure 1-6, except for the Rosenbrock function, the average distance 
of particle swarm varies considerably, which indicates the particle’s high activity as well as 
the good dynamic flight characteristic, which can also be in favor of the global search due to 
the avoidance of local minimum. When the particle approaches the global extreme point, the 
amplitude of its fluctuation reduces gradually, and then the particle converges quickly to 
the global extreme point. The mPSO algorithm has demonstrated the high accuracy and fast 
speed of the convergence. Compared with the corresponding graph of PSO algorithm in the 
chart, the the particles’ average distance of the PSO algorithm decreases gradually with the 
increase of evolution generation, and the fluctuation of the particles is weak, and the activity 
of the particles disappears little by little, which is the reflection of the algorithm 
performance, i.e., it means slow convergence speed and the possibility of falling into local 
minimum. As weak fluctuation means very little diversity of particle swarm, once the 
particles fall into local minimum, it is quite difficult for them to get out. The above 
experiments, performed on the test functions, show that: the higher the diversity of particle 
swarm is, the greater the particle activity is, and the better the dynamic property of particle 
is, which result in stronger optimization property. Therefore, it is a key step for the PSO to 
control the activity of the particle swarm effectively. Besides, from the optimization results 
of mPSO algorithm shown in Table 2, it can be seen that, except for the Rosenbrock function, 
not only the mean of the other functions has reached the given target value, but also the 
variance is within the given target value, which shows that the mPSO algorithm has high 
stability and has better performance than the PSO algorithm. In addition, the chart has also 
indicated that, for the optimization of Rosenbrock function, whether the mPSO or the PSO 
algorithm is applied, the particles have high activity at the beginning, then gather around 
the adaptive value quickly, after which the particle swarm fall into the local minimum with 
the loss of its activity. Though the optimization result of mPSO for Rosenbrock function is 
better than the standard PSO algorithm, it has not yet got out of the local minimum. Hence, 
further study is needed on the optimization of PSO for Rosenbrock function. 

 
3. BP Network Algorithm Based on PSO 

3.1 BP Neural Network 
Artificial Neural Network (ANN) is an engineering system that can simulate the structure 
and intelligent activity of human brain, which is based on a good knowledge of the structure 

 

and operation mechanism of the human brain. According to the manner of neuron 
interconnection, neural network is divided into feedforward neural network and feedback 
neural network. According to the hierarchical structure, it is separated into single layer and 
multi-layer neural network. In terms of the manner of information processing, it is separated 
into continuous and discrete neural network, or definitive and random neural network, or 
global and local approximation neural network. According to the learning manner, it is 
separated into supervision and unsupervised learning or weight and structure learning. 
There are several dozens of neural network structures such as MLP, Adaline, BP, RBF and 
Hopfield etc. From a learning viewpoint, the feedforward neural network (FNN) is a 
powerful learning system, which has simple structure and is easy to program. From a 
systemic viewpoint, the feedforward neural network is a static nonlinear mapping, which 
has the capability of complex nonlinear processing through the composite mapping of 
simple nonlinear processing unit. 
As the core of feedforward neural network, the BP network is the most essential part of the 
artificial neural network. Owing to its clear mathematical meaning and steps, Back-
Propagation network and its variation form are widely used in more than 80% of artificial 
neural network model in practice. 

 
3.2 BP Network Algorithm Based on PSO  
The BP algorithm is highly dependent on the initial connection weight of the network, 
therefore, it has the tendency of falling into local minimum with improper initial weight. 
However, the optimization search of the BP algorithm is under the guidance (in the 
direction of negative gradient), which is superior to the PSO algorithm and other stochastic 
search algorithm. There is no doubt that it provides a method for the BP optimization with 
derivative information. The only problem is how to overcome the BP algorithm for the 
dependence of the initial weight. The PSO algorithm has strong robustness for the initial 
weight of neural network (Wang Ling, 2001). By the combination of the PSO and BP 
algorithm, it could improve the precision, speed and convergence rate of BP algorithm, 
which makes full use of the advantage of the PSO and BP algorithm, i.e., the PSO has great 
skill in global search and BP excels in local optimization. 
Compared with the traditional optimization algorithm, the feedforward neural network has 
great differences such as multiple variables, large search space and complex optimized 
surface. In order to facilitate the PSO algorithm for BP algorithm in certain network 
structure, the weight vector of NN is used to represent FNN, and each dimension of the 
particles represents a connection weights or threshold value of FNN, which consists of the 
individuals of the particle swarm. To take one input layer, a hidden layer and an output 
layer of FNN as an example, when the number of input nodes was set as R, the number of 
output nodes was set as S2 and the number of hidden nodes was set as S1, the dimension N 
of particles can be obtained from the formula (5): 
 

N=S1 *(R+1)+ S2 *(S1+1)+ S3 *(S2+1) (5) 
 
The dimension of the particles and the weight of FNN can be obtained by the following code 
conversion:  
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Fig. 6. Minima value and particles’ average distance for 2-D Schaffer 
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When training the BP network through PSO algorithm, the position vector X of particle 
swarm is defined as the whole connection weights and threshold value of BP network.. On 
the basis of the vector X, the individual of the optimization process is formed, and the 
particle swarm is composed of the individuals. So the method is as follows: at first, 
initializing the position vector, then minimize the sum of squared errors (adaptive value) 
between the actual output and ideal output of network, and the optimal position can be 
searched by PSO algorithm, as shown in the following formula (6): 
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Where: N is the sample number of training set; Tik is the ideal output of the No. k output 
node in the No. i sample; Yik is the actual output of the No. k output node in the No. i 
sample; C is the number of output neuron in the network.  
The PSO algorithm is used to optimize the BP network weight (PSOBP), the method 
includes the following main steps: 

(1) The position parameter of particle can be determined by the connection weights and 
the threshold value between the nodes of neural network. 

(2) Set the values range [Xmin, Xmax] of the connection weights in neural network, and 
generate corresponding uniform random numbers of particle swarm, then generate 
the initial swarm.  

(3) Evaluate the individuals in the swarm. Decode the individual and assign to the 
appropriate connection weights (including the threshold value). Introduce the 
learning samples to calculate the corresponding network output, then get the 
learning error E, use it as the individual’s adaptive value.    

(4) Execute the PSO operation on the individuals of the swarm 
(5) Judge the PSO operation whether terminate or not? No, turn to step (3), Otherwise, 

to step (6).  

for i=1:S1 
          w1(i,:)=Swarm(iPopindex,R*(i-1)+1:R*(i-1)+R); 
          c1(i)=Swarm(iPopindex,S1*R+i); 
    end 
    b1=c1'; 
    for i=1:S2               

w2(i,:)=Swarm(iPopindex,S1*(R+1)+S1*(i-1)+1:S1*(R+1)+S1*(i-1)+S1); 
          c2(i)=Swarm(iPopindex,S1*(R+1)+S2*S1+i); 
    end 
    b2=c2'; 

Where, iPopindex refers to the serial number of the particles. 

 

(6) Decode the optimum individual searched by PSO and assign to the weights of neural 
network (include the threshold value of nodes). 

 
3.3 FNN Algorithm Based on Improved PSO 
The improved PSO (mPSO) is an algorithm based on the optimal location variation for the 
individual of the particle swarm. Compared with the standard PSO, the mPSO prevents the 
particles from gathering at the optimal location gbest quickly by means of individual 
extreme variation of the swarm, which enhances the diversity of particle swarm. 
The algorithm flow of FNN is as follows: 

(1) Setting the number of hidden layers and neurons of neural network. Determining the 
number m of particles, adaptive threshold e, the maximum number Tmax of iterative 
generation; acceleration constants c1 and c2; inertia weight w; Initializing the P and V, 
which are random number between [-1, 1]. 

(2) Setting the iteration step t=0; Calculating the network error and fitness value of each 
particle according to the given initial value; Setting the optimal fitness value of 
individual particles, the individual optimal location, the optimal fitness value and 
location of the particle swarm. 

(3) while(Jg> e  &  t < Tmax) 
for  i = 1 : m 

Obtaining the weight and threshold value of the neural network from the 
decoding of xi and calculating the output of the neural network, compute the 
value of Ji according to the formula (6): 
if  Ji < Jp(i)  Jp(i)= Ji ; pi = xi;  end if 
if  Ji < Jg       Jg= Ji ;  pg = xi;  end if 

end for 
(4) for i=1:m 

                   Calculating the vi and xi of particle swarm according to the PSO; 
              end for 

(5) Execute the variation operation on the individual optimal location of the swarm 
according to the formula (3). 

(6) t=t+1; 
(7) end while 
(8) Result output. 

 
3.4 BP NN Algorithm Based on PSO and L-M 
Because the traditional BP algorithm has the following problems: slow convergence speed, 
uncertainty of system training and proneness to local minimum, the improved BP algorithm 
is most often used in practice. The Levenberg-Marquardt (L-M for short) optimization 
algorithm is one of the most successful algorithm among the BP algorithms based on 
derivative optimization. The L-M algorithm is developed from classical Newton algorithm 
by calculating the derivative in terms of the nonlinear least squares. The iterative formula of 
LM algorithm is as follows(Zhang ZX, Sun CZ & Mizutani E, 2000):  
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Where, I is the unit matrix, λ is a non-negative value. Making use of the changes in the 
amplitude of λ, the method varies smoothly between two extremes, i.e., the Newton method 
(when λ 0) and standard gradient method (when λ). So the L-M algorithm is actually 
the combination of standard Newton method and the gradient descent method, which has 
the advantages of both the latter two methods. 
The main idea of the combination algorithm of PSO and L-M (PSOLM algorithm) is to take 
the PSO algorithm as the main framework. Firstly, optimize the PSO algorithm, after the 
evolution of several generations, the optimum individual can be chosen from the particle 
swarm to carry out the optimization search of L-M algorithm for several steps, which 
operates the local depth search. The specific steps of the algorithm is as follows: 

(1) Generate the initial particle swarm X at random, and k = 0. 
(2) Operate the optimization search on X with the PSO algorithm. 
(3) If the evolution generation k of PSO is greater than the given constant dl, 

chose the optimal individual of particle swarm to carry out the optimization 
search of L-M algorithm for several steps.  

(4) Based on the returned individual, reassess the new optimal individual and 
global optimal individual by calculating according to PSO algorithm. 

(5) If the target function value meets the requirements of precision ε, then 
terminate the algorithm and output the result; otherwise, k = k + 1, turn to 
step (2). 

The above PSO algorithm is actually the particle swarm optimization algorithm (MPSO) by 
means of the optimal location variation of individual, and the particle number of particle 
swarm is 30, c1=c2=1.45, w=0.728. 

 
4. Research on Neural Network Algorithm for Parity Problem 

4.1 XOR Problem 
Firstly, taking the XOR problem (2 bit parity problem) as an example to discuss it. The XOR 
problem is one of the classical questions on the NN learning algorithm research, which 
includes the irregular optimal curved surface as well as many local minimums. The learning 
sample of XOR problem is shown in Table 3. 
 

Sample Input Output 

1 00 0 

2 01 1 

3 10 1 

4 11 0 
Table 3. Learning sample of XOR 
 
Different network structures result in different learning generations of given precision10-n 
(where: n is the accuracy index). In this part, there is a comparison between the learning 
generations and the actual learning error. The initial weight ranges among [-1, 1] in BP 
network and conducted 50 random experiments. 

 

As shown in Table4, it displays the experimental results of 2-2-1 NN structure. The 
activation functions are S-shaped hyperbolic tangent function (Tansig), S-shaped 
logarithmic function (Logsig) and linear function (Purelin) respectively, and the learning 
algorithms include the BP, improved BP (BP algorithm with momentum, BPM) and BP 
based on the Levenberg-Marquardt (BPLM). Judging from the results for XOR problem, as 
the number of the neurons in the hidden layer is 2, the BP and improved BP (BPM, BPLM) 
can’t converge completely in 50 experiments.  
It can also be seen that the performance of the improved BP is better than that of the basic 
BP, as for the improved BP, the BPLM performs better than BPM. In addition, the initial 
value of the algorithm has great influence on the convergence property of BP algorithm, so 
is the function form of the neurons in the output layer. 
 

XOR Problem BP BPM BPLM 

Activation 
 function 

Hidden 
layer Tansig Tangsig Tansig Tangsig Tansig Tangsig 

Output 
layer Purelin Logsig Purelin Logsig Purelin Logsig 

NN structure： 
2-2-1 56% 0 60% 0 72% 0 

Table 4. Convergence statistics of BP, BPM and BPLM (Accuracy index n=3) 
 
The Table 5 shows the training results under different accuracy indices. The activation 
functions are Tansig-purelin and tansig-logsig respectively, and the NN algorithms include 
the BPLM and the PSO with limited factor (cPSO, Clerc, M., 1999). It can be indicated that 
the basic PSO, which is applied to the BP network for XOR problem, can’t converge 
completely, either. In such circumstance, the number of the neurons in the hidden layer is 2. 
 

XOR 
learning 

Accuracy 
index 

BPLM cPSO 

Tansig-purelin Tansig-purelin Tansig-logsig 
Average  
iteration 
number 

Ras 
Average 
iteration 
number 

Ras 
Average  
iteration 
number 

Ras 

Network 
stucture 

2-2-1 

3 16.36 36 71.00 35 24.71 26 

6 20.84 40 145.94 36 64.88 25 

10 13.76 38 233.36 36 43.52 25 

20 25.99 8 461.13 38 68.21 26 
Table 5. BP training results of BPLM, cPSO, and mPSO 
 
Besides, for the BP and the improved BP algorithm, it has never converged in the given 
number of experiments when the activation function of output layer in NN is Logsig, while 
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can’t converge completely in 50 experiments.  
It can also be seen that the performance of the improved BP is better than that of the basic 
BP, as for the improved BP, the BPLM performs better than BPM. In addition, the initial 
value of the algorithm has great influence on the convergence property of BP algorithm, so 
is the function form of the neurons in the output layer. 
 

XOR Problem BP BPM BPLM 

Activation 
 function 

Hidden 
layer Tansig Tangsig Tansig Tangsig Tansig Tangsig 

Output 
layer Purelin Logsig Purelin Logsig Purelin Logsig 

NN structure： 
2-2-1 56% 0 60% 0 72% 0 

Table 4. Convergence statistics of BP, BPM and BPLM (Accuracy index n=3) 
 
The Table 5 shows the training results under different accuracy indices. The activation 
functions are Tansig-purelin and tansig-logsig respectively, and the NN algorithms include 
the BPLM and the PSO with limited factor (cPSO, Clerc, M., 1999). It can be indicated that 
the basic PSO, which is applied to the BP network for XOR problem, can’t converge 
completely, either. In such circumstance, the number of the neurons in the hidden layer is 2. 
 

XOR 
learning 

Accuracy 
index 

BPLM cPSO 

Tansig-purelin Tansig-purelin Tansig-logsig 
Average  
iteration 
number 

Ras 
Average 
iteration 
number 

Ras 
Average  
iteration 
number 

Ras 

Network 
stucture 

2-2-1 

3 16.36 36 71.00 35 24.71 26 

6 20.84 40 145.94 36 64.88 25 

10 13.76 38 233.36 36 43.52 25 

20 25.99 8 461.13 38 68.21 26 
Table 5. BP training results of BPLM, cPSO, and mPSO 
 
Besides, for the BP and the improved BP algorithm, it has never converged in the given 
number of experiments when the activation function of output layer in NN is Logsig, while 
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the form of activation function has relatively minor influence on the PSO algorithm. It can 
be seen from the table that the form of activation function has certain influence on the 
learning speed of NN algorithm based on PSO, and the learning algorithm, which adopts 
Tangsig-Logsig function converges faster than that adopts Tangsig-Purelin function. 
The Table 6 shows the optimization results of the PSOBP and PSOBPLM algorithm, which 
are the combination of MPSO and standard BP (PSOBP) as well as the combination of MPSO 
and BP algorithm based on L-M (PSOBPLM) respectively. As seen in Table 6, for the given 
number of experiments, the optimization results of the algorithms have all achieved the 
specified target value within the given iteration number. 
 

XOR PSOBP PSOBPLM 

Accuracy 
index 

Average  
iteration 
number 

Mean 
time 

(s/time) 

Average  
iteration 
number 

Mean 
time 

(s/time) PSO BP PSO BP 

3 11.06 379.15 3.74 21 2.67 0.72 

6 11.12 517.35 5.35 21 3.8 0.75 

10 11.46 910.5 8.31 21 4.73 0.73 

20 12.3 1578.55 13.37 23.07 20.13 1.97 
Table 6. BP optimization results of PSOBP and PSOBPLM algorithm 
 
In addition，the Table 6 has also displayed the average iteration number and the mean time 
of PSO and BP algorithm under different accuracy indices in 50 experiments. As shown in 
Table 3, the algorithm of PSO combined with BP or LM has good convergence property, 
which is hard to realize for single BP (including BPLM) or PSO algorithm. It's especially 
necessary to notice that the combination of the PSO and LM algorithm brings about very 
high convergence speed, and the algorithm of PSOBPLM converges much faster than 
PSOBP algorithm under the condition of high accuracy index. For example, when the 
network structure is 2-2-1 and the accuracy index is 10 and 20 respectively, the relevant 
mean time of PSOBP algorithm is 8.31 and 13.37, while for the PSOBPLM algorithm, the 
mean time is reduced to 0.73 and 1.97. Obviously, the PSOBPLM algorithm has excellent 
speed performance. 

 
4.2 Parity Problem 
The parity problem is one of the famous problems in neural network learning and much 
more complex than the 2bit XOR problem. The learning sample of parity problem consists of 
4-8 bit binary string. When the number of 1 in binary string is odd, the output value is 1; 
otherwise, the value is 0. When the PSO (including the improved PSO) and PSOBP 
algorithm are applied to solve the parity problem, the learning speed is quite low and it is 
impossible to converge to the target value in the given iteration number. The PSOBPLM 
algorithm, proposed in this article, is applied to test the 4-8bit parity problem. The network 
structure of 4bit parity problem is 4-4-1, and the activation function of both hidden layer 
and output layer are Tansig-logsig, the same is with the activation function of NN for 5-8bit 

 

parity problem, and the parameter of NN for 5-8bit parity problem can be got from that of 
NN for 4bit parity problem by analogy. For each parity problem, 50 random experiments are 
carried out. The Table 7 shows the experimental result of the PSOBPLM algorithm for 4-8bit 
parity problem under various accuracy indices. In the Table 7, the Mean, Max and Min 
represent the average iteration number, the maximum and minimum iteration number, 
respectively. The number below the PSO and BP column represents the iteration number 
needed by the corresponding algorithm. 
 

net:4-4-1; 
Accuracy 

index 
Mean Max Min Mean time 

(s/time) PSO LM PSO LM PSO LM 
3 21.07 67.60  22 489 21 12 1.15 
6 21.10  80.77 22 424 21 11 1.19 

10 21.17 114.5 22 699 21 14 1.31 
20 25.23 405.73 35 1414 21 18 4.62 

net:5-5-1; 
3 50.10  99.27 51 532 50 16 1.49 

6 50.07 103.17 52 1019 50 19 1.58 

10 50.13 143.57 51 557 50 12 1.84 

20 53.77 371.07 65 1960 50 27 5.21 
net:6-6-1; 

3 50.23 208.93 52 1103 50 23 2.97 

6 50.13 204.47 51 591 50 34 2.58 

10 50.50  334.57 53 1281 50 42 3.81 

20 53.77 944.73 65 3069 50 49 10.72 
net:7-7-1; 

3 50.27 267.5 51 708 50 29 4.66 

6 50.27 279.7 51 686 50 35 4.64 

10 50.33 278.67 52 1067 50 32 4.53 
20 52.77 748.57 59 2206 50 57 11.69 

net:8-8-1; 
3 50.23 273.53 52 1066 50 56 7.98 

6 50.43 391.63 51 803 50 78 8.29 

10 51.63 387.27 54 1388 51 71 10.71 

20 54.83 1225.47 63 3560 51 65 30.43 
Table 7. Result of PSOBPLM algorithm for 4-8 bit parity problem  
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As seen in Table 7, the integration of the PSO and L-M algorithm can solve the parity 
problem. The PSOBPLM algorithm makes full use of the advantage of the PSO and L-M 
algorithm, i.e., the PSO has great skill in global search and the L-M excels in local 
optimization, which compensate their own drawback and have complementary advantages. 
So the PSOLM algorithm has not only a good convergence, but also fast optimization 
property. 

 
5. Conclusion 

As a global evolutionary algorithm, the PSO has simple model and is easy to achieve. The 
integration of the PSO and L-M algorithm makes full use of their own advantage, i.e., the 
PSO has great skill in global search and the L-M excels in local fast optimization, which 
could avoid falling into local minimum and find the global optimal solution for the parity 
problem effectively. Meanwhile, the PSOBPLM algorithm has better efficiency and 
robustness. The only shortage of the algorithm is that it needs the derivative information, 
which increases the algorithm complexity to some extent. 
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1. Introduction        

The state estimation of discrete-time systems in the presence of random disturbances and 
measurement noise is an important field in modern control theory. A significant research 
effort has been devoted to the problem of state estimation for stochastic systems. Since 
Kalman’s noteworthy paper (Kalman, 1960), the problem of state estimation in linear and 
nonlinear systems has been treated extensively and various aspects of the problem have 
been analyzed (McGarty, 1974; Savkin & Petersen, 1998; Norgaard et al., 2000; Yan  & 
Bitmead, 2005; Alamo et al., 2005; Gillijns & De Moor, 2007; Ko & Bitmead, 2007). 
The problem of determining an optimal estimator of the state of stochastic system in the 
absence of complete information about the distributions of random disturbances and 
measurement noise is seen to be a standard problem of statistical estimation. Unfortunately, 
the classical theory of statistical estimation has little to offer in general type of situation of 
loss function. The bulk of the classical theory has been developed about the assumption of a 
quadratic, or at least symmetric and analytically simple loss structure. In some cases this 
assumption is made explicit, although in most it is implicit in the search for estimating 
procedures that have the “nice” statistical properties of unbiasedness and minimum 
variance. Such procedures are usually satisfactory if the estimators so generated are to be 
used solely for the purpose of reporting information to another party for an unknown 
purpose, when the loss structure is not easily discernible, or when the number of 
observations is large enough to support Normal approximations and asymptotic results. 
Unfortunately, we seldom are fortunate enough to be in asymptotic situations. Small sample 
sizes are generally the rule when estimation of system states and the small sample 
properties of estimators do not appear to have been thoroughly investigated. Therefore, the 
above procedures of the state estimation have long been recognized as deficient, however, 
when the purpose of estimation is the making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of information in a situation where the losses are 
clearly asymmetric – as they are here. 
There exists a class of control systems where observations are not available at every time 
due to either physical impossibility and/or the costs involved in taking a measurement. For 
such  systems  it  is  realistic  to  derive  the  optimal  policy  of  state  estimation  with  some  
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constraints imposed on the observation scheme. 
It is assumed in this paper that there is a constant cost associated with each observation 
taken. The optimal estimation policy is obtained for a discrete-time deterministic plant 
observed through noise. It is shown that there is an optimal number of observations to be 
taken. 
The outline of the paper is as follows. A formulation of the problem is given in Section 2. 
Section 3 is devoted to characterization of estimators. A comparison of estimators is 
discussed in Section 4.  An invariant embedding technique is described in Section 5. A 
general problem analysis is presented in Section 6. An example is given in Section 7.  

 
2. Problem Statement 

To make the above introduction more precise, consider the discrete-time system, which in 
particular is described by vector difference equations of the following form: 
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where x(k+1) is an n vector representing the state of the system at the (k+1)th time instant 
with initial condition x(1); z(k) is an m vector (the observed signal) which can be termed a 
measurement of the system at the kth instant; H(k) is an m  n matrix; A(k+1,k) is a 
transition matrix of dimension n  n, and B(k) is an n  p matrix, u(k) is a p vector, the 
control vector of the system; w(k) is a random vector of dimension m (the measurement 
noise). By repeated use of (1) we find 
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where the discrete-time system transition matrix satisfies the matrix difference equation, 
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The problem to be considered is the estimation of the state of the above discrete-time 
system. This problem may be stated as follows. Given the observed sequence, z(1), …, z(k), 

 

it is required to obtain an estimator d of x(l) based on all available observed data  
Zk={z(1), …, z(k)} such that the expected losses (risk function) 
 

 ),(E),( dd   rR   (9) 
 
is minimized, where r(,d) is a specified loss function at decision point dd(Zk), =(x(l),),  
is an unknown parametric vector of the probability distribution of w(k), kl.  
If it is assumed that a constant cost c>0 is associated with each observation taken, the 
criterion function for the case of k observations is taken to be  
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In this case, the optimization problem is to find 
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d

d
 ,    (11) 

 

where the inner minimization operation is with respect to dd(Zk), when the k observations 
have been taken, and where the outer minimization operation is with respect to k. 

 
3. Characterization of Estimators 

For any statistical decision problem, an estimator (a decision rule) d1 is said to be equivalent 
to an estimator (a decision rule) d2 if R(,d1)=R(,d2) for all , where R(.) is a risk 
function,  is a parameter space,. An estimator d1 is said to be uniformly better than an 
estimator d2 if R(,d1) < R(,d2) for all . An estimator d1 is said to be as good as an 
estimator d2 if R(,d1)  R(,d2) for all . However, it is also possible that we may have 
“d1 and d2 are incomparable”, that is, R(,d1) <R(,d2) for at least one , and R(,d1) > 
R(,d2) for at least one . Therefore, this ordering gives a partial ordering of the set of 
estimators. 
An estimator d is said to be uniformly non-dominated if there is no estimator uniformly 
better than d. The conditions that an estimator must satisfy in order that it might be 
uniformly non-dominated are given by the following theorem. 
Theorem 1 (Uniformly non-dominated estimator). Let (; =1,2, ... ) be a sequence of the prior 
distributions on the parameter space . Suppose that (d;=1,2, ...) and (Q(,d); =1,2, ... ) 
are the sequences of Bayes estimators and prior risks, respectively. If there exists an 
estimator d such that its risk function R(,d), , satisfies the relationship 
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then d is an uniformly non-dominated estimator. 
Proof.  Suppose d is uniformly dominated. Then there exists an estimator d such that 
R(,d) < R(,d) for all . Let 
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This contradiction proves that d is an uniformly non-dominated estimator.   � 

 
4. Comparison of Estimators 

In order to judge which estimator might be preferred for a given situation, a comparison 
based on some “closeness to the true value” criteria should be made. The following 
approach is commonly used (Nechval, 1982; Nechval, 1984). Consider two estimators, say, 
d1 and d2 having risk function R(,d1) and R(,d2), respectively. Then the relative efficiency 
of d1 relative to d2 is given by 
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When   1;,. 01R 2rel.eff dd  for some 0, we say that d2 is more efficient than d1 at 0. 
If   1;,. 21R dd rel.eff  for all  with a strict inequality for some 0, then d1 is inadmissible 
relative to d2. 

 
5. Invariant Embedding Technique 

This paper is concerned with the implications of group theoretic structure for invariant 
performance indexes. We present an invariant embedding technique based on the 
constructive use of the invariance principle in mathematical statistics. This technique allows 
one to solve many problems of the theory of statistical inferences in a simple way. The aim 
of the present paper is to show how the invariance principle may be employed in the 
particular case of finding the improved statistical decisions. The technique used here is a 
special case of more general considerations applicable whenever the statistical problem is 
invariant under a group of transformations, which acts transitively on the parameter space. 

 

5.1 Preliminaries 
Our underlying structure consists of a class of probability models (X, A, P ), a one-one 
mapping  taking P  onto an index set , a measurable space of actions (U, B), and a real-
valued function r defined on   U . We assume that a group G of one-one A - measurable 
transformations acts on X  and that it leaves the class of models (X, A, P ) invariant. We further 
assume that homomorphic images G  and G~  of G act on  and U, respectively. ( G may be 
induced on  through ; G~  may be induced on U  through r). We shall say that r is 
invariant if for every (,u)    U 
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If G  is trivial and (21), (22) hold, we say  is G-invariant, or simply invariant (Nechval et al., 
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5.2 Invariant Functions 
We begin by noting that r is invariant in the sense of (21) if and only if r is a G-invariant 
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Theorem 2 (Maximal invariant). Let G  be transitive on . Fix a reference point 0 and 
index G  by . A maximal invariant M with respect to G acting on   U  is defined by 
 
 

.U  ),(   ,g~),(M 1   uuu    (23) 
 
 



Improved State Estimation of Stochastic Systems via a New Technique of Invariant Embedding 171

 

  0. > ),(R  ),(R inf = 


 dd 


 (14) 

Then 
 

  .  ),(Q  ),(Q  



 dd  (15) 

Simultaneously, 
 

0,  ),(Q  ),(Q  


 dd  (16) 
=1,2, ...,  and  
 

  0.  ),(Q  ),(Q lim  





dd  (17) 

On the other hand, 
 

 ),(Q  ),(Q 


  dd    ),(Q  ),(Q  ),(Q  ),(Q 






  dddd  

 
 

   


   ),(Q  ),(Q dd  (18) 
and 
 

  0.  ),(Q  ),(Q lim  





dd    (19) 
 

This contradiction proves that d is an uniformly non-dominated estimator.   � 

 
4. Comparison of Estimators 

In order to judge which estimator might be preferred for a given situation, a comparison 
based on some “closeness to the true value” criteria should be made. The following 
approach is commonly used (Nechval, 1982; Nechval, 1984). Consider two estimators, say, 
d1 and d2 having risk function R(,d1) and R(,d2), respectively. Then the relative efficiency 
of d1 relative to d2 is given by 
 

  .,(R,(R = ;,. 1221R ))rel.eff dddd   (20) 
 

When   1;,. 01R 2rel.eff dd  for some 0, we say that d2 is more efficient than d1 at 0. 
If   1;,. 21R dd rel.eff  for all  with a strict inequality for some 0, then d1 is inadmissible 
relative to d2. 

 
5. Invariant Embedding Technique 

This paper is concerned with the implications of group theoretic structure for invariant 
performance indexes. We present an invariant embedding technique based on the 
constructive use of the invariance principle in mathematical statistics. This technique allows 
one to solve many problems of the theory of statistical inferences in a simple way. The aim 
of the present paper is to show how the invariance principle may be employed in the 
particular case of finding the improved statistical decisions. The technique used here is a 
special case of more general considerations applicable whenever the statistical problem is 
invariant under a group of transformations, which acts transitively on the parameter space. 

 

5.1 Preliminaries 
Our underlying structure consists of a class of probability models (X, A, P ), a one-one 
mapping  taking P  onto an index set , a measurable space of actions (U, B), and a real-
valued function r defined on   U . We assume that a group G of one-one A - measurable 
transformations acts on X  and that it leaves the class of models (X, A, P ) invariant. We further 
assume that homomorphic images G  and G~  of G act on  and U, respectively. ( G may be 
induced on  through ; G~  may be induced on U  through r). We shall say that r is 
invariant if for every (,u)    U 
 

 ),,(r)g~,g(r uu   gG. (21) 
 
Given the structure described above there are aesthetic and sometimes admissibility 
grounds for restricting attention to decision rules  : X   U  which are (G, G~ ) equivariant in 
the sense that 

 .   ,   ),()( Ggg~g  Xxxx    (22) 
 

If G  is trivial and (21), (22) hold, we say  is G-invariant, or simply invariant (Nechval et al., 
2001; Nechval et al., 2003; Nechval & Vasermanis, 2004). 

 
5.2 Invariant Functions 
We begin by noting that r is invariant in the sense of (21) if and only if r is a G-invariant 
function, where G is defined on   U as follows: to each gG, with homomorphic images 

g~ ,g  in G~,G  respectively, let g(,u)= )g~ ,g( u , (,u)(  U ). It is assumed that G~  is a 

homomorphic image of G .  
Definition 1 (Transitivity). A transformation group G  acting on a set  is called (uniquely) 
transitive if for every ,  there exists a (unique) Gg  such that g =. When G  is 

transitive on  we may index G  by : fix an arbitrary point  and define 
1

g  to be the 

unique Gg  satisfying g =1. The identity of G  clearly corresponds to . An immediate 
consequence is Lemma 1. 
Lemma 1 (Transformation). Let G  be transitive on . Fix  and define 

1
g as above. Then 

1qg  = 
1

gq  for , .Gq  
Proof.  The  identity   11

gqqg 1q    shows that 
1qg   and 

1
gq  both take  into 1q , 

and the lemma follows by unique transitivity.   � 
Theorem 2 (Maximal invariant). Let G  be transitive on . Fix a reference point 0 and 
index G  by . A maximal invariant M with respect to G acting on   U  is defined by 
 
 

.U  ),(   ,g~),(M 1   uuu    (23) 
 
 



Stochastic Control172

 

Proof.  For each (,u)(  U ) and Gg  
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by Lemma 1 and the structure preserving properties of homomorphisms. Thus M is G-
invariant. To see that M is maximal, let M(1,u1) = M(2,u2). Then 2

1
1

1
21

g~g~ uu     or u1= g~ u2, 

where 1
21

g~g~g~   . Since 1 = 0g 1
 = 22

1 ggg
21

  ,  (1,u1) = g(2,u2) for some gG, and 
the proof is complete.   � 
Corollary 2.1 (Invariant embedding). An invariant function, r(,u), can be transformed as 
follows: 
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where v=v(, 


) is a function (it is called a pivotal quantity) such that the distribution of v 
does not depend on ; =(u, 


) is an ancillary factor; 


 is the maximum likelihood 

estimator of   (or the sufficient statistic for ). 
Corollary  2.2 (Best invariant decision rule). If r(,u) is an invariant loss function, the best 
invariant decision rule is given by 
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Corollary 2.3 (Risk). A risk function (performance index) 
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is constant on orbits when an invariant decision rule (x) is used, where ),( xvv    is a 
function whose  distribution does not depend on ; ),( xu    is an ancillary factor. 
For instance, consider the problem of estimating the location-scale parameter of a 
distribution belonging to a family generated by a continuous cdf F: P ={P: F((x-)/), xR, 
}, ={(,): , R, >0} = U. The group G of location and scale changes leaves the class 
of models invariant. Since G  induced on  by P   is uniquely transitive, we may apply 
Theorem 1 and obtain invariant loss functions of the form 
 

],/)x( ,/))x([(r))x(,(r 21   (29) 

where 
 

=(,) and (x)=(1(x),2(x)). (30) 
 

Let ),( 


  and u=(u1,u2),  then 
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where  
v=(v1,v2), v1=  /)( , v2= / ;  (32) 

 

 
 =(1,2), 1= 

 /)u( 1 , 2= 
/u2 . (33) 

 
5.3 Illustrative Example 1 
Consider an inventory manager faced with a one-period Christmas-tree stocking problem. 
Assume the decision maker has demand data on the sale of trees over the last n seasons. For 
the sake of simplicity, we shall consider the case where the demand data can be measured 
on a continuous scale. We restrict attention to the case where these demand values 
constitute independent observations from a distribution belonging to invariant family. In 
particular, we consider a distribution belonging to location-scale family generated by a 
continuous cdf F: P ={P: F((x-)/), xR, }, ={(,): ,R, >0}, which is indexed by 
the vector parameter =(,), where  and  (>0) are respectively parameters of location and 
scale. The group G of location and scale changes leaves the class of models invariant. The 
purpose in restricting attention to such families of distributions is that for such families the 
decision problem is invariant, and if the estimators of safety stock levels are equivariant (i.e. 
the group of location and scale changes leaves the decision problem invariant), then any 
comparison of estimation procedures is independent of the true values of any unknown 
parameters. The common distributions used in inventory problems are the normal, 
exponential, Weibull, and gamma distributions. 
Let us assume that, for one reason or another, a 100% service level is desired (i.e. the 
decision maker wants to ensure that at least 100% of his customers are satisfied). If the 
demand distribution is completely specified, the appropriate amount of inventory to stock 
for the season is u satisfying 

   











uFuXPr  (34) 

or 
   ,pu    (35) 

where 
)(Fp 1  

  (36) 
 
is the th percentile of the above distribution. Since the inventory manager does not know  
or , the estimator commonly used to estimate u is the maximum likelihood estimator 
 

,pu  
   (37) 

 
where   and   are the maximum likelihood estimators of the parameters  and , 
respectively. This estimator is one possible estimator of u and it may yield poor results.  
The correct procedure for estimating u requires establishing a tolerance limit for the 
percentile. It should be noted that tolerance limits are to percentiles what confidence limits 
are to parameters. With confidence limits, inferences may be drawn on parameters, whereas 
with tolerance limits, inferences may be drawn about proportions of a distribution. There 
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are two criteria for establishing tolerance limits. The first criterion establishes an interval 
such that the expected percentage of observations falling into the interval just exceeds 100% 
(Hahn  & Nelson, 1973). This interval is called the 100% expectation interval. The second 
criterion establishes an interval, which ensures that 100% of the population is covered with 
confidence 1- (Barlow  & Proshan, 1966). Such an interval is called a 100% content 
tolerance interval at level 1-. The decision as to which interval to construct depends on the 
nature of the problem. A precision-instrument manufacturer wanting to construct an 
interval which, with high confidence, contains 90% of the distribution of diameters, for 
example, would use a 90% content tolerance interval, whereas an inventory manager 
wanting to stock sufficient items to ensure that in the long run an average of 95% of demand 
will be satisfied may find expectation intervals more appropriate. Expectation intervals are 
only appropriate in inventory problems where average service levels are to be controlled. 
Tolerance limits of the types mentioned above are considered in this subsection. That is, if 
f(x;) denotes the density function of the parent population under consideration and if S is 
any statistic obtained from a random sample of that population, then )S(uu  

  is a lower 
100(1-)% expectation limit if 
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A risk of this limit is 
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Since it is often desirable to have statistical tolerance limits available for the distributions 
used to describe demand data in inventory control, the problem is to find these limits. We 
give below a general procedure for obtaining tolerance limits. This procedure is based on 
the use of an invariant embedding technique given above. 
Lower 100(1-)% expectation limit.  Suppose X1, ..., Xn are  a  random  sample  from  the  
exponential distribution, with pdf 
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where >0 is unknown parameter. Let 

 .X = S
n
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It can be justified by using the factorization theorem that Sn is a sufficient statistic for . We 
wish, on the basis of the sufficient statistic Sn for , to construct the lower 100(1-)% 
expectation limit for a stock level. It follows from (38) that this limit is defined by 
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 . Using the technique of invariant embedding of Sn in a maximal invariant 
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we reduce (44) to 
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where 
 /V= Sn  (47) 

 

is the pivotal quantity whose distribution does not depend on unknown parameter , 
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is an ancillary factor. It is well known that the probability density function of V is given by 
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Γ(n)

1h(v) = 1n   (49) 

 

Thus, for this example, u  can be found explicitly as 
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where (see (46)) 
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If the parameters  and  were known, it follows from  (44) that 
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where 
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The maximum likelihood estimator of u is given by 
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  (54) 

where 
n/Sn

  (55) 
 

is the maximum likelihood estimator of the parameter . 
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One can see that each of the above estimators is a member of the class 
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where k is a non-negative real number. A risk of an estimator, which belongs to the class C, 
is given by 
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n=2 and =0.95, then the relative efficiency of the maximum likelihood estimator, u ,  
relative to u  is given by 
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Lower 100(1-)% content tolerance limit at level 1-. Now we wish, on the basis of a sufficient 
statistic Sn for , to construct the lower 100(1-)% content tolerance limit at level 1- for the 
size of the stock in order to ensure an adequate service level. It follows from (40) that this 
tolerance limit is defined by 
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)n2(2
  is the 100% point of the chi-square distribution with 2n degrees of freedom. Since 

the estimator u  belongs to the class C, then the relative efficiency of d

C  relative to u  is 
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If, say, k is given by (59), n=2 and =0.05, then we have that the relative efficiency of the 
maximum likelihood estimator, ,u  relative to u  is given by 

      12
R

n2)n2( Pr1 = ;u,u .


 
rel.eff  =0.084. (68) 

 
5.4 Illustrative Example 2 
Let X(1)  X(2)    X(k) be the k smallest observations in a sample of size n from the two-
parameter exponential distribution, with density 
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where >0 and  are unknown parameters, =(,).  
Let Y(r) be the rth smallest observation in a future sample of size m from the same 
distribution. We wish, on the basis of observed X(1), …, X(k) to construct prediction intervals 
for Y(r). Let  

Sr=(Y(r))/,   S1=(X(1))/ (70) 
and  
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To construct prediction intervals for Y(r), consider the quantity (invariant statistic) 
  

V = n(SrS1)/T1= n(Y(r)X(1))/T.  (73) 
 
It is well known (Epstein & Sobel, 1954) that nS1 has a standard exponential distribution, 
that 2T1~ 2

2k2   and that S1 and T1 are independent. Also, Sr is the rth order statistic from a 
sample of size m from the standard exponential distribution and thus has probability 
density function (Kendall  & Stuart, 1969), 
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if sr>0, and f(sr)=0 for sr0. Using the technique of invariant embedding, we find after some 
algebra that  
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By using the technique of invariant embedding of Sn in a maximal invariant 
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  is the 100% point of the chi-square distribution with 2n degrees of freedom. Since 
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If, say, k is given by (59), n=2 and =0.05, then we have that the relative efficiency of the 
maximum likelihood estimator, ,u  relative to u  is given by 
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5.4 Illustrative Example 2 
Let X(1)  X(2)    X(k) be the k smallest observations in a sample of size n from the two-
parameter exponential distribution, with density 
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where >0 and  are unknown parameters, =(,).  
Let Y(r) be the rth smallest observation in a future sample of size m from the same 
distribution. We wish, on the basis of observed X(1), …, X(k) to construct prediction intervals 
for Y(r). Let  
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To construct prediction intervals for Y(r), consider the quantity (invariant statistic) 
  

V = n(SrS1)/T1= n(Y(r)X(1))/T.  (73) 
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if sr>0, and f(sr)=0 for sr0. Using the technique of invariant embedding, we find after some 
algebra that  
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where m(r)=m(m1)  (mr+1). 
The special case in which r=1 is worth mentioning, since in this case (75) simplifies 
somewhat. We find here that we can write 
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where =n/m. 
Consider the ordered data given by Grubbs (Grubbs, 1971) on the mileages at which 
nineteen military carriers failed. These were 162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 
884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880, and thus constitute a complete sample 
with k=n=19. We find 
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and of course X(1)=162.  
Suppose we wish to set up the shortest-length (1=0.95) prediction interval for the smallest 
observation Y(1) in a future sample of size m=5. Consider the invariant statistic 
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where  

zL=X(1)+v1T/n  (80) 
 
and  

zU=X(1)+v2T/n.    (81) 
 
The length of the prediction interval is  
 

z = zUzL = (T/n)(v2v1). (82) 
 
We wish to minimize z subject to 
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It can be shown that the minimum occurs when 
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where v1 and v2 satisfy (83). The shortest-length prediction interval is given by 
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where 
1v = 0.18105 and 

2v = 0.688. Thus, the length of this interval is z = 736.62  10.78 
=725.84. 
The equal tails prediction interval at the 1=0.95 confidence level is given by 
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where F(v)=, v/2= 0.125 and v1-/2= 0.805. The length of this interval is 

z = 834.34  57.6 
= 776.74. 
The relative efficiency of )T,X(C )1(Y )1(
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 taking into account z is 
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One may also be interested in predicting the mean  
 

m/YY
m

1j
j



       (88) 

 
or total lifetime in a future sample. Consider the quantity 
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Using the invariant embedding technique, we find after some algebra that 
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Probability statements about V lead to prediction intervals for Y or  
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5.5 Illustrative Example 3  
Suppose that X1, ..., Xn  and  Y1i, ..., Ymi  (i=1, ..., k) denote n+km independent and identically 
distributed random variables from a two-parameter exponential distribution with pdf (69), 
where  >0 and  are unknown parameters.  
Let X(1) be the smallest observation in the initial sample of size n and 
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It can be justified by using the factorization theorem that (X(1),Sn) is a sufficient statistic for 
(,). Let Y(1i) be the smallest observation in the ith future sample of size m, i=1(1)k. We 
wish, on the basis of a sufficient statistic (X(1),Sn) for (,), to construct simultaneous lower 
one-sided -content tolerance limits at level  for Y(1i), i=1, ..., k. It can be shown that this 
problem is reduced to the problem of constructing a lower one-sided -content tolerance 
limit at level , LL(X(1),Sn), for 
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This tolerance limit is defined by 
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By using the technique of invariant embedding of (X(1),Sn) into a maximal invariant 
M=(L)/, we reduce (94) to 
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is the ancillary factor. It follows from (95) that 
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Therefore, in this case, L can be found explicitly as 
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For instance, let us suppose that shipments of a lot of electronic systems of a specified type 
are made to each of 3 customers. Further suppose each customer selects a random sample of 
5 systems and accepts his shipment only if no failures occur before a specified time has 
elapsed. The manufacturer wishes to take a random sample and to calculate the 
simultaneous lower one-sided -content tolerance limits so that all shipments will be 
accepted with a probability of  at least for 100% of the future cases of such k shipments, 
where =0.95, =0.95, and k=3. The resulting failure times (rounded off to the nearest hour) 
of an initial sample of size 20 from a population of such electronic systems are: 3149, 3407, 
3215, 3296, 3095, 3563, 3178, 3112, 3086, 3160, 3155, 3742, 3143, 3240, 3184, 3621, 3125, 3109, 
3118, 3127. It is assumed that the failure times follow a two-parameter exponential 
distribution with unknown parameters  and . Thus, for this example, n=20, k=3, m=5, 
=0.95, =0.95, X(1)=3086, and Sn=3105.  
The manufacturer finds from (99) that 

 

3060. = 0.951
(0.95)  120

3105 + 3086 = 
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1
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and he has 95% assurance that no failures will occur in each shipment (i.e. each shipment 
will be accepted) before L=3060 hours at least for 95% of the future cases of such shipments 
of a lot of electronic systems which will be made to each of three firms. 

 
5.6 Illustrative Example 4  
Consider the problem of finding shortest-length confidence interval for system availability. 
Availability is very important to users of repairable products and systems, such as computer 
networks, manufacturing systems, power plants, transportation vehicles, and fire-protection 
systems. Mathematically, the availability of an item is a measure of the fraction of time that 
the item is in operating condition in relation to total or calendar time, i.e., availability 
indicates the percent of the time that products are expected to operate satisfactory. There are 
several measures of availability, namely, inherent availability, achieved availability, and 
operational availability. For further definition of these availability measures, see (Ireson & 
Coombs, 1988). Here, we consider inherent availability, which is the most common 
definition used in the literature. This availability, A, is the designed-in capability of a 
product and is defined by (Ben-Daya et al., 2000) 
 

  ,MTTR)MTBF/(MTBFA    (101) 
 

where MTTR is the Mean Time To Repair (more generally, the mean time that the process is 
inoperable when it is down for maintenance or because of a breakdown) and MTBF is the 
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of a lot of electronic systems which will be made to each of three firms. 

 
5.6 Illustrative Example 4  
Consider the problem of finding shortest-length confidence interval for system availability. 
Availability is very important to users of repairable products and systems, such as computer 
networks, manufacturing systems, power plants, transportation vehicles, and fire-protection 
systems. Mathematically, the availability of an item is a measure of the fraction of time that 
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indicates the percent of the time that products are expected to operate satisfactory. There are 
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definition used in the literature. This availability, A, is the designed-in capability of a 
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where MTTR is the Mean Time To Repair (more generally, the mean time that the process is 
inoperable when it is down for maintenance or because of a breakdown) and MTBF is the 
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Mean Time Between Failures (more generally, the mean operating time between one 
downtime and the next, where each downtime can be due to maintenance or a breakdown). 
Actually the true inherent availability is rarely known. Usually, it is estimated from the few 
collected data on the operating (up) times and repair/replace (down) times. The point 
estimate of the availability is then given by 
 

,TTR)MTBFMTBF/(MA


   (102) 
 

where A


 is an estimate of the inherent availability, TBFM


 is an estimate of MTBF from 
sample data, TTRM


is an estimate of MTTR from sample data. Obviously, this point 

estimate is a function of the sample data and the sample size. Different samples will result in 
different estimates. The sample error affects the quantification of the calculated availability. 
If the estimates were based on one failure and one repair only, it would be quite risky 
(Coppola, 1997). We would feel more confident if we had more data (more failures and 
repairs). The question is how good the estimated inherent availability is. The answer is to 
attach a confidence level to the calculated availability, or give the confidence limits on the 
availability at a chosen confidence level. The most interesting confidence limits would be the 
shortest-length confidence limits on the true availability at a given confidence level. 
In a wide variety of inference problems one is not interested in estimating the parameter or 
testing some hypothesis concerning it. Rather, one wishes to establish a lower or an upper 
bound, or both, for the real-valued parameter. For example, if X is the time to failure of a 
piece of equipment, one is interested in a lower bound for the mean of X. If the rv X 
measures the toxicity of a drug, the concern is to find an upper bound for the mean. 
Similarly, if the rv X measures the nicotine content of a certain brand of cigarettes, one is 
interested in determining an upper and a lower bound for the average nicotine content of 
these cigarettes. 
The following result provides a general method of finding shortest-length confidence 
intervals and covers most cases in practice. 
Let S=s(X) be a statistic, based on a random sample X. Let F be the distribution function of 
the pivotal quantity V(S,A)  A and let vL, vU be such that 
 

F(vU)  F(vL) = Pr{vL < V < vU} = 1.  (103) 
 
It will be noted that the distribution of V does not depend on any unknown parameter. A 
100(1)% confidence interval of A is (AL(S,vL,vU),AU(S,vL,vU)) and the length of this 
interval is (S,vL,vU)=AUAL. We want to choose v1, v2, minimizing AUAL and satisfying 
(103). Thus, we consider the problem: 
 

 Minimize 
 (S, vL, vU) = AU  AL, (104) 

 

 Subject to 
 F(vU)  F(vL) = 1. (105) 

 
The search for the shortest-length confidence interval  =AUAL is greatly facilitated by the 
use of the following theorem. 

 

Theorem 3 (Shortest-length confidence interval). Under appropriate derivative conditions, 
there will be a pair (vL, vU) giving rise to the shortest-length confidence interval (S, vL, vU) 
= AU  AL for A as a solution to the simultaneous equations: 
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F(vU)  F(vL) = 1.    (107) 

 
Proof. Note that (107) forces vU to be a function of vL (or visa-versa). Take (S,vL,vU) as a 
function of vL, say (S,vL,vU(vL)). Then, by using the method of Lagrange multipliers, the 
proof follows immediately.      
For instance, consider the problem of constructing the shortest-length confidence interval 
for system availability from time-to-failure and time-to-repair test data. It is assumed that X1 
(time-to-failure) and X2 (time-to-repair) are stochastically independent random variables 
with probability density functions 
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Availability is usually defined as the probability that a system is operating satisfactorily at 
any point in time. This probability can be expressed mathematically as 
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where 1 is a system mean-time-to-failure, 2 is a system mean-time-to-repair. 
Consider a random sample X1= )X ,... ,X(

1n111 of n1 times-to-failure and a random sample 
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2n221 of n2 times-to-repair drawn from the populations described by (108) and 
(109) with sample means 
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It is well known that 2n1 11 /X   and 2n2 22 /X   are chi-square distributed variables with 2n1 
and 2n2  degrees of freedom, respectively. They are independent due to the independence of 
the variables X1 and X2. 
It follows from (110) that 
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Using the invariant embedding technique, we obtain from (112) a pivotal quantity 
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Mean Time Between Failures (more generally, the mean operating time between one 
downtime and the next, where each downtime can be due to maintenance or a breakdown). 
Actually the true inherent availability is rarely known. Usually, it is estimated from the few 
collected data on the operating (up) times and repair/replace (down) times. The point 
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Availability is usually defined as the probability that a system is operating satisfactorily at 
any point in time. This probability can be expressed mathematically as 
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which is F-distributed with (2n2,2n1) degrees of freedom, and  
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Thus, (113) allows one to find a 100(1)% confidence interval for A from 
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It follows from Theorem 3 that the shortest-length confidence interval for A is given by 
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(f is the pdf of an F-distributed rv with (2n2,2n1) d.f.) and 
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In practice, the simpler equal tails confidence interval for A, 
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Consider, for instance, the following case. A total of 400 hours of operating time with 2 
failures, which required an average of 20 hours of repair time, were observed for aircraft air-
conditioning equipment. What is the confidence interval for the inherent availability of this 
equipment at the 90% confidence level? 
The point estimate of the inherent availability is  
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and the confidence interval for the inherent availability, at the 90% confidence level, is 
found as follows. 
From (121), the simpler equal tails confidence interval is 
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i.e., 
(S, vL, vU) = AU  AL= 0.375. (127) 

 

From (117), the shortest-length confidence interval is 
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where vL and vU are a solution of (119) and (120). Thus,  
 

*(S, vL, vU) = AU  AL = 0.291. (129) 
 
The relative efficiency of CA relative to 

AC  is given by 
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6. General Problem Analysis 

6.1 Inner Minimization 
First consider the inner minimization, i.e., k (Section 2) is held fixed for the time being. Then 
the term ck does not affect the result of this minimization. Consider a situation of state 
estimation described by one of a family of density functions, indexed by the vector 
parameter =(,), where x(k) and (>0) are respectively parameters of location and 
scale. For this family, invariant under the group of positive linear transformations: zaz+b 
with a>0, we shall assume that there is obtainable from some informative experiment (a 
random sample of observations zk={z(0), …, z(k)}) a sufficient statistic (mk,sk) for (,) with 
density function pk(mk,sk;,) of the form 
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We are thus assuming that for the family of density functions an induced invariance holds 
under the group G of transformations: mkamk+b, skask (a> 0). The family of density 
functions satisfying the above conditions is, of course, the limited one of normal, negative 
exponential, Weibull and gamma (with known index) density functions. 
The loss incurred by making decision d when x(l) is the true parameter is given by the 
piecewise-linear loss function 
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The decision problem specified by the informative experiment density function (131) and 
the loss function (132) is invariant under the group G of transformations. Thus, the problem 
is to find the best invariant estimator of , 
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where D is a set of invariant estimators of , R(,d) = E{r(,d)} is a risk function.  

 
6.2 Best Invariant Estimator 
It can be shown by using the invariant embedding technique that an invariant loss function, 
r(,d), can be transformed as follows: 
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v=(v1,v2), v1=  /)m( k , v2= /sk , =(dmk)/sk.  
It follows from (134) that the risk associated with d and  can be expressed as 
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which is constant on orbits when an invariant estimator (decision rule) d is used, where 
fk(v1,v2) is defined by (131). The fact that the risk (136) is independent of  means that a 
decision rule d, which minimizes (136), is uniformly best invariant. The following theorem 
gives the central result in this section. 
Theorem 4 (Best invariant estimator of ). Suppose that (v1,v2) is a random vector having 
density function 
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where fk is defined by (131), and let Gk be the distribution function of v1/v2. Then the 
uniformly best invariant linear-loss estimator of  is given by 
 

d*= mk+sk,   (138) 
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Then the minimum of Ek{ r (v,)} occurs for  being determined by setting Ek{ r (v,)}/ = 
0 and this reduces to 
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which establishes (139).   � 
Corollary 4.1 (Minimum risk of the best invariant estimator of ). The minimum risk is given by 
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with  as given by (139). 
Proof. These results are immediate from (134) when use is made of Ek{ r (v,)}/ = 0.   �   

 
6.3 Outer Minimization 
The results obtained above can be further extended to find the optimal number of 
observations. Now 
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is to be minimized with respect to k. It can be shown that this function (which is the constant 
risk corresponding to taking a sample of fixed sample size k and then estimating x(l) by the 
expression (108) with k for k) has at most two minima (if there are two, they are for 
successive values of k; moreover, there is only one minimum for all but a denumerable set of 
values of c). If there are two minima, at k and k+1, one may randomize in any way 
between the decisions to take k or k+1 observations. 

 
7. Example 

Consider the one-dimensional discrete-time system, which is described by scalar difference 
equations of the form (1)-(2), and the case when the measurement noises w(k),  k = 1, 2,  …  
(see  (2))  are  independently  and identically distributed random variables drawn from the 
exponential distribution with the density 
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where the parameter >0 is unknown. It is required to find the best invariant estimator of 
x(l) on the basis of the data sample zk=(z(1), …, z(k)) relative to the piecewise linear loss 
function 
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where =(,), x(l), c1>0, c2=1. 
The likelihood function of zk is 
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if l < k (estimation of the past state of the system), and 
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if either l = k (estimation of the current state of the system) or l > k (prediction of the future 
state of the system). 
It can be justified by using the factorization theorem that (mk,sk) is a sufficient statistic for 
=(,), where 
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The probability density function of (mk,sk) is given by 
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Since the loss function (145) is invariant under the group G of location and scale changes, it 
follows that 
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Thus, using (138) and (139), we find that the best invariant estimator (BIE) of  is given by 
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The risk of this estimator is 
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Here the following theorem holds. 
Theorem 5 (Characterization of the estimator dBIE). For the loss function (145), the best invariant 
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This ends the proof.   � 
Consider, for comparison, the following estimators of  (state of the system): 
The maximum likelihood estimator (MLE): 
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By plotting (k) versus k the optimal number of observations k can be determined. 
For each value of c, we can find an equilibrium point of k, i.e., c=(k). The following two 
cases must be considered: 
1) k is not an integer. We have k(1)<k<k(1)+1=k(2), where k(1) and k(2) are neighboring 
integers. Since (k) is monotonically decreasing, we know that (k(1))>c and (k(2))<c. Then, 
by using these properties, (172) becomes 
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Therefore, k(1) is the optimal number of observations. We conclude that the optimal number 
k is equal to the largest integer below the equilibrium point. 
2) k is an integer. By the same sort of argument, we know that k is as good as k-1. 
Consequently, both k and k-1 are the optimal number of observations. Notice that in this 
case, Jk* can be computed directly and precisely from (172). 

 
8. Conclusions and Directions for Future Research 

In this paper we construct the minimum risk estimators of state of stochastic systems. The 
method used is that of the invariant embedding of sample statistics in a loss function in 
order to form pivotal quantities, which make it possible to eliminate unknown parameters 
from the problem. This method is a special case of more general considerations applicable 
whenever the statistical problem is invariant under a group of transformations, which acts 
transitively on the parameter space. 
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For a class of state estimation problems where observations on system state vectors are 
constrained, i.e., when it is not feasible to make observations at every moment, the question 
of how many observations to take must be answered. This paper models such a class of 
problems by assigning a fixed cost to each observation taken. The total number of 
observations is determined as a function of the observation cost. 
Extension to the case where the observation cost is an explicit function of the number of 
observations taken is straightforward. A different way to model the observation constraints 
should be investigated. 
More work is needed, however, to obtain improved decision rules for the problems of 
unconstrained and constrained optimization under parameter uncertainty when: (i) the 
observations are from general continuous exponential families of distributions, (ii) the 
observations are from discrete exponential families of distributions, (iii) some of the 
observations are from continuous exponential families of distributions and some from 
discrete exponential families of distributions, (iv) the observations are from multiparameter 
or multidimensional distributions, (v) the observations are from truncated distributions, (vi) 
the observations are censored, (vii) the censored observations are from truncated 
distributions. 
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1. Introduction

System identification is the task of developing or improving a mathematical description of
dynamic systems from experimental data (Ljung (1999); Söderström & Stoica (1989)). De-
pending on the level of a priori insight about the system, this task can be approached in three
different ways: white box modeling, black box modeling and gray box modeling. These models can
be used for simulation, prediction, fault detection, design of controllers (model based control),
and so forth. Nonlinear system identification (Aguirre et al. (2005); Serra & Bottura (2005);
Sjöberg et al. (1995); ?) is becomming an important tool which can be used to improve control
performance and achieve robust behavior (Narendra & Parthasarathy (1990); Serra & Bottura
(2006a)). Most processes in industry are characterized by nonlinear and time-varying behavior
and are not amenable to conventional modeling approaches due to the lack of precise, formal
knowledge about it, its strongly nonlinear behavior and high degree of uncertainty. Methods
based on fuzzy models are gradually becoming established not only in academic view point
but also because they have been recognized as powerful tools in industrial applications, facil-
iting the effective development of models by combining information from different sources,
such as empirical models, heuristics and data (Hellendoorn & Driankov (1997)). In fuzzy
models, the relation between variables are based on if-then rules such as IF < antecedent >
THEN < consequent >, where antecedent evaluate the model inputs and consequent pro-
vide the value of the model output. Takagi and Sugeno, in 1985, developed a new approach
in which the key idea was partitioning the input space into fuzzy areas and approximating
each area by a linear or a nonlinear model (Takagi & Sugeno (1985)). This structure, so called
Takagi-Sugeno (TS) fuzzy model, can be used to approximate a highly nonlinear function of
simple structure using a small number of rules. Identification of TS fuzzy model using exper-
imental data is divided into two steps: structure identification and parameter estimation. The
former consists of antecedent structure identification and consequent structure identification.
The latter consists of antecedent and consequent parameter estimation where the consequent
parameters are the coefficients of the linear expressions in the consequent of a fuzzy rule. To
be applicable to real world problems, the parameter estimation must be highly efficient. Input
and output measurements may be contaminated by noise. For low levels of noise the least
squares (LS) method, for example, may produce excellent estimates of the consequent param-
eters. However, with larger levels of noise, some modifications in this method are required to
overcome this inconsistency. Generalized least squares (GLS) method, extended least squares
(ELS) method, prediction error (PE) method, are examples of such modifications. A problem
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with the use of these methods, in a fuzzy modeling context, is that the inclusion of the pre-
diction error past values in the regression vector, which defines the input linguistic variables,
increases the complexity of the fuzzy model structure and are inevitably dependent upon the
accuracy of the noise model. To obtain consistent parameter estimates in a noisy environ-
ment without modeling the noise, the instrumental variable (IV) method can be used. It is
known that by choosing proper instrumental variables, it provides a way to obtain consis-
tent estimates with certain optimal properties (Serra & Bottura (2004; 2006b); Söderström &
Stoica (1983)). This paper proposes an approach to nonlinear discrete time systems identifica-
tion based on instrumental variable method and TS fuzzy model. In the proposed approach,
which is an extension of the standard linear IV method (Söderström & Stoica (1983)), the cho-
sen instrumental variables, statistically uncorrelated with the noise, are mapped to fuzzy sets,
partitioning the input space in subregions to define valid and unbiased estimates of the con-
sequent parameters for the TS fuzzy model in a noisy environment. From this theoretical
background, the fuzzy instrumental variable (FIV) concept is proposed, and the main statistical
characteristics of the FIV algorithm such as consistency and unbias are derived. Simulation
results show that the proposed algorithm is relatively insensitive to the noise on the measured
input-output data.
This paper is organized as follow: In Section 2, a brief review of the TS fuzzy model formu-
lation is given. In Section 3, the fuzzy NARX structure is introduced. It is used to formulate
the proposed approach. In Section 4, the TS fuzzy model consequent parameters estimate
problem in a noisy environment is studied. From this analysis, three Lemmas and one Theo-
rem are proposed to show the consistency and unbias of the parameters estimates in a noisy
environment with the proposed approach. The fuzzy instrumental variable concept is also
proposed and considerations about how the FIV should be chosen are given. In Section 5, off-
line and on-line schemes of the fuzzy instrumental variable algorithm are derived. Simulation
results showing the efficiency of the FIV approach in a noisy environment are given in Section
6. Finally, the closing remarks are given in Section 7.

2. Takagi-Sugeno Fuzzy Model

The TS fuzzy inference system is composed by a set of IF-THEN rules which partitions the in-
put space, so-called universe of discourse, into fuzzy regions described by the rule antecedents
in which consequent functions are valid. The consequent of each rule i is a functional expres-
sion yi = fi(x) (King (1999); Papadakis & Theocaris (2002)). The i-th TS fuzzy rule has the
following form:

Ri|i=1,2,...,l : IF x1 is Fi
1 AND · · · AND xq is Fi

q THEN yi = fi(x) (1)

where l is the number of rules. The vector x ∈ �q contains the antecedent linguistic variables,
which has its own universe of discourse partitioned into fuzzy regions by the fuzzy sets repre-
senting the linguistic terms. The variable xj belongs to a fuzzy set Fi

j with a truth value given

by a membership function µi
Fj

: � → [0, 1]. The truth value hi for the complete rule i is com-
puted using the aggregation operator, or t-norm, AND, denoted by ⊗ : [0, 1]× [0, 1] → [0, 1],

hi(x) = µi
1(x1)⊗ µi

2(x2)⊗ . . . µi
q(xq) (2)

Among the different t-norms available, in this work the algebraic product will be used, and

hi(x) =
q

∏
j=1

µi
j(xj) (3)

The degree of activation for rule i is then normalized as

γi(x) =
hi(x)

∑l
r=1 hr(x)

(4)

This normalization implies that

l

∑
i=1

γi(x) = 1 (5)

The response of the TS fuzzy model is a weighted sum of the consequent functions, i.e., a
convex combination of the local functions (models) fi,

y =
l

∑
i=1

γi(x) fi(x) (6)

which can be seen as a linear parameter varying (LPV) system. In this sense, a TS fuzzy model
can be considered as a mapping from the antecedent (input) space to a convex region (poli-
tope) in the space of the local submodels defined by the consequent parameters, as shown in
Fig. 1 (Bergsten (2001)). This property simplifies the analysis of TS fuzzy models in a robust

polytope

model 4
model 3

model 2

model n
Antecedent space (IF)

submodels space (THEN)Rules

model 1

Fig. 1. Mapping to local submodels space.

linear system framework for identification, controllers design with desired closed loop char-
acteristics and stability analysis (Johansen et al. (2000); Kadmiry & Driankov (2004); Tanaka et
al. (1998); Tong & Li (2002)).

3. Fuzzy Structure Model

The nonlinear input-output representation is often used for building TS fuzzy models from
data, where the regression vector is represented by a finite number of past inputs and outputs
of the system. In this work, the nonlinear autoregressive with exogenous input (NARX) struc-
ture model is used. This model is applied in most nonlinear identification methods such as
neural networks, radial basis functions, cerebellar model articulation controller (CMAC), and
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can be considered as a mapping from the antecedent (input) space to a convex region (poli-
tope) in the space of the local submodels defined by the consequent parameters, as shown in
Fig. 1 (Bergsten (2001)). This property simplifies the analysis of TS fuzzy models in a robust

polytope

model 4
model 3

model 2

model n
Antecedent space (IF)

submodels space (THEN)Rules

model 1

Fig. 1. Mapping to local submodels space.

linear system framework for identification, controllers design with desired closed loop char-
acteristics and stability analysis (Johansen et al. (2000); Kadmiry & Driankov (2004); Tanaka et
al. (1998); Tong & Li (2002)).

3. Fuzzy Structure Model

The nonlinear input-output representation is often used for building TS fuzzy models from
data, where the regression vector is represented by a finite number of past inputs and outputs
of the system. In this work, the nonlinear autoregressive with exogenous input (NARX) struc-
ture model is used. This model is applied in most nonlinear identification methods such as
neural networks, radial basis functions, cerebellar model articulation controller (CMAC), and
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also fuzzy logic (Brown & Harris (1994)). The NARX model establishes a relation between the
collection of past scalar input-output data and the predicted output

y(k + 1) = F[y(k), . . . , y(k − ny + 1), u(k), . . . , u(k − nu + 1)] (7)

where k denotes discrete time samples, ny and nu are integers related to the system’s order. In
terms of rules, the model is given by

Ri : IF y(k) is Fi
1 AND · · · AND y(k − ny + 1) is Fi

ny

AND u(k) is Gi
1 AND · · · AND u(k − nu + 1) is Gi

nu

THEN ŷi(k + 1) =
ny

∑
j=1

ai,jy(k − j + 1) +
nu

∑
j=1

bi,ju(k − j + 1) + ci (8)

where ai,j, bi,j and ci are the consequent parameters to be determined. The inference formula
of the TS fuzzy model is a straightforward extension of (6) and is given by

y(k + 1) =
∑l

i=1 hi(x)ŷi(k + 1)

∑l
i=1 hi(x)

(9)

or

y(k + 1) =
l

∑
i=1

γi(x)ŷi(k + 1) (10)

with

x = [y(k), . . . , y(k − ny + 1), u(k), . . . , u(k − nu + 1)] (11)

and hi(x) is given as (3). This NARX model represents multiple input and single output
(MISO) systems directly and multiple input and multiple output (MIMO) systems in a de-
composed form as a set of coupled MISO models.

4. Consequent Parameters Estimate

The inference formula of the TS fuzzy model in (10) can be expressed as

y(k + 1) = γ1(xk)[a1,1y(k) + . . . + a1,nyy(k − ny + 1)

+b1,1u(k) + . . . + b1,nuu(k − nu + 1) + c1] + γ2(xk)[a2,1y(k)

+ . . . + a2,nyy(k − ny + 1) + b2,1u(k) + . . . + b2,nuu(k − nu + 1)

+c2] + . . . + γl(xk)[al,1y(k) + . . . + al,nyy(k − ny

+ 1) + bl,1u(k) + . . . + bl,nuu(k − nu + 1) + cl ] (12)

which is linear in the consequent parameters: a, b and c. For a set of N input-output data
pairs {(xk, yk)|i = 1, 2, . . . , N} available, the following vetorial form is obtained

Y = [ψ1X, ψ2X, . . . , ψlX]θ + Ξ (13)

where ψi = diag(γi(xk)) ∈ �N×N , X = [yk, . . . , yk−ny+1, uk, . . . , uk−nu+1, 1] ∈ �N×(ny+nu+1),

Y ∈ �N×1, Ξ ∈ �N×1 and θ ∈ �l(ny+nu+1)×1 are the normalized membership degree matrix
of (4), the data matrix, the output vector, the approximation error vector and the estimated
parameters vector, respectively. If the unknown parameters associated variables are exactly
known quantities, then the least squares method can be used efficiently. However, in practice,
and in the present context, the elements of X are no exactly known quantities so that its value
can be expressed as

yk = χT
k θ + ηk (14)

where, at the k-th sampling instant, χT
k = [γ1

k(xk + ξk), . . . , γl
k(xk + ξk)] is the vector of the data

with error in variables, xk = [yk−1, . . . , yk−ny , uk−1, . . . , uk−nu , 1]T is the vector of the data with
exactly known quantities, e.g., free noise input-output data, ξk is a vector of noise associated
with the observation of xk, and ηk is a disturbance noise.
The normal equations are formulated as

[
k

∑
j=1

χjχ
T
j ]θ̂k =

k

∑
j=1

χjyj (15)

and multiplying by 1
k gives

{1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]yj

Noting that yj = χT
j θ + ηj,

{1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ +

1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]ηj (16)

and

θ̃k = {1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}−1 1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj (17)
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ny
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nu
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where ai,j, bi,j and ci are the consequent parameters to be determined. The inference formula
of the TS fuzzy model is a straightforward extension of (6) and is given by
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with
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and hi(x) is given as (3). This NARX model represents multiple input and single output
(MISO) systems directly and multiple input and multiple output (MIMO) systems in a de-
composed form as a set of coupled MISO models.

4. Consequent Parameters Estimate

The inference formula of the TS fuzzy model in (10) can be expressed as
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+ 1) + bl,1u(k) + . . . + bl,nuu(k − nu + 1) + cl ] (12)

which is linear in the consequent parameters: a, b and c. For a set of N input-output data
pairs {(xk, yk)|i = 1, 2, . . . , N} available, the following vetorial form is obtained

Y = [ψ1X, ψ2X, . . . , ψlX]θ + Ξ (13)

where ψi = diag(γi(xk)) ∈ �N×N , X = [yk, . . . , yk−ny+1, uk, . . . , uk−nu+1, 1] ∈ �N×(ny+nu+1),

Y ∈ �N×1, Ξ ∈ �N×1 and θ ∈ �l(ny+nu+1)×1 are the normalized membership degree matrix
of (4), the data matrix, the output vector, the approximation error vector and the estimated
parameters vector, respectively. If the unknown parameters associated variables are exactly
known quantities, then the least squares method can be used efficiently. However, in practice,
and in the present context, the elements of X are no exactly known quantities so that its value
can be expressed as

yk = χT
k θ + ηk (14)

where, at the k-th sampling instant, χT
k = [γ1

k(xk + ξk), . . . , γl
k(xk + ξk)] is the vector of the data

with error in variables, xk = [yk−1, . . . , yk−ny , uk−1, . . . , uk−nu , 1]T is the vector of the data with
exactly known quantities, e.g., free noise input-output data, ξk is a vector of noise associated
with the observation of xk, and ηk is a disturbance noise.
The normal equations are formulated as

[
k

∑
j=1

χjχ
T
j ]θ̂k =

k

∑
j=1

χjyj (15)

and multiplying by 1
k gives

{1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]yj

Noting that yj = χT
j θ + ηj,

{1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ +

1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]ηj (16)

and

θ̃k = {1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}−1 1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj (17)
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where θ̃k = θ̂k − θ is the parameter error. Taking the probability in the limit as k → ∞,

p.lim θ̃k = p.lim {1
k

C−1
k

1
k

bk} (18)

with

Ck =
k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T

bk =
k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj

Applying Slutsky’s theorem and assuming that the elements of 1
k Ck and 1

k bk converge in
probability, we have

p.lim θ̃k = p.lim
1
k

C−1
k p.lim

1
k

bk (19)

Thus,

p.lim
1
k

Ck = p.lim
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T

p.lim
1
k

Ck = p.lim
1
k

k

∑
j=1

(γ1
j )

2(xj + ξ j)(xj + ξ j)
T+

. . . + p.lim
1
k

k

∑
j=1

(γl
j)

2(xj + ξ j)(xj + ξ j)
T

Assuming xj and ξ j statistically independent,

p.lim
1
k

Ck = p.lim
1
k

k

∑
j=1

(γ1
j )

2[xjx
T
j + ξ jξ

T
j ] + . . .

+p.lim
1
k

k

∑
j=1

(γl
j)

2[xjx
T
j + ξ jξ

T
j ]

p.lim
1
k

Ck = p.lim
1
k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]

+p.lim
1
k

k

∑
j=1

ξ jξ
T
j [(γ

1
j )

2 + . . . + (γl
j)

2] (20)

with ∑l
i=1 γi

j = 1. Hence, the asymptotic analysis of the TS fuzzy model consequent pa-
rameters estimation is based in a weighted sum of the fuzzy covariance matrices of x and ξ.
Similarly,

p.lim
1
k

bk = p.lim
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj

p.lim
1
k

bk = p.lim
1
k

k

∑
j=1

[γ1
j ξ jηj, . . . , γl

jξ jηj] (21)

Substituting from (20) and (21) in (19), results

p.lim θ̃k = {p.lim
1
k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]+

p.lim
1
k

k

∑
j=1

ξ jξ
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]}−1p.lim
1
k

k

∑
j=1

[γ1
j ξ jηj,

. . . , γl
jξ jηj] (22)

with ∑l
i=1 γi

j = 1. For the case of only one rule (l = 1), the analysis is simplified to the

linear one, with γi
j |

i=1
j=1,...,k= 1. Thus, this analysis, which is a contribution of this article, is an

extension of the standard linear one, from which can result several studies for fuzzy filtering
and modeling in a noisy environment, fuzzy signal enhancement in communication channel,
and so forth. Provided that the input uk continues to excite the process and, at the same time,
the coefficients in the submodels from the consequent are not all zero, then the output yk will
exist for all k observation intervals. As a result, the fuzzy covariance matrix ∑k

j=1 xjxT
j [(γ

1
j )

2 +

. . .+(γl
j)

2] will also be non-singular and its inverse will exist. Thus, the only way in which the
asymptotic error can be zero is for ξ jηj identically zero. But, in general, ξ j and ηj are correlated,
the asymptotic error will not be zero and the least squares estimates will be asymptotically
biased to an extent determined by the relative ratio of noise to signal variances. In other
words, least squares method is not appropriate to estimate the TS fuzzy model consequent
parameters in a noisy environment because the estimates will be inconsistent and the bias
error will remain no matter how much data can be used in the estimation.

4.1 Fuzzy instrumental variable (FIV)
To overcome this bias error and inconsistence problem, generating a vector of variables which
are independent of the noise inputs and correlated with data vetor xj from the system is
required. If this is possible, then the choice of this vector becomes effective to remove the
asymptotic bias from the consequent parameters estimates. The fuzzy least squares estimates
is given by:

{1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1
k

k

∑
j=1

[γ1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]{[γ1

j (xj + ξ j), . . . , γl
j(xj + ξ j)]

Tθ + ηj}
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required. If this is possible, then the choice of this vector becomes effective to remove the
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j=1
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j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]
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1
k
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∑
j=1

[γ1
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γl
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j (xj + ξ j), . . . , γl
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Using a new fuzzy vector of variables of the form [β1
j zj, . . . , βl

jzj], the last equation can be
placed as

{1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̂k =

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]{[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ+

ηj} (23)

where zj is a vector with the order of xj, associated to the dynamic behavior of the system,

and βi
j |

i=1,...,l
j=1,...,k is the normalized degree of activation, as in (4), associated to zj. For conver-

gence analysis of the estimates, with the inclusion of this new fuzzy vector, the following is
proposed:
Lemma 1 Consider zj a vector with the order of xj, associated to dynamic behavior of the system and

independent of the noise input ξ j; and βi
j |i=1,...,l

j=1,...,k is the normalized degree of activation, a variable
defined as in (4) associated to zj. Then, at the limit

lim
k→∞

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ξ
T
j = 0 (24)

Proof: Developing the left side of (24), results

lim
k→∞

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ξ
T
j = lim

k→∞

1
k

k

∑
j=1

[β1
j zjξ

T
j , . . . ,

βl
jzjξ

T
j ]

As βi
j |

i=1,...,l
j=1,...,k is a scalar, and, by definition, the chosen variables are independent of the noise

inputs, the inner product between zj and ξ j will be zero. Thus, taking the limit, results

lim
k→∞

1
k

k

∑
j=1

[β1
j zjξ

T
j , . . . , βl

jzjξ
T
j ] = 0

�
Lemma 2 Under the same conditions as Lemma 1 and zj independent of the disturbance noise ηj, then,
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jzj][γ
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j (xj + ξ j), . . . , γl
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k→∞

1
k

k

∑
j=1

[β1
j γ1

j zj(xj + ξ j)
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j (xj + ξ j), . . . , γl
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k→∞
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j ) + . . . + βl
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Using a new fuzzy vector of variables of the form [β1
j zj, . . . , βl
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k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
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1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]{[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ+

ηj} (23)

where zj is a vector with the order of xj, associated to the dynamic behavior of the system,
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j |

i=1,...,l
j=1,...,k is the normalized degree of activation, as in (4), associated to zj. For conver-
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Theorem 1 Under suitable conditions outlined from Lemma 1 to 3, the estimation of the parameter
vector θ for the model in (12) is strongly consistent, i.e, at the limit

p.lim θ̃ = 0 (28)

Proof: From the new fuzzy vector of variables of the form [β1
j zj, . . . , βl

jzj], the fuzzy least
square estimation can be modifyied as follow:

{1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̂k =

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]{[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ + ηj}

which can be expressed in the form

{1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}(θ̂k − θ) =

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj

and

{1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̃ =

1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj

Taking the probability in the limit as k → ∞, and applying the Slutsky’s theorem, we have

p.lim θ̃k = {p.lim
1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}−1{p.lim
1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj}

According to Lemma 1 and Lemma 3, results

p.lim θ̃k = {p.limCzx}−1{p.lim
1
k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj}

where the fuzzy covariance matrix Czx is non-singular and, as a consequence, the inverse
exist. From the Lemma 2, we have

p.lim θ̃k = {p.limCzx}−10

Thus, the limit value of the parameter error, in probability, is

p.lim θ̃ = 0 (29)

and the estimates are asymptotically unbiased, as required. �
As a consequence of this analysis, the definition of the vector [β1

j zj, . . . , βl
jzj] as the fuzzy instru-

mental variable vector or simply the fuzzy instrumental variable (FIV) is proposed. Clearly, with
the use of the FIV vector in the form suggested, becomes possible to eliminate the asymptotic
bias while preserving the existence of a solution. However, the statistical efficiency of the solu-
tion is dependent on the degree of correlation between [β1

j zj, . . . , βl
jzj] and [γ1

j xj, . . . , γl
jxj]. In

particular, the lowest variance estimates obtained from this approach occur only when zj = xj

and βi
j |

i=1,...,l
j=1,...,k= γi

j |
i=1,...,l
j=1,...,k , i.e., when the zj are equal to the dynamic system “free noise” vari-

ables, which are unavailable in practice. According to situation, several fuzzy instrumental
variables can be chosen. An effective choice of FIV would be the one based on the delayed
input sequence

zj = [uk−τ , . . . , uk−τ−n, uk, . . . , uk−n]
T

where τ is chosen so that the elements of the fuzzy covariance matrix Czx are maximized. In
this case, the input signal is considered persistently exciting, e.g., it continuously perturbs or
excites the system. Another FIV would be the one based on the delayed input-output sequence

zj = [yk−1−dl , · · · , yk−ny−dl , uk−1−dl , · · · , uk−nu−dl ]
T

where dl is the applied delay. Other FIV could be the one based in the input-output from
a “fuzzy auxiliar model” with the same structure of the one used to identify the nonlinear
dynamic system. Thus,

zj = [ŷk−1, · · · , ŷk−ny , uk−1, · · · , uk−nu ]
T

where ŷk is the output of the fuzzy auxiliar model, and uk is the input of the dynamic system.
The inference formula of this fuzzy auxiliar model is given by

ŷ(k + 1) = β1(zk)[α1,1ŷ(k) + . . . + α1,nyŷ(k − ny + 1)+

ρ1,1u(k) + . . . + ρ1,nuu(k − nu + 1) + δ1] + + β2(zk)[α2,1ŷ(k)

+ . . . + α2,nyŷ(k − ny + 1) + ρ2,1u(k) + . . . + ρ2,nuu(k−
nu + 1) + δ2] + . . . + βl(zk)[αl,1ŷ(k) + . . . + αl,nyŷ(k−

ny + 1) + ρl,1u(k) + . . . + ρl,nuu(k − nu + 1) + δl ]

which is also linear in the consequent parameters: α, ρ and δ. The closer these parameters are
to the actual, but unknown, system parameters (a, b, c) as in (12), more correlated zk and xk
will be, and the obtained FIV estimates closer to the optimum.

5. FIV Algorithm

The FIV approach is a simple and attractive technique because it does not require the noise
modeling to yield consistent, asymptotically unbiased consequent parameters estimates.
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which is also linear in the consequent parameters: α, ρ and δ. The closer these parameters are
to the actual, but unknown, system parameters (a, b, c) as in (12), more correlated zk and xk
will be, and the obtained FIV estimates closer to the optimum.

5. FIV Algorithm

The FIV approach is a simple and attractive technique because it does not require the noise
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5.1 Off-line scheme
The FIV normal equations are formulated as

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T θ̂k −

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj = 0 (30)

or, with ζ j = [β1
j zj, . . . , βl

jzj],

[
k

∑
j=1

ζ jχ
T
j ]θ̂k −

k

∑
j=1

ζ jyj = 0 (31)

so that the FIV estimate is obtained as

θ̂k = {
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj (32)

and, in vectorial form, the interest problem may be placed as

θ̂ = (ΓTΣ)−1ΓTY (33)

where ΓT ∈ �l(ny+nu+1)×N is the fuzzy extended instrumental variable matrix with rows
given by ζ j, Σ ∈ �N×l(ny+nu+1) is the fuzzy extended data matrix with rows given by χj and
Y ∈ �N×1 is the output vector and θ̂ ∈ �l(ny+nu+1)×1 is the parameters vector. The models
can be obtained by the following two approaches:

• Global approach : In this approach all linear consequent parameters are estimated simul-
taneously, minimizing the criterion:

θ̂ = arg min ‖ ΓTΣθ − ΓTY ‖2
2 (34)

• Local approach : In this approach the consequent parameters are estimated for each rule
i, and hence independently of each other, minimizing a set of weighted local criteria
(i = 1, 2, . . . , l):

θ̂i = arg min ‖ ZTΨiXθi − ZTΨiY ‖2
2 (35)

where ZT has rows given by zj and Ψi is the normalized membership degree diagonal
matrix according to zj.

5.2 On-line scheme
An on line FIV scheme can be obtained by utilizing the recursive solution to the FIV equa-
tions and then updating the fuzzy auxiliar model continuously on the basis of these recursive
consequent parameters estimates. The FIV estimate in (32) can take the form

θ̂k = Pkbk (36)

where

Pk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

and

bk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj

which can be expressed as

P−1
k = P−1

k−1 + [β1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T (37)

and
bk = bk−1 + [β1

kzk, . . . , βl
kzk]yk (38)

respectively. Pre-multiplying (37) by Pk and post-multiplying by Pk−1 gives

Pk−1 = Pk + Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1 (39)

then firstly post-multiplying (39) by the FIV vector [β1
j zj, . . . , βl

jzj], and after that,

post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1 [γ1
j (xk +

ξk), . . . , γl
k(xk + ξk)]

TPk−1, results

Pk−1[β
1
kzk, . . . , βl

jzk] = Pk[β
1
kzk, . . . , βl

jzk]+

Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]Pk−1[β
1
kzk, . . . , βl

jzk] =

Pk[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]} (40)

Then, post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1

[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1, we obtain

Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 = Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 (41)

Substituting (39) in (41), we have

Pk = Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1 (42)

Substituting (42) and (38) in (36), the recursive consequent parameters estimates will be:

θ̂k = {Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1}{bk−1 + [β1
kzk, . . . , βl

kzk]yk}
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5.1 Off-line scheme
The FIV normal equations are formulated as

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T θ̂k −

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj = 0 (30)

or, with ζ j = [β1
j zj, . . . , βl

jzj],

[
k

∑
j=1

ζ jχ
T
j ]θ̂k −

k

∑
j=1

ζ jyj = 0 (31)

so that the FIV estimate is obtained as

θ̂k = {
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj (32)

and, in vectorial form, the interest problem may be placed as

θ̂ = (ΓTΣ)−1ΓTY (33)

where ΓT ∈ �l(ny+nu+1)×N is the fuzzy extended instrumental variable matrix with rows
given by ζ j, Σ ∈ �N×l(ny+nu+1) is the fuzzy extended data matrix with rows given by χj and
Y ∈ �N×1 is the output vector and θ̂ ∈ �l(ny+nu+1)×1 is the parameters vector. The models
can be obtained by the following two approaches:

• Global approach : In this approach all linear consequent parameters are estimated simul-
taneously, minimizing the criterion:

θ̂ = arg min ‖ ΓTΣθ − ΓTY ‖2
2 (34)

• Local approach : In this approach the consequent parameters are estimated for each rule
i, and hence independently of each other, minimizing a set of weighted local criteria
(i = 1, 2, . . . , l):

θ̂i = arg min ‖ ZTΨiXθi − ZTΨiY ‖2
2 (35)

where ZT has rows given by zj and Ψi is the normalized membership degree diagonal
matrix according to zj.

5.2 On-line scheme
An on line FIV scheme can be obtained by utilizing the recursive solution to the FIV equa-
tions and then updating the fuzzy auxiliar model continuously on the basis of these recursive
consequent parameters estimates. The FIV estimate in (32) can take the form

θ̂k = Pkbk (36)

where

Pk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

and

bk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj

which can be expressed as

P−1
k = P−1

k−1 + [β1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T (37)

and
bk = bk−1 + [β1

kzk, . . . , βl
kzk]yk (38)

respectively. Pre-multiplying (37) by Pk and post-multiplying by Pk−1 gives

Pk−1 = Pk + Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1 (39)

then firstly post-multiplying (39) by the FIV vector [β1
j zj, . . . , βl

jzj], and after that,

post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1 [γ1
j (xk +

ξk), . . . , γl
k(xk + ξk)]

TPk−1, results

Pk−1[β
1
kzk, . . . , βl

jzk] = Pk[β
1
kzk, . . . , βl

jzk]+

Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]Pk−1[β
1
kzk, . . . , βl

jzk] =

Pk[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]} (40)

Then, post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1

[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1, we obtain

Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 = Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 (41)

Substituting (39) in (41), we have

Pk = Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1 (42)

Substituting (42) and (38) in (36), the recursive consequent parameters estimates will be:

θ̂k = {Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1[β
1
kzk, . . . , βl

jzk]}−1[γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1}{bk−1 + [β1
kzk, . . . , βl

kzk]yk}
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so that finally,

θ̂k = θ̂k−1 − Kk{[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T θ̂k−1 − yk} (43)

where

Kk = Pk−1[β
1
kzk, . . . , βl

kzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1 (44)

The equations (42)-(44) compose the FIV recursive estimation formula, and are implemented
to determine unbiased estimates for the TS fuzzy model consequent parameters in a noisy
environment.

6. COMPUTATIONAL RESULTS

In the sequel, two examples will be presented to demonstrate the effectiveness and applica-
bility of the proposed algorithm in a noisy environment. Practical application of this method
can be seen in (?), where was performed the identification of an aluminium beam, a complex
nonlinear time varying plant whose study provides a great background for active vibration
control applications in mechanical structures of aircrafts and/or aerospace vehicles.

6.1 Polynomial function approximation
Consider a nonlinear function defined by

uk = ui
k + νk (45)

yi
k = 1 − 2uk + u2

k (46)

yk = yi
k + ck − 0.25ck−1 (47)

In Fig. 2 are shown the true system (ui
k ∈ [0, 2],yi

k) and the noisy (uk,yk) input-output ob-
servations with measurements corrupted by normal noise conditions of σc = σν = 0.2. The
results for the TS fuzzy models obtained by applying the proposed FIV algorithm as well
as the LS estimation to tune the consequent parameters are shown in Fig. 3. It can be seen,
clearly, that the curves for the polynomial function and for the proposed FIV based identifica-
tion almost cover each other. The fuzzy c-means clustering algorithm was used to criate the
antecedent membership functions of the TS fuzzy models, which are shown in Fig. 4. The FIV
was based on the filtered output from a “fuzzy auxiliar model” with the same structure of
the TS fuzzy model used to identify the nonlinear function. The clusters centers of the mem-
bership functions for the LS and FIV estimations were c = [−0.0983, 0.2404, 0.6909, 1.1611]T

and c = [0.1022, 0.4075, 0.7830, 1.1906]T , respectively. The TS fuzzy models have the following
structure:

Ri : IF yk is Fi THEN ŷk = a0 + a1uk + a2u2
k

where i = 1, 2, . . . , 4. For the FIV approach, the “fuzzy auxiliar model” has the following
structure:

Ri : IF y f ilt is Fi THEN y f ilt = a0 + a1uk + a2y2
f ilt

where y f ilt is the filtered output, based on the consequent parameters LS estimation, and used
to criate the membership functions, as shown in Fig. 4, as well as the instrumental variable
matrix. The resulting TS fuzzy models based on the LS estimation are:

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

uk
i  ; uk

y ki  ; 
y k

Original value
Measured value

Fig. 2. Polynomial function with error in variables.

0 0.5 1 1.5 2

0

0.5

1

1.5
Local approach

uk

y k

Nominal value
LS estimated value

0 0.5 1 1.5 2

0

0.5

1

1.5
Local approach

uk

y k

Nominal value
FIV estimated value

0 0.5 1 1.5 2

0

0.5

1

1.5
Global approach

uk

y k

Nominal value
LS estimated value

0 0.5 1 1.5 2

0

0.5

1

1.5
Global approach

uk

y k

Nominal value
FIV estimated value

Fig. 3. Approximation of the polynomial function.



Fuzzy identification of discrete time nonlinear stochastic systems 209

so that finally,

θ̂k = θ̂k−1 − Kk{[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T θ̂k−1 − yk} (43)

where

Kk = Pk−1[β
1
kzk, . . . , βl

kzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}−1 (44)

The equations (42)-(44) compose the FIV recursive estimation formula, and are implemented
to determine unbiased estimates for the TS fuzzy model consequent parameters in a noisy
environment.

6. COMPUTATIONAL RESULTS

In the sequel, two examples will be presented to demonstrate the effectiveness and applica-
bility of the proposed algorithm in a noisy environment. Practical application of this method
can be seen in (?), where was performed the identification of an aluminium beam, a complex
nonlinear time varying plant whose study provides a great background for active vibration
control applications in mechanical structures of aircrafts and/or aerospace vehicles.

6.1 Polynomial function approximation
Consider a nonlinear function defined by

uk = ui
k + νk (45)

yi
k = 1 − 2uk + u2

k (46)

yk = yi
k + ck − 0.25ck−1 (47)

In Fig. 2 are shown the true system (ui
k ∈ [0, 2],yi

k) and the noisy (uk,yk) input-output ob-
servations with measurements corrupted by normal noise conditions of σc = σν = 0.2. The
results for the TS fuzzy models obtained by applying the proposed FIV algorithm as well
as the LS estimation to tune the consequent parameters are shown in Fig. 3. It can be seen,
clearly, that the curves for the polynomial function and for the proposed FIV based identifica-
tion almost cover each other. The fuzzy c-means clustering algorithm was used to criate the
antecedent membership functions of the TS fuzzy models, which are shown in Fig. 4. The FIV
was based on the filtered output from a “fuzzy auxiliar model” with the same structure of
the TS fuzzy model used to identify the nonlinear function. The clusters centers of the mem-
bership functions for the LS and FIV estimations were c = [−0.0983, 0.2404, 0.6909, 1.1611]T

and c = [0.1022, 0.4075, 0.7830, 1.1906]T , respectively. The TS fuzzy models have the following
structure:

Ri : IF yk is Fi THEN ŷk = a0 + a1uk + a2u2
k

where i = 1, 2, . . . , 4. For the FIV approach, the “fuzzy auxiliar model” has the following
structure:

Ri : IF y f ilt is Fi THEN y f ilt = a0 + a1uk + a2y2
f ilt

where y f ilt is the filtered output, based on the consequent parameters LS estimation, and used
to criate the membership functions, as shown in Fig. 4, as well as the instrumental variable
matrix. The resulting TS fuzzy models based on the LS estimation are:
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Local approach:

R1 : IF yk is F1 THEN ŷk = 0.7074 − 1.7120uk + 0.8717u2
k

R2 : IF yk is F2 THEN ŷk = 0.7466 − 1.2077uk + 0.5872u2
k

R3 : IF yk is F3 THEN ŷk = 0.8938 − 1.1831uk + 0.5935u2
k

R4 : IF yk is F4 THEN ŷk = 1.0853 − 1.4776uk + 0.7397u2
k

Global approach:

R1 : IF yk is F1 THEN ŷk = 0.0621 − 0.4630uk + 0.2272u2
k

R2 : IF yk is F2 THEN ŷk = 0.3729 − 0.3068uk + 0.1534u2
k

R3 : IF yk is F3 THEN ŷk = 0.7769 − 0.3790uk + 0.1891u2
k

R4 : IF yk is F4 THEN ŷk = 1.1933 − 0.8500uk + 0.4410u2
k

According to Fig. 3, the obtained TS fuzzy models based on LS estimation are very poor and
they were not able to aproximate the original nonlinear function data. It shows the influency
of noise on the regressors of the data matrix, as explained in section 4, making the consequent
parameters estimation biased and inconsistent. On the other hand, the resulting TS fuzzy
models based on the FIV estimation are of the form:
Local approach:

R1 : IF yk is F1 THEN ŷk = 1.0130 − 1.9302uk + 0.9614u2
k

R2 : IF yk is F2 THEN ŷk = 1.0142 − 1.9308uk + 0.9618u2
k

R3 : IF yk is F3 THEN ŷk = 1.0126 − 1.9177uk + 0.9555u2
k

R4 : IF yk is F4 THEN ŷk = 1.0123 − 1.9156uk + 0.9539u2
k

Global approach:

R1 : IF yk is F1 THEN ŷk = 1.0147 − 1.9310uk + 0.9613u2
k

R2 : IF yk is F2 THEN ŷk = 1.0129 − 1.9196uk + 0.9570u2
k

R3 : IF yk is F3 THEN ŷk = 1.0125 − 1.9099uk + 0.9508u2
k

R4 : IF yk is F4 THEN ŷk = 1.0141 − 1.9361uk + 0.9644u2
k

In this application, to ilustrate the parametric convergence property, the consequent functions
have the same structure of the polynomial function. It can be seen that the consequent pa-
rameters of the obtained TS fuzzy models based on FIV estimation are close to the nonlinear
function parameters in (45)-(47), which shows the robustness of the proposed FIV method in
a noisy environment as well as the capability of the identified TS fuzzy models for approx-
imation and generalization of any nonlinear function with error in variables. Two criteria,
widely used in analysis of experimental data and fuzzy modeling, can be applied to evaluate
the fitness of the obtained TS fuzzy models : Variance Accounted For (VAF)

VAF(%) = 100 ×
[

1 − var(Y − Ŷ)
var(Y)

]
(48)

where Y is the nominal output of the plant, Ŷ is the output of the TS fuzzy model and var
means signal variance, and Mean Square Error (MSE)

MSE =
1
N

N

∑
k=1

(yk − ŷk)
2 (49)

where yk is the nominal output of the plant, ŷk is the output of the TS fuzzy model and N
is the number of points. The obtained TS fuzzy models based on LS estimation presented
performance with VAF and MSE of 74.4050% and 0.0226 for the local approach and of 6.0702%
and 0.0943 for the global approach, respectively. The obtained TS fuzzy models based on FIV
estimation presented performance with VAF and MSE of 99.5874% and 0.0012 for the local
approach and of 99.5730% and 0.0013 for the global approach, respectively. The chosen fuzzy
instrumental variables satisfied the Lemmas 1-3 as well as the Theorem 1, in section 4.1 and,
as a consequence, the proposed algorithm becomes more robust to the noise.

6.2 On-line identification of a second-order nonlinear dynamic system
The plant to be identified consists on a second order highly nonlinear discrete-time system

uk = ui
k + νk

xk+1 =
xkxk−1(xk + 2.5)

1 + x2
k + x2

k−1
+ u(k) (50)

yk+1 = xk+1 + ck − 0.5ck−1

which is, without noise, a benchmark problem in neural and fuzzy modeling (Narendra &
Parthasarathy (1990); Papadakis & Theocaris (2002)), where x(k) is the plant output and ui

k =

1.5 sin( 2πk
25 ) is the applied input. In this case νk and ck are white noise with zero mean and

variance σ2
ν = σ2

c = 0.1 meaning that the noise level applied to outputs takes values between
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Local approach:

R1 : IF yk is F1 THEN ŷk = 0.7074 − 1.7120uk + 0.8717u2
k

R2 : IF yk is F2 THEN ŷk = 0.7466 − 1.2077uk + 0.5872u2
k

R3 : IF yk is F3 THEN ŷk = 0.8938 − 1.1831uk + 0.5935u2
k

R4 : IF yk is F4 THEN ŷk = 1.0853 − 1.4776uk + 0.7397u2
k

Global approach:

R1 : IF yk is F1 THEN ŷk = 0.0621 − 0.4630uk + 0.2272u2
k

R2 : IF yk is F2 THEN ŷk = 0.3729 − 0.3068uk + 0.1534u2
k

R3 : IF yk is F3 THEN ŷk = 0.7769 − 0.3790uk + 0.1891u2
k

R4 : IF yk is F4 THEN ŷk = 1.1933 − 0.8500uk + 0.4410u2
k

According to Fig. 3, the obtained TS fuzzy models based on LS estimation are very poor and
they were not able to aproximate the original nonlinear function data. It shows the influency
of noise on the regressors of the data matrix, as explained in section 4, making the consequent
parameters estimation biased and inconsistent. On the other hand, the resulting TS fuzzy
models based on the FIV estimation are of the form:
Local approach:

R1 : IF yk is F1 THEN ŷk = 1.0130 − 1.9302uk + 0.9614u2
k

R2 : IF yk is F2 THEN ŷk = 1.0142 − 1.9308uk + 0.9618u2
k

R3 : IF yk is F3 THEN ŷk = 1.0126 − 1.9177uk + 0.9555u2
k

R4 : IF yk is F4 THEN ŷk = 1.0123 − 1.9156uk + 0.9539u2
k

Global approach:

R1 : IF yk is F1 THEN ŷk = 1.0147 − 1.9310uk + 0.9613u2
k

R2 : IF yk is F2 THEN ŷk = 1.0129 − 1.9196uk + 0.9570u2
k

R3 : IF yk is F3 THEN ŷk = 1.0125 − 1.9099uk + 0.9508u2
k

R4 : IF yk is F4 THEN ŷk = 1.0141 − 1.9361uk + 0.9644u2
k

In this application, to ilustrate the parametric convergence property, the consequent functions
have the same structure of the polynomial function. It can be seen that the consequent pa-
rameters of the obtained TS fuzzy models based on FIV estimation are close to the nonlinear
function parameters in (45)-(47), which shows the robustness of the proposed FIV method in
a noisy environment as well as the capability of the identified TS fuzzy models for approx-
imation and generalization of any nonlinear function with error in variables. Two criteria,
widely used in analysis of experimental data and fuzzy modeling, can be applied to evaluate
the fitness of the obtained TS fuzzy models : Variance Accounted For (VAF)

VAF(%) = 100 ×
[

1 − var(Y − Ŷ)
var(Y)

]
(48)

where Y is the nominal output of the plant, Ŷ is the output of the TS fuzzy model and var
means signal variance, and Mean Square Error (MSE)

MSE =
1
N

N

∑
k=1

(yk − ŷk)
2 (49)

where yk is the nominal output of the plant, ŷk is the output of the TS fuzzy model and N
is the number of points. The obtained TS fuzzy models based on LS estimation presented
performance with VAF and MSE of 74.4050% and 0.0226 for the local approach and of 6.0702%
and 0.0943 for the global approach, respectively. The obtained TS fuzzy models based on FIV
estimation presented performance with VAF and MSE of 99.5874% and 0.0012 for the local
approach and of 99.5730% and 0.0013 for the global approach, respectively. The chosen fuzzy
instrumental variables satisfied the Lemmas 1-3 as well as the Theorem 1, in section 4.1 and,
as a consequence, the proposed algorithm becomes more robust to the noise.

6.2 On-line identification of a second-order nonlinear dynamic system
The plant to be identified consists on a second order highly nonlinear discrete-time system

uk = ui
k + νk

xk+1 =
xkxk−1(xk + 2.5)

1 + x2
k + x2

k−1
+ u(k) (50)

yk+1 = xk+1 + ck − 0.5ck−1

which is, without noise, a benchmark problem in neural and fuzzy modeling (Narendra &
Parthasarathy (1990); Papadakis & Theocaris (2002)), where x(k) is the plant output and ui

k =

1.5 sin( 2πk
25 ) is the applied input. In this case νk and ck are white noise with zero mean and

variance σ2
ν = σ2

c = 0.1 meaning that the noise level applied to outputs takes values between
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0 and ±20% from its nominal values, which is an acceptable practical percentage of noise. The
rule base, for the TS fuzzy model, is of the form:

Ri : IF yk is Fi
1,2 AND yk−1 is Gi

1,2 THEN

ŷk+1 = ai,1yk + ai,2yk−1 + bi,1uk + ci (51)

where Fi
1,2|i=1,2,...,l are gaussian fuzzy sets. For the FIV approach, the “fuzzy auxiliar model”

has the following structure:

Ri : IF y f ilt
k is Fi

1,2 AND y f ilt
k−1 is Gi

1,2 THEN

ŷ f ilt
k+1 = ai,1y f ilt

k + ai,2y f ilt
k−1 + bi,1uk + ci (52)

where ŷ f ilt is the filtered output, based on the consequent parameters LS estimation, and used
to criate the membership functions as well as the fuzzy instrumental variable matrix. The
number of rules is 4 for the TS fuzzy model, the antecedent parameters are obtained by the
ECM method proposed in (Kasabov & Song (2002)). An experimental data set of 500 points is
created from (50). The linguistic variables partitions obtained by the ECM method are shown
in Fig. 5. The TS fuzzy model consequent parameters recursive estimate result is shown in
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Fig. 6. The coefficient of determination, widely used in analysis of experimental data for time-
series modeling, can be applied to evaluate the fitness of the obtained TS fuzzy models:
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where yi is the nominal output of the plant, ŷi is the output of the TS fuzzy model and RT is
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0 and ±20% from its nominal values, which is an acceptable practical percentage of noise. The
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where ŷ f ilt is the filtered output, based on the consequent parameters LS estimation, and used
to criate the membership functions as well as the fuzzy instrumental variable matrix. The
number of rules is 4 for the TS fuzzy model, the antecedent parameters are obtained by the
ECM method proposed in (Kasabov & Song (2002)). An experimental data set of 500 points is
created from (50). The linguistic variables partitions obtained by the ECM method are shown
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coefficient of determination is 0.9771.
According to Fig. 6, it can be seen that the algorithm is sensitive to the nonlinear plant behav-
ior, the parameters estimates are consistent and converge rapidly. As expected, the proposed
method provides unbiased and suficiently accurate estimates of the consequent parameters
and, as a consequence, high speed of convergence of the TS fuzzy model to the nonlinear
plant behavior in a noisy environment. These characteristics are very important in adaptive

0

5

10

15

20

0

5

10

15

20
−4

−2

0

2

4

6

8

number of parameters: 16number of parameters: 16

co
va

ria
nc

e 
va

lu
e

Fig. 8. Fuzzy covariance matrix Pk.

control design applications. The tracking of the nonlinear plant output is shown in Fig. 7.
Figure 8 shows the fuzzy covariance matrix Pk of the recursive parameters estimatesfor the
last point. It can be seen that the parametric uncertainty is close to zero and the higher val-
ues at this 3-D plot represent the principal diagonal entries, which determine the non-sigular
property of this matrix due to fuzzy instrumental variable approach during the estimation
process.

7. Conclusions

The concept of fuzzy instrumental variable and an approach for fuzzy identification of non-
linear discrete time systems were proposed. Convergence conditions for identification in a
noisy environment in a fuzzy context were studied. Simulation results for off-line and on-line
schemes evidence the good quality of this fuzzy instrumental variable approach for identifi-
cation and function approximation with observation errors in input and output data.
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1. Introduction

The design of control systems is currently managed by a large number of requirements such
as: increasing competition, environmental requirements, energy and material costs, and de-
mand for robust and fault-tolerant systems which require considerations for effective process
control techniques. In this context, the analysis and synthesis of compensators are completely
related to each other. In the analysis, the characteristics or dynamic behaviour of the control
system are determined. In the synthesis, the compensators are obtained to attend to desired
characteristics of the control system based on certain performance criteria. Generally, these
criteria may involve disturbance rejection, steady-state errors, transient response characteris-
tics and sensitivity to parameter changes in the plant (Franklin et al. (1986); Ioannou & Sun
(1996); Phillips & Harbor (1996)).
Test input signals is one way to analyse the dynamic behaviour of real world system. Many
test signals are available, but a simple and useful signal is the sinusoidal wave form because
the system output with a sinusoidal wave input is also a sinusoidal wave, but with a different
amplitude and phase for a given frequency. This frequency response analysis describes how
a dynamic system responds to sinusoidal inputs in a range of frequencies and it has been
widely used in academic field and industry, as well as been considered essential for robust
control theory (Serra & Bottura (2006; 2009); Serra et al. (2009); Tanaka et al. (1998)).
The frequency response methods were developed during the period 1930 − 1940 by Harry
Nyquist (1889 − 1976) (Nyquist (1932)), Hendrik Bode (1905 − 1982) (Bode (1940)), Nathaniel
B. Nichols (1914− 1997) (James et al. (1947)), and many others. Since then, frequency response
methods are among the most useful techniques being available to analyse and synthesise the
compensators. In (Jr. (1973)), the U.S. Navy obtains frequency responses for aircraft by apply-
ing sinusoidal inputs to the autopilots and measuring its resulting position in flight. In (Lascu
et al. (2009)), four current controllers for selective harmonic compensation in parallel with
Active Power Filters (APFs) have been analytically compared in terms of frequency response
characteristics and maximum operational frequency.
Most real systems, such as circuit components (inductor, resistor, operational amplifier, etc.)
are often formulated using differential/integral equations with stochastic parameters (Kolev
(1993)). These random variations are most often quantified in terms of boundaries. The clas-
sical methods of frequency response do not explore these boundaries for Stochastic Linear
Parameter Varying (SLPV) dynamic systems. To overcome this limitation, this chapter pro-
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poses the definition of Fuzzy Frequency Response (FFR) and its application for analysis of
stochastic linear parameter varying dynamic systems.

2. Formulation Problem

This section presents some essential concepts for the formulation and development of this
chapter.

2.1 Stochastic Linear Parameter Varying Dynamic Systems
In terms of transfer function, the general form of SLPV dynamic system is given by Eq. (1), as
depicted in Fig.1.

H(s,   )

ν

YX
ν

Fig. 1. SLPV dynamic sistem.

H(s, ν) =
Y(s, ν)

X(s)
=

bα(ν)sα + bα−1(ν)s
α−1 + . . . + bα(ν)sα + b1(ν)s + b0(ν)

sβ + aβ−1(ν)s
β−1 + . . . + a1(ν)s + a0(ν)

,

(1)

where:

• H(s, ν) is the transfer function of the SLPV dynamic system;

• X(s) and Y(s, ν) represent the input and output of SLPV dynamic system, respectively;

• a∗(ν) and b∗(ν) are the varying parameters;

• ν(t) is the time varying scheduling variable;

• s is the Laplace operator and

• α and β are the orders of the numerator and denominator of the transfer function, re-
spectively (with β ≥ α).

The scheduling variable ν belongs to a compact set ν ∈ V, with its variation limited by |ν̇| ≤
dmax, with dmax ≥ 0.

2.2 Takagi-Sugeno Fuzzy Dynamic Model
The TS inference system, originally proposed in (Takagi (1985)), presents in the consequent a

dynamic functional expression of the linguistic variables of the antecedent. The i
∣∣∣[i=1,2,...,l] -th

rule, where l is the number of rules, is given by:

Rule(i) : IF x̃1 is Fi
{1,2,...,px̃1

}| x̃1
AND . . . AND x̃n is Fi

{1,2,...,px̃n}| x̃n

THEN yi = fi(x̃), (2)

where the total number of rules is l = px̃1
× . . . × px̃n

. The vector x̃ = [x̃1, . . . , x̃n]T ∈ �n

containing the linguistic variables of antecedent, where T represents the operator for trans-
pose matrix. Each linguistic variable has its own discourse universe Ux̃1

, . . . ,Ux̃n
, partitioned

by fuzzy sets representing its linguistics terms, respectively. In i-th rule, the variable x̃{1,2,...,n}

belongs to the fuzzy set Fi
{x̃1,...,x̃n}

with a membership degree µi
F{ x̃1,...,x̃n}

defined by a member-

ship function µi
{x̃1,...,x̃n}

: � → [0, 1], with µi
F{ x̃1,...,x̃n}

∈ {µi
F1|{ x̃1,...,x̃n}

, µi
F2|{ x̃1,...,x̃n}

, . . . , µi
Fp|{ x̃1,...,x̃n}

},

where p{x̃1,...,x̃n} is the partition number of the discourse universe, associated with the lin-
guistic variable x̃1, . . . , , x̃n. The TS fuzzy dynamic model output is a convex combination
of the dynamic functional expressions of consequent fi(x̃), without loss of generality for the
bidimensional case, as illustrated in Fig. 2, given by Eq. (3).
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Fig. 2. Fuzzy dynamic model: A TS model can be regarded as a mapping from the antecedent
space to the consequent parameter one.

y(x̃, γ) =
l

∑
i=1

γi(x̃) fi(x̃), (3)

where γ is the scheduling variable of the TS fuzzy dynamic model.
The scheduling variable, well known as normalized activation degree, is given by:
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y(x̃, γ) =
l

∑
i=1

γi(x̃) fi(x̃), (3)

where γ is the scheduling variable of the TS fuzzy dynamic model.
The scheduling variable, well known as normalized activation degree, is given by:
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γi(x̃) =
hi(x̃)

l

∑
r=1

hr(x̃)

. (4)

This normalization implies

l

∑
k=1

γi(x̃) = 1. (5)

It can be observed that the TS fuzzy dynamic system, which represents any stochastic dy-
namic model, may be considered as a class of systems where γi(x̃) denotes a decomposition
of linguistic variables [x̃1, . . . , x̃n]

T ∈ �n for a polytopic geometric region in the consequent
space based on the functional expressions fi(x̃).

3. Fuzzy Frequency Response (FFR): Definition

This section demonstrates how a TS fuzzy dynamic model responds to sinusoidal inputs,
which is proposed as the definition of fuzzy frequency response. The response of a TS fuzzy
dynamic model to a sinusoidal input of frequency ω1, in both amplitude and phase, is given
by the transfer function evaluated at s = jω1, as illustrated in Fig. 3.
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Fig. 3. TS fuzzy transfer function.
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Then, for the case that the input signal e(t) is sinusoidal, that is:

e(t) = A sin ω1t. (9)

The output signal yss(t), in the steady state, is given by
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γiW
i(jω)

∣∣∣∣∣ sin [ω1t + φ(ω1)] . (10)

As a result of the fuzzy frequency response definition, it is then proposed the following Theo-
rem:

Theorem 3.1. Fuzzy frequency response is a region in the frequency domain, defined by the consequent
sub-models and based on the operating region of the antecedent space.

Proof. Considering that ν̃ is stochastic and can be represented by linguistic terms, once known

its discourse universe, as shown in Fig. 4, the activation degrees, hi(ν̃)|
i=1,2,...,l are also

stochastic, since it dependes of the dynamic system:

hi(ν̃) = µi
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Fig. 4. Functional description of the linguistic variable ν̃: linguistic terms, discourse universe
and membership degrees.

So, the normalized activation degrees γi(ν̃)|
i=1,2,...,l , are also stochastics:
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This normalization implies

l

∑
k=1

γi(ν̃) = 1. (13)

Let F(s) be a vectorial space with degree l and f 1(s), f 2(s), . . . , f l(s) be transfer functions
which belong to this vectorial space. A transfer function f (s) ∈ F(s) must be a linear convex
combination of the vectors f 1(s), f 2(s), . . . , f l(s):

f (s) = ξ1 f 1(s) + ξ2 f 2(s) + . . . + ξl f l(s), (14)

where ξ1,2,...,l are the linear convex combination coefficients. If they are normalized(
l

∑
i=1

ξi = 1

)
, the vectorial space presents a decomposition of the transfer functions

[
f 1(s),

f 2(s), . . . , f l(s)
]

in a polytopic geometric shape of the vectorial space F(s). The points of the

polytopic geometric shape are defined by the transfer functions
[

f 1(s), f 2(s), . . . , f l(s)
]
.

The TS fuzzy dynamic model attends to this polytopic property. The sum of the normalized
activation degrees is equal to 1, as demonstrated in Eq. (5). To define the points of this fuzzy
polytopic geometric shape, each rule of the TS fuzzy dynamic model must be individually ac-
tivated. This condition is called boundary condition. Thus, the following results are obtained
for the Fuzzy Frequency Response (FFR) of the TS fuzzy transfer function:

• If only the rule 1 is activated, it has (γ1 = 1, γ2 = 0, γ3 = 0, . . . , γl = 0). Hence,

W̃(jω, ν̃) =

∣∣∣∣∣
l

∑
i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣∠arctan

[
l

∑
i=1

γi(ν̃)W
i(jω)

]
, (15)

W̃(jω, ν̃) =
∣∣∣1W1(jω) + 0W2(jω) + . . . + 0Wl(jω)

∣∣∣∠arctan
[
1W1(jω) + 0W2(jω) + . . . + 0Wl(jω)

]
, (16)

W̃(jω, ν̃) =
∣∣∣W1(jω)

∣∣∣∠arctan
[
W1(jω)

]
. (17)

• If only the rule 2 is activated, it has (γ1 = 0, γ2 = 1, γ3 = 0, . . . , γl = 0). Hence,
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i(jω)

∣∣∣∣∣∠arctan

[
l

∑
i=1

γi(ν̃)W
i(jω)

]
, (18)

W̃(jω, ν̃) =
∣∣∣0W1(jω) + 1W2(jω) + . . . + 0Wl(jω)

∣∣∣∠arctan
[
0W1(jω) + 1W2(jω) + . . . + 0Wl(jω)

]
, (19)

W̃(jω, ν̃) =
∣∣∣W2(jω)

∣∣∣∠arctan
[
W2(jω)

]
. (20)

• If only the rule l is activated, it has (γ1 = 0, γ2 = 0, γ3 = 0, . . . , γl = 1). Hence,

W̃(jω, ν̃) =
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i(jω)
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, (21)

W̃(jω, ν̃) =
∣∣∣0W1(jω) + 0W2(jω) + . . . + 1Wl(jω)

∣∣∣∠arctan
[
0W1(jω) + 0W2(jω) + . . . + 1Wl(jω)

]
, (22)

W̃(jω, ν̃) =
∣∣∣Wl(jω)

∣∣∣∠arctan
[
Wl(jω)

]
. (23)

Where W1(jω), W2(jω), . . . , Wl(jω) are the linear sub-models of the uncertain dynamic sys-
tem.
Note that

∣∣∣W1(jω)
∣∣∣∠arctan

[
W1(jω)

]
and

∣∣∣Wl(jω)
∣∣∣∠arctan

[
Wl(jω)

]
define a boundary re-

gion. Under such circumstances, the fuzzy frequency response converges to a boundary in
the frequency domain defined by a surface based on membership degrees. Figure 5 shows the
fuzzy frequency response for the bidimensional case, without loss of generality.

�

4. Fuzzy Frequency Response (FFR): Analysis

In this section, the behaviour of the fuzzy frequency response is analysed at low and high
frequencies. The idea is to study the magnitude and phase behaviour of the TS fuzzy dynamic
model, when ω varies from zero to infinity.

4.1 Low Frequency Analysis
Low frequency analysis of the TS fuzzy dynamic model W̃(s) can be obtained by:

lim
ω→0

l

∑
i=1

γiW
i(jω). (24)

The magnitude and phase behaviours at low frequencies, are given by

lim
ω→0

∣∣∣∣∣
l

∑
i=1

γiW
i(jω)

∣∣∣∣∣∠arctan

[
l

∑
i=1

γiW
i(jω)

]
. (25)
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4.2 High Frequency Analysis
Likewise, the high frequency analysis of the TS fuzzy dynamic model W̃(s) can be obtained
by:

lim
ω→∞

l

∑
i=1

γiW
i(jω). (26)

The magnitude and phase behaviours at high frequencies, are given by

lim
ω→∞

∣∣∣∣∣
l

∑
i=1

γiW
i(jω)

∣∣∣∣∣∠arctan

[
l

∑
i=1

γiW
i(jω)

]
. (27)

5. Computational Results

To illustrate the FFR: definition and analysis, as shown in sections 3 and 4, consider the fol-
lowing SLPV dynamic system, given by

H(s, ν) =
Y(s, ν)

U(s)
=

2 − ν

[(ν + 1)s + 1]
[( ν

2
+ 0.1

)
s + 1

] , (28)

where the scheduling variable is ν = [0, 1], the gain of the SLPV dynamic system is Kp = 2− ν,

the higher time constant is τ = ν + 1, and the lower time constant is τ
′
=

ν

2
+ 0.1.

Starting from the SLPV dynamic system in Eq. (28) and assuming the time varying scheduling
variable in the range of [0, 1], one can obtain the TS fuzzy dynamic model in the following
operating points:

Sub-model 1 (ν = 0):

W1(s, 0) =
2

(s + 1)(0.1s + 1)
=

2

0.1s2 + 1.1s + 1
. (29)

Sub-model 2 (ν = 0.5):

W2(s, 0.5) =
1.5

(1.5s + 1)(0.35s + 1)
=

1.5

0.525s2 + 1.85s + 1
.

(30)

Sub-model 3 (ν = 1):

W3(s, 1) =
1

(2s + 1)(0.6s + 1)
=

1

1.2s2 + 2.6s + 1
. (31)

The TS fuzzy dynamic model rule base results in:

Rule(1) : IF ν is 0 THEN W1(s, 0)

Rule(2) : IF ν is 0.5 THEN W2(s, 0.5)

Rule(3) : IF ν is 1 THEN W3(s, 1),

(32)

and the TS fuzzy dynamic model of the SLPV dynamic system is given by

W̃(s, ν̃) =
3

∑
i=1

γi(ν̃)W
i(s). (33)

Again, starting from Eq. (28), one obtains:
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the higher time constant is τ = ν + 1, and the lower time constant is τ
′
=

ν

2
+ 0.1.

Starting from the SLPV dynamic system in Eq. (28) and assuming the time varying scheduling
variable in the range of [0, 1], one can obtain the TS fuzzy dynamic model in the following
operating points:

Sub-model 1 (ν = 0):

W1(s, 0) =
2

(s + 1)(0.1s + 1)
=

2

0.1s2 + 1.1s + 1
. (29)

Sub-model 2 (ν = 0.5):

W2(s, 0.5) =
1.5

(1.5s + 1)(0.35s + 1)
=

1.5

0.525s2 + 1.85s + 1
.

(30)

Sub-model 3 (ν = 1):

W3(s, 1) =
1

(2s + 1)(0.6s + 1)
=

1

1.2s2 + 2.6s + 1
. (31)

The TS fuzzy dynamic model rule base results in:

Rule(1) : IF ν is 0 THEN W1(s, 0)

Rule(2) : IF ν is 0.5 THEN W2(s, 0.5)

Rule(3) : IF ν is 1 THEN W3(s, 1),

(32)

and the TS fuzzy dynamic model of the SLPV dynamic system is given by

W̃(s, ν̃) =
3

∑
i=1

γi(ν̃)W
i(s). (33)

Again, starting from Eq. (28), one obtains:
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Y(s, ν) =
2 − ν(

ν2

2
+ 0.1ν +

ν

2
+ 0.1

)
s2 +

(
ν + 1 + 0.1 +

ν

2

)
s + 1

U(s),

(34)

(
ν2 + 1.2ν + 0.2

2

)
s2Y(s, ν) +

(
3ν + 2.2

2

)
sY(s, ν) + Y(s, ν) = (2 − ν)U(s)

(35)

and taking the inverse Laplace transform, this yields the differential equation of the SLPV
dynamic system:

(
ν2 + 1.2ν + 0.2

2

)
ÿ(t) +

(
3ν + 2.2

2

)
ẏ(t) + y(t) = (2 − ν) u(t). (36)

A comparative analysis, via analog simulation between the SLPV dynamic system Eq. (36)
and the TS fuzzy dynamic model Eq. (33), can be performed to validate the TS fuzzy dynamic
model. A band-limited white noise (normally distributed random signal) was considered as
input and the stochastic parameter was based on sinusoidal variation. As shown in Fig. 6, the
efficiency of the TS fuzzy dynamic model in order to represent the dynamic behaviour of the
SLPV dynamic system in the time domain can be seen.
From Eq. (8) the TS fuzzy dynamic model of the SLPV dynamic system, Eq. (33), can be
represented by

W̃(jω, ν̃) =

∣∣∣∣∣
3

∑
i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣∠arctan

[
3

∑
i=1

γi(ν̃)W
i(jω)

]
(37)

or

W̃(jω, ν̃) =
∣∣∣γ1W1(jω, 0) + γ2W2(jω, 0.5) + γ3W3(jω, 1)

∣∣∣

∠arctan
[
γ1W1(jω, 0) + γ2W2(jω, 0.5) +γ3W3(jω, 1)

]
. (38)

So,

W̃(jω, ν̃) =

∣∣∣∣γ1
2

0.1s2 + 1.1s + 1
+ γ2

1.5

0.525s2 + 1.85s + 1
+

+γ3
1

1.2s2 + 2.6s + 1

∣∣∣∣∠arctan

[
γ1

2

0.1s2 + 1.1s + 1
+
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Fig. 6. Validation of the TS fuzzy dynamic model.

+γ2
1.5

0.525s2 + 1.85s + 1
+ γ3

1

1.2s2 + 2.6s + 1

]
, (39)

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+
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Y(s, ν) =
2 − ν(

ν2

2
+ 0.1ν +

ν

2
+ 0.1

)
s2 +

(
ν + 1 + 0.1 +

ν

2

)
s + 1

U(s),

(34)

(
ν2 + 1.2ν + 0.2

2

)
s2Y(s, ν) +

(
3ν + 2.2

2

)
sY(s, ν) + Y(s, ν) = (2 − ν)U(s)

(35)

and taking the inverse Laplace transform, this yields the differential equation of the SLPV
dynamic system:

(
ν2 + 1.2ν + 0.2

2

)
ÿ(t) +

(
3ν + 2.2

2

)
ẏ(t) + y(t) = (2 − ν) u(t). (36)

A comparative analysis, via analog simulation between the SLPV dynamic system Eq. (36)
and the TS fuzzy dynamic model Eq. (33), can be performed to validate the TS fuzzy dynamic
model. A band-limited white noise (normally distributed random signal) was considered as
input and the stochastic parameter was based on sinusoidal variation. As shown in Fig. 6, the
efficiency of the TS fuzzy dynamic model in order to represent the dynamic behaviour of the
SLPV dynamic system in the time domain can be seen.
From Eq. (8) the TS fuzzy dynamic model of the SLPV dynamic system, Eq. (33), can be
represented by

W̃(jω, ν̃) =

∣∣∣∣∣
3

∑
i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣∠arctan

[
3

∑
i=1

γi(ν̃)W
i(jω)

]
(37)

or

W̃(jω, ν̃) =
∣∣∣γ1W1(jω, 0) + γ2W2(jω, 0.5) + γ3W3(jω, 1)

∣∣∣

∠arctan
[
γ1W1(jω, 0) + γ2W2(jω, 0.5) +γ3W3(jω, 1)

]
. (38)

So,
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1.5

0.525s2 + 1.85s + 1
+
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+γ2
1.5

0.525s2 + 1.85s + 1
+ γ3

1

1.2s2 + 2.6s + 1

]
, (39)

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+
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1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
,

(40)

where:

Den[W̃(jω,ν̃)] = 0.1(jω)6 + 1.1(jω)5 + 5.2(jω)4 + 11.2(jω)3 + 11.5(jω)2 + 5.6(jω) + 1. (41)

5.1 Low Frequency Analysis
Starting from the TS fuzzy dynamic model, Eq. (37), and applying the concepts presented in
the subsection 4.1, the steady-state response for sinusoidal input at low frequencies for the
SLPV dynamic system can be obtained as follows:

lim
ω→0

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

+γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
.

(42)

As ω tends to zero, Eq. (42) can be approximated as follows:

lim
ω→0

W̃(jω, ν̃) = |2γ1 + 1.5γ2 + γ3|∠ arctan [2γ1 + 1.5γ2 + γ3] . (43)

Hence

lim
ω→0

W̃(jω, ν̃) = |2γ1 + 1.5γ2 + γ3|∠0o . (44)

Applying the Theorem 3.1, proposed in section 3, the obtained boundary conditions at low
frequencies are presented in Tab. 1. The fuzzy frequency response of the SLPV dynamic
system, at low frequencies, presents a magnitude range in the interval [0; 6.0206](dB) and the
phase is 0o .

Table 1. Boundary conditions at low frequencies.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)

1 γ1 = 1; γ2 = 0 and γ3 = 0 6.0206 0o

2 γ1 = 0; γ2 = 1 and γ3 = 0 3.5218 0o

3 γ1 = 0; γ2 = 0 and γ3 = 1 0 0o

5.2 High Frequency Analysis
Likewise, starting from the TS fuzzy dynamic model, Eq. (37), and now applying the concepts
seen in the subsection 4.2, the steady-state response for sinusoidal input at high frequencies
for the SLPV dynamic system can be obtained as follows:

lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
. (45)

In this analysis, the higher degree terms of the transfer functions in the TS fuzzy dynamic
model increase more rapidly than the other ones. Thus,
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1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
,

(40)

where:

Den[W̃(jω,ν̃)] = 0.1(jω)6 + 1.1(jω)5 + 5.2(jω)4 + 11.2(jω)3 + 11.5(jω)2 + 5.6(jω) + 1. (41)

5.1 Low Frequency Analysis
Starting from the TS fuzzy dynamic model, Eq. (37), and applying the concepts presented in
the subsection 4.1, the steady-state response for sinusoidal input at low frequencies for the
SLPV dynamic system can be obtained as follows:

lim
ω→0

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

+γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
.

(42)

As ω tends to zero, Eq. (42) can be approximated as follows:

lim
ω→0

W̃(jω, ν̃) = |2γ1 + 1.5γ2 + γ3|∠ arctan [2γ1 + 1.5γ2 + γ3] . (43)

Hence

lim
ω→0

W̃(jω, ν̃) = |2γ1 + 1.5γ2 + γ3|∠0o . (44)

Applying the Theorem 3.1, proposed in section 3, the obtained boundary conditions at low
frequencies are presented in Tab. 1. The fuzzy frequency response of the SLPV dynamic
system, at low frequencies, presents a magnitude range in the interval [0; 6.0206](dB) and the
phase is 0o .

Table 1. Boundary conditions at low frequencies.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)

1 γ1 = 1; γ2 = 0 and γ3 = 0 6.0206 0o

2 γ1 = 0; γ2 = 1 and γ3 = 0 3.5218 0o

3 γ1 = 0; γ2 = 0 and γ3 = 1 0 0o

5.2 High Frequency Analysis
Likewise, starting from the TS fuzzy dynamic model, Eq. (37), and now applying the concepts
seen in the subsection 4.2, the steady-state response for sinusoidal input at high frequencies
for the SLPV dynamic system can be obtained as follows:

lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃(jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃(jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃(jω,ν̃)]

]
. (45)

In this analysis, the higher degree terms of the transfer functions in the TS fuzzy dynamic
model increase more rapidly than the other ones. Thus,
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lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4

0.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4

0.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

]
. (46)

Hence

lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣2γ1
0.6

0.1(jω)2
+ 1.5γ2

0.1

0.1(jω)2
+ γ3

0.1

0.1(jω)2

∣∣∣∣∠− 180o . (47)

Once again, applying the Theorem 3.1, proposed in section 3, the obtained boundary con-
ditions at high frequencies are presented in Tab. 2. The fuzzy frequency response of the
SLPV dynamic system, at high frequencies, presents a magnitude range in the interval[∣∣∣∣

1

(jω)2

∣∣∣∣ ,

∣∣∣∣
12

(jω)2

∣∣∣∣
]
(dB) and the phase is −180o .

Table 2. Boundary conditions at high frequencies.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)

1 γ1 = 1; γ2 = 0 and γ3 = 0

∣∣∣∣
12

(jω)2

∣∣∣∣ −180o

2 γ1 = 0; γ2 = 1 and γ3 = 0

∣∣∣∣
1.5

(jω)2

∣∣∣∣ −180o

3 γ1 = 0; γ2 = 0 and γ3 = 1

∣∣∣∣
0.1

(jω)2

∣∣∣∣ −180o

For comparative analysis, the fuzzy frequency response (boundary conditions at low and high
frequencies from Tab. 1-2) and frequency response of the SLPV dynamic system are shown in
Fig. 7. For this experiment, the frequency response of the SLPV dynamic system was obtained
considering the mean of the stochastic parameter ν in the frequency domain as shown in Fig. 8.
The proposed structure for determining the frequency response of the SLPV dynamic system
is shown in the block diagram (Fig. 9). It can be seen that the fuzzy frequency response is a
region in the frequency domain, defined by the consequent linear sub-models Wi(s), starting
from the operating region of the antecedent space, as demonstrated by the proposed Theorem
3.1. This method highlights the efficiency of the fuzzy frequency response in order to estimate
the frequency response of SLPV dynamic systems.
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lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣∣2γ1
0.6(jω)4

0.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

∣∣∣∣∣∠ arctan

[
2γ1

0.6(jω)4

0.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

]
. (46)

Hence

lim
ω→∞

W̃(jω, ν̃) =

∣∣∣∣2γ1
0.6

0.1(jω)2
+ 1.5γ2

0.1

0.1(jω)2
+ γ3

0.1

0.1(jω)2

∣∣∣∣∠− 180o . (47)

Once again, applying the Theorem 3.1, proposed in section 3, the obtained boundary con-
ditions at high frequencies are presented in Tab. 2. The fuzzy frequency response of the
SLPV dynamic system, at high frequencies, presents a magnitude range in the interval[∣∣∣∣

1

(jω)2

∣∣∣∣ ,

∣∣∣∣
12

(jω)2

∣∣∣∣
]
(dB) and the phase is −180o .

Table 2. Boundary conditions at high frequencies.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)

1 γ1 = 1; γ2 = 0 and γ3 = 0

∣∣∣∣
12

(jω)2

∣∣∣∣ −180o

2 γ1 = 0; γ2 = 1 and γ3 = 0

∣∣∣∣
1.5

(jω)2

∣∣∣∣ −180o

3 γ1 = 0; γ2 = 0 and γ3 = 1

∣∣∣∣
0.1

(jω)2

∣∣∣∣ −180o

For comparative analysis, the fuzzy frequency response (boundary conditions at low and high
frequencies from Tab. 1-2) and frequency response of the SLPV dynamic system are shown in
Fig. 7. For this experiment, the frequency response of the SLPV dynamic system was obtained
considering the mean of the stochastic parameter ν in the frequency domain as shown in Fig. 8.
The proposed structure for determining the frequency response of the SLPV dynamic system
is shown in the block diagram (Fig. 9). It can be seen that the fuzzy frequency response is a
region in the frequency domain, defined by the consequent linear sub-models Wi(s), starting
from the operating region of the antecedent space, as demonstrated by the proposed Theorem
3.1. This method highlights the efficiency of the fuzzy frequency response in order to estimate
the frequency response of SLPV dynamic systems.
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6. Final Remarks

The Fuzzy Frequency Response: Definition and Analysis for Stochastic Linear Parameter
Varying Dynamic Systems is proposed in this chapter. It was shown that the fuzzy frequency
response is a region in the frequency domain, defined by the consequent linear sub-models
Wi(s), starting from operating regions of the SLPV dynamic system, according to the pro-
posed Theorem 3.1. This formula is very efficient and can be used for robust stability analysis
and control design for SLPV dynamic systems.
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1. Introduction 

It is well known that the time-delays are frequently encountered in a variety of dynamic 
systems such as engineering, biological, and chemical systems, etc., which are very often the 
main sources of instability and poor performance of systems. Also, in practice, uncertainties 
are unavoidable since it is very difficult to obtain an exact mathematical model of an object 
or process due to environmental noise, or slowly varying parameters, etc. Consequently, the 
problems of robust stability for time-delay systems have been of great importance and have 
received considerable attention for decades. The developed stability criteria are often 
classified into two categories according to their dependence on the size of the delays, 
namely, delay-independent criteria (Park, 2001) and delay-dependent criteria (Wang et al, 
1992; Li et al, 1997; Kim, 2001; Moon et al, 2001; Jing et al, 2004; Kwon & Park, 2004; Wu et al, 
2004). In general, the latter are less conservative than the former when the size of the time-
delay is small. On the other hand, stochastic systems have received much attention since 
stochastic modelling has come to play an important role in many branches of science and 
industry. In the past decades, increasing attention has been devoted to the problems of 
stability of stochastic time-delay systems by a considerable number of researchers (Mao, 
1996; Xie & Xie, 2000; Blythe et al, 2001; Xu & Chen, 2002; Lu et al, 2003). Very recently, the 
problem of exponential stability for delayed stochastic systems with nonlinearities has been 
extensively investigated by many researchers (Mao, 2002; Yue & Won, 2001; Chen et al, 
2005). Motivated by the method for deterministic delayed systems introduced in (Wu et al, 
2004), we extend it to uncertain stochastic time-varying delay systems with nonlinearities. 
The filter design problem has long been one of the key problems in the areas of control and 
signal processing. Compared with the Kalman filter, the advantage of H∞ filtering is that the 
noise sources are arbitrary signals with bounded energy or average power instead of being 
Gaussian, and no exact statistics are required to be known (Nagpal & Khargonekar, 1991). 
When parameter uncertainty appears in a system model, the robustness of H∞ filters has to 
be taken into account. A great number of results on robust H∞ filtering problem have been 
reported in the literature (Li & Fu, 1997; De Souza et al, 1993), and much attention has been 
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focused on the robust H∞ filtering problem for time-delay systems (Pila et al, 1999; Wang & 
Yang, 2002; Xu & Chen, 2004; Gao & Wang, 2003; Fridman et al, 2003; Xu & Van Dooren, 
2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al, 2004; Wang et al, 2008; 
Liu et al, 2008; Zhang & Han, 2008). Depending on whether the existence conditions of filter 
include the information of delay or not, the existing results on H∞ filtering for time-delay 
systems can be classified into two types: delay-independent ones (Pila et al, 1999; Wang & 
Yang, 2002; Xu & Chen, 2004) and delay-dependent ones (Gao & Wang, 2003; Fridman et al, 
2003; Xu & Van Dooren, 2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al, 
2004; Wang et al, 2008; Liu et al, 2008; Zhang & Han, 2008). On the other hand, since the 
stochastic systems have gained growing interests recently, H∞ filtering for the time-delay 
stochastic systems have drawn a lot of attentions from researchers working in related areas 
(Zhang et al, 2005; Wang et al, 2006; Wang et al, 2008; Liu et al, 2008). It is also known that 
Markovian jump systems (MJSs) are a set of systems with transitions among the models 
governed by a Markov chain taking values in a finite set. These systems have the 
advantages of modeling the dynamic systems subject to abrupt variation in their structures. 
Therefore, filtering and control for MJSs have drawn much attention recently, see (Xu et al, 
2003; Wang et al, 2004). Note that nonlinearities are often introduced in the form of 
nonlinear disturbances, and exogenous nonlinear disturbances may result from the 
linearization process of an originally highly nonlinear plant or may be an external nonlinear 
input, and thus exist in many real-world systems. Therefore, H∞ filtering for nonlinear 
systems has also been an attractive topic for many years both in the deterministic case (De 
Souza et al, 1993; Gao & Wang, 2003; Xu & Van Dooren, 2002)) and the stochastic case 
(Zhang et al, 2005; Wang et al, 2004; Wang et al, 2008; Liu et al, 2008).  
Exponential stability is highly desired for filtering processes so that fast convergence and 
acceptable accuracy in terms of reasonable error covariance can be ensured. A filter is said to 
be exponential if the dynamics of the estimation error is stochastically exponentially stable. 
The design of exponential fast filters for linear and nonlinear stochastic systems is also an 
active research topic; see, e.g. (Wang et al, 2006; Wang et al, 2004). To the best of the authors’ 
knowledge, however, up to now, the problem of delay-range-dependent robust exponential 
H∞ filtering problem for uncertain ˆIto -type stochastic systems in the simultaneous presence 
of parameter uncertainties, Markovian switching, nonlinearities, and mode-dependent time-
varying delays in a range has not been fully investigated, which still remains open and 
challenging. This motivates us to investigate the present study. 
This chapter is organized as follows. In section 2, the main results are given. Firstly, delay-
dependent exponentially mean-square stability for uncertain time-delay stochastic systems 
with nonlinearities is studied. Secondly, the robust H∞ exponential filtering problem for 
uncertain stochastic time-delay systems with Markovian switching and nonlinear 
disturbances is investigated. In section 3, numerical examples and simulations are presented 
to illustrate the benefits and effectiveness of our proposed theoretical results. Finally, the 
conclusions are given in section 4. 

 
2. Main results 

2.1 Exponential stability of uncertain time-delay nonlinear stochastic systems 
Consider the following uncertain stochastic system with time-varying delay and nonlinear 
stochastic perturbations:  
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where ( ) nx t  is the state vector, , , ,A B C D are known real constant matrices with 
appropriate dimensions, ( )t is a scalar Brownian motion defined on a complete probability 

space  , ,F P with a nature filtration  0
.t tF


( )t is any given initial data in   
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2 ,0 ; n
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( )t denotes the time-varying delay and is assumed to satisfy either (2a) or (2b): 
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where  and d are constants and the upper bound of ( )t and ( )t , respectively. ( ),A t  

( )B t are all unknown time-varying matrices with appropriate dimensions which represent 
the system uncertainty and stochastic perturbation uncertainty, respectively. We assume 
that the uncertainties are norm-bounded and can be described as follows: 
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where 1 2, ,E G G are known real constant matrices with appropriate dimensions, ( )F t are 
unknown real matrices with Lebesgue measurable elements bounded by:   
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( , , ) : n n nf R R R R      and ( , , ) : n n n mg R R R R 
      denote the nonlinear uncertainties which 

is locally Lipschitz continuous  and satisfies the following linear growth conditions 
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2 2
1 2( , ( ), ( ( ))) ( , ( ), ( ( ))) ( ) ( ( )) ,T race g t x t x t t g t x t x t t H x t H x t t   
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Throughout this paper, we shall use the following definition for the system (1). 
Definition 1 (Chen et al, 2005). The uncertain nonlinear stochastic time-delay system (1) is 
said to be exponentially stable in the mean square sense if there exists a positive scalar 

0  such that for all admissible uncertainties 
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Lemma 1 (Wang et al, 1992). For any vectors , nx y , matrices , , ,n nfn nA P D     

,n nfE 
 and

n nf fF 
 with 0, ,P F F    and scalar 0  , the following inequalities hold: 

(i)   ,12 x y x P x y Py      

(ii)  ,1DFE E F D DD E E          

(iii)  If 0P DD  , then 1 1( )( ) ( ) .A DFE P A DFE A P DD A E E           
For convenience, we let 
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Proof. Construct the Lyapunov-Krasovskii functional candidate for system (1) as follows: 
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22 22
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( ) ,
1

(1 ) ( ) ,
1

R N N M A A M X G G F F H H
d
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Proof. Construct the Lyapunov-Krasovskii functional candidate for system (1) as follows: 
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.

0
( )1 2 3

0
( )4

( ) ( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )
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t t t

t
t t
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  (18) 

 



Stochastic Control240

 

Defining tx by ( ) ( ), 2 0,tx s x t s s     the weak infinitesimal operator L of the stochastic 

process  , 0tx t   along the evolution of 1( )V t is given by (Blythe et al, 2001): 
 

1( ) 2 ( ) ( ) ( ) ( ) .LV t x t Py t trace g t Pg t                                        (19) 

 
The weak infinitesimal operator L  for the evolution of 2 3 4( ), ( ), ( )V t V t V t can be computed 
directly as follows 
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3( ) ( ) ( ) (1 ( )) ( ( )) ( ( )),LV t x t Rx t t x t t Rx t t                                    (21) 
 

( )4
1 1( ) ( ) ( ) ( ) (1 ( )) ( ) ( ) .1 1
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       (22) 
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It follows from (i) of Lemma 1 that 
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where 1 2 3N N N N       . 

 
Moreover, from Lemma 1 and (5) 
 

1 2 3
1 1

0 1 0 1 1 21 2
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    (26) 
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   ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) .

t t t

t t t t t t
g s d s S g s d s trace g s Sg s ds
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By applying the Schur complement techniques, 0  is equivalent to LMI (15). Therefore, if 
LMIs (14) and (15) are satisfied, one can show that (34) implies  
 

   ( ) ( ) ( ) .E LV t E t t                                                   (35) 

 
Now we proceed to prove system (1) is exponential stable in mean square, using the similar 
method of (Chen et al, 2005). Set 0 1min min( ), ( )P      , by (35), 
 

     0 0( ) ( ) ( ) ( ) ( ) .E LV t E t t E x t x t                                      (36) 

 
From the definitions of ( )V t and ( ),y t there exist positive scalars 1 2,  such that 
 

2 2 2
21 1 2( ) ( ) ( ) ( ) .t

tx t V t x t x s ds                                       (37) 
 

Defining a new function as 0( ) ( ),tW t e V t  its weak infinitesimal operator is given by 
 

   0 0
0( ) ( ) ( ) ,t tL W t e V t e L V t                                          (38) 

 
Then, from (36)-(38), by using the generalized ˆto  formula, we can obtain that 
 

     0
00

2 2 2
20 1 2 0( ) ( ) ( ) ( ) ( ) .st s

t sE W t E W t E e x s x d x s ds
     

       
        (39) 

 
Since the following inequality holds (Chen et al, 2005) 
 

0 0 0
0 0

2 22
2 2( ) 2 ( ) .s st s t

t s te ds x d e x s e ds   
                              (40) 

 
Therefore, it follows that from (39) and (40), 
 

    0 0
00

22
0 1 2 0 0 0( ) ( ) ( 2 ) ( ) ( ),st

tE W t E W t E e e x s ds C t                     (41) 
 

where 0 0
0

22 0
20 0 0 2( ) 2 ( ) .

st
tC t e x s e ds 

     

 
Choose a positive scalar 0 0  such that (Chen et al, 2005) 
 

02
0 1 2 0( 2 ) .e                                                    (42) 

 
Then, by (41) and (42), it is easily obtain  

 

0
21lim sup log ( ) ,

t
x t

t



    

 
which implies that system (1) is exponentially stable in mean square by Definition 1. This 
completes the proof.  
In the case of the conditon (2b) for system (1), which is derivative-independent, or in the 
case of ( )t is not differentiable. According to the proof of Theorem 1, the following 
theorem is followed:  
Theorem 2. When (2b) holds, then for any scalars 0  , the stochastic system (1) is 
exponentially mean-square stable for all admissible uncertainties, if there exist 

0, 0, 0P Q S   , scalars 00, 0, , 0,1,...,7j j      , matrix 0X  and any appropriately 

dimensioned matrices , , 1, 2,3iiM N i  , such that (16),(17) and the following LMI holds 
 

11 12 13 1

22 23 2
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X X X N
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Where 
 

 
( )1 1 1 1 2 4 6 1 1 10 1 1 1

( ) 2 22 2 2 2 3 5 7 2 2 2 21

11 11

22 22

( ) ,

( ) .

N N M A A M X G G F F H H

N N M B B M X G G F F H H

      

      

        

        





      

       




 

 
Remark 1. Theorem 1 and 2 provides delay-dependent exponentially stable criteria in mean 
square for stochastic system (1) in terms of the solvability of LMIs. By using them, one can 
obtain the MADB by solving the following optimization problems: 
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Remark 1. Theorem 1 and 2 provides delay-dependent exponentially stable criteria in mean 
square for stochastic system (1) in terms of the solvability of LMIs. By using them, one can 
obtain the MADB by solving the following optimization problems: 
 



Stochastic Control244

 

0 , ,

max
. . 0, 0, 0, 0, 0, 0, 0, , (14) (17), 1,2,3; 0,1,..., 7,iijs t X P Q R Z M N i j


   


          

(45) 

 

or 
 

0, , ,

max
. . 0, 0, 0, 0, 0, 0, (16),(17),(43),(44), 1,2,3; 0,1,...,7.iijs t X P Q Z M N i j


   


        

(46) 

 
2.2 H∞ exponential filtering for uncertain Markovian switching  
time-delay stochastic systems with nonlinearities 
We consider the following uncertain nonlinear stochastic systems with Markovian jump 
parameters and mode-dependent time delays 
 

1 1( ) : ( ) [ ( , ) ( ) ( , ) ( ( )) ( ) ( ( ), ( ( )), ) ( , ) ( )]

[ ( , ) ( ) ( , ) ( ( )) ( , ) ( )] ( ),
t t

t

t d t r t r t t

t d t r t

dx t A t r x t A t r x t t D r f x t x t t r B t r v t dt

E t r x t E t r x t t G t r v t d t

 

 

      

   
  (47) 

 

2 2( ) ( , ) ( ) ( , ) ( ( )) ( ) ( ( ), ( ( )), ) ( , ) ( ),
t tt d t r t r t ty t C t r x t C t r x t t D r g x t x t t r B t r v t        (48) 

 
( ) ( ) ( ),tz t L r x t                                                         (49) 

 

 2( ) ( ), ( ) (0), ,0 ,x t t r t r t                                       (50) 
 

where ( ) nx t  is the state vector; ( ) pv t  is the exogenous disturbance input which 

belongs to  2 0,L  ; ( ) qy t  is the measurement; ( ) mz t  is the signal to be estimated; 

( )t is a zero-mean one-dimensional Wiener process (Brownian Motion) satisfying 

[ ( )] 0t  and 2[ ( )] ;t t   , 0tr t  is a continuous-time Markovian process with right 

continuous trajectories and taking values in a finite set  1,2, ,S N  with transition 

probability matrix }{ ij  given by 

 ( ), ,
Pr{ | }

1 ( ), ,
ij

t t
ii

o if i j
r j r i

o if i j



   

  
    

                             (51) 

 

where
0
(0, lim ( ) / ) 0;o


     0ij  for ,i j is the transition rate from mode i at time t  

to mode j at time t   and 

1,
.

N

ii ij
j j i

 
 

                                                          (52) 

 

In system ( ) , ( )
tr
t denotes the time-varying delay when the mode is in tr and satisfies 

 

1 20 ( ) , ( ) 1, ,i i i i i tt t d r i i S                                       (53) 
 

where 1 2,i i  and id are known real constants scalars for any .i S In (50), 

2 2max{ , }i i S   ，and ( )t is a vector-valued initial continuous function defined on 

 2,0 . 1 1 2 2( , ), ( , ), ( ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( ), ( , )t d t t t t d t t t d t t tA t r A t r D r B t r E t r E t r G t r C t r C t r D r B t r  

and ( )tL r are matrix functions governed by Markov process tr , and  
 

1 1 1

2

( , ) ( ) ( , ), ( , ) ( ) ( , ), ( , ) ( ) ( , ),
( , ) ( ) ( , ), ( , ) ( ) ( , ), ( , ) ( ) ( , ),
( , ) ( ) ( , ), ( , ) ( ) ( , ), (

t t t d t d t d t t t t

t t t d t d t d t t t t

t t t d t d t d t

A t r A r A t r A t r A r A t r B t r B r B t r
E t r E r E t r E t r E r E t r G t r G r G t r
C t r C r C t r C t r C r C t r B t

     
     
    2 2, ) ( ) ( , ).t t tr B r B t r 

 

 
where 1 2( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )t d t t t d t t t d t tA r A r B r E r E r G r C r C r B r and ( )tL r are known real 

matrices representing the nominal system for all ,tr S and ( , ), ( , ),t d tA t r A t r   

( , ), ( , ), ( , ), ( , ), ( , )t d t t t d tE t r E t r G t r C t r C t r     and 2( , )tB t r are unknown matrices 
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where 1 2 1 2( ), ( ), ( ), ( )t t t tM r M r N r N r and 3 ( )tN r are known real constant matrices for all 

,tr S and ( , )tF t r is time-varying matrices with Lebesgue measurable elements satisfying 
 

,( , ) ( , ) .t t tF F It r t r r S                                               (55) 
 

Assumption 1: For a fixed system mode ,tr S there exist known real constant mode-

dependent matrices 1( ) ,n n
tF r   2 1( ) , ( )n n n n

t tF r H r    and 2 ( ) n n
tH r  such that 

the unknown nonlinear vector functions ( , , )f    and ( , , )g    satisfy the following 
boundedness conditions: 
 

1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) ,
t tr t t t rf x t x t t r F r x t F r x t t                            (56) 

1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) .
t tr t t t rg x t x t t r H r x t H r x t t                            (57) 
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0 , ,

max
. . 0, 0, 0, 0, 0, 0, 0, , (14) (17), 1,2,3; 0,1,..., 7,iijs t X P Q R Z M N i j


   


          

(45) 
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0, , ,
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2.2 H∞ exponential filtering for uncertain Markovian switching  
time-delay stochastic systems with nonlinearities 
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 ( ), ,
Pr{ | }

1 ( ), ,
ij

t t
ii

o if i j
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0
(0, lim ( ) / ) 0;o
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.

N
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j j i
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For the sake of notation simplification, in the sequel, for each possible , ,tr i i S  a matrix 

( , )tM t r will be denoted by ( )iM t ; for example, ( , )tA t r is denoted by ( )iA t , and ( , )tB t r  

by iB , and so on. 
For each ,i S  we are interested in designing an exponential mean-square stable, 
Markovian jump, full-order linear filter described by 
 

ˆ ˆ( ) : ( ) ( ) ( ) ,f fi fidx t A x t dt B y t dt                                     (58) 

ˆˆ( ) ( ),fiz t L x t                                                           (59) 

 
where ˆ( ) nx t  and ˆ( ) qz t  for ,i S and the constant matrices ,fi fiA B and fiL are filter 

parameters to be determined. 
Denote  

ˆ ˆ( ) ( ) ( ), ( ) ( ) ( ), ( ) [ ( ) ( )] ,x t x t x t z t z t z t t x t x t                               (60) 
 

Then, for each , ,tr i i S  the filtering error dynamics from the systems ( ) and ( )f can 

be described by 
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( ) : ( ) [ ( ) ( ) ( ) ( ( )) ( ( ), ( ( )), )

( ( ), ( ( )), ) ( ) ( )]

[ ( ) ( ) ( ) ( ( )) ( ) ( )] ( ),

i di i i i

i i i

i di i i

d t A t t A t H t t D f H t H t t i

D g H t H t t i B t v t dt

E t H t E t H t t G t v t d t

      

  

   

     

  

   

  
 

 
         (61) 

( ) ( ),iz t L t                                                           (62) 
 

where 
 

( ) ( ), ( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ), ( ) ( ),
0 ( ) 0

, ( ) ,
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i i i di di di i i i
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i i di
i i di
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A t A A t A t A A t B t B B t

E t E E t E t E E t G t G G t
A A t A

A A t A
A A B C A A t B C t A

        

        

   
              

        
       

  

1 1

1 2 1 2
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( ) ( )
( ) , , ( ) ,

( ) ( ) ( ) ( )

( ) ( )
, ( ) , , ( )

( ) (

fi di

di i i
di i i

di fi di i fi i i fi i

i i di di
i i di di

i i di di

B C

A t B B t
A t B B t

A t B C t B B B B t B B t

E E t E E t
E E t E E t

E E t E E t
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( ) , , , , 0 .
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i
i

i

i i
i i i i i fi fi

fi ii i

G
G

G

G t D
G t D D L L L L H I

B DG t D

   
   

   
     

                  



   

 

 

Observe the filtering error system (61)-(62) and let ( ; )t   denote the state trajectory from 

the initial data ( ) ( )    on 2 0     in   
0

2 2
2 , 0 ; .n

FL   Obviously, the system 

(61)-(62) admits a trivial solution ( ;0) 0t  corresponding to the initial data 0.   
Throughout this paper, we adopt the following definition. 
Definition 2 (Wang et al, 2004): For every   

0

2 2
2,0 ; ,n

FL    the filtering error system (61)-

(62) is said to be robustly exponentially mean-square stable if, when ( ) 0v t  , for every 
system mode, there exist constant scalars 0  and 0  , such that 
 

2

2 2

0
E (t; ) sup E ( ) .te 

 
    

  
                                      (63) 

 
We are now in a position to formulate the robust H∞ filter design problem to be addressed 
in this paper as follows: given the system ( )  and a prescribed 0  , determine an filter 

( )f such that, for all admissible uncertainties, nonlinearities as well as delays, the filtering 

error system ( ) is robustly exponentially mean-square stable and 
 

2 2
( ) ( )z t v t


                                                    (64) 

 

under zero-initial conditions for any nonzero  2( ) 0,v t L  , where  2

1
22

0
( ) ( ) .z t z t dt




     

The following lemmas will be employed in the proof of our main results. 
 

Lemma 2 (Xie, L., 1996). Let ,n nx y   and a scalar 0.   Then we have 
1 .x y y x x x y y         

Lemma 3 (Xie, L., 1996). Given matrices , ,Q Q H E  and 0R R  of appropriate 

dimensions, 0Q HFE E F H     for all F  satisfyingF F R  , if and only if there 

exists some 0  such that 1 0Q HH E RE      . 
To this end, we provide the following theorem to establish a delay-dependent criterion of 
robust exponential mean-square stability with H∞ performance of system ( ) , which will 
be fundamental in the design of the expected H∞ filter. 
Theorem 3. Given scalars 1 2, ,i i id  and 0,  for any delays ( )i t satisfying (7), the 

filtering error system ( )  is robustly exponentially mean-square stable and (64) is satisfied 

under zero-initial conditions for any nonzero  2( ) 0,v t L   and all admissible uncertainties 

if there exist matrices 0, 1,2, , , 0iP i N Q   and sclars 1 20, 0i i   such that the 

following LMI holds for each i S  
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where  
 

     

11 1 1 1 2 1 1
1

22 1 2 2 2 2 2

2 1 1 1 2 2

( ) ( ) 2 2 ,

2 2 (1 ) ,

1 ( ), max , , min , , max , .

N

ij j i i i i i i i i i i i i
j

i i i i i i i

ii i i

P PA t A t P H QH H F F H H H H H L L

F F H H d Q

i S i S i S

   

 

         

      



 

       

    

        

    

 

Proof. Define ( ) ( ), ( ) ,
tt rx s x t s t t s t     then  ( , ), 0t tx r t  is a Markov process with 

initial state 0( ( ), ).r  Now, define a stochastic Lyapunov-Krasovskii functional as 
 

1

2( )
( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

rt

t t

t t t t t t
V r t P r t s H QH s ds s H QH s dsd



  
        

    

  
    

      (66) 
 

Let L be the weak infinitesimal operator of the stochastic process  ( , ), 0 .t tx r t   By ˆIto  

differential formula, the stochastic differential of ( , )t tV r along the trajectory of system 

( ) with ( ) 0=v t for ,tr i i S  is given by 
 

( ) ( ), [ , ] 2 ( ) [ ( ) ( ) ( ) ( ( ))],t t i i di iV Vd i L i t P E t H t E t H t t                  (67) 
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  (68) 

 

Noting 0ij  for ,i j and 0ii  , we have 
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1

( ) ( ) ( ) ( ) ( ) ( ) .
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N t t t

ij iit t t t
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s H QH s ds s H QH s ds s H QH s ds
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Noting (56), (57) and using Lemma 2, we have 
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Substituting (69)-(71) into (68), then, it follows from (68) that for each ,tr i i S   
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By the Schur complement, it is ease to see that LMI in (65) implies that 0.i  Therefore, 
from (72) we obtain 

( )[ , ] ( ) ( ),tVL i t t                                                       (73) 
 

where  minmin ( ) .i S i   By Dynkin’s formula, we can obtain  

 

       0 0 0 0
( ) ( ) ( ), , [ , ] ( ) ( ) .

t t

t sV V VE i E r E L i ds E s s ds                      (74) 

 
On the other hand, it is follows from (66) that 
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Substituting (69)-(71) into (68), then, it follows from (68) that for each ,tr i i S   
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By the Schur complement, it is ease to see that LMI in (65) implies that 0.i  Therefore, 
from (72) we obtain 

( )[ , ] ( ) ( ),tVL i t t                                                       (73) 
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Then, applying Gronwall-Bellman lemma to (76) yields 
 

  11
0 0( ) ( ) ( , ) .p t

pE t t V r e    
   

 
Noting that there exists a scalar 0  such that 

2

21
0 0

0
( , ) sup ( ) .p V r

 
    

  
   

Defining 1 0p   , then we have 
2

2 2

0
E (t) sup E ( ) ,te 

 
   

  
  

and, hence, the robust exponential mean-square stability of the filtering error system ( )  
with ( ) 0=v t is established. 

Now, we shall establish the H∞ performance for the system ( ) , we introduce 
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Now, applying Schur complement to (65), we have ( ) 0i t  . This together with (78) implies 

that ( ) 0J t  for any nonzero  2( ) 0, .v t L  Therefore, under zero conditions and for any 

nonzero  2( ) 0, ,v t L  letting ,t we have 
2 2

( ) ( )z t v t
 
  if (65) is satisfied. This 

completes the proof.   

 

Now, we are in a position to present a solution to the H∞ exponential filter design problem. 
Theorem 4. Consider the uncertain Markovian jump stochastic system ( ).  Given scalars 

1 2, ,i i id  and 0  , for any delays ( )i t satisfying (7), the filtering error system ( ) is 
robustly exponentially mean-square stable and (64) is satisfied under zero-initial conditions 
for any nonzero  2( ) 0,v t L  and all admissible uncertainties, if for each i S there exist 
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In this case, a desired robust Markovian jump exponential H∞ filter is given in the form of 
(58)-(59) with parameters as follows 
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2 2, , , .fi i i fi i i fiA P W B P Z L i S                                      (80) 
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In this case, a desired robust Markovian jump exponential H∞ filter is given in the form of 
(58)-(59) with parameters as follows 
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Proof. Noting that for ,tr i i S   
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Then, it is readily to see that (65) can be written in the form as  
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From (83) and by using Lemma 3, there exists positive scalars 3 40, 0i i   such that the 
following inequality holds 
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For each , ,tr i i S  we define the matrix 0iP  by 
 

1
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0
.

0
i

i
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P
P
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Then, substituting the matrix ,iP the matrices 1 2, , , , , , , , , , , ,i di i i di i i di i i i iA A B E E B E E G D D L            

H defined in (61)-(62) into (85) and by introducing some matrices given by 

2 2, ,i i fi i i fiW P A Z P B  then, we can obtain the results in Theorem 4. This completes the 
proof.  

 
3. Numerical Examples and Simulations 

Example 1:  Consider the uncertain stochastic time-delay system with nonlinearities 
 

   ( ) ( ) ( ) ( ) ( ( )) ( , ( ), ( ( ))) ( ),dx t A A t x t B B t x t t dt g t x t x t t d t   
               (86) 
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2 0 1 0
, , ( ) 0.1, ( ) 0.1,

1 1 0.5 1
A B A t B t

 
     

  
   
      

2 2

, .1 2 1 2

( , ( ), ( ( ))) ( , ( ), ( ( ))) 0.1 ( ) 0.1 ( ( )) .

0.1 0 1 0 0.1 0
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0 0.1 0 1 0 0.1
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E G G H H

        
    

         
      

 

 
For the time-invariant system, applying Theorem 1, it has been found that by using 
MATLAB LMI Toolbox that system (86) is exponentially stable in mean square for any delay 
0 1.0898  . It is note that the result of (Yue & Won, 2001) guarantees the exponential 
stability of (86) when 0 0.8635,  whereas by the method of (Mao, 1996) the delay is 
only allowed 0.1750. According to Theorem 1, the MADB for different d is shown in Table 
1. For a comparison with the results of other researchers, a summary is given in the 
following Table 1. It is obvious that the result in this paper is much less conservative and is 
an improvement of the results than that of (Mao, 1996) and (Yue & Won, 2001). 
The stochastic perturbation of the system is Brownian motion and it can be depicted in Fig.1. 
The simulation of the state response for system (86) with 1.0898   was depicted in Fig.2. 
 

Methods 0d   0.5d   0.9d   
(Mao, 1996) 0.1750 - - 

(Yue & Won, 2001) 0.8635 - - 
Theorem 1 1.0898 0.5335 0.1459 

 

Table1. Maximum allowable time delay to different d 

      
Fig. 1. The trajectory of Brownian motion              Fig. 2. The state response of system (47) 
 

 
 

 

Example 2. Consider the uncertain Markovian jump stochastic systems in the form of (47)-
(48) with two modes. For mode 1, the parameters as the following: 
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and the time-varying delay ( )t satisfies (53) with 11 21 10.2, 1.3, 0.2.d     
For mode 2, the dynamics of the system are describe as 
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and the time-varying delay ( )t satisfies (53) with 12 22 20.1, 1.1, 0.3.d     
 

Suppose the transition probability matrix to be 
0.5 0.5

.
0.3 0.3
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only allowed 0.1750. According to Theorem 1, the MADB for different d is shown in Table 
1. For a comparison with the results of other researchers, a summary is given in the 
following Table 1. It is obvious that the result in this paper is much less conservative and is 
an improvement of the results than that of (Mao, 1996) and (Yue & Won, 2001). 
The stochastic perturbation of the system is Brownian motion and it can be depicted in Fig.1. 
The simulation of the state response for system (86) with 1.0898   was depicted in Fig.2. 
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Fig. 1. The trajectory of Brownian motion              Fig. 2. The state response of system (47) 
 

 
 

 

Example 2. Consider the uncertain Markovian jump stochastic systems in the form of (47)-
(48) with two modes. For mode 1, the parameters as the following: 
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and the time-varying delay ( )t satisfies (53) with 11 21 10.2, 1.3, 0.2.d     
For mode 2, the dynamics of the system are describe as 
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and the time-varying delay ( )t satisfies (53) with 12 22 20.1, 1.1, 0.3.d     
 

Suppose the transition probability matrix to be 
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The objective is to design a Markovian jump H∞ filter in the form of (58)-(59), such that for 
all admissible uncertainties, the filtering error system is exponentially mean-square stable 
and (64) holds. In this example, we assume the disturbance attenuation level 1.2.   
By using Matlab LMI Control Toolbox to solve the LMI in (77), we can obtain the solutions 
as follows: 
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Then, by Theorem 4, the parameters of desired robust Markovian jump H∞ filter can be 
obtained as follows 
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The simulation result of the state response of the real states ( )x t and their estimates ˆ( )x t are 
displayed in Fig. 3. Fig. 4 is the simulation result of the estimation error response of 

ˆ( ) ( ) ( )z t z t z t  . The simulation results demonstrate that the estimation error is robustly 
exponentially mean-square stable, and thus it can be seen that the designed filter satisfies 
the specified performance requirements and all the expected objectives are well achieved. 
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Fig. 3. The state trajectories and estimates response 
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Fig. 4. The estimation error response 

 
4. Conclusion 

Both delay-dependent exponential mean-square stability and robust H∞ filtering for time-
delay a class of ˆIto stochastic systems with time-varying delays and nonlinearities has 
addressed in this chapter. Novel stability criteria and H∞ exponential filter design methods 
are proposed in terms of LMIs. The new criteria are much less conservative than some 
existing results. The desired filter can be constructed through a convex optimization 
problem. Numerical examples and simulations have demonstrated the effectiveness and 
usefulness of the proposed methods.  
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displayed in Fig. 3. Fig. 4 is the simulation result of the estimation error response of 
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4. Conclusion 

Both delay-dependent exponential mean-square stability and robust H∞ filtering for time-
delay a class of ˆIto stochastic systems with time-varying delays and nonlinearities has 
addressed in this chapter. Novel stability criteria and H∞ exponential filter design methods 
are proposed in terms of LMIs. The new criteria are much less conservative than some 
existing results. The desired filter can be constructed through a convex optimization 
problem. Numerical examples and simulations have demonstrated the effectiveness and 
usefulness of the proposed methods.  
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1. Introduction

Although the general optimal solution of the filtering problem for nonlinear state and obser-
vation equations confused with white Gaussian noises is given by the equation for the condi-
tional density of an unobserved state with respect to observations (see (1–6)), there are a very
few known examples of nonlinear systems where that equation can be reduced to a finite-
dimensional closed system of filtering equations for a certain number of lower conditional
moments (see (7–10) for more details). Some relevant results on filtering for nonlinear stochas-
tic systems can be found in (11–14). There also exists a considerable bibliography on robust
filtering for the "general situation" systems (see, for example, (15–23)). Apart form the "gen-
eral situation," the optimal finite-dimensional filters have recently been designed for certain
classes of polynomial system states over linear observations with invertible ((24; 25; 27; 28))
or non-invertible ((26; 29)) observation matrix. However, the cited papers never consider fil-
tering problems with nonlinear, in particular, polynomial observations.
This work presents the optimal finite-dimensional filter for linear system states over polyno-
mial observations, continuing the research in the area of the optimal filtering for polynomial
systems, which has been initiated in ((24–27; 29)). Designing the optimal filter over polyno-
mial observations presents a significant advantage in the filtering theory and practice, since
it enables one to address some filtering problems with observation nonlinearities, such as the
optimal cubic sensor problem (30). The optimal filtering problem is treated proceeding from
the general expression for the stochastic Ito differential of the optimal estimate and the error
variance (31). As the first result, the Ito differentials for the optimal estimate and error vari-
ance corresponding to the stated filtering problem are derived. It is then proved that a closed
finite-dimensional system of the optimal filtering equations with respect to a finite number of
filtering variables can be obtained for a polynomial observation equation, additionally assum-
ing a conditionally Gaussian initial condition for the higher degree states. This assumption is
quite admissible in the filtering framework, since the real distribution of the entire state vec-
tor is actually unknown. In this case, the corresponding procedure for designing the optimal
filtering equations is established.

14
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As an illustrative example, the closed system of the optimal filtering equations with respect to
two variables, the optimal estimate and the error variance, is derived in the explicit form for
the particular case of the third degree polynomial observations. This filtering problem gen-
eralizes the optimal cubic sensor problem stated in (30), where nonexistence of a closed-form
solution is indicated for the "general situation" case, without any assumptions for the third
order state distribution. In our paper, taking into account that the real distributions of the first
and third degree states are unknown, a conditionally Gaussian initial condition is additionally
assumed for the third degree state. The resulting filter yields a reliable and rapidly converg-
ing estimate, in spite of a significant difference in the initial conditions between the state and
estimate and very noisy observations, in the situation where the unmeasured state itself is a
time-shifted Wiener process and the extended Kalman filter (EKF) approach fails.

2. Filtering Problem for Linear States over Polynomial Observations

Let (Ω, F, P) be a complete probability space with an increasing right-continuous family of
σ-algebras Ft, t ≥ t0, and let (W1(t), Ft, t ≥ t0) and (W2(t), Ft, t ≥ t0) be independent Wiener
processes. The Ft-measurable random process (x(t), y(t) is described by a linear differential
equation for the system state

dx(t) = (a0(t) + a(t)x(t))dt + b(t)dW1(t), x(t0) = x0, (1)

and a nonlinear polynomial differential equation for the observation process

dy(t) = h(x, t)dt + B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the observation vector. The initial con-
dition x0 ∈ Rn is a Gaussian vector such that x0, W1(t), and W2(t) are independent. It is
assumed that B(t)BT(t) is a positive definite matrix. All coefficients in (1)–(2) are determinis-
tic functions of time of appropriate dimensions. The nonlinear function h(x, t) forms the drift
in the observation equation (2).
The nonlinear function h(x, t) is considered a polynomial of n variables, components of the
state vector x(t) ∈ Rn, with time-dependent coefficients. Since x(t) ∈ Rn is a vector, this
requires a special definition of the polynomial for n > 1. In accordance with (27), a p-degree
polynomial of a vector x(t) ∈ Rn is regarded as a p-linear form of n components of x(t)

h(x, t) = α0(t) + α1(t)x + α2(t)xxT + . . . + αp(t)x . . .p times . . . x, (3)

where α0(t) is a vector of dimension n, α1 is a matrix of dimension n × n, α2 is a 3D tensor
of dimension n × n × n, αp is an (p + 1)D tensor of dimension n × . . .(p+1) times . . . × n, and
x× . . .p times . . .× x is a pD tensor of dimension n× . . .p times . . .× n obtained by p times spatial
multiplication of the vector x(t) by itself (see (27) for more definition). Such a polynomial can
also be expressed in the summation form

hk(x, t) = α0 k(t) + ∑
i

α1 ki(t)xi(t) + ∑
ij

α2 kij(t)xi(t)xj(t) + . . .

+ ∑
i1...ip

αp ki1...ip (t)xi1 (t) . . . xip (t), k, i, j, i1, . . . , ip = 1, . . . , n.

The estimation problem is to find the optimal estimate x̂(t) of the system state x(t), based on
the observation process Y(t) = {y(s), 0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T(x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[ξ(t) | FY
t ] means the conditional expectation of a stochastic

process ξ(t) = (x(t)− x̂(t))T(x(t)− x̂(t)) with respect to the σ - algebra FY
t generated by the

observation process Y(t) in the interval [t0, t]. As known (31), this optimal estimate is given
by the conditional expectation

x̂(t) = mx(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t generated by the observation process

Y(t) in the interval [t0, t]. As usual, the matrix function

P(t) = E[(x(t)− mx(t))(x(t)− mx(t))T | FY
t ]

is the estimation error variance.
The proposed solution to this optimal filtering problem is based on the formulas for the Ito
differential of the optimal estimate and the estimation error variance (cited after (31)) and
given in the following section.

3. Optimal Filter for Linear States over Polynomial Observations

Let us reformulate the problem, introducing the stochastic process z(t) = h(x, t). Using the
Ito formula (see (31)) for the stochastic differential of the nonlinear function h(x, t), where x(t)
satisfies the equation (1), the following equation is obtained for z(t)

dz(t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t))dt +

∂h(x, t)
∂t

dt+ (4)

1
2

∂2h(x, t)
∂x2 b(t)bT(t)dt +

∂h(x, t)
∂x

b(t)dW1(t), z(0) = z0.

Note that the addition 1
2

∂2h(x,t)
∂x2 b(t)bT(t)dt appears in view of the second derivative in x in the

Ito formula.
The initial condition z0 ∈ Rn is considered a conditionally Gaussian random vector with re-
spect to observations. This assumption is quite admissible in the filtering framework, since the
real distributions of x(t) and z(t) are actually unknown. Indeed, as follows from (32), if only
two lower conditional moments, expectation m0 and variance P0, of a random vector [z0, x0]
are available, the Gaussian distribution with the same parameters, N(m0, P0), is the best ap-
proximation for the unknown conditional distribution of [z0, x0] with respect to observations.
This fact is also a corollary of the central limit theorem (33) in the probability theory.
A key point for further derivations is that the right-hand side of the equation (4) is a polyno-
mial in x. Indeed, since h(x, t) is a polynomial in x, the functions ∂h(x,t)

∂x , ∂h(x,t)
∂x x(t), ∂h(x,t)

∂t , and
∂2h(x,t)

∂x2 are also polynomial in x. Thus, the equation (4) is a polynomial state equation with a
polynomial multiplicative noise. It can be written in the compact form

dz(t) = f (x, t)dt + g(x, t)dW1(t), z(t0) = z0, (5)

where

f (x, t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t)) +

∂h(x, t)
∂t

+

1
2

∂2h(x, t)
∂x2 b(t)bT(t), g(x, t) =

∂h(x, t)
∂x

b(t).
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As an illustrative example, the closed system of the optimal filtering equations with respect to
two variables, the optimal estimate and the error variance, is derived in the explicit form for
the particular case of the third degree polynomial observations. This filtering problem gen-
eralizes the optimal cubic sensor problem stated in (30), where nonexistence of a closed-form
solution is indicated for the "general situation" case, without any assumptions for the third
order state distribution. In our paper, taking into account that the real distributions of the first
and third degree states are unknown, a conditionally Gaussian initial condition is additionally
assumed for the third degree state. The resulting filter yields a reliable and rapidly converg-
ing estimate, in spite of a significant difference in the initial conditions between the state and
estimate and very noisy observations, in the situation where the unmeasured state itself is a
time-shifted Wiener process and the extended Kalman filter (EKF) approach fails.

2. Filtering Problem for Linear States over Polynomial Observations

Let (Ω, F, P) be a complete probability space with an increasing right-continuous family of
σ-algebras Ft, t ≥ t0, and let (W1(t), Ft, t ≥ t0) and (W2(t), Ft, t ≥ t0) be independent Wiener
processes. The Ft-measurable random process (x(t), y(t) is described by a linear differential
equation for the system state

dx(t) = (a0(t) + a(t)x(t))dt + b(t)dW1(t), x(t0) = x0, (1)

and a nonlinear polynomial differential equation for the observation process

dy(t) = h(x, t)dt + B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the observation vector. The initial con-
dition x0 ∈ Rn is a Gaussian vector such that x0, W1(t), and W2(t) are independent. It is
assumed that B(t)BT(t) is a positive definite matrix. All coefficients in (1)–(2) are determinis-
tic functions of time of appropriate dimensions. The nonlinear function h(x, t) forms the drift
in the observation equation (2).
The nonlinear function h(x, t) is considered a polynomial of n variables, components of the
state vector x(t) ∈ Rn, with time-dependent coefficients. Since x(t) ∈ Rn is a vector, this
requires a special definition of the polynomial for n > 1. In accordance with (27), a p-degree
polynomial of a vector x(t) ∈ Rn is regarded as a p-linear form of n components of x(t)

h(x, t) = α0(t) + α1(t)x + α2(t)xxT + . . . + αp(t)x . . .p times . . . x, (3)

where α0(t) is a vector of dimension n, α1 is a matrix of dimension n × n, α2 is a 3D tensor
of dimension n × n × n, αp is an (p + 1)D tensor of dimension n × . . .(p+1) times . . . × n, and
x× . . .p times . . .× x is a pD tensor of dimension n× . . .p times . . .× n obtained by p times spatial
multiplication of the vector x(t) by itself (see (27) for more definition). Such a polynomial can
also be expressed in the summation form

hk(x, t) = α0 k(t) + ∑
i

α1 ki(t)xi(t) + ∑
ij

α2 kij(t)xi(t)xj(t) + . . .

+ ∑
i1...ip

αp ki1...ip (t)xi1 (t) . . . xip (t), k, i, j, i1, . . . , ip = 1, . . . , n.

The estimation problem is to find the optimal estimate x̂(t) of the system state x(t), based on
the observation process Y(t) = {y(s), 0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T(x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[ξ(t) | FY
t ] means the conditional expectation of a stochastic

process ξ(t) = (x(t)− x̂(t))T(x(t)− x̂(t)) with respect to the σ - algebra FY
t generated by the

observation process Y(t) in the interval [t0, t]. As known (31), this optimal estimate is given
by the conditional expectation

x̂(t) = mx(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t generated by the observation process

Y(t) in the interval [t0, t]. As usual, the matrix function

P(t) = E[(x(t)− mx(t))(x(t)− mx(t))T | FY
t ]

is the estimation error variance.
The proposed solution to this optimal filtering problem is based on the formulas for the Ito
differential of the optimal estimate and the estimation error variance (cited after (31)) and
given in the following section.

3. Optimal Filter for Linear States over Polynomial Observations

Let us reformulate the problem, introducing the stochastic process z(t) = h(x, t). Using the
Ito formula (see (31)) for the stochastic differential of the nonlinear function h(x, t), where x(t)
satisfies the equation (1), the following equation is obtained for z(t)

dz(t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t))dt +

∂h(x, t)
∂t

dt+ (4)

1
2

∂2h(x, t)
∂x2 b(t)bT(t)dt +

∂h(x, t)
∂x

b(t)dW1(t), z(0) = z0.

Note that the addition 1
2

∂2h(x,t)
∂x2 b(t)bT(t)dt appears in view of the second derivative in x in the

Ito formula.
The initial condition z0 ∈ Rn is considered a conditionally Gaussian random vector with re-
spect to observations. This assumption is quite admissible in the filtering framework, since the
real distributions of x(t) and z(t) are actually unknown. Indeed, as follows from (32), if only
two lower conditional moments, expectation m0 and variance P0, of a random vector [z0, x0]
are available, the Gaussian distribution with the same parameters, N(m0, P0), is the best ap-
proximation for the unknown conditional distribution of [z0, x0] with respect to observations.
This fact is also a corollary of the central limit theorem (33) in the probability theory.
A key point for further derivations is that the right-hand side of the equation (4) is a polyno-
mial in x. Indeed, since h(x, t) is a polynomial in x, the functions ∂h(x,t)

∂x , ∂h(x,t)
∂x x(t), ∂h(x,t)

∂t , and
∂2h(x,t)

∂x2 are also polynomial in x. Thus, the equation (4) is a polynomial state equation with a
polynomial multiplicative noise. It can be written in the compact form

dz(t) = f (x, t)dt + g(x, t)dW1(t), z(t0) = z0, (5)

where

f (x, t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t)) +

∂h(x, t)
∂t

+

1
2

∂2h(x, t)
∂x2 b(t)bT(t), g(x, t) =

∂h(x, t)
∂x

b(t).
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In terms of the process z(t), the observation equation (2) takes the form

dy(t) = z(t)dt + B(t)dW2(t). (6)

The reformulated estimation problem is now to find the optimal estimate [mz(t), mx(t)] of the
system state [z(t), x(t)], based on the observation process Y(t) = {y(s), 0 ≤ s ≤ t}. This
optimal estimate is given by the conditional expectation

m(t) = [mz(t), mx(t)] = [E(z(t) | FY
t ), E(x(t) | FY

t )]

of the system state [z(t), x(t)] with respect to the σ - algebra FY
t generated by the observation

process Y(t) in the interval [t0, t]. The matrix function

P(t) = E[([z(t), x(t)]− [mz(t), mx(t)])×

([z(t), x(t)]− [mz(t), mx(t)])T | FY
t ]

is the estimation error variance for this reformulated problem.
The obtained filtering system includes two equations, (4) (or (5)) and (1), for the partially
measured state [z(t), x(t)] and an equation (6) for the observations y(t), where z(t) is a mea-
sured polynomial state with polynomial multiplicative noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
optimal filter for the polynomial system states with unmeasured linear part and polynomial
multiplicative noise over linear observations, obtained in (29), can be applied to solving this
problem. Indeed, as follows from the general optimal filtering theory (see (31)), the optimal
filtering equations take the following particular form for the system (5), (1), (6)

dm(t) = E( f̄ (x, t) | FY
t )dt+ (7)

P(t)[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+ (8)

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B(t)BT(t))−1[I, 0]P(t))dt+

E((([z(t), x(t)]− m(t))([z(t), x(t)]− m(t))×
([z(t), x(t)]− m(t))T | FY

t )×
[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

where f̄ (x, t) = [ f (x, t), a0(t) + a(t)x(t)] is the polynomial drift term and ḡ(x, t) =
[g(x, t), b(t)] is the polynomial diffusion (multiplicative noise) term in the entire system of
the state equations (4), (1), and the last term should be understood as a 3D tensor (under
the expectation sign) convoluted with a vector, which yields a matrix. The matrix [I, 0] is
the m × (n + m) matrix composed of the m × m-dimensional identity matrix and m × n-
dimensional zero matrix. The equations (7), (8) should be complemented with the initial con-
ditions m(t0) = [mz(t0), mx(t0)] = E([z0, x0] | FY

t0
) and P(t0) = E[([z0, x0]− m(t0)([z0, x0]−

m(t0)
T | FY

t0
].

The result given in (27; 29) claims that a closed system of the filtering equations can be ob-
tained for the state [z(t), x(t)] over the observations y(t), in view of the polynomial properties

of the functions in the right-hand side of the equation (4). Indeed, since the observation ma-
trix in (6) is the identity one, i.e., invertible, and the initial condition z0 is assumed condition-
ally Gaussian with respect to observations, the random variable z(t)− mz(t) is conditionally
Gaussian with respect to the observation process y(t) for any t ≥ t0 ((27; 29)). Moreover, the
random variable x(t)− mx(t) is also conditionally Gaussian with respect to the observation
process y(t) for any t ≥ t0, because x(t) is Gaussian, in view of (1), and y(t) depends only
on z(t), in view of (6), and the assumed conditional Gaussianity of the initial random vec-
tor z0 ((26; 29)). Hence, the entire random vector [z(t), x(t)]− m(t) is conditionally Gaussian
with respect to the observation process y(t) for any t ≥ t0, and the following considerations
outlined in (26; 27; 29) are applicable.
First, since the random variable x(t) − m(t) is conditionally Gaussian, the conditional third
moment E((([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))T | FY

t ) with respect
to observations, which stands in the last term of the equation (8), is equal to zero, because
the process [z(t), x(t)] − m(t) is conditionally Gaussian. Thus, the entire last term in (8) is
vanished and the following variance equation is obtained

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+ (9)

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B̄(t)B̄T(t))−1[I, 0]P(t))dt,

with the initial condition P(t0) = E[([z0, x0]− m(t0)([z0, x0]− m(t0)
T | FY

t0
].

Second, if the functions f̄ (x, t) and ḡ(x, t) are polynomial functions of the state x with time-
dependent coefficients, the expressions of the terms E( f̄ (x, t) | FY

t ) in (4) and E(([z(t), x(t)]−
m(t)) f̄ T(x, t)) | FY

t ) and E(ḡ(x, t)ḡT(x, t) | FY
t ), which should be calculated to obtain a

closed system of filtering equations (see (31)), would also include only polynomial terms
of x. Then, those polynomial terms can be represented as functions of m(t) and P(t) us-
ing the following property of Gaussian random variable [z(t), x(t)] − m(t): all its odd con-
ditional moments, m1 = E[([z(t), x(t)] − m(t)) | Y(t)], m3 = E[([z(t), x(t)] − m(t))3 |
Y(t)], m5 = E[([z(t), x(t)]− m(t))5 | Y(t)], ... are equal to 0, and all its even conditional mo-
ments m2 = E[([z(t), x(t)] − m(t))2 | Y(t)], m4 = E[([z(t), x(t)] − m(t))4 | Y(t)], .... can be
represented as functions of the variance P(t). For example, m2 = P, m4 = 3P2, m6 = 15P3, ...
etc. After representing all polynomial terms in (7) and (9), that are generated upon expressing
E( f̄ (x, t) | FY

t ), E(([z(t), x(t)] − m(t)) f̄ T(x, t)) | FY
t ), and E(ḡ(x, t)ḡT(x, t) | FY

t ), as func-
tions of m(t) and P(t), a closed form of the filtering equations would be obtained. The
corresponding representations of E( f (x, t) | FY

t ), E(([z(t), x(t)] − m(t))( f (x, t))T | FY
t ) and

E(ḡ(x, t)ḡT(x, t) | FY
t ) have been derived in (24–27; 29) for certain polynomial functions f (x, t)

and g(x, t).
In the next example section, a closed form of the filtering equations will be obtained for a
particular case of a scalar third degree polynomial function h(x, t) in the equation (2). It should
be noted, however, that application of the same procedure would result in designing a closed
system of the filtering equations for any polynomial function h(x, t) ∈ Rn in (2).

4. Example: Third Degree Sensor Filtering Problem

This section presents an example of designing the optimal filter for a linear state over third de-
gree polynomial observations, reducing it to the optimal filtering problem for a second degree
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In terms of the process z(t), the observation equation (2) takes the form

dy(t) = z(t)dt + B(t)dW2(t). (6)

The reformulated estimation problem is now to find the optimal estimate [mz(t), mx(t)] of the
system state [z(t), x(t)], based on the observation process Y(t) = {y(s), 0 ≤ s ≤ t}. This
optimal estimate is given by the conditional expectation

m(t) = [mz(t), mx(t)] = [E(z(t) | FY
t ), E(x(t) | FY

t )]

of the system state [z(t), x(t)] with respect to the σ - algebra FY
t generated by the observation

process Y(t) in the interval [t0, t]. The matrix function

P(t) = E[([z(t), x(t)]− [mz(t), mx(t)])×

([z(t), x(t)]− [mz(t), mx(t)])T | FY
t ]

is the estimation error variance for this reformulated problem.
The obtained filtering system includes two equations, (4) (or (5)) and (1), for the partially
measured state [z(t), x(t)] and an equation (6) for the observations y(t), where z(t) is a mea-
sured polynomial state with polynomial multiplicative noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
optimal filter for the polynomial system states with unmeasured linear part and polynomial
multiplicative noise over linear observations, obtained in (29), can be applied to solving this
problem. Indeed, as follows from the general optimal filtering theory (see (31)), the optimal
filtering equations take the following particular form for the system (5), (1), (6)

dm(t) = E( f̄ (x, t) | FY
t )dt+ (7)

P(t)[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+ (8)

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B(t)BT(t))−1[I, 0]P(t))dt+

E((([z(t), x(t)]− m(t))([z(t), x(t)]− m(t))×
([z(t), x(t)]− m(t))T | FY

t )×
[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

where f̄ (x, t) = [ f (x, t), a0(t) + a(t)x(t)] is the polynomial drift term and ḡ(x, t) =
[g(x, t), b(t)] is the polynomial diffusion (multiplicative noise) term in the entire system of
the state equations (4), (1), and the last term should be understood as a 3D tensor (under
the expectation sign) convoluted with a vector, which yields a matrix. The matrix [I, 0] is
the m × (n + m) matrix composed of the m × m-dimensional identity matrix and m × n-
dimensional zero matrix. The equations (7), (8) should be complemented with the initial con-
ditions m(t0) = [mz(t0), mx(t0)] = E([z0, x0] | FY

t0
) and P(t0) = E[([z0, x0]− m(t0)([z0, x0]−

m(t0)
T | FY

t0
].

The result given in (27; 29) claims that a closed system of the filtering equations can be ob-
tained for the state [z(t), x(t)] over the observations y(t), in view of the polynomial properties

of the functions in the right-hand side of the equation (4). Indeed, since the observation ma-
trix in (6) is the identity one, i.e., invertible, and the initial condition z0 is assumed condition-
ally Gaussian with respect to observations, the random variable z(t)− mz(t) is conditionally
Gaussian with respect to the observation process y(t) for any t ≥ t0 ((27; 29)). Moreover, the
random variable x(t)− mx(t) is also conditionally Gaussian with respect to the observation
process y(t) for any t ≥ t0, because x(t) is Gaussian, in view of (1), and y(t) depends only
on z(t), in view of (6), and the assumed conditional Gaussianity of the initial random vec-
tor z0 ((26; 29)). Hence, the entire random vector [z(t), x(t)]− m(t) is conditionally Gaussian
with respect to the observation process y(t) for any t ≥ t0, and the following considerations
outlined in (26; 27; 29) are applicable.
First, since the random variable x(t) − m(t) is conditionally Gaussian, the conditional third
moment E((([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))T | FY

t ) with respect
to observations, which stands in the last term of the equation (8), is equal to zero, because
the process [z(t), x(t)] − m(t) is conditionally Gaussian. Thus, the entire last term in (8) is
vanished and the following variance equation is obtained

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+ (9)

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B̄(t)B̄T(t))−1[I, 0]P(t))dt,

with the initial condition P(t0) = E[([z0, x0]− m(t0)([z0, x0]− m(t0)
T | FY

t0
].

Second, if the functions f̄ (x, t) and ḡ(x, t) are polynomial functions of the state x with time-
dependent coefficients, the expressions of the terms E( f̄ (x, t) | FY

t ) in (4) and E(([z(t), x(t)]−
m(t)) f̄ T(x, t)) | FY

t ) and E(ḡ(x, t)ḡT(x, t) | FY
t ), which should be calculated to obtain a

closed system of filtering equations (see (31)), would also include only polynomial terms
of x. Then, those polynomial terms can be represented as functions of m(t) and P(t) us-
ing the following property of Gaussian random variable [z(t), x(t)] − m(t): all its odd con-
ditional moments, m1 = E[([z(t), x(t)] − m(t)) | Y(t)], m3 = E[([z(t), x(t)] − m(t))3 |
Y(t)], m5 = E[([z(t), x(t)]− m(t))5 | Y(t)], ... are equal to 0, and all its even conditional mo-
ments m2 = E[([z(t), x(t)] − m(t))2 | Y(t)], m4 = E[([z(t), x(t)] − m(t))4 | Y(t)], .... can be
represented as functions of the variance P(t). For example, m2 = P, m4 = 3P2, m6 = 15P3, ...
etc. After representing all polynomial terms in (7) and (9), that are generated upon expressing
E( f̄ (x, t) | FY

t ), E(([z(t), x(t)] − m(t)) f̄ T(x, t)) | FY
t ), and E(ḡ(x, t)ḡT(x, t) | FY

t ), as func-
tions of m(t) and P(t), a closed form of the filtering equations would be obtained. The
corresponding representations of E( f (x, t) | FY

t ), E(([z(t), x(t)] − m(t))( f (x, t))T | FY
t ) and

E(ḡ(x, t)ḡT(x, t) | FY
t ) have been derived in (24–27; 29) for certain polynomial functions f (x, t)

and g(x, t).
In the next example section, a closed form of the filtering equations will be obtained for a
particular case of a scalar third degree polynomial function h(x, t) in the equation (2). It should
be noted, however, that application of the same procedure would result in designing a closed
system of the filtering equations for any polynomial function h(x, t) ∈ Rn in (2).

4. Example: Third Degree Sensor Filtering Problem

This section presents an example of designing the optimal filter for a linear state over third de-
gree polynomial observations, reducing it to the optimal filtering problem for a second degree
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polynomial state with partially measured linear part and second degree polynomial multi-
plicative noise over linear observations, where a conditionally Gaussian state initial condition
is additionally assumed.
Let the unmeasured scalar state x(t) satisfy the trivial linear equation

dx(t) = dt + dw1(t), x(0) = x0, (10)

and the observation process be given by the scalar third degree sensor equation

dy(t) = (x3(t) + x(t))dt + dw2(t), (11)

where w1(t) and w2(t) are standard Wiener processes independent of each other and of a
Gaussian random variable x0 serving as the initial condition in (10). The filtering problem is
to find the optimal estimate for the linear state (10), using the third degree sensor observations
(11).
Let us reformulate the problem, introducing the stochastic process z(t) = h(x, t) = x3(t) +
x(t). Using the Ito formula (see (31)) for the stochastic differential of the cubic function
h(x, t) = x3(t) + x(t), where x(t) satisfies the equation (10), the following equation is ob-
tained for z(t)

dz(t) = (1 + 3x(t) + 3x2(t))dt + (3x2(t) + 1)dw1(t), z(0) = z0. (12)

Here, ∂h(x,t)
∂x = 3x2(t) + 1, 1

2
∂2h(x,t)

∂x2 = 3x(t), and ∂h(x,t)
∂t = 0; therefore, f (x, t) = 1 + 3x(t) +

3x2(t) and g(x, t) = 3x2(t) + 1. The initial condition z0 ∈ R is considered a conditionally
Gaussian random vector with respect to observations (see the paragraph following (4) for
details). This assumption is quite admissible in the filtering framework, since the real distri-
butions of x(t) and z(t) are unknown. In terms of the process z(t), the observation equation
(11) takes the form

dy(t) = z(t)dt + dw2(t). (13)

The obtained filtering system includes two equations, (12) and (10), for the partially measured
state [z(t), x(t)] and an equation (13) for the observations y(t), where z(t) is a completely
measured quadratic state with multiplicative quadratic noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
designed optimal filter can be applied for solving this problem. The filtering equations (7),(9)
take the following particular form for the system (12),(10),(13)

dm1(t) = (1 + 3m2(t) + 3m2
2(t) + 3P22(t))dt+ (14)

P11(t)[dy(t)− m1(t)dt],

dm2(t) = 1 + P12(t)[dy(t)− m1(t)dt], (15)

with the initial conditions m1(0) = E(x0 | y(0)) = m10 and m2(0) = E(x3
0 | y(0)) = m20,

Ṗ11(t) = 12(P12(t)m2(t)) + 6P12(t) + 27P2
22(t)+ (16)

54P22(t)m2
2(t) + 9m4

2(t) + 6P22(t) + 6m2
2 + 1 − P2

11(t),

Ṗ12(t) = 6(P22(t)m2(t)) + 3P22(t)+ (17)

3(m2
2(t) + P22(t)) + 1 − P11(t)P12(t),

Ṗ22(t) = 1 − P2
12(t), (18)

with the initial condition P(0) = E(([x0, z0]
T − m(0))([x0, z0]

T − m(0))T | y(0)) = P0. Here,
m1(t) is the optimal estimate for the state z(t) = x3(t) + x(t) and m2(t) is the optimal estimate
for the state x(t).
Numerical simulation results are obtained solving the systems of filtering equations (14)–(18).
The obtained values of the state estimate m2(t) satisfying the equation (15) are compared to
the real values of the state variable x(t) in (10).
For the filter (14)–(18) and the reference system (12),(10),(13) involved in simulation, the fol-
lowing initial values are assigned: x0 = z0 = 0, m2(0) = 10, m1(0) = 1000, P11(0) = 15,
P12(0) = 3, P22(0) = 1. Gaussian disturbances dw1(t) and dw2(t) are realized using the built-
in MatLab white noise functions. The simulation interval is [0, 0.05].

Fig. 1. Above. Graph of the observation process y(t) in the interval [0, 0.05]. Below. Graphs
of the real state x(t) (solid line) and its optimal estimate m2(t) (dashed line) in the interval
[0, 0.05].

Figure 1 shows the graphs of the reference state variable x(t) (10) and its optimal estimate
m2(t) (15), as well as the observation process y(t) (11), in the entire simulation interval from
t0 = 0 to T = 0.05. It can be observed that the optimal estimate given by (14)–(18) converges to
the real state (10) very rapidly, in spite of a considerable error in the initial conditions, m2(0)−
x0 = 10, m1(0)− z0 = 1000, and very noisy observations which do not even reproduce the
shape of z(t) = x3(t) + x(t). Moreover, the estimated signal x(t) itself is a time-shifted Wiener
process, i.e., the integral of a white Gaussian noise, which makes the filtering problem even
more difficult. It should also be noted that the extended Kalman filter (EKF) approach fails for
the system (10),(11), since the linearized value ∂z/∂x = 3x2(t) + 1 at zero is the unit-valued
constant, therefore, the observation process would consist of pure noise.
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polynomial state with partially measured linear part and second degree polynomial multi-
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dy(t) = (x3(t) + x(t))dt + dw2(t), (11)

where w1(t) and w2(t) are standard Wiener processes independent of each other and of a
Gaussian random variable x0 serving as the initial condition in (10). The filtering problem is
to find the optimal estimate for the linear state (10), using the third degree sensor observations
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x(t). Using the Ito formula (see (31)) for the stochastic differential of the cubic function
h(x, t) = x3(t) + x(t), where x(t) satisfies the equation (10), the following equation is ob-
tained for z(t)
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∂t = 0; therefore, f (x, t) = 1 + 3x(t) +

3x2(t) and g(x, t) = 3x2(t) + 1. The initial condition z0 ∈ R is considered a conditionally
Gaussian random vector with respect to observations (see the paragraph following (4) for
details). This assumption is quite admissible in the filtering framework, since the real distri-
butions of x(t) and z(t) are unknown. In terms of the process z(t), the observation equation
(11) takes the form

dy(t) = z(t)dt + dw2(t). (13)

The obtained filtering system includes two equations, (12) and (10), for the partially measured
state [z(t), x(t)] and an equation (13) for the observations y(t), where z(t) is a completely
measured quadratic state with multiplicative quadratic noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
designed optimal filter can be applied for solving this problem. The filtering equations (7),(9)
take the following particular form for the system (12),(10),(13)

dm1(t) = (1 + 3m2(t) + 3m2
2(t) + 3P22(t))dt+ (14)

P11(t)[dy(t)− m1(t)dt],

dm2(t) = 1 + P12(t)[dy(t)− m1(t)dt], (15)

with the initial conditions m1(0) = E(x0 | y(0)) = m10 and m2(0) = E(x3
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Ṗ12(t) = 6(P22(t)m2(t)) + 3P22(t)+ (17)

3(m2
2(t) + P22(t)) + 1 − P11(t)P12(t),
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with the initial condition P(0) = E(([x0, z0]
T − m(0))([x0, z0]

T − m(0))T | y(0)) = P0. Here,
m1(t) is the optimal estimate for the state z(t) = x3(t) + x(t) and m2(t) is the optimal estimate
for the state x(t).
Numerical simulation results are obtained solving the systems of filtering equations (14)–(18).
The obtained values of the state estimate m2(t) satisfying the equation (15) are compared to
the real values of the state variable x(t) in (10).
For the filter (14)–(18) and the reference system (12),(10),(13) involved in simulation, the fol-
lowing initial values are assigned: x0 = z0 = 0, m2(0) = 10, m1(0) = 1000, P11(0) = 15,
P12(0) = 3, P22(0) = 1. Gaussian disturbances dw1(t) and dw2(t) are realized using the built-
in MatLab white noise functions. The simulation interval is [0, 0.05].

Fig. 1. Above. Graph of the observation process y(t) in the interval [0, 0.05]. Below. Graphs
of the real state x(t) (solid line) and its optimal estimate m2(t) (dashed line) in the interval
[0, 0.05].

Figure 1 shows the graphs of the reference state variable x(t) (10) and its optimal estimate
m2(t) (15), as well as the observation process y(t) (11), in the entire simulation interval from
t0 = 0 to T = 0.05. It can be observed that the optimal estimate given by (14)–(18) converges to
the real state (10) very rapidly, in spite of a considerable error in the initial conditions, m2(0)−
x0 = 10, m1(0)− z0 = 1000, and very noisy observations which do not even reproduce the
shape of z(t) = x3(t) + x(t). Moreover, the estimated signal x(t) itself is a time-shifted Wiener
process, i.e., the integral of a white Gaussian noise, which makes the filtering problem even
more difficult. It should also be noted that the extended Kalman filter (EKF) approach fails for
the system (10),(11), since the linearized value ∂z/∂x = 3x2(t) + 1 at zero is the unit-valued
constant, therefore, the observation process would consist of pure noise.



Stochastic Control268

Thus, it can be concluded that the obtained optimal filter (14)–(18) solves the optimal third
degree sensor filtering problem for the system (10),(11) and yields a really good estimate of
the unmeasured state in presence of quite complicated observation conditions. Subsequent
discussion of the obtained results can be found in Conclusions.

5. Conclusions

This paper presents the optimal filter for linear system states over nonlinear polynomial obser-
vations. It is shown that the optimal filter can be obtained in a closed form for any polynomial
function in the observation equation. Based on the optimal filter for a bilinear state, the op-
timal solution is obtained for the optimal third degree sensor filtering problem, assuming a
conditionally Gaussian initial condition for the third degree state. This assumption is quite
admissible in the filtering framework, since the real distributions of the first and third degree
states are unknown. The resulting filter yields a reliable and rapidly converging estimate, in
spite of a significant difference in the initial conditions between the state and estimate and
very noisy observations, in the situation where the unmeasured state itself is a time-shifted
Wiener process and the extended Kalman filter (EKF) approach fails. Although this conclusion
follows from the developed theory, the numerical simulation serves as a convincing illustra-
tion.
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1. Introduction

In several domains of signal processing, such as detection or de-noising, it may be interesting
to provide a second-moment characterization of a noise-corrupted signal in terms of uncorre-
lated random variables. Doing so, the noisy data could be described by its expansion into a
weighted sum of known vectors by uncorrelated random variables. Depending on the choice
of the basis vectors, some random variables are carrying more signal of interest informations
than noise ones. This is the case, for example, when a signal disturbed by a white noise
is expanded using the Karhunen-Loève expansion (Karhunen, 1946; Loève, 1955). In these
conditions, it is possible either to approximate the signal of interest considering, for the recon-
struction, only its associated random variables, or to detect a signal in a noisy environment
with an analysis of the random variable power. The purpose of this chapter is to present
such an expansion, available for both the additive and multiplicative noise cases, and its ap-
plication to detection and de-noising. This noisy random signal expansion is known as the
stochastic matched filter (Cavassilas, 1991), where the basis vectors are chosen so as to maxi-
mize the signal to noise ratio after processing.
At first, we recall some general considerations on a random 1-D discrete-time signal expansion
in section 2. In particular, we study the approximation error and the second order statistics of
the signal approximation. Then, in section 3, we describe the stochastic matched filter theory
for 1-D discrete-time signals and its extension to 2-D discrete-space signals. We finish this
section with a study on two different noise cases: the white noise case and the speckle noise
case. In the next section, we present the stochastic matched filter in a de-noising context and
we briefly discuss the estimator bias. Then, the de-noising being performed by a limitation
to order Q of the noisy data expansion, we propose to determine this truncature order using
a mean square error criterion. Experimental results on synthetic and real data are given and
discussed to evaluate the performances of such an approach. In section 5, we describe the
stochastic matched filter in a detection context and we confront the proposed method with
signals resulting from underwater acoustics. Finally, some concluding remarks are given in
section 6.
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2. Random signal expansion

2.1 1-D discrete-time signals
Let S be a zero mean, stationary, discrete-time random signal, made of M successive samples
and let {s1, s2, . . . , sM} be a zero mean, uncorrelated random variable sequence, i.e.:

E {snsm} = E
{

s2
m

}
δn,m, (1)

where δn,m denotes the Kronecker symbol.
It is possible to expand signal S into series of the form:

S =
M

∑
m=1

smΨm, (2)

where {Ψm}m=1...M corresponds to a M-dimensional deterministic basis. Vectors Ψm are
linked to the choice of random variables sequence {sm}, so there are many decompositions
(2).
These vectors are determined by considering the mathematical expectation of the product of
sm with the random signal S. It comes:

Ψm =
1

E
{

s2
m
}E {smS} . (3)

Classically and using a M-dimensional deterministic basis {Φm}m=1...M, the random vari-
ables sm can be expressed by the following relation:

sm = STΦm. (4)

The determination of these random variables depends on the choice of the basis {Φm}m=1...M.
We will use a basis, which provides the uncorrelation of the random variables. Using relations
(1) and (4), we can show that the uncorrelation is ensured, when vectors Φm are solution of
the following quadratic form:

Φm
TΓSSΦn = E

{
s2

m

}
δn,m, (5)

where ΓSS represents the signal covariance.
There is an infinity of sets of vectors obtained by solving the previous equation. Assuming
that a basis {Φm}m=1...M is chosen, we can find random variables using relation (4). Taking
into account relations (3) and (4), we obtain as new expression for Ψm:

Ψm =
1

E
{

s2
m
}ΓSSΦm. (6)

Furthermore, using relations (5) and (6), we can show that vectors Ψm and Φm are linked by
the following bi-orthogonality relation:

Φm
TΨn = δn,m. (7)

2.2 Approximation error
When the discrete sum, describing the signal expansion (relation (2)), is reduced to Q random
variables sm, only an approximation S̃Q of the signal is obtained:

S̃Q =
Q

∑
m=1

smΨm. (8)

To evaluate the error induced by the restitution, let us consider the mean square error ε be-
tween signal S and its approximation S̃Q:

ε = E
{∥∥∥S − S̃Q

∥∥∥2
}

, (9)

where ‖.‖ denotes the classical Euclidean norm.
Considering the signal variance σ2

S , it can be easily shown that:

ε = σ2
S −

Q

∑
m=1

E
{

s2
m

}
‖Ψm‖2 , (10)

which corresponds to:

ε = σ2
S −

Q

∑
m=1

Φm
TΓSS

2Φm

Φm
TΓSSΦm

. (11)

When we consider the whole sm sequence (i.e. Q equal to M), the approximation error ε is
weak, and coefficients given by the quadratic form ratio:

Φm
TΓSS

2Φm

Φm
TΓSSΦm

are carrying the signal power.

2.3 Second order statistics
The purpose of this section is the determination of the S̃Q autocorrelation and spectral power
density. Let ΓS̃QS̃Q

be the S̃Q autocorrelation, we have:

ΓS̃QS̃Q
[p] = E

{
S̃Q[q]S̃∗

Q[p − q]
}

. (12)

Taking into account relation (8) and the uncorrelation of random variables sm, it comes:

ΓS̃QS̃Q
[p] =

Q

∑
m=1

E
{

s2
m

}
Ψm[q]Ψ∗

m[p − q], (13)

which leads to, summing all elements of the previous relation:

M

∑
q=1

ΓS̃QS̃Q
[p] =

M

∑
q=1

Q

∑
m=1

E
{

s2
m

}
Ψm[q]Ψ∗

m[p − q]. (14)
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The purpose of this section is the determination of the S̃Q autocorrelation and spectral power
density. Let ΓS̃QS̃Q

be the S̃Q autocorrelation, we have:
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m
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m
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So, we have:

ΓS̃QS̃Q
[p] =

1
M

Q

∑
m=1

E
{

s2
m

} M

∑
q=1

Ψm[q]Ψ∗
m[p − q], (15)

which corresponds to:

ΓS̃QS̃Q
[p] =

1
M

Q

∑
m=1

E
{

s2
m

}
ΓΨmΨm [p]. (16)

In these conditions, the S̃Q spectral power density is equal to:

γS̃QS̃Q
(ν) =

1
M

Q

∑
m=1

E
{

s2
m

}
γΨmΨm (ν). (17)

3. The Stochastic Matched Filter expansion

Detecting or de-noising a signal of interest S, corrupted by an additive or multiplicative noise
N is a usual signal processing problem. We can find in the literature several processing meth-
ods for solving this problem. One of them is based on a stochastic extension of the matched
filter notion (Cavassilas, 1991; Chaillan et al., 2007; 2005). The signal of interest pattern is never
perfectly known, so it is replaced by a random signal allowing a new formulation of the signal
to noise ratio. The optimization of this ratio leads to design a bench of filters and regrouping
them strongly increases the signal to noise ratio.

3.1 1-D discrete-time signals: signal-independent additive noise case
Let us consider a noise-corrupted signal Z, made of M successive samples and corresponding
to the superposition of a signal of interest S with a colored noise N. If we consider the signal
and noise variances, σ2

S and σ2
N , we have:

Z = σSS0 + σNN0, (18)

with E
{

S0
2
}
= 1 and E

{
N0

2
}
= 1. In the previous relation, reduced signals S0 and N0 are

assumed to be independent, stationary and with zero-mean.
It is possible to expand noise-corrupted signal Z into a weighted sum of known vectors Ψm
by uncorrelated random variables zm, as described in relation (2). These uncorrelated ran-
dom variables are determined using the scalar product between noise-corrupted signal Z and
deterministic vectors Φm (see relation (4)). In order to determine basis {Φm}m=1...M, let us
describe the matched filter theory. If we consider a discrete-time, stationary, known input sig-
nal s, made of M successive samples, corrupted by an ergodic reduced noise N0, the matched
filter theory consists of finding an impulse response Φ, which optimizes the signal to noise ra-
tio ρ. Defined as the ratio of the square of signal amplitude to the square of noise amplitude,
ρ is given by:

ρ =
|sTΦ|2

E
{
|N0

TΦ|2
} . (19)

When the signal is not deterministic, i.e. a random signal S0, this ratio becomes (Cavassilas,
1991):

ρ =
E
{
|S0

TΦ|2
}

E
{
|N0

TΦ|2
} , (20)

which leads to:

ρ =
ΦTΓS0S0 Φ

ΦTΓN0N0 Φ
, (21)

where ΓS0S0 and ΓN0N0 represent signal and noise reduced covariances respectively.
Relation (21) corresponds to the ratio of two quadratic forms. It is a Rayleigh quotient. For
this reason, the signal to noise ratio ρ is maximized when the impulse response Φ corresponds
to the eigenvector Φ1 associated to the greatest eigenvalue λ1 of the following generalized
eigenvalue problem:

ΓS0S0 Φm = λmΓN0N0 Φm. (22)
Let us consider the signal and noise expansions, we have:




S0 =
M

∑
m=1

smΨm

N0 =
M

∑
m=1

ηmΨm

, (23)

where the random variables defined by:
{

sm = Φm
TS0

ηm = Φm
TN0

(24)

are not correlated: {
Φm

TΓS0S0 Φn = E
{

s2
m

}
δn,m

Φm
TΓN0N0 Φn = E

{
η2

m
}

δn,m
. (25)

After a normalization step; it is possible to rewrite relations (25) as follows:



Φm
TΓS0S0 Φn =

E
{

s2
m
}

E
{

η2
m
} δn,m

Φm
TΓN0N0 Φn = δn,m

. (26)

Let P be a matrix made up of column vectors Φm, i.e.:

P = (Φ1, Φ2, . . . , ΦM) . (27)

In these conditions, it comes:
PTΓN0N0 P = I, (28)

where I corresponds to the identity matrix.
This leads to:

(
PTΓN0N0 P

)−1
= I

⇔ P−1ΓN0N0
−1P−T = I

⇔ PT = P−1ΓN0N0
−1. (29)

Let D be the following diagonal matrix:

D =




E
{

s2
1
}

/E
{

η2
1
}

0 . . . . . . 0
0 E

{
s2

2
}

/E
{

η2
2
}

0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 E
{

s2
M−1

}
/E

{
η2

M−1
}

0
0 . . . . . . 0 E

{
s2

M
}

/E
{

η2
M
}




. (30)
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So, we have:

ΓS̃QS̃Q
[p] =

1
M

Q

∑
m=1

E
{

s2
m

} M

∑
q=1

Ψm[q]Ψ∗
m[p − q], (15)
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[p] =

1
M

Q

∑
m=1

E
{

s2
m

}
ΓΨmΨm [p]. (16)
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1
M

Q

∑
m=1

E
{

s2
m

}
γΨmΨm (ν). (17)
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2
}
= 1. In the previous relation, reduced signals S0 and N0 are

assumed to be independent, stationary and with zero-mean.
It is possible to expand noise-corrupted signal Z into a weighted sum of known vectors Ψm
by uncorrelated random variables zm, as described in relation (2). These uncorrelated ran-
dom variables are determined using the scalar product between noise-corrupted signal Z and
deterministic vectors Φm (see relation (4)). In order to determine basis {Φm}m=1...M, let us
describe the matched filter theory. If we consider a discrete-time, stationary, known input sig-
nal s, made of M successive samples, corrupted by an ergodic reduced noise N0, the matched
filter theory consists of finding an impulse response Φ, which optimizes the signal to noise ra-
tio ρ. Defined as the ratio of the square of signal amplitude to the square of noise amplitude,
ρ is given by:

ρ =
|sTΦ|2

E
{
|N0

TΦ|2
} . (19)

When the signal is not deterministic, i.e. a random signal S0, this ratio becomes (Cavassilas,
1991):

ρ =
E
{
|S0

TΦ|2
}

E
{
|N0

TΦ|2
} , (20)

which leads to:

ρ =
ΦTΓS0S0 Φ

ΦTΓN0N0 Φ
, (21)

where ΓS0S0 and ΓN0N0 represent signal and noise reduced covariances respectively.
Relation (21) corresponds to the ratio of two quadratic forms. It is a Rayleigh quotient. For
this reason, the signal to noise ratio ρ is maximized when the impulse response Φ corresponds
to the eigenvector Φ1 associated to the greatest eigenvalue λ1 of the following generalized
eigenvalue problem:

ΓS0S0 Φm = λmΓN0N0 Φm. (22)
Let us consider the signal and noise expansions, we have:




S0 =
M

∑
m=1

smΨm

N0 =
M

∑
m=1

ηmΨm

, (23)

where the random variables defined by:
{

sm = Φm
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m
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m
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m
}
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m
} δn,m

Φm
TΓN0N0 Φn = δn,m

. (26)

Let P be a matrix made up of column vectors Φm, i.e.:

P = (Φ1, Φ2, . . . , ΦM) . (27)

In these conditions, it comes:
PTΓN0N0 P = I, (28)

where I corresponds to the identity matrix.
This leads to:

(
PTΓN0N0 P

)−1
= I

⇔ P−1ΓN0N0
−1P−T = I

⇔ PT = P−1ΓN0N0
−1. (29)

Let D be the following diagonal matrix:

D =




E
{

s2
1
}

/E
{

η2
1
}

0 . . . . . . 0
0 E

{
s2

2
}

/E
{

η2
2
}

0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 E
{

s2
M−1

}
/E

{
η2

M−1
}

0
0 . . . . . . 0 E

{
s2

M
}

/E
{

η2
M
}
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It comes:
PTΓS0S0 P = D, (31)

which corresponds to, taking into account relation (29):

P−1ΓN0N0
−1ΓS0S0 P = D

⇔ ΓN0N0
−1ΓS0S0 P = PD

⇔ ΓS0S0 P = ΓN0N0 PD, (32)

which leads to:

ΓS0S0 Φm =
E
{

s2
m
}

E
{

η2
m
}ΓN0N0 Φm. (33)

This last equation shows, on the one hand, that λm equals E
{

s2
m
}

/E
{

η2
m
}

and, on the other
hand, that the only basis {Φm}m=1...M allowing the simultaneous uncorrelation of the random
variables coming from the signal and the noise is made up of vectors Φm solution of the
generalized eigenvalue problem (22).
We have E

{
η2

m
}
= 1 and E

{
s2

m
}
= λm when the eigenvectors Φm are normalized as follows:

Φm
TΓN0N0 Φm = 1, (34)

In these conditions and considering relation (6), the deterministic vectors Ψm of the noise-
corrupted signal expansion are given by:

Ψm = ΓN0N0 Φm. (35)

In this context, the noise-corrupted signal expansion is expressed as follows:

Z =
M

∑
m=1

(σSsm + σNηm)Ψm, (36)

so that, the quadratic moment of the mth coefficient zm of the noise-corrupted signal expansion
is given by:

E
{

z2
m

}
= E

{
(σSsm + σNηm)

2
}

, (37)

which corresponds to:

σ2
Sλm + σ2

N + σSσNΦm
T (ΓS0N0 + ΓN0S0 )Φm (38)

Signal and noise being independent and one of them at least being zero mean, we can assume
that the cross-correlation matrices, ΓS0N0 and ΓN0S0 , are weak. In this condition, the signal to
noise ratio ρm of component zm corresponds to the native signal to noise ratio times eigenvalue
λm:

ρm =
σ2

S
σ2

N
λm. (39)

So, an approximation S̃Q of the signal of interest (the filtered noise-corrupted signal) can
be built by keeping only those components associated to eigenvalues greater than a certain
threshold. In any case this threshold is greater than one.

3.2 Extension to 2-D discrete-space signals
We consider now a M × M pixels two-dimensional noise-corrupted signal, Z, which corre-
sponds to a signal of interest S disturbed by a noise N. The two-dimensional extension of the
theory developed in the previous section gives:

Z =
M2

∑
m=1

zmΨm, (40)

where {Ψm}m=1...M2 is a M2-dimensional basis of M × M matrices.
Random variables zm are determined, using a M2-dimensional basis {Φm}m=1...M2 of M × M
matrices, as follows:

zm =
M

∑
p,q=1

Z[p, q]Φm[p, q]. (41)

These random variables will be not correlated, if matrices Φm are solution of the two-
dimensional extension of the generalized eigenvalue problem (22):

M

∑
p1,q1=1

ΓS0S0 [p1 − p2, q1 − q2]Φm[p1, q1] = λn

M

∑
p1,q1=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p1, q1], (42)

for all p2, q2 = 1, . . . , M.
Assuming that Φm are normalized as follows:

M

∑
p1,p2,q1,q2=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p1, q1]Φm[p2, q2] = 1, (43)

the basis {Ψm}m=1...M2 derives from:

Ψm[p1, q1] =
M

∑
p2,q2=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p2, q2]. (44)

As for the 1-D discrete-time signals case, using such an expansion leads to a signal to noise
ratio of component zm equal to the native signal to noise ratio times eigenvalue λm (see relation
(39)). So, all Φm associated to eigenvalues λm greater than a certain level - in any case greater
than one - can contribute to an improvement of the signal to noise ratio.

3.3 The white noise case
When N corresponds to a white noise, its reduced covariance is:

ΓN0 N0 [p − q] = δ[p − q]. (45)

Thus, the generalized eigenvalue problem (22) leading to the determination of vectors Φm
and associated eigenvalues is reduced to:

ΓS0S0 Φm = λmΦm. (46)
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m
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m
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m
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m
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{
s2

m
}
= λm when the eigenvectors Φm are normalized as follows:

Φm
TΓN0N0 Φm = 1, (34)

In these conditions and considering relation (6), the deterministic vectors Ψm of the noise-
corrupted signal expansion are given by:

Ψm = ΓN0N0 Φm. (35)

In this context, the noise-corrupted signal expansion is expressed as follows:

Z =
M

∑
m=1

(σSsm + σNηm)Ψm, (36)

so that, the quadratic moment of the mth coefficient zm of the noise-corrupted signal expansion
is given by:

E
{

z2
m

}
= E

{
(σSsm + σNηm)

2
}

, (37)

which corresponds to:

σ2
Sλm + σ2

N + σSσNΦm
T (ΓS0N0 + ΓN0S0 )Φm (38)

Signal and noise being independent and one of them at least being zero mean, we can assume
that the cross-correlation matrices, ΓS0N0 and ΓN0S0 , are weak. In this condition, the signal to
noise ratio ρm of component zm corresponds to the native signal to noise ratio times eigenvalue
λm:

ρm =
σ2

S
σ2

N
λm. (39)

So, an approximation S̃Q of the signal of interest (the filtered noise-corrupted signal) can
be built by keeping only those components associated to eigenvalues greater than a certain
threshold. In any case this threshold is greater than one.

3.2 Extension to 2-D discrete-space signals
We consider now a M × M pixels two-dimensional noise-corrupted signal, Z, which corre-
sponds to a signal of interest S disturbed by a noise N. The two-dimensional extension of the
theory developed in the previous section gives:

Z =
M2

∑
m=1

zmΨm, (40)

where {Ψm}m=1...M2 is a M2-dimensional basis of M × M matrices.
Random variables zm are determined, using a M2-dimensional basis {Φm}m=1...M2 of M × M
matrices, as follows:

zm =
M

∑
p,q=1

Z[p, q]Φm[p, q]. (41)

These random variables will be not correlated, if matrices Φm are solution of the two-
dimensional extension of the generalized eigenvalue problem (22):

M

∑
p1,q1=1

ΓS0S0 [p1 − p2, q1 − q2]Φm[p1, q1] = λn

M

∑
p1,q1=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p1, q1], (42)

for all p2, q2 = 1, . . . , M.
Assuming that Φm are normalized as follows:

M

∑
p1,p2,q1,q2=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p1, q1]Φm[p2, q2] = 1, (43)

the basis {Ψm}m=1...M2 derives from:

Ψm[p1, q1] =
M

∑
p2,q2=1

ΓN0 N0 [p1 − p2, q1 − q2]Φm[p2, q2]. (44)

As for the 1-D discrete-time signals case, using such an expansion leads to a signal to noise
ratio of component zm equal to the native signal to noise ratio times eigenvalue λm (see relation
(39)). So, all Φm associated to eigenvalues λm greater than a certain level - in any case greater
than one - can contribute to an improvement of the signal to noise ratio.

3.3 The white noise case
When N corresponds to a white noise, its reduced covariance is:

ΓN0 N0 [p − q] = δ[p − q]. (45)

Thus, the generalized eigenvalue problem (22) leading to the determination of vectors Φm
and associated eigenvalues is reduced to:

ΓS0S0 Φm = λmΦm. (46)
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In this context, we can show that basis vectors Ψm and Φm are equal. Thus, in the particular
case of a white noise, the stochastic matched filter theory is identical to the Karhunen-Loève
expansion (Karhunen, 1946; Loève, 1955):

Z =
M

∑
m=1

zmΦm. (47)

One can show that when the signal covariance is described by a decreasing exponential func-
tion (ΓS0S0 (t1, t2) = e−α|t1−t2|, with α ∈ R+∗), basis {Φm}m=1...M corresponds to the Fourier
basis (Vann Trees, 1968), so that the Fourier expansion is a particular case of the Karhunen-
Loève expansion, which is a particular case of the stochastic matched filter expansion.

3.4 The speckle noise case
Some airborne SAR (Synthetic Aperture Radar) imaging devices randomly generate their own
corrupting signal, called the speckle noise, generally described as a multiplicative noise (Tur et
al., 1982). This is due to the complexity of the techniques developed to get the best resolution
of the ground. Given experimental data accuracy and quality, these systems have been used
in sonars (SAS imaging device), with similar characteristics.
Under these conditions, we cannot anymore consider the noise-corrupted signal as described
in (18), so its expression becomes:

Z = S. ∗ N, (48)

where .∗ denotes the term by term product.
In order to fall down in a known context, let consider the Kuan approach (Kuan et al., 1985).
Assuming that the multiplicative noise presents a stationary mean (N̄ = E{N}), we can define
the following normalized observation:

Znorm = Z/N̄. (49)

In this condition, we can represent (49) in terms of signal plus signal-dependent additive
noise:

Znorm = S +

(
N − N̄

N̄

)
. ∗ S. (50)

Let Na be this signal-dependent additive colored noise:

Na = (N/N̄ − 1) . ∗ S. (51)

Under these conditions, the mean quadratic value of the mth component zm of the normalized
observation expansion is:

E
{

z2
m

}
= σ2

Sλn + σ2
Na

+ σSσNa Φm
T
(

ΓS0Na0
+ ΓNa0 S0

)
Φm, (52)

where Na0 corresponds to the reduced noise Na.
Consequently, the signal to noise ratio ρm becomes:

ρm =
σ2

Sλm

σ2
Na

+ σSσNa Φm
T
(

ΓS0Na0
+ ΓNa0 S0

)
Φm

. (53)

As S0 and (N/N̄ − 1) are independent, it comes:

ΓS0 Na0
[p1, p2, q1, q2] = E {S0[p1, q1]Na0 [p2, q2]} , (54)

which is equal to:

1
σNa

E {S0[p1, q1]S[p2, q2]}
(

E{N[p2, q2]}
N̄

− 1
)

︸ ︷︷ ︸
=0

= 0. (55)

So that, the cross-correlation matrices between signal S0 and signal-dependent noise Na0 van-
ishes. For this reason, signal to noise ratio in a context of multiplicative noise like the speckle
noise, expanded into the stochastic matched filter basis has the same expression than in the
case of an additive noise.

4. The Stochastic Matched Filter in a de-noising context

In this section, we present the stochastic matched filtering in a de-noising context for 1-D
discrete time signals. The given results can easily be extended to higher dimensions.

4.1 Bias estimator
Let Z be a M-dimensional noise corrupted observed signal. The use of the stochastic matched
filter as a restoring process is based on the decomposition of this observation, into a random
variable finite sequence zm on the {Ψm}m=1...M basis. An approximation S̃Q is obtained with
the zm coefficients and the Q basis vectors Ψm, with Q lower than M:

S̃Q =
Q

∑
m=1

zmΨm. (56)

If we examine the M-dimensional vector E
{

S̃Q

}
, we have:

E
{

S̃Q

}
= E

{
Q

∑
m=1

Ψmzm

}

=
Q

∑
m=1

ΨmΦT
mE {Z} (57)

Using the definition of noise-corrupted signal Z, it comes:

E
{

S̃Q

}
=

Q

∑
m=1

ΨmΦT
m (E {S}+ E {N}) . (58)

Under these conditions, the estimator bias BS̃Q
can be expressed as follows:

BS̃Q
= E

{
S̃Q − S

}

=

(
Q

∑
m=1

ΨmΦT
m − I

)
E {S}+

Q

∑
m=1

ΨmΦT
mE {N}, (59)
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noise, expanded into the stochastic matched filter basis has the same expression than in the
case of an additive noise.
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discrete time signals. The given results can easily be extended to higher dimensions.

4.1 Bias estimator
Let Z be a M-dimensional noise corrupted observed signal. The use of the stochastic matched
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where I denotes the M × M identity matrix.
Furthermore, if we consider the signal of interest expansion, we have:

S =

(
M

∑
m=1

ΨmΦT
m

)
S, (60)

so that, by identification, it comes:

M

∑
m=1

ΨmΦT
m = I. (61)

In this condition, relation (59) can be rewritten as follows:

BS̃Q
= −

M

∑
m=Q+1

ΨmΦT
mE {S}+

Q

∑
m=1

ΨmΦT
mE {N}. (62)

This last equation corresponds to the estimator bias when no assumption is made on the signal
and noise mean values. In our case, signal and noise are both supposed zero-mean, so that the
stochastic matched filter allows obtaining an unbiased estimation of the signal of interest.

4.2 De-noising using a mean square error minimization
4.2.1 Problem description
In many signal processing applications, it is necessary to estimate a signal of interest disturbed
by an additive or multiplicative noise. We propose here to use the stochastic matched filtering
technique as a de-noising process, such as the mean square error between the signal of interest
and its approximation will be minimized.

4.2.2 Principle
In the general theory of stochastic matched filtering, Q is chosen so as the Q first eigenvalues,
coming from the generalized eigenvalue problem, are greater than one, in order to enhance
the mth component of the observation. To improve this choice, let us consider the mean square
error ε between the signal of interest S and its approximation S̃Q:

ε = E
{(

S − S̃Q

)T (
S − S̃Q

)}
. (63)

It is possible to show that this error, function of Q, can be written as:

ε(Q) = σ2
S

(
1 −

Q

∑
m=1

λn ‖Ψm‖2

)
+ σ2

N

Q

∑
m=1

‖Ψm‖2 . (64)

The integer Q is chosen so as to minimize the relation (64). It particularly verifies:

(ε(Q)− ε(Q − 1)) < 0 & (ε(Q + 1)− ε(Q)) > 0,

let us explicit these two inequalities; on the one hand:

ε(Q + 1)− ε(Q) =
(

σ2
N − σ2

SλQ+1

) ∥∥ΨQ+1
∥∥2

> 0

and on the other hand:

ε(Q)− ε(Q − 1) =
(

σ2
N − σ2

SλQ

) ∥∥ΨQ
∥∥2

< 0.

Hence, integer Q verifies:
σ2

SλQ > σ2
N > σ2

SλQ+1.

The dimension of the basis {Ψm}m=1...Q, which minimizes the mean square error between the
signal of interest and its approximation, is the number of eigenvalues λm verifying:

σ2
S

σ2
N

λm > 1, (65)

where σ2
S

σ2
N

is the signal to noise ratio before processing.

Consequently, if the observation has a high enough signal to noise ratio, many Ψm will be
considered for the filtering (so that S̃Q tends to be equal to Z), and in the opposite case, only
a few number will be chosen. In these conditions, this filtering technique applied to an obser-

vation Z with an initial signal to noise ratio S
N

∣∣∣
Z

substantially enhances the signal of interest

perception. Indeed, after processing, the signal to noise ratio S
N

∣∣∣
S̃Q

becomes:

S
N

∣∣∣∣
S̃Q

=
S
N

∣∣∣∣
Z

Q

∑
m=1

λm ‖Ψm‖2

Q

∑
m=1

‖Ψm‖2

. (66)

4.2.3 The Stochastic Matched Filter
As described in a forthcoming section, the stochastic matched filtering method is applied us-
ing a sliding sub-window processing. Therefore, let consider a K-dimensional vector Zk cor-
responding to the data extracted from a window centered on index k of the noisy data, i.e.:

Zk
T =

{
Z
[

k − K − 1
2

]
, . . . , Z[k], . . . , Z

[
k +

K − 1
2

]}
. (67)

This way, M sub-windows Zk are extracted to process the whole observation, with k =
1, . . . , M. Furthermore, to reduce the edge effects,the noisy data can be previously completed
with zeros or using a mirror effect on its edges.
According to the sliding sub-window processing, only the sample located in the middle of the
window is estimated, so that relation (56) becomes:

S̃Q[k] [k] =
Q[k]

∑
m=1

zm,kΨm

[
K + 1

2

]
, (68)

with:
zm,k = Zk

TΦm (69)
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1, . . . , M. Furthermore, to reduce the edge effects,the noisy data can be previously completed
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and where Q[k] corresponds to the number of eigenvalues λm times the signal to noise ratio
of window Zk greater than one, i.e.:

λm
S
N

∣∣∣∣
Zk

> 1. (70)

To estimate the signal to noise ratio of window Zk, the signal power is directly computed
from the window’s data and the noise power is estimated on a part of the noisy data Z, where
no useful signal a priori occurs. This estimation is generally realized using the maximum
likelihood principle.
Using relations (68) and (69), the estimation of the de-noised sample value is realized by a
scalar product:

S̃Q[k] [k] = Zk
T

Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (71)

In this case and taking into account the sub-window size, reduced covariances ΓS0S0 and
ΓN0N0 are both K × K matrices, so that {Φn} and {Ψn} are K-dimensional basis.
Such an approach can be completed using the following relation:

S̃Q[k] [k] = Zk
ThQ[k], (72)

for k taking values between 1 and M, and where:

hQ[k] =
Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (73)

Q[k] taking values between 1 and K, relation (73) permits to compute K vectors hq, from h1
ensuring a maximization of the signal to noise ratio, to hK whose bandwidth corresponds to
the whole useful signal bandwidth. These filters are called the stochastic matched filters for
the following.

4.2.4 Algorithm
The algorithm leading to an approximation S̃Q of the signal of interest S, by the way of the
stochastic extension of the matched filter, using a sliding sub-window processing, is presented
below.

1. Modelisation or estimation of reduced covariances ΓS0S0 and ΓN0N0 of signal of interest
and noise respectively.

2. Estimation of the noise power σ2
N in an homogeneous area of Z.

3. Determination of eigenvectors Φm by solving the generalized eigenvalue problem de-
scribed in (22) or (42).

4. Normalization of Φm according to (34) or (43).

5. Determination of vectors Ψn (relation (35) or (44)).

6. Computation of the K stochastic matched filters hq according to (73).

7. Set to zero M samples approximation S̃Q.

8. For k = 1 to M do:

(a) Sub-window Zk extraction.

(b) Zk signal to noise ratio estimation.

(c) Q[k] determination according to (70).

(d) Scalar product (72) computation.

Let us note the adaptive nature of this algorithm, each sample being processed with the most
adequate filter hq depending on the native signal to noise ratio of the processed sub-window.

4.3 Experiments
In this section, we propose two examples of de-noising on synthetic and real data in the case
of 2-D discrete-space signals.

4.3.1 2-D discrete-space simulated data
As a first example, consider the Lena image presented in figure 1. This is a 512 × 512 pixels
coded with 8 bits (i.e. 256 gray levels). This image has been artificially noise-corrupted by a
zero-mean, Gaussian noise, where the local variance of the noise is a function of the image
intensity values (see figure 3.a).
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Fig. 1. Lena image, 512 × 512 pixels, 8 bits encoded (256 gray levels)

The stochastic matched filtering method is based on the assumption of signal and noise sta-
tionarity. Generally it is the case for the noise. However, the signal of interest is not necessarily
stationary. Obviously, some images can be empirically supposed stationary, it is the case for
sea-bed images, for some ocean waves images, in other words for all images able to be assim-
ilated to a texture. But in most cases, an image cannot be considered as the realization of a
stationary stochastic process. However after a segmentation operation, it is possible to define
textured zones. This way, a particular zone of an image (also called window) can be consid-
ered as the realization of a stationary bi-dimensional stochastic process. The dimensions of
these windows must be of the same order of magnitude as the texture coherence length. Thus,
the stochastic matched filter will be applied on the native image using a windowed process-
ing. The choice of the window dimensions is conditioned by the texture coherence length
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likelihood principle.
Using relations (68) and (69), the estimation of the de-noised sample value is realized by a
scalar product:

S̃Q[k] [k] = Zk
T

Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (71)

In this case and taking into account the sub-window size, reduced covariances ΓS0S0 and
ΓN0N0 are both K × K matrices, so that {Φn} and {Ψn} are K-dimensional basis.
Such an approach can be completed using the following relation:

S̃Q[k] [k] = Zk
ThQ[k], (72)

for k taking values between 1 and M, and where:

hQ[k] =
Q[k]

∑
m=1

Ψm

[
K + 1

2

]
Φm. (73)

Q[k] taking values between 1 and K, relation (73) permits to compute K vectors hq, from h1
ensuring a maximization of the signal to noise ratio, to hK whose bandwidth corresponds to
the whole useful signal bandwidth. These filters are called the stochastic matched filters for
the following.

4.2.4 Algorithm
The algorithm leading to an approximation S̃Q of the signal of interest S, by the way of the
stochastic extension of the matched filter, using a sliding sub-window processing, is presented
below.

1. Modelisation or estimation of reduced covariances ΓS0S0 and ΓN0N0 of signal of interest
and noise respectively.

2. Estimation of the noise power σ2
N in an homogeneous area of Z.

3. Determination of eigenvectors Φm by solving the generalized eigenvalue problem de-
scribed in (22) or (42).

4. Normalization of Φm according to (34) or (43).

5. Determination of vectors Ψn (relation (35) or (44)).

6. Computation of the K stochastic matched filters hq according to (73).

7. Set to zero M samples approximation S̃Q.

8. For k = 1 to M do:

(a) Sub-window Zk extraction.

(b) Zk signal to noise ratio estimation.

(c) Q[k] determination according to (70).

(d) Scalar product (72) computation.

Let us note the adaptive nature of this algorithm, each sample being processed with the most
adequate filter hq depending on the native signal to noise ratio of the processed sub-window.

4.3 Experiments
In this section, we propose two examples of de-noising on synthetic and real data in the case
of 2-D discrete-space signals.

4.3.1 2-D discrete-space simulated data
As a first example, consider the Lena image presented in figure 1. This is a 512 × 512 pixels
coded with 8 bits (i.e. 256 gray levels). This image has been artificially noise-corrupted by a
zero-mean, Gaussian noise, where the local variance of the noise is a function of the image
intensity values (see figure 3.a).
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Fig. 1. Lena image, 512 × 512 pixels, 8 bits encoded (256 gray levels)

The stochastic matched filtering method is based on the assumption of signal and noise sta-
tionarity. Generally it is the case for the noise. However, the signal of interest is not necessarily
stationary. Obviously, some images can be empirically supposed stationary, it is the case for
sea-bed images, for some ocean waves images, in other words for all images able to be assim-
ilated to a texture. But in most cases, an image cannot be considered as the realization of a
stationary stochastic process. However after a segmentation operation, it is possible to define
textured zones. This way, a particular zone of an image (also called window) can be consid-
ered as the realization of a stationary bi-dimensional stochastic process. The dimensions of
these windows must be of the same order of magnitude as the texture coherence length. Thus,
the stochastic matched filter will be applied on the native image using a windowed process-
ing. The choice of the window dimensions is conditioned by the texture coherence length
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mean value.
The implementation of the stochastic matched filter needs to have an a priori knowledge of
signal of interest and noise covariances. The noise covariance is numerically determined in
an homogeneous area of the observation, it means in a zone without any a priori information
on signal of interest. This covariance is computed by averaging several realizations. The esti-
mated power spectral density associated to the noise covariance is presented on figure 2.a. The
signal of interest covariance is modeled analytically in order to match the different textures
of the image. In dimension one, the signal of interest autocorrelation function is generally
described by a triangular function because its associated power spectral density corresponds
to signals with energy contained inside low frequency domain. This is often the case in reality.
The model used here is a bi-dimensional extension of the mono-dimensional case. Further-
more, in order to not favor any particular direction of the texture, the model has isotropic
property. Given these different remarks, the signal of interest autocorrelation function has
been modeled using a Gaussian model, as follows:

ΓS0S0 [n, m] = exp
[
−

(
n2 + m2

)
/(2F2

e σ2)
]

, ∀(n, m) ∈ Z2, (74)

with n and m taking values between −(K − 1) and (K − 1), where Fe represents the sampling
frequency and where σ has to be chosen so as to obtain the most representative power spectral
density. ΓS0S0 being Gaussian, its power spectral density is Gaussian too, with a variance σ2

ν

equal to 1/(4π2σ2). As for a Gaussian signal, 99 % of the signal magnitudes arise in the range
[−3σν; 3σν], we have chosen σν such as 6σν = Fe, so that:

σ = 3/(πFe). (75)

The result power spectral density is presented on figure 2.b.

Normalized frequencies

N
or

m
al

iz
ed

 fr
eq

ue
nc

ie
s

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a) Estimated noise PSD

Normalized frequencies

N
or

m
al

iz
ed

 fr
eq

ue
nc

ie
s

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(b) Modeled signal PSD

Fig. 2. Signal and noise power spectral densities using normalized frequencies

The dimension of the filtering window for this process is equal to 7 × 7 pixels, in order to
respect the average coherence length of the different textures. For each window, number Q of

eigenvalues has been determined according to relation (70), with:

S
N

∣∣∣∣
Zk

=
σ2

Zk
− σ2

N

σ2
N

, (76)

the noise variance σ2
N being previously estimated in an homogeneous area of the noise-

corrupted data using a maximum likelihood estimator. The resulting image is presented on
figure 3.b.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Noisy Lena

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) De-noised Lena

5

10

15

20

25

30

35

40

(c) Q values

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Removed signal

Fig. 3. 1st experiment: Lena image corrupted by a zero-mean Gaussian noise with a local
variance dependent of the image intensity values
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mean value.
The implementation of the stochastic matched filter needs to have an a priori knowledge of
signal of interest and noise covariances. The noise covariance is numerically determined in
an homogeneous area of the observation, it means in a zone without any a priori information
on signal of interest. This covariance is computed by averaging several realizations. The esti-
mated power spectral density associated to the noise covariance is presented on figure 2.a. The
signal of interest covariance is modeled analytically in order to match the different textures
of the image. In dimension one, the signal of interest autocorrelation function is generally
described by a triangular function because its associated power spectral density corresponds
to signals with energy contained inside low frequency domain. This is often the case in reality.
The model used here is a bi-dimensional extension of the mono-dimensional case. Further-
more, in order to not favor any particular direction of the texture, the model has isotropic
property. Given these different remarks, the signal of interest autocorrelation function has
been modeled using a Gaussian model, as follows:

ΓS0S0 [n, m] = exp
[
−

(
n2 + m2

)
/(2F2

e σ2)
]

, ∀(n, m) ∈ Z2, (74)

with n and m taking values between −(K − 1) and (K − 1), where Fe represents the sampling
frequency and where σ has to be chosen so as to obtain the most representative power spectral
density. ΓS0S0 being Gaussian, its power spectral density is Gaussian too, with a variance σ2

ν

equal to 1/(4π2σ2). As for a Gaussian signal, 99 % of the signal magnitudes arise in the range
[−3σν; 3σν], we have chosen σν such as 6σν = Fe, so that:

σ = 3/(πFe). (75)

The result power spectral density is presented on figure 2.b.
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The dimension of the filtering window for this process is equal to 7 × 7 pixels, in order to
respect the average coherence length of the different textures. For each window, number Q of

eigenvalues has been determined according to relation (70), with:

S
N

∣∣∣∣
Zk

=
σ2

Zk
− σ2

N

σ2
N

, (76)

the noise variance σ2
N being previously estimated in an homogeneous area of the noise-

corrupted data using a maximum likelihood estimator. The resulting image is presented on
figure 3.b.
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Fig. 3. 1st experiment: Lena image corrupted by a zero-mean Gaussian noise with a local
variance dependent of the image intensity values
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An analysis of the figure 3.b shows that the stochastic matched filter used as a de-noising pro-
cess gives some good results in terms of noise rejection and detail preservation. In order to
quantify the effectiveness of the process, we propose on figure 3.d an image of the removed
signal Ñ (i.e. Ñ = Z − S̃Q), where the areas corresponding to useful signal details present an
amplitude tending toward zero, the process being similar to an all-pass filter in order to pre-
serve the spatial resolution. Nevertheless, the resulting image is still slightly noise-corrupted
locally. It is possible to enhance the de-noising power increasing either the σ value (that corre-
sponds to a diminution of the σν value and so to a smaller signal bandwidth) or the sub-image
size, but this would involve a useful signal deterioration by a smoothing effect. In addition,
the choice of the number Q of basis vectors by minimizing the mean square error between the
signal of interest S and its approximation S̃Q implies an image contour well preserved. As an
example, we present in figures 3.c and 4 an image of the values of Q used for each window
and a curve representative of the theoretical and real improvement of the signal to noise ratio
according to these values (relation (66)).
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Fig. 4. Theoretical and real SNR improvement in dB of the de-noised data

As previously specified, when the signal to noise ratio is favorable a lot of basis vectors are
retained for the filtering. In this case, the stochastic matched filter tends to be an all-pass
filter, so that the signal to noise ratio improvement is not significant. On the other hand, when
the signal to noise ratio is unfavorable this filtering method allows a great improvement (up
to 5 dB when only from 1 up to 2 basis vectors were retained), the stochastic matched filter
being similar to a mean filter. Furthermore, the fact that the curves of the theoretical and real
improvements are similar reveals the relevance of the signal covariance model.

4.3.2 2-D discrete-space real data
The second example concerns real 2-D discrete-space data acquired by a SAS (Synthetic
Aperture Sonar) system. Over the past few years, SAS has been used in sea bed imagery.
Active synthetic aperture sonar is a high-resolution acoustic imaging technique that co-
herently combines the returns from multiple pings to synthesize a large acoustic aperture.
Thus, the azimuth resolution of a SAS system does not depend anymore on the length of

the real antenna but on the length of the synthetic antenna. Consequently, in artificially
removing the link between azimuth resolution and physical length of the array, it is now
possible to use lower frequencies to image the sea bed and keep a good resolution. Therefore,
lower frequencies are less attenuated and long ranges can be reached. All these advantages
make SAS images of great interest, especially for the detection, localization and eventually
classification of objects lying on the sea bottom. But, as any image obtained with a coherent
system, SAS images are corrupted by the speckle noise. Such a noise gives a granular aspect
to the images, by giving a variance to the intensity of each pixel. This reduces spatial and
radiometric resolutions. This noise can be very disturbing for the interpretation and the
automatic analysis of SAS images. For this reason a large amount of research works have
been dedicated recently to reduce this noise, with as common objectives the strong reduction
of the speckle level, coupled to the spatial resolution preservation.
Consider the SAS image1 presented in figure 5.a. This is a 642× 856 pixels image of a wooden
barge near Prudence Island. This barge measures roughly 30 meters long and lies in 18 meters
of water.
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Fig. 5. 2nd experiment: Speckle noise corrupted SAS data: Wooden Barge (Image courtesy of
AUVfest 2008)

1 Courtesy of AUVfest 2008: http://oceanexplorer.noaa.gov
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An analysis of the figure 3.b shows that the stochastic matched filter used as a de-noising pro-
cess gives some good results in terms of noise rejection and detail preservation. In order to
quantify the effectiveness of the process, we propose on figure 3.d an image of the removed
signal Ñ (i.e. Ñ = Z − S̃Q), where the areas corresponding to useful signal details present an
amplitude tending toward zero, the process being similar to an all-pass filter in order to pre-
serve the spatial resolution. Nevertheless, the resulting image is still slightly noise-corrupted
locally. It is possible to enhance the de-noising power increasing either the σ value (that corre-
sponds to a diminution of the σν value and so to a smaller signal bandwidth) or the sub-image
size, but this would involve a useful signal deterioration by a smoothing effect. In addition,
the choice of the number Q of basis vectors by minimizing the mean square error between the
signal of interest S and its approximation S̃Q implies an image contour well preserved. As an
example, we present in figures 3.c and 4 an image of the values of Q used for each window
and a curve representative of the theoretical and real improvement of the signal to noise ratio
according to these values (relation (66)).
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As previously specified, when the signal to noise ratio is favorable a lot of basis vectors are
retained for the filtering. In this case, the stochastic matched filter tends to be an all-pass
filter, so that the signal to noise ratio improvement is not significant. On the other hand, when
the signal to noise ratio is unfavorable this filtering method allows a great improvement (up
to 5 dB when only from 1 up to 2 basis vectors were retained), the stochastic matched filter
being similar to a mean filter. Furthermore, the fact that the curves of the theoretical and real
improvements are similar reveals the relevance of the signal covariance model.

4.3.2 2-D discrete-space real data
The second example concerns real 2-D discrete-space data acquired by a SAS (Synthetic
Aperture Sonar) system. Over the past few years, SAS has been used in sea bed imagery.
Active synthetic aperture sonar is a high-resolution acoustic imaging technique that co-
herently combines the returns from multiple pings to synthesize a large acoustic aperture.
Thus, the azimuth resolution of a SAS system does not depend anymore on the length of

the real antenna but on the length of the synthetic antenna. Consequently, in artificially
removing the link between azimuth resolution and physical length of the array, it is now
possible to use lower frequencies to image the sea bed and keep a good resolution. Therefore,
lower frequencies are less attenuated and long ranges can be reached. All these advantages
make SAS images of great interest, especially for the detection, localization and eventually
classification of objects lying on the sea bottom. But, as any image obtained with a coherent
system, SAS images are corrupted by the speckle noise. Such a noise gives a granular aspect
to the images, by giving a variance to the intensity of each pixel. This reduces spatial and
radiometric resolutions. This noise can be very disturbing for the interpretation and the
automatic analysis of SAS images. For this reason a large amount of research works have
been dedicated recently to reduce this noise, with as common objectives the strong reduction
of the speckle level, coupled to the spatial resolution preservation.
Consider the SAS image1 presented in figure 5.a. This is a 642× 856 pixels image of a wooden
barge near Prudence Island. This barge measures roughly 30 meters long and lies in 18 meters
of water.
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The same process than for the previous example has been applied to this image to reduce the
speckle level. The main differences between the two experiments rest on the computation of
the signal and noise statistics. As the speckle noise is a multiplicative noise (see relation (48)),
the noise covariance, the noise power and the noise mean value have been estimated on the
high-frequency components ZhHF of an homogeneous area Zh of the SAS data:

ZhHF = Zh./ZhBF , (77)

where ./ denotes the term by term division and with ZhBF corresponding to the low-frequency
components of the studied area obtained applying a classical low-pass filter. This way, all the
low-frequency fluctuations linked to the useful signal are canceled out.
Furthermore, taking into account the multiplicative nature of the noise, to estimate the signal

to noise ratio S
N

∣∣∣
Zk

of the studied window, the signal variance has been computed as follows:

σ2
Sk

=
σ2

Zk
+ E {Zk}2

σ2
N + N̄2

− E {Sk} , (78)

where:

E {Sk} =
E {Zk}2

N̄2 . (79)

The de-noised SAS data is presented on figure 5.b. An image of the Q values retained for the
process and the ratio image Z./S̃Q are proposed on figures 5.c and 5.d respectively. These re-
sults show that the stochastic matched filter yields good speckle noise reduction, while keep-
ing all the details with no smoothing effect on them (an higher number of basis vectors being
retained to process them), so that the spatial resolution seems not to be affected.

4.4 Concluding remarks
In this section, we have presented the stochastic matched filter in a de-noising context. This
one is based on a truncation to order Q of the random noisy data expansion (56). To determine
this number Q, it has been proposed to minimize the mean square error between the signal
of interest and its approximation. Experimental results have shown the usefulness of such an
approach. This criterion is not the only one, one can apply to obtain Q. The best method to
determine this truncature order may actually depend on the nature of the considered problem.
For examples, the determination of Q has been achieved in (Fraschini et al., 2005) considering
the Cramér-Rao lower bound and in (Courmontagne, 2007) by the way of a minimization
between the speckle noise local statistics and the removal signal local statistics. Furthermore,
several stochastic matched filter based de-noising methods exist in the scientific literature, as
an example, let cite (Courmontagne & Chaillan, 2006), where the de-noising is achieved using
several signal covariance models and several sub-image sizes depending on the windowed
noisy data statistics.

5. The Stochastic Matched Filter in a detection context

In this section, the stochastic matched filter is described for its application in the field of short
signal detection in a noisy environment.

5.1 Problem formulation
Let consider two hypotheses H0 and H1 corresponding to "there is only noise in the available
data" and "there is signal of interest in the available data" respectively and let consider a K-
dimensional vector Z containing the available data. The dimension K is assumed large (i.e.
K >> 100). Under hypothesis H0, Z corresponds to noise only and under hypothesis H1 to a
signal of interest S corrupted by an additive noise N:

{
H0 : Z = σNN0
H1 : Z = σSS0 + σNN0

, (80)

where σS and σN are signal and noise standard deviation respectively and E
{
|S0|2

}
=

E
{
|N0|2

}
= 1. By assumptions, S0 and N0 are extracted from two independent, station-

ary and zero-mean random signals of known autocorrelation functions. This allows us to
construct the covariances of S0 and N0 denoted ΓS0S0 and ΓN0N0 respectively.
Using the stochastic matched filter theory, it is possible to access to the set (Φm, λm)m=1...M,
with M bounded by K, allowing to compute the uncorrelated random variables zm associated
to observation Z. It comes:

{
E
{

z2
m/H0

}
= σ2

N
E
{

z2
m/H1

}
= σ2

Sλm + σ2
N

. (81)

Random variables zm being a linear transformation of a random vector, the central limit theo-
rem can be invoked and we will assume in the sequel that zm are approximately Gaussian:

zm ↪→ N
(

0, E
{

z2
m/Hi

}∣∣∣
i=0, 1

)
. (82)

Let Γ0 and Γ1 be the covariances of the signals in the basis {Φm}m=1...M, under hypotheses
H0 and H1, it comes:

Γ0 = σ2
NI, (83)

where I denotes the M × M identity matrix and

Γ1 =




σ2
Sλ1 + σ2

N 0 0 . . . 0
0 σ2

Sλ2 + σ2
N 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 0 σ2

SλM + σ2
N


 . (84)

In these conditions, the probability density functions under hypotheses H0 and H1 take for
expression: 



p(z/H0) =
1

(2π)
M
2
√
|Γ0|

exp
[
−1
2

(
zTΓ0

−1z
)]

p(z/H1) =
1

(2π)
M
2
√
|Γ1|

exp
[
−1
2

(
zTΓ1

−1z
)] , (85)

where z is a M−dimensional vector, whose mth component is zm:

z = (z1, z2, . . . , zm, . . . , zM)T . (86)

It is well known that the Neyman-Pearson lemma yields the uniformly most powerful test
and allows to obtain the following rule of decision based on the likelihood ratio Λ(z):

Λ(z) =
p(z/H1)

p(z/H0)

>D1

<D0 λ, (87)
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The same process than for the previous example has been applied to this image to reduce the
speckle level. The main differences between the two experiments rest on the computation of
the signal and noise statistics. As the speckle noise is a multiplicative noise (see relation (48)),
the noise covariance, the noise power and the noise mean value have been estimated on the
high-frequency components ZhHF of an homogeneous area Zh of the SAS data:

ZhHF = Zh./ZhBF , (77)

where ./ denotes the term by term division and with ZhBF corresponding to the low-frequency
components of the studied area obtained applying a classical low-pass filter. This way, all the
low-frequency fluctuations linked to the useful signal are canceled out.
Furthermore, taking into account the multiplicative nature of the noise, to estimate the signal

to noise ratio S
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of the studied window, the signal variance has been computed as follows:
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=
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Zk
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σ2
N + N̄2

− E {Sk} , (78)

where:

E {Sk} =
E {Zk}2

N̄2 . (79)

The de-noised SAS data is presented on figure 5.b. An image of the Q values retained for the
process and the ratio image Z./S̃Q are proposed on figures 5.c and 5.d respectively. These re-
sults show that the stochastic matched filter yields good speckle noise reduction, while keep-
ing all the details with no smoothing effect on them (an higher number of basis vectors being
retained to process them), so that the spatial resolution seems not to be affected.

4.4 Concluding remarks
In this section, we have presented the stochastic matched filter in a de-noising context. This
one is based on a truncation to order Q of the random noisy data expansion (56). To determine
this number Q, it has been proposed to minimize the mean square error between the signal
of interest and its approximation. Experimental results have shown the usefulness of such an
approach. This criterion is not the only one, one can apply to obtain Q. The best method to
determine this truncature order may actually depend on the nature of the considered problem.
For examples, the determination of Q has been achieved in (Fraschini et al., 2005) considering
the Cramér-Rao lower bound and in (Courmontagne, 2007) by the way of a minimization
between the speckle noise local statistics and the removal signal local statistics. Furthermore,
several stochastic matched filter based de-noising methods exist in the scientific literature, as
an example, let cite (Courmontagne & Chaillan, 2006), where the de-noising is achieved using
several signal covariance models and several sub-image sizes depending on the windowed
noisy data statistics.

5. The Stochastic Matched Filter in a detection context

In this section, the stochastic matched filter is described for its application in the field of short
signal detection in a noisy environment.

5.1 Problem formulation
Let consider two hypotheses H0 and H1 corresponding to "there is only noise in the available
data" and "there is signal of interest in the available data" respectively and let consider a K-
dimensional vector Z containing the available data. The dimension K is assumed large (i.e.
K >> 100). Under hypothesis H0, Z corresponds to noise only and under hypothesis H1 to a
signal of interest S corrupted by an additive noise N:

{
H0 : Z = σNN0
H1 : Z = σSS0 + σNN0

, (80)

where σS and σN are signal and noise standard deviation respectively and E
{
|S0|2

}
=

E
{
|N0|2

}
= 1. By assumptions, S0 and N0 are extracted from two independent, station-

ary and zero-mean random signals of known autocorrelation functions. This allows us to
construct the covariances of S0 and N0 denoted ΓS0S0 and ΓN0N0 respectively.
Using the stochastic matched filter theory, it is possible to access to the set (Φm, λm)m=1...M,
with M bounded by K, allowing to compute the uncorrelated random variables zm associated
to observation Z. It comes:

{
E
{

z2
m/H0

}
= σ2

N
E
{

z2
m/H1

}
= σ2

Sλm + σ2
N

. (81)

Random variables zm being a linear transformation of a random vector, the central limit theo-
rem can be invoked and we will assume in the sequel that zm are approximately Gaussian:

zm ↪→ N
(

0, E
{

z2
m/Hi

}∣∣∣
i=0, 1

)
. (82)

Let Γ0 and Γ1 be the covariances of the signals in the basis {Φm}m=1...M, under hypotheses
H0 and H1, it comes:

Γ0 = σ2
NI, (83)

where I denotes the M × M identity matrix and

Γ1 =




σ2
Sλ1 + σ2

N 0 0 . . . 0
0 σ2

Sλ2 + σ2
N 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 0 σ2

SλM + σ2
N


 . (84)

In these conditions, the probability density functions under hypotheses H0 and H1 take for
expression: 



p(z/H0) =
1

(2π)
M
2
√
|Γ0|

exp
[
−1
2

(
zTΓ0

−1z
)]

p(z/H1) =
1

(2π)
M
2
√
|Γ1|

exp
[
−1
2

(
zTΓ1

−1z
)] , (85)

where z is a M−dimensional vector, whose mth component is zm:

z = (z1, z2, . . . , zm, . . . , zM)T . (86)

It is well known that the Neyman-Pearson lemma yields the uniformly most powerful test
and allows to obtain the following rule of decision based on the likelihood ratio Λ(z):

Λ(z) =
p(z/H1)

p(z/H0)

>D1

<D0 λ, (87)
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where λ is the convenient threshold.
Taking into account relations (83), (84) and (85), it comes:

M

∑
m=1

λm

σ2
Sλm + σ2

N︸ ︷︷ ︸
UM

>D1

<D0

σ2
N

σ2
S

[
2 (ln λ − M ln σN) +

M

∑
m=1

ln
(

σ2
Sλm + σ2

N

)]

︸ ︷︷ ︸
TM

. (88)

In these conditions, the detection and the false alarm probabilities are equal to:

Pd =

∞∫

TM

pUM (u/H1)du and Pf a =

∞∫

TM

pUM (u/H0)du. (89)

So, the detection problem consists in comparing u to threshold TM and in finding the most
convenient order M for an optimal detection (i.e. a slight false alarm probability and a detec-
tion probability quite near one).

5.2 Subspace of dimension one
First, let consider the particular case of a basis {Φm}m=1...M restricted to only one vector Φ.
In this context, relation (88) leads to:

|z|
>D1

<D0

√
T1
λ1

(σ2
Sλ1 + σ2

N)

︸ ︷︷ ︸
zs

(90)

and the detection and false alarm probabilities become:

Pd =
∫

D1

p(z/H1)dz and Pf a =
∫

D1

p(z/H0)dz, (91)

where D1 =]− ∞;−zs] ∪ [zs;+∞[ and with:
{

under H0 : z ↪→ N
(
0, σ2

N
)

under H1 : z ↪→ N
(
0, σ2

Sλ1 + σ2
N
) . (92)

From (91), it comes:

Pf a = 1 − erf
(

zs√
2σN

)
, (93)

where erf(.) denotes the error function:

erf(x) =
2√
π

x∫

0

exp
[
−y2

]
dy. (94)

In these conditions, the threshold value zs can be expressed as a function of the false alarm
probability:

zs =
√

2σNerf−1(1 − Pf a). (95)

Furthermore, the detection probability takes the following expression:

Pd = 1 − erf


 zs√

2
(
σ2

Sλ1 + σ2
N
)


 . (96)

We deduce from equations (95) and (96), the ROC curve expression:

Pd

(
Pf a

)
= 1 − erf

(√
1

1 + ρ0λ1
erf−1(1 − Pf a)

)
, (97)

where ρ0 = σ2
S/σ2

N .
One can show that an optimal detection is realized, when λ1 corresponds to the greatest eigen-
value of the generalized eigenvalue problem (22).

5.3 Subspace of dimension M
Random variable UM being a weighted sum of square Gaussian random variables, its proba-
bility density function, under hypotheses H0 and H1, can be approximated by a Gamma law
(Kendall & Stuart, 1979; Zhang & Liu, 2002). It comes:

pUM (u/Hi) � uki−1
exp

[
−u
θi

]

Γ(ki)θ
ki
i

, (98)

for i equal 0 or 1 and where k0θ0 = E {UM/H0}, k0θ2
0 = VAR {UM/H0}, k1θ1 = E {UM/H1}

and k1θ2
1 = VAR {UM/H1}. In these conditions, it comes under H0:

k0 =

(
M

∑
m=1

λm

1 + ρ0λm

)2

2
M

∑
m=1

(
λm

1 + ρ0λm

)2 and θ0 = 2

M

∑
m=1

(
λm

1 + ρ0λm

)2

M

∑
m=1

λm

1 + ρ0λm

(99)

and, under H1:

k1 =

(
M

∑
m=1

λm

)2

2
M

∑
m=1

λ2
m

and θ1 = 2

M

∑
m=1

λ2
m

M

∑
m=1

λm

. (100)

It has been shown in (Courmontagne et al., 2007) that the use of the stochastic matched filter
basis {Φm}m=1...M ensures a maximization of the distance between the maxima of pUM (u/H0)
and pUM (u/H1) and so leads to an optimal detection.
The basis dimension M is determined by a numerical way. As the detection algorithm is
applied using a sliding sub-window processing, each sub-window containing K samples, we
can access to K eigenvectors solution of the generalized eigenvalue problem (22). For each
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Furthermore, the detection probability takes the following expression:
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We deduce from equations (95) and (96), the ROC curve expression:
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One can show that an optimal detection is realized, when λ1 corresponds to the greatest eigen-
value of the generalized eigenvalue problem (22).

5.3 Subspace of dimension M
Random variable UM being a weighted sum of square Gaussian random variables, its proba-
bility density function, under hypotheses H0 and H1, can be approximated by a Gamma law
(Kendall & Stuart, 1979; Zhang & Liu, 2002). It comes:

pUM (u/Hi) � uki−1
exp

[
−u
θi

]
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i

, (98)

for i equal 0 or 1 and where k0θ0 = E {UM/H0}, k0θ2
0 = VAR {UM/H0}, k1θ1 = E {UM/H1}

and k1θ2
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It has been shown in (Courmontagne et al., 2007) that the use of the stochastic matched filter
basis {Φm}m=1...M ensures a maximization of the distance between the maxima of pUM (u/H0)
and pUM (u/H1) and so leads to an optimal detection.
The basis dimension M is determined by a numerical way. As the detection algorithm is
applied using a sliding sub-window processing, each sub-window containing K samples, we
can access to K eigenvectors solution of the generalized eigenvalue problem (22). For each
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value of M, bounded by 2 and K, we numerically determine the threshold value TM allowing
a wanted false alarm probability and according to the following relation:

Pf a = 1 − ∆uk0
QM

∑
q=0

qk0−1
exp

[
−q∆u

θ0

]

Γ(k0)θ
k0
0

, (101)

where TM = QM∆u.
Then for each value of TM, we compute the detection probability according to:

Pd = 1 − ∆uk1

QM

∑
q=0

qk1−1
exp

[
−q∆u

θ1

]

Γ(k1)θ
k1
1

. (102)

Finally, the basis dimension will correspond to the M value leading to a threshold value TM
allowing the highest detection probability.

5.4 Experiments
5.4.1 Whale echoes detection
Detecting useful information in the underwater domain has taken an important place in many
research works. Whether it is for biological or economical reasons it is important to be able
to correctly distinguish the many kinds of entities which belong to animal domain or artificial
object domain.
For this reason, we have chosen to confront the proposed process with signals resulting from
underwater acoustics. The signal of interest S corresponds to an acoustic record of several
whale echoes. The sampling rate used for this signal is 44100 Hz. Each echo lasts approxima-
tively two seconds. The disturbing signal N corresponds to a superposition of various marine
acoustic signatures. The simulated received noisy signal Z has been constructed as follows:

Z = S + gN, (103)

where g is a SNR control parameter allowing to evaluate the robustness of the detection pro-
cessing. Several realizations were built with a SNR taking values from −12 dB to 12 dB (the
SNR corresponds to the ratio of the signal and noise powers in the common spectral band-
width). As an example, we present on figure 7.a in black lines the noisy data in the case of a
SNR equal to −6 dB. On the same graph, in red lines, we have reported the useful signal S.
The signal and noise covariances were estimated on signals belonging to the same series of
measurement as the signal S and the noise N. The signal covariance was obtained by fitting a
general model based on the average of several realizations of whale clicks while the noise one
was estimated from a supposed homogeneous subset of the record.
The ROC curves numerically obtained by the way of relations (101) and (102) with the prob-
ability density functions described by relations (98) are presented on figure 6 (for a signal to
noise ratio greater than −8 dB the ROC curves are practically on the graph axes). There are 512
samples in the sub-window, so we can access to 512 eigenvectors (i.e. 512 is the maximal size
of the basis). Basis dimension M takes values between 17 and 109 depending on the studied

signal to noise ratio (M = 17 for S
N

∣∣∣
Z
= 12 dB and M = 109 for S

N

∣∣∣
Z
= −12 dB).
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value of M, bounded by 2 and K, we numerically determine the threshold value TM allowing
a wanted false alarm probability and according to the following relation:
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Finally, the basis dimension will correspond to the M value leading to a threshold value TM
allowing the highest detection probability.
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Detecting useful information in the underwater domain has taken an important place in many
research works. Whether it is for biological or economical reasons it is important to be able
to correctly distinguish the many kinds of entities which belong to animal domain or artificial
object domain.
For this reason, we have chosen to confront the proposed process with signals resulting from
underwater acoustics. The signal of interest S corresponds to an acoustic record of several
whale echoes. The sampling rate used for this signal is 44100 Hz. Each echo lasts approxima-
tively two seconds. The disturbing signal N corresponds to a superposition of various marine
acoustic signatures. The simulated received noisy signal Z has been constructed as follows:

Z = S + gN, (103)

where g is a SNR control parameter allowing to evaluate the robustness of the detection pro-
cessing. Several realizations were built with a SNR taking values from −12 dB to 12 dB (the
SNR corresponds to the ratio of the signal and noise powers in the common spectral band-
width). As an example, we present on figure 7.a in black lines the noisy data in the case of a
SNR equal to −6 dB. On the same graph, in red lines, we have reported the useful signal S.
The signal and noise covariances were estimated on signals belonging to the same series of
measurement as the signal S and the noise N. The signal covariance was obtained by fitting a
general model based on the average of several realizations of whale clicks while the noise one
was estimated from a supposed homogeneous subset of the record.
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The false alarm probability has been settled to 10 %. The result to the detection process is
proposed on figure 7.b in black lines. On the same graph, the useful signal has been reported
in red lines, in order to verify that a detected event coincides with a whale echo. Figure 7.c
presents the vector UM and the automatic threshold TM: the use of the stochastic matched
filter allows to amplify the parts of the noisy data corresponding to whale echoes, while the
noise is clearly rejected. As explained in a previous section, the efficiency of the stochastic
matched filter is due to its property to dissociate the probability density functions, as shown
in figure 7.d (on this graph appears in dashed lines the position of the threshold TM for a
Pf a = 10%)).

5.4.2 Mine detection on SAS images
Detection and classification of underwater mines (completely or partially buried) with SAS
images is a major challenge to the mine countermeasures community. In this context, experts
are looking for more and more efficient detection processes in order to help them in their de-
cisions concerning the use of divers, mines destruction ... As a mine highlight region usually
has a corresponding shadow region (see figure 8), most of the methods used to detect and
classify objects lying on the seafloor are based on the interpretation of the shadows of the ob-
jects. Other methods are focusing on the echo itself. For these approaches, two main problems
could occur:

• given the position of the sonar fish and the type of mine encountered, the shape of the
echo and its associated shadow zone could vary; but as most of these techniques of
detection generally required training, their success can be dependent on the similarity
between the training and test data sets,

• given that SAS images are speckle noise corrupted, it is generally necessary to denoise
these images before of all; but such a despeckling step could involve miss and/or false
detection by an alteration of the echo and/or shadow, given that most of the despeck-
ling methods induce a smoothing effect.

In answer to these problems, we propose to use a one-dimensional detector based on the
stochastic matched filter. This detector is applied on each line of the SAS data (considering
as a line the data vector in a direction perpendicular to the fish direction). In this context,
we construct a very simple model of the signal to be detected (see figure 8), where d, the size
of the echo in sight, is a uniform random variable taking values in a range dependent of the
mine dimensions. So the problem of mine detection in SAS images is reduced to the one of
detecting a one-dimensional signal, such as the model presented in figure 8, in a noisy data
vector Z.
As the length of the shadow region depends on the fish height, we do not consider the whole
shadow for our model, but only its beginning (this corresponds to the length D in figure 8).
The signal covariance is estimated using several realizations of the signal model by making
varied the random variable d value. For the noise, its covariance is computed in an area of the
data, where no echo is assumed to be present and takes into account the hilly seabed.

Fig. 8. Signal model: the wave is blocked by objects lying on seafloor and a shadow is gener-
ated
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(a) SAS image representing a sphere and a more
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(c) SAS image representing two mine like objects: a
sphere and a cylinder lying on its side
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Fig. 9. 2nd experiment: Mine detection on SAS images
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The false alarm probability has been settled to 10 %. The result to the detection process is
proposed on figure 7.b in black lines. On the same graph, the useful signal has been reported
in red lines, in order to verify that a detected event coincides with a whale echo. Figure 7.c
presents the vector UM and the automatic threshold TM: the use of the stochastic matched
filter allows to amplify the parts of the noisy data corresponding to whale echoes, while the
noise is clearly rejected. As explained in a previous section, the efficiency of the stochastic
matched filter is due to its property to dissociate the probability density functions, as shown
in figure 7.d (on this graph appears in dashed lines the position of the threshold TM for a
Pf a = 10%)).

5.4.2 Mine detection on SAS images
Detection and classification of underwater mines (completely or partially buried) with SAS
images is a major challenge to the mine countermeasures community. In this context, experts
are looking for more and more efficient detection processes in order to help them in their de-
cisions concerning the use of divers, mines destruction ... As a mine highlight region usually
has a corresponding shadow region (see figure 8), most of the methods used to detect and
classify objects lying on the seafloor are based on the interpretation of the shadows of the ob-
jects. Other methods are focusing on the echo itself. For these approaches, two main problems
could occur:

• given the position of the sonar fish and the type of mine encountered, the shape of the
echo and its associated shadow zone could vary; but as most of these techniques of
detection generally required training, their success can be dependent on the similarity
between the training and test data sets,

• given that SAS images are speckle noise corrupted, it is generally necessary to denoise
these images before of all; but such a despeckling step could involve miss and/or false
detection by an alteration of the echo and/or shadow, given that most of the despeck-
ling methods induce a smoothing effect.

In answer to these problems, we propose to use a one-dimensional detector based on the
stochastic matched filter. This detector is applied on each line of the SAS data (considering
as a line the data vector in a direction perpendicular to the fish direction). In this context,
we construct a very simple model of the signal to be detected (see figure 8), where d, the size
of the echo in sight, is a uniform random variable taking values in a range dependent of the
mine dimensions. So the problem of mine detection in SAS images is reduced to the one of
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Fig. 8. Signal model: the wave is blocked by objects lying on seafloor and a shadow is gener-
ated
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(a) SAS image representing a sphere and a more
complex mine like object lying on the seafloor
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(b) Result of the detection algorithm
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(c) SAS image representing two mine like objects: a
sphere and a cylinder lying on its side
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(d) Result of the detection algorithm

Fig. 9. 2nd experiment: Mine detection on SAS images
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The data set used for this study has been recorded in 1999 during a joint experiment between
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique, France) and DERA (Defence Evalu-
ation and Research Agency, United Kingdom). The sonar was moving along a fixed rail and
used a central frequency of 150 kHz with a bandwidth of 64 kHz. Figure 9.a and 9.c present
two images obtained during this experiment2. We recognize the echoes (the bright pixels)
in front of the objects and the shadows behind as well as the speckle that gives the granular
aspect to the image. Because of the dynamics of the echo compared to the remainder of the
image, these figures are represented in dB magnitude.
As the dimensions of the two mine like objects in azimuth and sight are not greater than one
meter, the proposed process has been calibrated to detect objects which dimensions in sight
are included in the range [0.5 m; 1 m] (i.e. the uniform random variable from the signal model
takes values in [0.5; 1]). For these two experiments, the false alarm probability has been settled
to 0.1%, entailing a basis dimension M equal to 152 for the first one and to 39 for the second
one. The results obtained applying the detection algorithm are presented on figures 9.b and
9.d. For the two cases, the mine like objects are well detected, without false alarm. These
results demonstrate the advantages of such a detection scheme, even in difficult situations,
such as the one presented on figure 9.c.

6. Conclusions

This chapter concerned the problem of a noise-corrupted signal expansion and its applica-
tions to detection and signal enhancement. The random signal expansion, used here, is the
stochastic matched filtering technique. Such a filtering approach is based on the noisy data
projection onto a basis of known vectors, with uncorrelated random variables as decomposi-
tion coefficients. The basis vectors are chosen such as to maximize the signal to noise ratio
after denoising. Several experiments in the fields of short signal detection in a noisy environ-
ment and of signals de-noising have shown the efficiency of the proposed expansion, even for
unfavorable signal to noise ratio.
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1. Introduction    

The wireless communications channel constitutes the basic physical link between the 
transmitter and the receiver antennas. Its modeling has been and continues to be a 
tantalizing issue, while being one of the most fundamental components based on which 
transmitters and receivers are designed and optimized. The ultimate performance limits of 
any communication system are determined by the channel it operates in [1]. Realistic 
channel models are thus of utmost importance for system design and testing. 

In addition to exponential power path-loss, wireless channels suffer from stochastic short 
term fading (STF) due to multipath, and stochastic long term fading (LTF) due to shadowing 
depending on the geographical area. STF corresponds to severe signal envelope fluctuations, 
and occurs in densely built-up areas filled with lots of objects like buildings, vehicles, etc. 
On the other hand, LTF corresponds to less severe mean signal envelope fluctuations, and 
occurs in sparsely populated or suburban areas [2-4]. In general, LTF and STF are 
considered as superimposed and may be treated separately [4]. 

Ossanna [5] was the pioneer to characterize the statistical properties of the signal received 
by a mobile user, in terms of interference of incident and reflected waves. His model was 
better suited for describing fading occurring mainly in suburban areas (LTF environments). 
It is described by the average power loss due to distance and power loss due to reflection of 
signals from surfaces, which when measured in dB’s give rise to normal distributions, and 
this implies that the channel attenuation coefficient is log-normally distributed [4]. 
Furthermore, in mobile communications, the LTF channel models are also characterized by 
their special correlation characteristics which have been reported in [6-8]. 

Clarke [9] introduced the first comprehensive scattering model describing STF occurring 
mainly in urban areas. An easy way to simulate Clarke’s model using a computer simulation 
is described in [10]. This model was later expanded to three-dimensions (3D) by Aulin [11]. 
An indoor STF was first introduced in [12]. Most of these STF models provide information 
on the frequency response of the channel, described by the Doppler power spectral density 
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(DPSD). Aulin [11] presented a methodology to find the Doppler power spectrum by 
computing the Fourier transform of the autocorrelation function of the channel impulse 
response with respect to time. A different approach, leading to the same Doppler power 
spectrum relation was presented by Gans [13]. These STF models suggest various 
distributions for the received signal amplitude such as Rayleigh, Rician, or Nakagami. 

Models based on autoregressive and moving averages (AR) are proposed in [14, 15]. 
However, these models assume that the channel state is completely observable, which in 
reality is not the case due to additive noise, and requires long observation intervals.  First 
order Markov models for Raleigh fading have been proposed in [16, 17], and the usefulness 
of a finite-state Markov channel model is argued in [18]. 

Mobile-to-mobile (or ad hoc) wireless networks comprise nodes that freely and dynamically 
self-organize into arbitrary and/or temporary network topology without any fixed 
infrastructure support [19]. They require direct communication between a mobile 
transmitter and a mobile receiver over a wireless medium. Such mobile-to-mobile 
communication systems differ from the conventional cellular systems, where one terminal, 
the base station, is stationary, and only the mobile station is moving. As a consequence, the 
statistical properties of mobile-to-mobile links are different from cellular ones [20, 21]. 

Copious ad hoc networking research exists on layers in the open system interconnection 
(OSI) model above the physical layer. However, neglecting the physical layer while 
modeling wireless environment is error prone and should be considered more carefully [22]. 
The experimental results in [23] show that the factors at the physical layer not only affect the 
absolute performance of a protocol, but because their impact on different protocols is non-
uniform, it can even change the relative ranking among protocols for the same scenario. The 
importance of the physical layer is demonstrated in [24] by evaluating the Medium Access 
Control (MAC) performance. 

Most of the research conducted on wireless channel modeling, such as [1-4, 25, 26], deals 
mainly with deterministic wireless channel models. In these models, the speeds of the nodes 
are assumed to be constant and the statistical characteristics of the received signal are assumed 
to be fixed with time. But in reality, the propagation environment varies continuously due to 
mobility of the nodes at variable speeds and movement of objects or scatter across transmitters 
and receivers resulting in appearance or disappearance of existing paths from one instant to 
the next. As a result, the current models that assume fixed statistics are unable to capture and 
track complex time variations in the propagation environment. These time variations compel 
us to introduce more advanced dynamical models based on stochastic differential equations 
(SDEs), in order to capture higher order dynamics of the wireless channels. The random 
variables characterizing the instantaneous power in static (deterministic) channel models are 
generalized to dynamical (stochastic) models including random processes with time-varying 
statistics [27-31]. The advantage of using SDE methods is due to computational simplicity 
simply because estimation and identification can be performed recursively and in real time. 
Parts of the results appearing in this chapter were presented in [27-31].  

This chapter is organized as follows. In Section 2, the general time-varying (TV) wireless channel 
impulse response is introduced. The TV stochastic LTF, STF, and ad hoc wireless channel models 
are discussed in Sections 3, 4, and 5, respectively. Link performance for cellular and ad hoc 
channels is presented in Section 6. Finally, Section 7 provides the conclusion. 

 

2. The General Time-Varying Wireless Channel Impulse Response 

The impulse response (IR) of a wireless channel is typically characterized by time variations 
and time spreading [2]. Time variations are due to the relative motion between the 
transmitter and the receiver and temporal variations of the propagation environment. Time 
spreading is due to the fact that the emitted electromagnetic wave arrives at the receiver 
having undergone reflections, diffraction and scattering from various objects along the way, 
at different delay times. At the receiver, a random number of signal components, copies of a 
single emitted signal, arrive via different paths thus having undergone different attenuation, 
phase shifts and time delays, all of which are random and time-varying. This random 
number of signal components add vectorially giving rise to signal fluctuations, called 
multipath fading, which are responsible for the degradation of communication system 
performance. 

The general time-varying (TV) model of a wireless fading channel is typically represented 
by the following multipath low-pass equivalent IR [2] 
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The multipath TV band-pass IR is given by [2] 
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where c  is the carrier frequency, and the band-pass representation of the received signal is 
given by 
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TV LTF, STF, and ad hoc dynamical channel models are considered in this chapter. The 
stochastic TV LTF channel modeling is discussed first in the next section. 

 
3. Stochastic LTF Channel Modeling 

3.1 The Traditional (Static) LTF Channel Model 
In this section, we discuss the existing static models and introduce a general approach on 
how to derive dynamical models. Before introducing the dynamical LTF channel model that 
captures both space and time variations, we first summarize and interpret the traditional 
lognormal shadowing model, which serves as a basis in the development of the subsequent 
TV model. The traditional (time-invariant) power loss (PL) in dB for a given path is given by 
[4] 
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where 0( )PL d  is the average PL in dB at a reference distance d0 from the transmitter, the 
distance d corresponds to the transmitter-receiver separation distance,   is the path-loss 
exponent which depends on the propagating medium, and 2(0; )Z  N  is a zero-mean 
Gaussian distributed random variable, which represents the variability of PL due to 
numerous reflections and possibly any other uncertainty of the propagating environment 
from one observation instant to the next. The average value of the PL described in (5) is 
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The signal attenuation coefficient, denoted ( )r d , represents how much the received signal 
magnitude is attenuated at a distance d with respect to the magnitude of the transmitted 
signal. It can be represented in terms of the power path loss as [4] 
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Since ( )[dB]PL d  is normally distributed, it is clear that the attenuation coefficient, ( )r d , is 
log-normally distributed. It can be noticed from (5)-(7) that the statistics of the PL and 
attenuation coefficient do not depend on time, and therefore these models treat PL as static 
(time-invariant). They do not take into consideration the relative motion between the 
transmitter and the receiver, or variations of the propagating environment due to mobility. 

 

Such spatial and time variations of the propagating environment are captured herein by 
modeling the PL and the envelope of the received signal as random processes that are 
functions of space and time. Moreover, and perhaps more importantly, traditional models 
do not take into consideration the correlation properties of the PL in space and at different 
observation times. In reality, such correlation properties exist, and one way to model them is 
through stochastic processes, which obey specific type of SDEs. 

 
3.2 Stochastic LTF Channel Models 
In transforming the static model to a dynamical model, the random PL in (5) is relaxed to 
become a random process, denoted by  

00,( , ) tX t     , which is a function of both time t 

and space represented by the time-delay , where  = d/c, d is the path length, c is the speed 
of light, 0 = d0/c and d0 is the reference distance. The signal attenuation is defined by 
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the temporal variations of the propagating environment. Next, we generalize it by allowing 
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at variable speeds. This induces spatio-temporal variations in the propagating environment. 

When  is fixed, the proposed model captures the dependence of  
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This corresponds to examining the time variations of the propagating environment for fixed 
transmitter-receiver separation distance. The process  
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power the signal looses at a particular location as a function of time. However, since for a 
fixed distance d, the PL should be a function of distance, we choose to generate 
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where    0t
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 is the standard Brownian motion (zero drift, unit variance) which is 

assumed to be independent of  0 ,X t  , ( ; )N    denotes a Gaussian random variable with 
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 ,t   models the average time-varying PL at distance d from the transmitter, which 

corresponds to ( )[ ]PL d dB  at d indexed by t. This model tracks and converges to  ,t   as 

time progresses. The instantaneous drift  ( , ) ( , ) ( , )t t X t      represents the effect of 

pulling the process towards  ,t  , while  ,t   represents the speed of adjustment 

towards the mean. Finally,  ,t   controls the instantaneous variance or volatility of the 
process for the instantaneous drift. 
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TV LTF, STF, and ad hoc dynamical channel models are considered in this chapter. The 
stochastic TV LTF channel modeling is discussed first in the next section. 

 
3. Stochastic LTF Channel Modeling 

3.1 The Traditional (Static) LTF Channel Model 
In this section, we discuss the existing static models and introduce a general approach on 
how to derive dynamical models. Before introducing the dynamical LTF channel model that 
captures both space and time variations, we first summarize and interpret the traditional 
lognormal shadowing model, which serves as a basis in the development of the subsequent 
TV model. The traditional (time-invariant) power loss (PL) in dB for a given path is given by 
[4] 

0 0
0

( )[dB] : ( )[dB] 10 log ,dPL d PL d Z d d
d


 

    
 

  (5) 
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This model captures the temporal variations of the propagating environment as the random 
parameters    0

,
t

t 


 can be used to model the TV characteristics of the channel for the 

particular location . A different location is characterized by a different set of parameters 
  ,t  . 

Now, let us consider the special case when the parameters   ,t   are time invariant, i.e., 

        , ,        . In this case we need to show that the expected value of the 

dynamic PL  ,X t  , denoted by  [ , ]E X t  , converges to the traditional average PL in (6). 
The solution of the SDE model in (8) for the time-invariant case satisfies 
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where for a given set of time-invariant parameters     and if the initial 0( , )X t   is 

Gaussian or fixed, then the distribution of  ,X t   is Gaussian with mean and variance 
given by [32] 
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Expression (12) of the mean and variance shows that the statistics of the communication 
channel model vary as a function of both time t and space  . As the observation instant, t, 
becomes large, the random process  ( , )X t   converges to a Gaussian random variable with 

mean ( ) ( )[dB]PL d    and variance 2( ) / 2 ( )    . Therefore, the traditional lognormal 
model in (5) is a special case of the general TV LTF model in (8). Moreover, the distribution 
of ( , )( , ) kX tS t e    is lognormal with mean and variance 
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Now, lets go back to the more general case in which    0

,
t
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, , , , ,
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. 

At a particular location , the mean of the PL process  [ , ]E X t   is required to track the time 
variations of the average PL. This is illustrated in the following example. 
 
Example 1 [30]: Let  
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m
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where  m   is the average PL at a specific location  , T is the observation interval,  ,t  = 

1400 and  ,t  = 225000 (these parameters are determined from experimental 

measurements), where for simplicity  ,t   and  ,t   are chosen to be constant, but in 

general they are functions of both t and . The variations of  ,X t   as a function of distance 
and time are represented in Figure 1. The temporal variations of the environment are 
captured by a TV  ,t   which fluctuates around different average PLs m ’s, so that each 
curve corresponds to a different location. It is noticed in Figure 1 that as time progresses, the 
process  ,X t   is pulled towards  ,t  . The speed of adjustment towards  ,t   can be 

controlled by choosing different values of  ,t  . 

Next, the general spatio-temporal lognormal model is introduced by generalizing the 
previous model to capture both space and time variations, using the fact that  ,t   is a 
function of both t and . In this case, besides initial distances, the motion of mobiles, i.e., 
their velocities and directions of motion with respect to their base stations are important 
factors to evaluate TV PLs for the links involved. This is illustrated in a simple way for the 
case of a single transmitter and a single receiver as follows: Consider a base station 
(receiver) at an initial distance d from a mobile (transmitter) that moves with a certain 
constant velocity   in a direction defined by an arbitrary constant angle  , where   is the 
angle between the direction of motion of the mobile and the distance vector that starts from 
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Fig. 1. Mean-reverting power path-loss as a function of t and τ, for the time-varying  ,t   
in Example 1. 
 
 
 
 
 
 

 

Fig. 2. A transmitter at a distance d from a receiver moves with a velocity   and in the 
direction given by   with respect to the transmitter-receiver axis. 
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Therefore, the average PL at that location is given by 
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where 0( )PL d  is the average PL in dB at a reference distance d0,  d t  is defined in (15),   is 
the path-loss exponent and ( )t  is an arbitrary function of time representing additional 
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temporal variations in the propagating environment like the appearance and disappearance 
of additional scatters. 

Now, suppose the mobile moves with an arbitrary velocity,  ( ), ( )x yv t v t , in the x-y plane, 

where ( ), ( )x yv t v t  denote the instantaneous velocity components in the x and y directions, 

respectively. The instantaneous distance from the receiver is thus described by 
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The parameter  ,t   is used in the TV lognormal model (8) to obtain a general spatio-
temporal lognormal channel model. This is illustrated in the following example. 
 
Example 2 [30]: Consider a mobile moving at sinusoidal velocity with average speed 80 
Km/hr, initial distance 50d  meters, 135   degrees, and ( ) 0t  . Figure 3 shows the 
mean reverting PL  ,X t  ,  ,t  ,  [ , ]E X t  , and the velocity of the mobile  t  and 

distance  d t  as a function of time. It can be seen that the mean of  ,X t   coincides with 

the average PL  ,t   and tracks the movement of the mobile. Moreover, the variation of 

 ,X t   is due to uncertainties in the wireless channel such as movements of objects or 
obstacles between transmitter and receiver that are captured by the spatio-temporal 
lognormal model (8) and (16). Additional time variations of the propagating environment, 
while the mobile is moving, can be captured by using the TV PL coefficient  t  in (16) in 

addition to the TV parameters  ,t   and  ,t  , or simply by ( )t . The stochastic STF 
channel model is discussed in the next section. 
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Fig. 3. Mean-reverting power path-loss  ,X t   for the TV LTF wireless channel model in 
Example 2. 

 
4. Stochastic STF Channel Modeling  

4.1 The Deterministic DPSD of Wireless Channels 
The traditional STF model is based on Ossanna [5] and later Clarke [9] and Aulin’s [11] 
developments. Aulin’s model is shown in Figure 4. This model assumes that at each point 
between a transmitter and a receiver, the total received wave consists of the superposition of 
N plane waves each having traveled via a different path.  The nth wave is characterized by 
its field vector En(t) given by [11] 
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where  ( ), ( )n nI t Q t  are the inphase and quadrature components for the nth wave, 
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phase, and c  is the carrier frequency. The total field ( )E t  can be written as 
 

1
( ) ( ) ( )cos ( )sinN

n c cn
E t E t I t t Q t t 


    (19) 

 

where  ( ), ( )I t Q t  are inphase and quadrature components of the total wave, respectively, 
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Fig. 4. Aulin’s 3D multipath channel model. 
 
states that for large N, the inphase and quadrature components have Gaussian distributions 

2( ; )x N  [9]. The mean is    E ( ) E ( )x I t Q t   and the variance is 

   2 Var ( ) Var ( )I t Q t   . In the case where there is non-line-of-sight (NLOS), then the 
mean 0x   and the received signal amplitude has Rayleigh distribution. In the presence of 
line-of-sight (LOS) component, 0x   and the received signal is Rician distributed. Also, it is 
assumed that ( )I t  and ( )Q t  are uncorrelated and thus independent since they are Gaussian 
distributed [11]. 
Dependent on the mobile speed, wavelength, and angle of incidence, the Doppler frequency 
shifts on the multipath rays give rise to a DPSD. The DPSD is defined as the Fourier 
transform of the autocorrelation function of the channel, and represents the amount of 
power at various frequencies. Define  ,n n   as the direction of the incident wave onto the 
receiver as illustrated in Figure 4. For the case when n  is uniformly distributed and n  is 
fixed, the deterministic DPSD,  S f , is given by [25] 
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where mf  is the maximum Doppler frequency, and    0 / 2 Var ( ) Var ( )E I t Q t  . A more 
complex, but realistic, expression for the DPSD, which assumes n  has probability density 
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MS 

X 

Y 

Z 

O 

αn 

βn 

γ vm 

nth multipath 
component 

(x0, y0, z0) 



Wireless fading channel models: from classical to stochastic differential equations 309

 

0 1 2 3 4 5
75

80

85

90

95

X
(t,
)

 [d
B

]

 X(t,) as a function of  t

0 1 2 3 4 5
0

20

40

60

80

Time (sec.)

d(
t) 

(m
), 

 v
(t)

 (m
/s

)

Variable Speed v(t) and distance d(t)

d(t)
v(t)

(t,)
E[X(t,)]
X(t,)

 
Fig. 3. Mean-reverting power path-loss  ,X t   for the TV LTF wireless channel model in 
Example 2. 

 
4. Stochastic STF Channel Modeling  

4.1 The Deterministic DPSD of Wireless Channels 
The traditional STF model is based on Ossanna [5] and later Clarke [9] and Aulin’s [11] 
developments. Aulin’s model is shown in Figure 4. This model assumes that at each point 
between a transmitter and a receiver, the total received wave consists of the superposition of 
N plane waves each having traveled via a different path.  The nth wave is characterized by 
its field vector En(t) given by [11] 
 

 ( )( ) Re ( ) ( )cos ( )sinn cj t j t
n n n c n cE t r t e e I t t Q t t      (18) 

 

where  ( ), ( )n nI t Q t  are the inphase and quadrature components for the nth wave, 

respectively, 2 2( ) ( ) ( )n n nr t I t Q t   is the signal envelope, 1( ) tan ( ( ) / ( ))n n nt Q t I t   is the 
phase, and c  is the carrier frequency. The total field ( )E t  can be written as 
 

1
( ) ( ) ( )cos ( )sinN

n c cn
E t E t I t t Q t t 


    (19) 

 

where  ( ), ( )I t Q t  are inphase and quadrature components of the total wave, respectively, 

with  
1

( ) ( )N
nn

I t I t


    and  
1

( ) ( )N
nn

Q t Q t


  .  An  application  of  the  central  limit theorem  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4. Aulin’s 3D multipath channel model. 
 
states that for large N, the inphase and quadrature components have Gaussian distributions 

2( ; )x N  [9]. The mean is    E ( ) E ( )x I t Q t   and the variance is 

   2 Var ( ) Var ( )I t Q t   . In the case where there is non-line-of-sight (NLOS), then the 
mean 0x   and the received signal amplitude has Rayleigh distribution. In the presence of 
line-of-sight (LOS) component, 0x   and the received signal is Rician distributed. Also, it is 
assumed that ( )I t  and ( )Q t  are uncorrelated and thus independent since they are Gaussian 
distributed [11]. 
Dependent on the mobile speed, wavelength, and angle of incidence, the Doppler frequency 
shifts on the multipath rays give rise to a DPSD. The DPSD is defined as the Fourier 
transform of the autocorrelation function of the channel, and represents the amount of 
power at various frequencies. Define  ,n n   as the direction of the incident wave onto the 
receiver as illustrated in Figure 4. For the case when n  is uniformly distributed and n  is 
fixed, the deterministic DPSD,  S f , is given by [25] 

 

0
2

1 / ,
4

1

0 , otherwise

m
m

m

fE f f
fS f

f


 
  

      



 (20) 

 
where mf  is the maximum Doppler frequency, and    0 / 2 Var ( ) Var ( )E I t Q t  . A more 
complex, but realistic, expression for the DPSD, which assumes n  has probability density 

function cos( ) where ,
2sin 2m

m
p

   


    and for small angles m , is given by [11] 

MS 

X 

Y 

Z 

O 

αn 

βn 

γ vm 

nth multipath 
component 

(x0, y0, z0) 



Stochastic Control310

 

 
 

0

22
10

2

0,

( ) , cos
4 sin

2 cos 1 /
sin , cos

4 sin 2 1 /

m

m m m
m m

m m
m m

m m m

f f
ES f f f f

f

f fE f f
f f f




 
 





 
  

              

                (21) 

 
Expression (21) is illustrated in Figure 5 for different values of mobile speed. Notice that the 
direction of motion does not play a role because of the uniform scattering assumption, and 
that the DPSDs described in (20) and (21) are band limited. 

The DPSD is the fundamental channel characteristic on which STF dynamical models are 
based on. The approach presented here is based on traditional system theory using the state 
space approach [33] while capturing the spectral characteristics of the channel. The main 
idea in constructing dynamical models for STF channels is to factorize the deterministic 
DPSD into an approximate nth order even transfer function, and then use a stochastic 
realization [32] to obtain a state space representation for the inphase and quadrature 
components. 

The wireless channel is considered as a dynamical system for which the input-output map is 
described in (1) and (3). In practice, one obtains from measurements the power spectral 
density of the output, and with the knowledge of the power spectral density of the input the 
power spectral density of the transfer function (wireless channel) can be deduced as 

                  2
yy xxS f H f S f  (22) 
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Fig. 5. DPSD for different values of mobile speed ( m =10 degrees). 

 

where ( )x t  is a random process with power spectral density ( )xxS f  representing the input 
signal to the channel, ( )y t  is a random process with power spectral density ( )yyS f  

representing the output signal of the channel, and ( )H f  is the frequency response of the 
channel, which is the Fourier transform of the channel IR. 

In general, in order to identify the random process associated with the DPSD,  S f , in (20) 

or (21) in the form of an SDE, we need to find a transfer function,  H f  whose magnitude 

square equals  S f , i.e.     2
S f H f . This is equivalent to      S s H s H s  , where 

2s i f  and 1i   . That is, we need to factorize the DPSD. This is an old problem which 
had been studied by Paley and Wiener [34] and is reformulated here as follows: 

Given a non-negative integrable function, ( )S f , such that the Paley-Wiener condition 
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  is satisfied, then there exists a causal, stable, minimum-phase 

function  H f , such that    2
H f S f , implying that ( )S f  is factorizable, namely, 

     S s H s H s  . It can be seen that the Paley-Wiener condition is not satisfied when ( )S f  
is band limited (and therefore it is not factorizable), which is the case for wireless links. In 
order to factorize it, the deterministic DPSD has to be first approximated by a rational 
transfer function, denoted  S f , and is discussed next. 

 
4.2 Approximating the Deterministic DPSD 
A number of rational approximation methods can be used to approximate the deterministic 
DPSD [35], the choice of which depends on the complexity and the required accuracy. The 
order of approximation dictates how close the approximate curve would be to the actual 
one. Higher order approximations capture higher order dynamics, and provide better 
approximations for the DPSD, however computations become more involved. In this 
section, we consider a simple approximating method which uses a 4th order stable, 
minimum phase, real, rational approximate transfer function. In Section 5.2, we consider the 
complex cepstrum approximation algorithm [36], which is based on the Gauss-Newton 
method for iterative search, and is more accurate than the simple approximating method but 
requires more computations. 

In the simple approximating method, a 4th order even transfer function  S s , is used to 
approximate the deterministic cellular DPSD, ( )S s . The approximate function 

( ) ( ) ( )S s H s H s   is given by [28] 
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Expression (21) is illustrated in Figure 5 for different values of mobile speed. Notice that the 
direction of motion does not play a role because of the uniform scattering assumption, and 
that the DPSDs described in (20) and (21) are band limited. 

The DPSD is the fundamental channel characteristic on which STF dynamical models are 
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idea in constructing dynamical models for STF channels is to factorize the deterministic 
DPSD into an approximate nth order even transfer function, and then use a stochastic 
realization [32] to obtain a state space representation for the inphase and quadrature 
components. 
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described in (1) and (3). In practice, one obtains from measurements the power spectral 
density of the output, and with the knowledge of the power spectral density of the input the 
power spectral density of the transfer function (wireless channel) can be deduced as 

                  2
yy xxS f H f S f  (22) 

 

-200 -150 -100 -50 0 50 100 150 200
-60

-50

-40

-30

-20

-10

0

Frequency Hz

P
ow

er
 S

pe
ct

ru
m

 d
B

fc  = 910 MHz, v = 5 km/h, 20 km/h, ..., 200 km/h

5 km/h 

20 km/h 

40 km/h 

200 km/h 

 
Fig. 5. DPSD for different values of mobile speed ( m =10 degrees). 

 

where ( )x t  is a random process with power spectral density ( )xxS f  representing the input 
signal to the channel, ( )y t  is a random process with power spectral density ( )yyS f  

representing the output signal of the channel, and ( )H f  is the frequency response of the 
channel, which is the Fourier transform of the channel IR. 
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Equation (23) has three arbitrary parameters  , ,n K  , which can be adjusted such that the 
approximate curve coincides with the actual curve at different points. The reason for 
presenting 4th order approximation of the DPSD is that we can compute explicit expressions 
for the constants  , ,n K   as functions of specific points on the data-graphs of the DPSD. 

In fact, if the approximate density ( )S f  coincides with the exact density ( )S f  at 0f   and 

maxf f , then the arbitrary parameters  , ,n K   are computed explicitly as 
 

2max
2

max

21 (0)1 1 , , (0)
2 ( ) 1 2

n n
fS K S

S f


  


 
        

 (24) 

 

Figure 6 shows  S f  and its approximation  S f  via a 4th order even function. In the next 
section, the approximated DPSD is used to develop stochastic STF channel models. 

 
4.3 Stochastic STF Channel Models 
A stochastic realization is used here to obtain a state space representation for the inphase 
and quadrature components [32]. The SDE, which corresponds to ( )H s  in (23) is 
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 is a white-noise process. Equation (25) can be rewritten in terms of 
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where   0( )I tdW t


 and   0

( )Q t
dW t


 are two independent and identically distributed (i.i.d.) 

white Gaussian noises. 
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Fig. 6. DPSD, ( )DS f , and its approximation 2( ) ( )S H j   via a 4th order transfer function 
for mobile speed of (a) 5 km/hr and (b) 120 km/hr. 
 
Several stochastic realizations [32] can be used to obtain a state space representation for the 
inphase and quadrature components of STF channel models. For example, the stochastic 
observable canonical form (OCF) realization [33] can be used to realize (26) for the inphase 
and quadrature components for the jth path as 
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where      1 2

, , ,[ ]TI j I j I jX t X t X t  and      1 2
, , ,[ ]TQ j Q j Q jX t X t X t  are state vectors of the 

inphase and quadrature components.  jI t  and  jQ t  correspond to the inphase and 

quadrature components, respectively,   
0

I
j t

W t


 and   
0

Q
j t

W t


 are independent standard 

Brownian motions, which correspond to the inphase and quadrature components of the jth 
path respectively, the parameters  , ,n K   are obtained from the approximation of the 
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deterministic DPSD, and  I
jf t  and  Q

jf t  are arbitrary functions representing the LOS of 
the inphase and quadrature components respectively, characterizing further dynamic 
variations in the environment. 

Expression (27) for the jth path can be written in compact form as 
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 are independent standard Brownian motions which are independent of 

the initial random variables  0IX  and  0QX , and     , ; 0I Qf s f s s t   are random 

processes representing the inphase and quadrature LOS components, respectively. The 
band-pass representation of the received signal corresponding to the jth path is given as 
 

             cos sin ( )I I I c Q Q Q c l jy t C X t f t t C X t f t t s t v t           (30) 
 

where ( )v t  is the measurement noise. As the DPSD varies from one instant to the next, the 
channel parameters  , ,n K   also vary in time, and have to be estimated on-line from time 
domain measurements. Without loss of generality, we consider the case of flat fading, in 
which the mobile-to-mobile channel has purely multiplicative effect on the signal and the 
multipath components are not resolvable, and can be considered as a single path [2]. The 
frequency selective fading case can be handled by including multiple time-delayed echoes. 
In this case, the delay spread has to be estimated. A sounding device is usually dedicated to 
estimate the time delay of each discrete path such as Rake receiver [26]. Following the state 
space representation in (28) and the band pass representation of the received signal in (30), 
the fading channel can be represented using a general stochastic state space representation 
of the form [28] 
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In this case, ( )y t  represents the received signal measurements,  X t  is the state variable of 

the inphase and quadrature components, and  v t  is the measurement noise. 

Time domain simulation of STF channels can be performed by passing two independent 
white noise processes through two identical filters,  H s , obtained from the factorization of 
the deterministic DPSD, one for the inphase and the other for the quadrature component [4], 
and realized in their state-space form as described in (28) and (29).  

Example 3: Consider a flat fading wireless channel with the following parameters: 
900MHzcf  , 80 km/hv  , o10m  , and     0I Q

j jf t f t  . Time domain simulation of 
the inphase and quadrature components, attenuation coefficient, phase angle, input signal, 
and received signal are shown in Figures 7-9. The inphase and quadrature components have 
been produced using (28) and (29), while the received signal is reproduced using (30). The 
simulation of the dynamical STF channel is performed using Simulink in Matlab [37]. 

 
4.4 Solution to the Stochastic State Space Model 
The stochastic TV state space model described in (31) and (32) has a solution [32, 38] 
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where L = I or Q, and  0,L t t  is the fundamental matrix, which satisfies 

     0 0, ,L L Lt t A t t t    and  0 0,L t t  is the identity matrix. 
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In this case, ( )y t  represents the received signal measurements,  X t  is the state variable of 

the inphase and quadrature components, and  v t  is the measurement noise. 

Time domain simulation of STF channels can be performed by passing two independent 
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     0 0, ,L L Lt t A t t t    and  0 0,L t t  is the identity matrix. 
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Fig. 7. Inphase and quadrature components, attenuation coefficient, and phase angle of the 
STF wireless channel in Example 3. 
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Fig. 8. Attenuation coefficient in absolute units and in dB’s for the STF wireless channel in 
Example 3. 
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Fig. 9. Input signal, ( )ls t , and the corresponding received signal, ( )y t , for flat slow fading 
(top) and flat fast fading conditions (bottom). 
 
Further computations show that the mean of  LX t  is given by [32] 

     0 0,L L LE X t t t E X t         (34) 
 

 
and the covariance matrix of  LX t  is given by 
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1 1
0 0 0 0 0, , , ,

t
TT T
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       (35) 

 

Differentiating (35) shows that  L t  satisfies the Riccati equation 
 

             T T
L L Lt A t t t A t B t B t      (36) 

 

For the time-invariant case,  L LA t A  and   ,L LB t B  equations (33)-(35) simplify to 
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It can be seen in (34) and (35) that the mean and variance of the inphase and quadrature 
components are functions of time. Note that the statistics of the inphase and quadrature 
components, and therefore the statistics of the STF channel, are time varying. Therefore, 
these stochastic state space models reflect the TV characteristics of the STF channel. 
Following the same procedure in developing the STF channel models, the stochastic TV ad 
hoc channel models are developed in the next section. 

 
5. Stochastic Ad Hoc Channel Modeling 

5.1 The Deterministic DPSD of Ad Hoc Channels 
Dependent on mobile speed, wavelength, and angle of incidence, the Doppler frequency 
shifts on the multipath rays give rise to a DPSD. The cellular DPSD for a received fading 
carrier of frequency fc is given in (20) and can be described by [25] 
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where 1f  is the maximum Doppler frequency of the mobile , p is the average power 
received by an isotropic antenna, and G is the gain of the receiving antenna. For a mobile-to-
mobile (or ad hoc) link, with 1f  and 2f  as the sender and receiver’s maximum Doppler 
frequencies, respectively, the degree of double mobility, denoted by   is defined by 

   1 2 1 2min , /max ,f f f f     , so 0 1  , where 1   corresponds to a full double 

mobility and 0   to a single mobility like cellular link, implying that cellular channels are 
a special case of mobile-to-mobile channels. The corresponding deterministic mobile-to-
mobile DPSD is given by [39-41] 
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where  K   is the complete elliptic integral of the first kind, and  1 2max ,mf f f . Figure 10 
shows the deterministic mobile-to-mobile DPSDs for different values of α’s. Thus, a 
generalized DPSD has been found where the U-shaped spectrum of cellular channels is a 
special case. 

Here, we follow the same procedure in deriving the stochastic STF channel models in 
Section 4. The deterministic ad hoc DPSD is first factorized into an approximate nth order 
even transfer function, and then use a stochastic realization [32] to obtain a state space 
representation for inphase and quadrature components. The complex cepstrum algorithm 
[36] is used to approximate the ad hoc DPSD and is discussed next. 
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Fig. 10. Ad hoc deterministic DPSDs for different values of 's , with parameters 
10, 1,cf f   and pG  .  

 
5.2 Approximating the Deterministic Ad Hoc DPSD 
Since the ad hoc DPSD is more complicated than the cellular one, we propose to use a more 
complex and accurate approximation method: The complex cepstrum algorithm [36]. It uses 
several measured points of the DPSD instead of just three points as in the simple method 
(described in Section 4.2). It can be explained briefly as follows: On a log-log scale, the 
magnitude data is interpolated linearly, with a very fine discretization. Then, using the 
complex cepstrum algorithm [36], the phase, associated with a stable, minimum phase, real, 
rational transfer function with the same magnitude as the magnitude data is generated. 

With the new phase data and the input magnitude data, a real rational transfer function can 
be found by using the Gauss-Newton method for iterative search [35], which is used to 
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where  K   is the complete elliptic integral of the first kind, and  1 2max ,mf f f . Figure 10 
shows the deterministic mobile-to-mobile DPSDs for different values of α’s. Thus, a 
generalized DPSD has been found where the U-shaped spectrum of cellular channels is a 
special case. 
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generate a stable, minimum phase, real rational transfer function, denoted by  H s , to 

identify the best model from the data of  H f  as 
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 1 0,...,mb b b ,  1 0,...,ma a a ,  wt f  is the weight function, and l is the number of 

frequency points. Several variants have been suggested in the literature, where the 
weighting function gives less attention to high frequencies [35]. This algorithm is based on 
Levi [42]. Figure 11 shows the DPSD, ( )S f , and its approximation ( )S f  via different orders 

using complex cepstrum algorithm. The higher the order of ( )S f  the better the 
approximation obtained. It can be seen that approximation with a 4th order transfer function 
gives a very good approximation. 
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Fig. 11. DPSD, ( )S f , and its approximations, ( )S f , using complex cepstrum algorithm for 

different orders of ( )S f . 
 
Figure 12(a) and 12(b) show the DPSD, ( )S f , and its approximation ( )S f  using the 
complex cepstrum and simple approximation methods, respectively, for different values of 

's  via 4th order even function. It can be noticed that the former gives better approximation 

 

than the latter; since it employs all measured points of the DPSD instead of just three points 
in the simple method.  
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Fig. 12. DPSD,  S f , and its approximation,  S f , via 4th order function for different α’s 
using (a) the complex cepstrum, and (b) the simple approximation methods. 
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5.3 Stochastic Ad Hoc Channel Models 
The same procedure as in the STF cellular case is used to develop ad hoc channel models. 
The stochastic OCF is used to realize (41) for the inphase and quadrature components as [28] 
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, ( )I jX t  and , ( )Q jX t  are state vectors of the inphase and quadrature components.  jI t  and 

 jQ t  correspond to the inphase and quadrature components, respectively,   
0

I
j t

W t


 and 

  
0

Q
j t

W t


 are independent standard Brownian motions, which correspond to the inphase 

and quadrature components of the jth path respectively, the parameters 
 1 0 1 0,..., , ,...,m ma a b b   are obtained from the approximation of the ad hoc DPSD, and  I

jf t  

and  Q
jf t  are arbitrary functions representing the LOS of the inphase and quadrature 

components respectively. Equation (42) for the inphase and quadrature components of the 
jth path can be described as in (28), and the solution of the ad hoc state space model in (42) 
is similar to the one for STF model described in Section 4.4. The mean and variance of the ad 
hoc inphase and quadrature components have the same form as the ones for the STF case in 
(34) and (35), which show that the statistics are functions of time. The general TV state space 
representation for the ad hoc channel model is similar to the STF state space representation 
in (31) and (32). 
 
Example 4: Consider a mobile-to-mobile (ad hoc) channel with parameters 

1 36km/hr (10m/s)v   and 2 24km/hr(6.6m/s)v  , in which 0.66  . Figure 13 shows time 
domain simulation of the inphase and quadrature components, and the attenuation 
coefficient. The inphase and quadrature components have been produced using (42) and 
(43), while the received signal is reproduced using (30). In Figure 13 Gauss-Newton method 
is used to approximate the deterministic DPSD with 4th order transfer function. 
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Fig. 13. Inphase and quadrature components  ( ), ( )I t Q t , and the attenuation coefficient 

2 2( ) ( ) ( )n n nr t I t Q t  , for a mobile-to-mobile channel with 0.66   in Example 4. 

 
6. Link Performance for Cellular and Ad Hoc Channels 

Now, we want to compare the performance of the stochastic mobile-to-mobile link in (42) 
with the cellular link. We consider BPSK is the modulation technique and the carrier 
frequency is 900MHzcf  . We test 10000 frames of P = 100 bits each. We assume mobile 
nodes are vehicles, with the constraint that the average speed over the mobile nodes is 30 
km/hr.  This implies  1 2 60km/hrv v  ,  thus for a mobile-to-mobile link with α = 0  we get 

1 60km/hrv   and 2 0v  . The cellular case is defined as the scenario where a link connects a 
mobile node with speed 30 km/hr to a permanently stationary node, which is the base 
station. Thus, there is only one mobile node, and the constraint is satisfied. We consider the 
NLOS case ( 0)I Qf f  , which represents an environment with large obstructions. 
The state space models developed in (27) and (42) are used for simulating the inphase and 
quadrature components for the cellular and ad hoc channels, respectively. The complex 
cepstrum approximation method is used to approximate the ad hoc DPSD with a 4th order 
stable, minimum phase, real, and rational transfer function. The received signal is 
reproduced using (30). Figure 14 shows the attenuation coefficient,      2 2r t I t Q t  ,  

for both the cellular case and the worst-case mobile-to-mobile case ( 1)  . It can be 
observed that a mobile-to-mobile link suffers from faster fading by noting the higher 
frequency components in the worst-case mobile-to-mobile link. Also it can be noticed that 
deep fading (envelope less than –12 dB) on the mobile-to-mobile link occurs more frequently 
and less bursty (48 % of the time for the mobile-to-mobile link and 32 % for the cellular link). 
Therefore, the increased Doppler spread due to double mobility tends to smear the errors 
out, causing higher frame error rates. 
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in (31) and (32). 
 
Example 4: Consider a mobile-to-mobile (ad hoc) channel with parameters 

1 36km/hr (10m/s)v   and 2 24km/hr(6.6m/s)v  , in which 0.66  . Figure 13 shows time 
domain simulation of the inphase and quadrature components, and the attenuation 
coefficient. The inphase and quadrature components have been produced using (42) and 
(43), while the received signal is reproduced using (30). In Figure 13 Gauss-Newton method 
is used to approximate the deterministic DPSD with 4th order transfer function. 
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Fig. 13. Inphase and quadrature components  ( ), ( )I t Q t , and the attenuation coefficient 

2 2( ) ( ) ( )n n nr t I t Q t  , for a mobile-to-mobile channel with 0.66   in Example 4. 

 
6. Link Performance for Cellular and Ad Hoc Channels 

Now, we want to compare the performance of the stochastic mobile-to-mobile link in (42) 
with the cellular link. We consider BPSK is the modulation technique and the carrier 
frequency is 900MHzcf  . We test 10000 frames of P = 100 bits each. We assume mobile 
nodes are vehicles, with the constraint that the average speed over the mobile nodes is 30 
km/hr.  This implies  1 2 60km/hrv v  ,  thus for a mobile-to-mobile link with α = 0  we get 

1 60km/hrv   and 2 0v  . The cellular case is defined as the scenario where a link connects a 
mobile node with speed 30 km/hr to a permanently stationary node, which is the base 
station. Thus, there is only one mobile node, and the constraint is satisfied. We consider the 
NLOS case ( 0)I Qf f  , which represents an environment with large obstructions. 
The state space models developed in (27) and (42) are used for simulating the inphase and 
quadrature components for the cellular and ad hoc channels, respectively. The complex 
cepstrum approximation method is used to approximate the ad hoc DPSD with a 4th order 
stable, minimum phase, real, and rational transfer function. The received signal is 
reproduced using (30). Figure 14 shows the attenuation coefficient,      2 2r t I t Q t  ,  

for both the cellular case and the worst-case mobile-to-mobile case ( 1)  . It can be 
observed that a mobile-to-mobile link suffers from faster fading by noting the higher 
frequency components in the worst-case mobile-to-mobile link. Also it can be noticed that 
deep fading (envelope less than –12 dB) on the mobile-to-mobile link occurs more frequently 
and less bursty (48 % of the time for the mobile-to-mobile link and 32 % for the cellular link). 
Therefore, the increased Doppler spread due to double mobility tends to smear the errors 
out, causing higher frame error rates. 
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Consider the data rate given by / 5 Kbpsb cR P T   which is chosen such that the coherence 
time Tc equals the time it takes to send exactly one frame of length P bits, a condition where 
variation  in  Doppler  spread greatly impacts the frame error rate (FER). Figure 15 shows the 
link performance for 10000 frames of 100 bits each. It is clear that the mobile-to-mobile link is 
worse than the cellular link, but the performance gap decreases as 1  . This agrees with the 
main conclusion of [40], that an increase in degree of double mobility mitigates fading by 
lowering the Doppler spread. The gain in performance is nonlinear with  , as the majority of 
gain is from   = 0 to   = 0.5. Intuitively, it makes sense that link performance improves as 
the degree of double mobility increases, since mobility in the network becomes distributed 
uniformly over the nodes in a kind of equilibrium. 
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Fig. 14. Rayleigh attenuation coefficient for cellular link and worst-case ad hoc link. 
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Fig. 15. FER results for Rayleigh mobile-to-mobile link for different α’s and compared with 
cellular link. 

 

7. Conclusion 

In this chapter, stochastic models based on SDEs for LTF, STF, and ad hoc wireless channels 
are derived. These models are useful in capturing nodes mobility and environmental 
changes in mobile wireless networks. The SDE models described allow viewing the wireless 
channel as a dynamical system, which shows how the channel evolves in time and space. 
These models take into consideration the statistical and time variations in wireless 
communication environments. The dynamics are captured by a stochastic state space model, 
whose parameters are determined by approximating the deterministic DPSD. Inphase and 
quadrature components of the channel and their statistics are derived from the proposed 
models. The state space models have been used to verify the effect of fading on a 
transmitted signal in wireless fading networks. In addition, since these models are 
represented in state space form, they allow well-developed tools of estimation and 
identification to be applied to this class of problems. The advantage of using SDE methods is 
due to computational simplicity because estimation and identification algorithms can be 
performed recursively and in real time. 
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1. Introduction

Information flow, or information transfer as referred in the literature, is a fundamental physics
concept that has applications in a wide variety of disciplines such as neuroscience (e.g., Pereda
et al., 2005), atmosphere-ocean science (Kleeman, 2002; 2007; Tribbia, 2005), nonlinear time
series analysis (e.g., Kantz & Schreiber, 2004; Abarbanel, 1996), economics, material science,
to name several. In control theory, it helps to understand the information structure and
hence characterize the cause-effect notion of causality in nonsequential stochastic control
systems (e.g., Andersland & Teneketzis, 1992). Given the well-known importance, it has
been an active arena of research for several decades (e.g.,Kaneko, 1986; Vastano & Swinney,
1988; Rosenblum et al., 1996; Arnhold et al., 1999; Schreiber, 2000; Kaiser & Schreiber, 2002).
However, it was not until recently that the concept is formalized, on a rigorous mathematical
and physical footing. In this chapter we will introduce the rigorous formalism initialized in
Liang & Kleeman (2005) and established henceforth; we will particularly focus on the part of
the studies by Liang (2008) and Liang & Kleeman (2007a,b) that is pertaining to the subjects
of this book. For formalisms in a more generic setting or of broader interest the reader should
consult and cite the original papers.

The concept of information flow/transfer was originally introduced to overcome the short-
coming of mutual information in reflecting the transfer asymmetry between the transmitter
and the recipient. It is well known that mutual information tells the amount of information
exchanged (cf. Cove & Thomas, 1991), but does not tell anything about the directionality of
the exchange. This is the major thrust that motivates many studies in this field, among which
are Vastano & Swinney (1988) and Schreiber (2000). Another thrust, which is also related to
the above, is the concern over causality. Traditionally, causality, such as the Granger causality
(Granger, 1969), is just a qualitative notion. While it is useful in identifying the causal relation
between dynamical events, one would like to have a more accurate measure to quantify this
relation. This would be of particular use in characterizing the intricate systems with two-way
coupled events, as then we will be able to weigh the relative importance of one event over
another. Information flow is expected to function as this quantitative measure.
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The third thrust is out of the consideration from general physics. Information flow is
a physical concept seen everywhere in our daily life experiences. The renowned baker
transformation (cf. section 5 in this chapter), which mimics the kneading of a dough, is such
an example. It has been argued intuitively that, as the transformation applies, information
flows continuingly from the stretching direction to the folding direction, while no transfer is
invoked the other way (e.g., Lasota & Mackey, 1994). Clearly the central issue here is how
much the information is transferred between the two directions.

Historically information flow formalisms have been developed in different disciplines (par-
ticularly in neuroscience), usually in an empirical or half-empirical way within the context
of the problems in question. These include the time-delayed information transfer (Vastano &
Swinney, 1988) and the more sophisticated transfer entropy associated with a Markov chain
(Schreiber, 2000). Others, though in different appearances, may nevertheless be viewed as the
varieties of these two types. Recently, it was observed that even these two are essentially of
the same like, in that both deal with the evolution of marginal entropies (Liang & Kleeman,
2005; 2007a). With this observation, Liang & Kleeman realized that actually this important
concept can be rigorously formulated, and the corresponding formulas analytically derived
rather than empirically proposed. The so-obtained transfer measure possesses nice proper-
ties as desired, and has been verified in different applications, with both benchmark systems
and real world problems. The objective of this chapter is to give a concise introduction of
this formalism. Coming up next is a setup of the mathematical framework, followed by two
sections (§3 and §4) where the transfer measures for different systems are derived. In these
sections, one will also see a very neat law about entropy production [cf. Eq. (18) in §3.1.2],
paralleling the law of energy conservation, and the some properties of the resulting trans-
fer measures (§4.3). Section 5 gives two applications, one about the afore-mentioned baker
transformation, the other about a surprisingly interesting causality inference with two highly
correlated time series. The final section (section 6) is a brief summary. Through the chapter
only two-dimensional systems are considered; for high dimensional formalisms, see Liang &
Kleeman (2007)a,b. As a convention in the literature, the terminologies “information flow”
and “information transfer” will be used interchangeably throughout.

2. Mathematical formalism

Let Ω be the sample space and x ∈ Ω the vector of state variables. For convenience, we follow
the convention of notation in the physics literature, where random variables and deterministic
variables are not distinguished. (In probability theory, they are usually distinguished with
lower and upper cases like x and X.) Consider a stochastic process of x, which may take a
continuous time form {x(t), t ≥ 0} or a discrete time form {x(τ), τ}, with τ being positive
integers signifying discrete time steps. Throughout this chapter, unless otherwise indicated,
we limit out discussion within two-dimensional (2D) systems x = (x1, x2)

T ∈ Ω only. The
stochastic dynamical systems we will be studying with are, in the discrete time case,

x(τ + 1) = Φ(x(τ)) + B(x, τ)v (1)

and, in the continuous time case,

dx = F(x, t)dt + B(x, t)dw. (2)

Here Φ is a 2-dimensional transformation

Φ : Ω → Ω, (x1, x2) �→ (Φ1(x), Φ2(x)), (3)

F the vector field, v the white noise, w a standard Wiener process, and B a 2 × 2 matrix
of the perturbation amplitude. The sample space Ω is assumed to be a Cartesian product
Ω1 × Ω2. We therefore just need to examine how information is transferred between the
two components, namely x1 and x2, of the system in question. Without loss of generality, it
suffices to consider only the information transferred from x2 to x1, or T2→1 for short.

Associated with each state x ∈ Ω is a joint probability density function

ρ = ρ(x) = ρ(x1, x2) ∈ L1(Ω),

and two marginal densities

ρ1(x1) =
∫

Ω2

ρ(x1, x2) dx2,

ρ2(x2) =
∫

Ω1

ρ(x1, x2) dx1,

with which we have a joint (Shannon) entropy

H = −
∫∫

Ω
ρ(x) log ρ(x) dx, (4)

and marginal entropies

H1 = −
∫

Ω1

ρ(x1) log ρ(x1) dx1, (5)

H2 = −
∫

Ω2

ρ(x2) log ρ(x2) dx2. (6)

As x evolves, the densities evolve subsequently. Specifically, corresponding to (2) there is
a Fokker-Planck equation that governs the evolution of ρ; if x moves on according to (1),
the density is steered forward by the Frobenius-Perron operator (F-P operator henceforth).
(Both the Fokker-Planck equation and the F-P operator will be introduced later.) Accordingly
the entropies H, H1, and H2 also change with time. As reviewed in the introduction, the
classical empirical/half-empirical information flow/transfer formalisms, though appearing in
different forms, all essentially deal with the evolution of the marginal entropy of the receiving
component, i.e., that of x1 if T2→1 is considered. With this Liang & Kleeman (2005) noted
that, by carefully classifying the mechanisms that govern the marginal entropy evolution, the
concept of information transfer or information flow actually can be put on a rigorous footing.
More specifically, the evolution of H1 can be decomposed into two exclusive parts, according
to their driving mechanisms: one is from x2 only, another with the effect from x2 excluded.
The former, written T2→1, is the very information flow or information transfer from x2 to x1.

Putting the latter as
dH1\2

dt for the continuous case, and ∆H1\2 for the discrete case, we therefore
have:

(1) For the discrete system (1), the information transferred from x2 to x1 is

T2→1 = ∆H1 − ∆H1\2; (7)

(2) For the continuous system (2), the rate of information transferred from x2 to x1 is

T2→1 =
dH1
dt

−
dH1\2

dt
. (8)
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The third thrust is out of the consideration from general physics. Information flow is
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paralleling the law of energy conservation, and the some properties of the resulting trans-
fer measures (§4.3). Section 5 gives two applications, one about the afore-mentioned baker
transformation, the other about a surprisingly interesting causality inference with two highly
correlated time series. The final section (section 6) is a brief summary. Through the chapter
only two-dimensional systems are considered; for high dimensional formalisms, see Liang &
Kleeman (2007)a,b. As a convention in the literature, the terminologies “information flow”
and “information transfer” will be used interchangeably throughout.

2. Mathematical formalism

Let Ω be the sample space and x ∈ Ω the vector of state variables. For convenience, we follow
the convention of notation in the physics literature, where random variables and deterministic
variables are not distinguished. (In probability theory, they are usually distinguished with
lower and upper cases like x and X.) Consider a stochastic process of x, which may take a
continuous time form {x(t), t ≥ 0} or a discrete time form {x(τ), τ}, with τ being positive
integers signifying discrete time steps. Throughout this chapter, unless otherwise indicated,
we limit out discussion within two-dimensional (2D) systems x = (x1, x2)

T ∈ Ω only. The
stochastic dynamical systems we will be studying with are, in the discrete time case,

x(τ + 1) = Φ(x(τ)) + B(x, τ)v (1)
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Φ : Ω → Ω, (x1, x2) �→ (Φ1(x), Φ2(x)), (3)

F the vector field, v the white noise, w a standard Wiener process, and B a 2 × 2 matrix
of the perturbation amplitude. The sample space Ω is assumed to be a Cartesian product
Ω1 × Ω2. We therefore just need to examine how information is transferred between the
two components, namely x1 and x2, of the system in question. Without loss of generality, it
suffices to consider only the information transferred from x2 to x1, or T2→1 for short.

Associated with each state x ∈ Ω is a joint probability density function

ρ = ρ(x) = ρ(x1, x2) ∈ L1(Ω),

and two marginal densities

ρ1(x1) =
∫

Ω2

ρ(x1, x2) dx2,

ρ2(x2) =
∫

Ω1
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with which we have a joint (Shannon) entropy

H = −
∫∫

Ω
ρ(x) log ρ(x) dx, (4)

and marginal entropies

H1 = −
∫

Ω1

ρ(x1) log ρ(x1) dx1, (5)

H2 = −
∫

Ω2

ρ(x2) log ρ(x2) dx2. (6)

As x evolves, the densities evolve subsequently. Specifically, corresponding to (2) there is
a Fokker-Planck equation that governs the evolution of ρ; if x moves on according to (1),
the density is steered forward by the Frobenius-Perron operator (F-P operator henceforth).
(Both the Fokker-Planck equation and the F-P operator will be introduced later.) Accordingly
the entropies H, H1, and H2 also change with time. As reviewed in the introduction, the
classical empirical/half-empirical information flow/transfer formalisms, though appearing in
different forms, all essentially deal with the evolution of the marginal entropy of the receiving
component, i.e., that of x1 if T2→1 is considered. With this Liang & Kleeman (2005) noted
that, by carefully classifying the mechanisms that govern the marginal entropy evolution, the
concept of information transfer or information flow actually can be put on a rigorous footing.
More specifically, the evolution of H1 can be decomposed into two exclusive parts, according
to their driving mechanisms: one is from x2 only, another with the effect from x2 excluded.
The former, written T2→1, is the very information flow or information transfer from x2 to x1.

Putting the latter as
dH1\2

dt for the continuous case, and ∆H1\2 for the discrete case, we therefore
have:

(1) For the discrete system (1), the information transferred from x2 to x1 is

T2→1 = ∆H1 − ∆H1\2; (7)

(2) For the continuous system (2), the rate of information transferred from x2 to x1 is

T2→1 =
dH1
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−
dH1\2

dt
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Likewise, the information flow from x1 to x2 can be defined. In the following we will be
exploring how these are evaluated.

3. Deterministic systems with random inputs

We begin with the deterministic counterparts of (1) and (2), i.e.,

x(τ + 1) = Φ(x(τ)), (9)

and

dx
dt

= F(x, t), (10)

respectively, with randomness limited within initial conditions, and then extend it to generic
systems. This is not just because that (9) [resp. (10)] makes a special case of (1) [resp. (2)],
but also because historically it is the idiosyncrasy of deterministic systems (Liang & Kleeman,
2005) that stimulates the rigorous formulation for this important physical notion, namely in-
formation flow or information transfer.

3.1 Entropy production
We first examine how entropy is produced with the systems (9) and (10). In this subsection,
the system dimensionality is not limited to 2, but can be arbitrary.

3.1.1 Entropy evolution with discrete systems
Let ρ = ρ(x) be the joint density of x at step τ, with the dependence on τ suppressed for
simplicity. Its evolution is governed by the Frobenius-Perron operator, or F-P operator as will
be called,

P : L1(Ω) �→ L1(Ω),

which is given by, in a loose sense,
∫

ω
Pρ(x) dx =

∫

Φ−1(ω)
ρ(x) dx, (11)

for any ω ⊂ Ω. [A rigorous definition with measure theory can be seen in Lasota & Mackey
(1994).] If Φ is nonsingular and invertible, the right hand side of (11) is

∫

Φ−1(ω)
ρ(x) dx

y=Φ(x)
=====

∫

ω
ρ
[
Φ−1(y)

] ∣∣∣J−1
∣∣∣ dy,

where J is the Jacobian of Φ:

J = J(x) = det
[

∂Φ(x1, x2
∂(x1, x2)

]
.

and J−1 its inverse. So in this case P can be explicitly written out:

Pρ(x) = ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ . (12)

With P , the change of the joint entropy H from time step τ to step τ + 1 is, by (4),

∆H = H(τ + 1)− H(τ)

= −
∫∫

Ω
Pρ(x) logPρ(x) dx +

∫∫

Ω
ρ(x) log ρ(x) dx. (13)

In the case of nonsingular and invertible Φ, the above can be evaluated:

∆H = −
∫∫

Ω
ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ · log

(
ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣
)

dx +
∫∫

Ω
ρ log ρ dx

y=Φ−1(x)
===== −

∫∫

Ω
ρ(y)

[
log ρ(y) + log

∣∣∣J−1
∣∣∣
]

dy +
∫∫

Ω
ρ log ρ dx

=
∫∫

Ω
ρ(y) |J| dy.

We hence have the following theorem:

Theorem 3.1. If the system (9) has a nonsingular and invertible mapping Φ, then the entropy change
can be expressed as, in a concise form,

∆H = E log |J| ,
(14)

where E is the mathematical expectation with respect to ρ.

Equation (14), which was established in Liang & Kleeman (2005), states that the entropy in-
crease for a discrete system upon one application of an invertible transformation is simply the
average logarithm of the rate of area change under the transformation. This extremely concise
form of evolution gives us a hint on how the information flow concept may be easily obtained,
as will be clear soon.

3.1.2 Entropy evolution with continuous systems
Now consider the continuous system (10). Here the dimensionality is not just limited to 2, but
can be any positive integer n. First discretize it on the infinitesimal interval [t, t + ∆t]:

x(t + ∆t) = x(t) + F(x(t), t)∆t. (15)

This equation defines a mapping Φ : Ω → Ω, x �→ x + F(x, t)∆t, with a Jacobian

J = det
[

∂Φ(x1, x2, ..., xn)

∂(x1, x2, ..., xn)

]

= det




1 + ∂F1
∂x1

∆t ∂F1
∂x2

∆t ... ∂F1
∂xn

∆t
∂F2
∂x1

∆t 1 + ∂F2
∂x2

∆t ... ∂F2
∂xn

∆t
...

...
. . .

...
∂Fn
∂x1

∆t ∂Fn
∂x2

∆t ... 1 + ∂Fn
∂xn

∆t




= ∆t ∑
i

∂Fi
∂xi

+ O(∆t2). (16)

As ∆t → 0, it is easy to show that Φ is always nonsingular and invertible; in fact, Φ−1 : Ω → Ω
can be explicitly found:

Φ−1(x) = x − F(x, t)∆t + O(∆t2). (17)
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Likewise, the information flow from x1 to x2 can be defined. In the following we will be
exploring how these are evaluated.

3. Deterministic systems with random inputs

We begin with the deterministic counterparts of (1) and (2), i.e.,

x(τ + 1) = Φ(x(τ)), (9)

and

dx
dt

= F(x, t), (10)

respectively, with randomness limited within initial conditions, and then extend it to generic
systems. This is not just because that (9) [resp. (10)] makes a special case of (1) [resp. (2)],
but also because historically it is the idiosyncrasy of deterministic systems (Liang & Kleeman,
2005) that stimulates the rigorous formulation for this important physical notion, namely in-
formation flow or information transfer.

3.1 Entropy production
We first examine how entropy is produced with the systems (9) and (10). In this subsection,
the system dimensionality is not limited to 2, but can be arbitrary.

3.1.1 Entropy evolution with discrete systems
Let ρ = ρ(x) be the joint density of x at step τ, with the dependence on τ suppressed for
simplicity. Its evolution is governed by the Frobenius-Perron operator, or F-P operator as will
be called,

P : L1(Ω) �→ L1(Ω),

which is given by, in a loose sense,
∫

ω
Pρ(x) dx =

∫

Φ−1(ω)
ρ(x) dx, (11)

for any ω ⊂ Ω. [A rigorous definition with measure theory can be seen in Lasota & Mackey
(1994).] If Φ is nonsingular and invertible, the right hand side of (11) is

∫

Φ−1(ω)
ρ(x) dx

y=Φ(x)
=====

∫

ω
ρ
[
Φ−1(y)

] ∣∣∣J−1
∣∣∣ dy,

where J is the Jacobian of Φ:

J = J(x) = det
[

∂Φ(x1, x2
∂(x1, x2)

]
.

and J−1 its inverse. So in this case P can be explicitly written out:

Pρ(x) = ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ . (12)

With P , the change of the joint entropy H from time step τ to step τ + 1 is, by (4),

∆H = H(τ + 1)− H(τ)

= −
∫∫

Ω
Pρ(x) logPρ(x) dx +

∫∫

Ω
ρ(x) log ρ(x) dx. (13)

In the case of nonsingular and invertible Φ, the above can be evaluated:

∆H = −
∫∫

Ω
ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ · log

(
ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣
)

dx +
∫∫

Ω
ρ log ρ dx

y=Φ−1(x)
===== −

∫∫

Ω
ρ(y)

[
log ρ(y) + log

∣∣∣J−1
∣∣∣
]

dy +
∫∫

Ω
ρ log ρ dx

=
∫∫

Ω
ρ(y) |J| dy.

We hence have the following theorem:

Theorem 3.1. If the system (9) has a nonsingular and invertible mapping Φ, then the entropy change
can be expressed as, in a concise form,

∆H = E log |J| ,
(14)

where E is the mathematical expectation with respect to ρ.

Equation (14), which was established in Liang & Kleeman (2005), states that the entropy in-
crease for a discrete system upon one application of an invertible transformation is simply the
average logarithm of the rate of area change under the transformation. This extremely concise
form of evolution gives us a hint on how the information flow concept may be easily obtained,
as will be clear soon.

3.1.2 Entropy evolution with continuous systems
Now consider the continuous system (10). Here the dimensionality is not just limited to 2, but
can be any positive integer n. First discretize it on the infinitesimal interval [t, t + ∆t]:

x(t + ∆t) = x(t) + F(x(t), t)∆t. (15)

This equation defines a mapping Φ : Ω → Ω, x �→ x + F(x, t)∆t, with a Jacobian

J = det
[

∂Φ(x1, x2, ..., xn)

∂(x1, x2, ..., xn)

]

= det




1 + ∂F1
∂x1

∆t ∂F1
∂x2

∆t ... ∂F1
∂xn

∆t
∂F2
∂x1

∆t 1 + ∂F2
∂x2

∆t ... ∂F2
∂xn

∆t
...
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. . .

...
∂Fn
∂x1

∆t ∂Fn
∂x2

∆t ... 1 + ∂Fn
∂xn

∆t




= ∆t ∑
i

∂Fi
∂xi
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can be explicitly found:

Φ−1(x) = x − F(x, t)∆t + O(∆t2). (17)
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So by (14), as ∆t → 0,

dH
dt

= lim
∆t→0

E log |J|
∆t

= E lim
∆t→0

1
∆t

log

(
1 + ∆t ∑

i

∂Fi
∂xi

+ O(∆t2)

)

= E

(
∑

i

∂Fi
∂xi

)
.

This fulfills the proof of the following important theorem:

Theorem 3.2. For the deterministic system (10), the entropy H evolves according to

dH
dt

= E(∇ · F).
(18)

Like (14), Eq. (18) is also in an extremely concise form. It states that the time rate of change
of H is totally controlled by the contraction or expansion of the phase space. This important
theorem was established by Liang & Kleeman (2005), using the Liouville equation correspond-
ing to (10). But the derivation therein requires some assumption (though very weak) at the
boundaries, while here no assumption is invoked.

3.2 Information flow
The elegant formula (18) allows us to obtain with ease the information flow for the continuous
system (10). Indeed, this is precisely what Liang & Kleeman (2005) did in establishing the first
formalism in a rigorous sense. To be short, consider only the rate of information transfer from
x2 to x1, namely T2→1, which is the difference between the rate of change of the marginal

entropy dH1
dt and that with the effect from x2 excluded, i.e.,

dH1\2
dt . In a 2D system,

dH1\2
dt is

actually equivalent to the rate of H1 evolution due to x1 its own, denoted dH∗
1

dt . Observing the
obvious additivity property of (18), Liang & Kleeman (2005) intuitively argued that

dH∗
1

dt
= E

(
∂F1
∂x1

)
.

We hence obtain the following theorem:

Theorem 3.3. For the 2D system (10),

dH1\2
dt

= E
(

∂F1
∂x1

)
=

∫∫

Ω
ρ

∂F1
∂x1

dx1dx2. (19)

(The proof of this theorem is deferred to later in this subsection.) The information flow from
x2 to x1 therefore follows easily from (8).

Theorem 3.4. For the 2D system (10), the rate of information transferred from x2 to x1 is

T2→1 = −E2|1

(
∂(F1ρ1)

∂x1

)
, (20)

where E is an integration operator defined with respect to the conditional density

ρ2|1(x1|x1) =
ρ(x1, x2)

ρ1(x1)
(21)

such that, for any function f = f (x1, x2),

E2|1 f =
∫∫

Ω
ρ2|1(x2|x1) · f (x1, x2) dx1dx2. (22)

Proof
Corresponding to (10) is the Liouville equation

∂ρ

∂t
+∇ · (Fρ) = 0 (23)

that governs the density evolution. Integrating it with respect to x2 over the subspace Ω2,

∂ρ1
∂t

+
∂

∂x1

∫

Ω2

ρF1 dx2 = 0. (24)

The other term is integrated out with the compact support assumption for ρ. Multiplication
by −(1 + log ρ1), followed by an integration over Ω1, gives

dH1
dt

=
∫∫

Ω

[
log ρ1

∂(ρF1)

∂x1

]
dx1dx2

= −
∫∫

Ω
ρ

[
F1
ρ1

∂ρ1
∂x1

]
dx1dx2.

In the second step integration by parts is used; also used is the compact support assumption
for ρ. So

T2→1 =
dH1
dt

−
dH1\2

dt

=
dH1
dt

− E
(

∂F1
∂x1

)

= −
∫∫

Ω

(
F1
ρ1

∂ρ1
∂x1

+
∂F1
∂x1

)
ρ dx1dx2

= −
∫∫

Ω
ρ2|1(x2|x1)

∂(F1ρ1)

∂x1
dx1dx2.

Q.E.D.

One may argue that, following the same way with (14), the information flow for the discrete
system (9) can be obtained. Indeed this is true, but only in part, as the neat formula (14) re-
quires that the mapping Φ and its components be nonsingular and invertible. Unfortunately,
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So by (14), as ∆t → 0,
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i

∂Fi
∂xi

+ O(∆t2)

)

= E

(
∑

i

∂Fi
∂xi

)
.

This fulfills the proof of the following important theorem:

Theorem 3.2. For the deterministic system (10), the entropy H evolves according to

dH
dt

= E(∇ · F).
(18)

Like (14), Eq. (18) is also in an extremely concise form. It states that the time rate of change
of H is totally controlled by the contraction or expansion of the phase space. This important
theorem was established by Liang & Kleeman (2005), using the Liouville equation correspond-
ing to (10). But the derivation therein requires some assumption (though very weak) at the
boundaries, while here no assumption is invoked.

3.2 Information flow
The elegant formula (18) allows us to obtain with ease the information flow for the continuous
system (10). Indeed, this is precisely what Liang & Kleeman (2005) did in establishing the first
formalism in a rigorous sense. To be short, consider only the rate of information transfer from
x2 to x1, namely T2→1, which is the difference between the rate of change of the marginal

entropy dH1
dt and that with the effect from x2 excluded, i.e.,

dH1\2
dt . In a 2D system,

dH1\2
dt is

actually equivalent to the rate of H1 evolution due to x1 its own, denoted dH∗
1

dt . Observing the
obvious additivity property of (18), Liang & Kleeman (2005) intuitively argued that
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.

We hence obtain the following theorem:

Theorem 3.3. For the 2D system (10),
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)
=

∫∫

Ω
ρ

∂F1
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dx1dx2. (19)

(The proof of this theorem is deferred to later in this subsection.) The information flow from
x2 to x1 therefore follows easily from (8).

Theorem 3.4. For the 2D system (10), the rate of information transferred from x2 to x1 is

T2→1 = −E2|1

(
∂(F1ρ1)

∂x1

)
, (20)

where E is an integration operator defined with respect to the conditional density

ρ2|1(x1|x1) =
ρ(x1, x2)

ρ1(x1)
(21)

such that, for any function f = f (x1, x2),

E2|1 f =
∫∫

Ω
ρ2|1(x2|x1) · f (x1, x2) dx1dx2. (22)

Proof
Corresponding to (10) is the Liouville equation

∂ρ

∂t
+∇ · (Fρ) = 0 (23)

that governs the density evolution. Integrating it with respect to x2 over the subspace Ω2,

∂ρ1
∂t

+
∂

∂x1

∫

Ω2

ρF1 dx2 = 0. (24)

The other term is integrated out with the compact support assumption for ρ. Multiplication
by −(1 + log ρ1), followed by an integration over Ω1, gives

dH1
dt

=
∫∫

Ω

[
log ρ1

∂(ρF1)

∂x1

]
dx1dx2

= −
∫∫

Ω
ρ

[
F1
ρ1

∂ρ1
∂x1

]
dx1dx2.

In the second step integration by parts is used; also used is the compact support assumption
for ρ. So

T2→1 =
dH1
dt

−
dH1\2

dt

=
dH1
dt

− E
(

∂F1
∂x1

)

= −
∫∫

Ω

(
F1
ρ1

∂ρ1
∂x1

+
∂F1
∂x1

)
ρ dx1dx2

= −
∫∫

Ω
ρ2|1(x2|x1)

∂(F1ρ1)

∂x1
dx1dx2.

Q.E.D.

One may argue that, following the same way with (14), the information flow for the discrete
system (9) can be obtained. Indeed this is true, but only in part, as the neat formula (14) re-
quires that the mapping Φ and its components be nonsingular and invertible. Unfortunately,
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for many important 2D mappings like the baker transformation we will be introducing in
section 5, the requirements are generally not met. We therefore need to consider more generic
situations.

By (7), we need to find ∆H1 and ∆H1\2 as the system (9) moves forward from step τ to τ + 1. As
in the continuous case, it is easy to obtain ∆H1 from the given mapping Φ. The key is how to
find ∆H1\2, which is the entropy increase in direction 1 as the system goes from τ to τ + 1 under
Φ with x2 frozen instantaneously at step τ, given x1(τ). As ∆H1\2 = H1\2(τ + 1)− H1(τ), we
are done if H1\2(τ + 1) is evaluated. This is the marginal entropy for the first component
evolved from H1 with contribution from x2 excluded from τ to τ + 1. Consider the quantity

f ≡ − logP1\2ρ1(y1), (25)

where y1 = Φ1(x), and P1\2ρ1(y1) is the marginal density in direction 1 at step τ + 1, as the
density ρ1 evolves from step τ to step τ + 1 under the transformation:

Φ\2 : y1 = Φ1(x1, x2) (26)

i.e., the map Φ with x2 frozen instantaneously at τ as a parameter. Note here we use
y1 = Φ1(x) for the state of component 1 at step τ + 1 (x1 is for that at step τ); We do not use x1
with some superscript or subscript in order to avoid any possible confusion in distinguishing
the states of x1 at these two time steps.

With our notation introduced above, H1\2(τ + 1) is the mathematical expectation of f . (Recall
how Shannon entropy is defined.) In other words, it is equal to the integration of f times
some probability density function over the corresponding sample space. The first density to
be multiplied is P1\2ρ1(y1). But f also depends on x2, we thence need another density for x2.
Recall that the freezing of x2 is performed on interval [τ, τ + 1], given all other components
(here only x1 in this 2D system) at step τ. What we need is therefore the conditional density
of x2 given x1 at τ, i.e., ρ(x2|x1). Put all these together, we therefore have the following result.

Proposition 3.1. As the system (9) evolves from time step τ to time step τ + 1, if x2 is instantaneously
frozen as a parameter at step τ, the marginal entropy of x2 at step τ + 1 is

H1\2(τ + 1) = −
∫∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2, (27)

where y1 is given by (26).

Note here we do not do another averaging with respect to x1, as x1 is already embedded in
y1.

The information transferred from x2 to x1 is now easy to obtain. Since H1(τ) is the same, the
right hand side of (7) is simply the difference between

H1(τ + 1) = −
∫∫

Ω
(Pρ)1(y1) log(Pρ)1(y1) dy1, (28)

where (Pρ)1 is the marginal density at step τ + 1, and H1\2(τ + 1). We hence arrive at the
following theorem on information flow.

Theorem 3.5. For system (9), the information transferred from x2 to x1 is

T2→1 = −
∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

+
∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2. (29)

Likewise the information flow from x1 to x2 can be obtained. Note in arriving at (29) no issue
about the invertibility of Φ or either of its components is ever invoked. But if invertibility is
guaranteed, then the formula may be further simplified.

Corollary 3.1. In the system (9), if the mapping Φ has a component Φ1 that is invertible, then

∆H1\2 = E log |J1| , where J1 =
∂Φ1(x)

∂x1
, (30)

and hence

T2→1 = ∆H1 − E log |J1| . (31)

Remark: This concise result is just one would expect by the similar heuristic argument in
arriving at Theorem 3.3 and Theorem 3.4.

Proof
By (27),

∆H1\2 = −
∫∫

Ω1×Ω2

P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

+
∫

Ω1

ρ1 log ρ1 dx1,

When Φ1 is invertible, J1 = ∂Φ1
∂x1

�= 0, by (12),

P1\2ρ1(y1) = ρ
[
Φ−1

1 (y1, x2)
] ∣∣∣J−1

1

∣∣∣
= ρ1(x1)

∣∣∣J−1
1

∣∣∣ . (32)

So

∆H1\2 = −
∫∫

ρ1(x1)
∣∣∣J−1

1

∣∣∣ log
(

ρ1(x1)
∣∣∣J−1

1

∣∣∣
)

ρ(x2|x1) |J1| dx1dx2

+
∫

ρ1 log ρ1 dx1

= −
∫∫

ρ1(x1) ρ(x2|x1) log
∣∣∣J−1

1

∣∣∣ dx1dx2

=
∫∫

ρ(x1, x2) log |J1| dx1dx2

= E log |J1| , (33)

and the second part follows subsequently.
Q.E.D.
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for many important 2D mappings like the baker transformation we will be introducing in
section 5, the requirements are generally not met. We therefore need to consider more generic
situations.

By (7), we need to find ∆H1 and ∆H1\2 as the system (9) moves forward from step τ to τ + 1. As
in the continuous case, it is easy to obtain ∆H1 from the given mapping Φ. The key is how to
find ∆H1\2, which is the entropy increase in direction 1 as the system goes from τ to τ + 1 under
Φ with x2 frozen instantaneously at step τ, given x1(τ). As ∆H1\2 = H1\2(τ + 1)− H1(τ), we
are done if H1\2(τ + 1) is evaluated. This is the marginal entropy for the first component
evolved from H1 with contribution from x2 excluded from τ to τ + 1. Consider the quantity

f ≡ − logP1\2ρ1(y1), (25)

where y1 = Φ1(x), and P1\2ρ1(y1) is the marginal density in direction 1 at step τ + 1, as the
density ρ1 evolves from step τ to step τ + 1 under the transformation:

Φ\2 : y1 = Φ1(x1, x2) (26)

i.e., the map Φ with x2 frozen instantaneously at τ as a parameter. Note here we use
y1 = Φ1(x) for the state of component 1 at step τ + 1 (x1 is for that at step τ); We do not use x1
with some superscript or subscript in order to avoid any possible confusion in distinguishing
the states of x1 at these two time steps.

With our notation introduced above, H1\2(τ + 1) is the mathematical expectation of f . (Recall
how Shannon entropy is defined.) In other words, it is equal to the integration of f times
some probability density function over the corresponding sample space. The first density to
be multiplied is P1\2ρ1(y1). But f also depends on x2, we thence need another density for x2.
Recall that the freezing of x2 is performed on interval [τ, τ + 1], given all other components
(here only x1 in this 2D system) at step τ. What we need is therefore the conditional density
of x2 given x1 at τ, i.e., ρ(x2|x1). Put all these together, we therefore have the following result.

Proposition 3.1. As the system (9) evolves from time step τ to time step τ + 1, if x2 is instantaneously
frozen as a parameter at step τ, the marginal entropy of x2 at step τ + 1 is

H1\2(τ + 1) = −
∫∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2, (27)

where y1 is given by (26).

Note here we do not do another averaging with respect to x1, as x1 is already embedded in
y1.

The information transferred from x2 to x1 is now easy to obtain. Since H1(τ) is the same, the
right hand side of (7) is simply the difference between

H1(τ + 1) = −
∫∫

Ω
(Pρ)1(y1) log(Pρ)1(y1) dy1, (28)

where (Pρ)1 is the marginal density at step τ + 1, and H1\2(τ + 1). We hence arrive at the
following theorem on information flow.

Theorem 3.5. For system (9), the information transferred from x2 to x1 is

T2→1 = −
∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

+
∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2. (29)

Likewise the information flow from x1 to x2 can be obtained. Note in arriving at (29) no issue
about the invertibility of Φ or either of its components is ever invoked. But if invertibility is
guaranteed, then the formula may be further simplified.

Corollary 3.1. In the system (9), if the mapping Φ has a component Φ1 that is invertible, then

∆H1\2 = E log |J1| , where J1 =
∂Φ1(x)

∂x1
, (30)

and hence

T2→1 = ∆H1 − E log |J1| . (31)

Remark: This concise result is just one would expect by the similar heuristic argument in
arriving at Theorem 3.3 and Theorem 3.4.

Proof
By (27),

∆H1\2 = −
∫∫

Ω1×Ω2

P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

+
∫

Ω1

ρ1 log ρ1 dx1,

When Φ1 is invertible, J1 = ∂Φ1
∂x1

�= 0, by (12),

P1\2ρ1(y1) = ρ
[
Φ−1

1 (y1, x2)
] ∣∣∣J−1

1

∣∣∣
= ρ1(x1)

∣∣∣J−1
1

∣∣∣ . (32)

So

∆H1\2 = −
∫∫

ρ1(x1)
∣∣∣J−1

1

∣∣∣ log
(

ρ1(x1)
∣∣∣J−1

1

∣∣∣
)

ρ(x2|x1) |J1| dx1dx2

+
∫

ρ1 log ρ1 dx1

= −
∫∫

ρ1(x1) ρ(x2|x1) log
∣∣∣J−1

1

∣∣∣ dx1dx2

=
∫∫

ρ(x1, x2) log |J1| dx1dx2

= E log |J1| , (33)

and the second part follows subsequently.
Q.E.D.
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We are now able to prove the first theorem of this subsection, namely Theorem 3.3, which
originally was obtained by Liang & Kleeman (2005) through heuristic physical argument.

Proof of Theorem 3.3.
As before, look at an infinitesimal time interval [t, t + ∆t] and, for clarity, write the state vari-
ables at time t and t + ∆t as, respectively, x and y. Discretization of (10) yields a mapping
Φ = (Φ1, Φ2) : Ω → Ω, x = (x1, x2) �→ y = (y1, y2),

Φ :
{

y1 = x1 + ∆t · F1(x, t),
y2 = x2 + ∆t · F2(x, t). (34)

As shown before, as ∆t → 0, Φ is nonsingular and always invertible, so are its components
Φ1 and Φ2. Moreover, the Jacobian for Φ1 is

J1 =
∂y1
∂x1

= 1 + ∆t
∂F1
∂x1

+ O(∆t2). (35)

By Corollary 3.1, ∆H1\2 = E log |J1|. So

dH1\2
dt

= lim
∆t→0

∆H1\2
∆t

= lim
∆t→0

1
∆t

E
(

log
∣∣∣∣1 + ∆t

∂F1
∂x1

∣∣∣∣+ O(∆t2)

)

= E
(

∂F1
∂x1

)
.

Q.E.D.

4. Stochastic systems

With the information flow for deterministic systems derived, we now take into account
stochasticity and re-consider the problem. We first consider discrete systems in the form of
(1), then continuous systems (2).

4.1 Discrete stochastic systems
As our convention, write x(τ + 1) as y to avoid confusion. Eq. (1) then defines a mapping
sending x to y:

y = Φ(x) + B(x)v, (36)

where v is a vector of white noise defined on R2, B = (bij) is a matrix of the perturbation
amplitude, and the dependence on τ in the terms is suppressed for notation simplicity.
Corresponding to this mapping is a Markov operator P : L1(Ω) → L1(Ω), similar to the
F-P operator for the system (9), that sends ρ(x(τ)) to ρ(x(τ + 1)) or ρ(y). To find P , we
need just find ρ(y), given ρ(x), Φ, B, and ρ(v) which is also written as ρv(v) for clarity. For
convenience, B is assumed to be nonsingular.

Let Π be a transformation of (x, v) into (z, y) such that

Π :
{

z = x,
y = Φ(x) + B(x)v. (37)

Its Jacobian is

J = det

[
∂(z, y)
∂(x, v)

]
= det

[
I2 02

∂(y1,y2)
∂(x1,x2

B

]
= det B, (38)

where I2 and 02 are 2× 2 identity and zero matrices, respectively. Given that B is nonsingular,
det B is nonzero, and hence Π is invertible:

Π−1 :

{
x = z,
v = B−1(z)

(
y − Φ(z)

)
. (39)

We now look at how the joint distribution of (z, y) is expressed in terms of (x, v).

For any ωx ∈ Ω, ωv ∈ R2,
∫∫∫∫

ωx×ωv

ρz,y(z, y) dzdy =
∫∫∫∫

Π−1(ωx×ωv)
ρx,v(x, v) dxdv

=
∫∫∫∫

ωx×ωv

ρx,v

(
Π−1(z, y)

)
·
∣∣∣J−1

∣∣∣ dzdy. (40)

As ωx and ωv are arbitrarily chosen, the integrands must be equal, and hence

ρz,y(z, y) = ρx,v

(
Π−1(z, y)

)
·
∣∣∣J−1

∣∣∣
= ρx,v

[
z, B−1(z)(y − Φ(z))

]
·
∣∣∣J−1

∣∣∣
= ρx(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 .

In the last step, the fact that x and v are independent has been used. Integrate z out and we
obtain

ρy(y) =
∫∫

Ω
ρz,y(z, y) dz

=
∫∫

Ω
ρx(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 dz.

This equation defines a Markov operator P (corresponding to the F-P operator in the deter-
ministic case) for system (1):

Pρ(x) =
∫∫

Ω
ρ(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 dz. (41)

In this case ρv is a Gaussian distribution with zero mean and an identity covariance matrix,
and hence P can be computed. With it one may calculate the marginal density (Pρ)1 and
hence the marginal entropy at time step τ + 1:

H1(τ + 1) = −
∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1. (42)
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We are now able to prove the first theorem of this subsection, namely Theorem 3.3, which
originally was obtained by Liang & Kleeman (2005) through heuristic physical argument.

Proof of Theorem 3.3.
As before, look at an infinitesimal time interval [t, t + ∆t] and, for clarity, write the state vari-
ables at time t and t + ∆t as, respectively, x and y. Discretization of (10) yields a mapping
Φ = (Φ1, Φ2) : Ω → Ω, x = (x1, x2) �→ y = (y1, y2),

Φ :
{

y1 = x1 + ∆t · F1(x, t),
y2 = x2 + ∆t · F2(x, t). (34)

As shown before, as ∆t → 0, Φ is nonsingular and always invertible, so are its components
Φ1 and Φ2. Moreover, the Jacobian for Φ1 is

J1 =
∂y1
∂x1

= 1 + ∆t
∂F1
∂x1

+ O(∆t2). (35)

By Corollary 3.1, ∆H1\2 = E log |J1|. So

dH1\2
dt

= lim
∆t→0

∆H1\2
∆t

= lim
∆t→0

1
∆t

E
(

log
∣∣∣∣1 + ∆t

∂F1
∂x1

∣∣∣∣+ O(∆t2)

)

= E
(

∂F1
∂x1

)
.

Q.E.D.

4. Stochastic systems

With the information flow for deterministic systems derived, we now take into account
stochasticity and re-consider the problem. We first consider discrete systems in the form of
(1), then continuous systems (2).

4.1 Discrete stochastic systems
As our convention, write x(τ + 1) as y to avoid confusion. Eq. (1) then defines a mapping
sending x to y:

y = Φ(x) + B(x)v, (36)

where v is a vector of white noise defined on R2, B = (bij) is a matrix of the perturbation
amplitude, and the dependence on τ in the terms is suppressed for notation simplicity.
Corresponding to this mapping is a Markov operator P : L1(Ω) → L1(Ω), similar to the
F-P operator for the system (9), that sends ρ(x(τ)) to ρ(x(τ + 1)) or ρ(y). To find P , we
need just find ρ(y), given ρ(x), Φ, B, and ρ(v) which is also written as ρv(v) for clarity. For
convenience, B is assumed to be nonsingular.

Let Π be a transformation of (x, v) into (z, y) such that

Π :
{

z = x,
y = Φ(x) + B(x)v. (37)

Its Jacobian is

J = det

[
∂(z, y)
∂(x, v)

]
= det

[
I2 02

∂(y1,y2)
∂(x1,x2

B

]
= det B, (38)

where I2 and 02 are 2× 2 identity and zero matrices, respectively. Given that B is nonsingular,
det B is nonzero, and hence Π is invertible:

Π−1 :

{
x = z,
v = B−1(z)

(
y − Φ(z)

)
. (39)

We now look at how the joint distribution of (z, y) is expressed in terms of (x, v).

For any ωx ∈ Ω, ωv ∈ R2,
∫∫∫∫

ωx×ωv

ρz,y(z, y) dzdy =
∫∫∫∫

Π−1(ωx×ωv)
ρx,v(x, v) dxdv

=
∫∫∫∫

ωx×ωv

ρx,v

(
Π−1(z, y)

)
·
∣∣∣J−1

∣∣∣ dzdy. (40)

As ωx and ωv are arbitrarily chosen, the integrands must be equal, and hence

ρz,y(z, y) = ρx,v

(
Π−1(z, y)

)
·
∣∣∣J−1

∣∣∣
= ρx,v

[
z, B−1(z)(y − Φ(z))

]
·
∣∣∣J−1

∣∣∣
= ρx(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 .

In the last step, the fact that x and v are independent has been used. Integrate z out and we
obtain

ρy(y) =
∫∫

Ω
ρz,y(z, y) dz

=
∫∫

Ω
ρx(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 dz.

This equation defines a Markov operator P (corresponding to the F-P operator in the deter-
ministic case) for system (1):

Pρ(x) =
∫∫

Ω
ρ(z) · ρv

[
B−1(z)(y − Φ(z))

]
·
[
det B(z)

]−1 dz. (41)

In this case ρv is a Gaussian distribution with zero mean and an identity covariance matrix,
and hence P can be computed. With it one may calculate the marginal density (Pρ)1 and
hence the marginal entropy at time step τ + 1:

H1(τ + 1) = −
∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1. (42)
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Next look at H1\2(τ + 1). Freezing x2 at step τ modifies the dynamics to

Φ\2 : y1 = Φ1(x1, x2) + b11v1 + b12v2. (43)

Here we distinguish several cases: (1) If b11 = b12 = 0, then this degenerates into a de-
terministic system, and the Markov operator is the F-P operator as we derived before; (2) if
either of the last two terms vanishes, then follow the same procedure as above and a mod-
ified Markov operator P1\2 is obtained; (3) if b11 and b12 have no dependence on x1, then
b11v1 + b12v2 ∼ N(0, b2

11 + b2
12) can be combined to be one random variable with known distri-

bution, and, again, the above procedure applies, and P1\2 follows accordingly; (4) if neither of
the perturbations are zero, then we need to do a transformation from (x1, v1, v2) to (z1, z2, y1)
with some random variables z1 and z2 as simple as possible. The so-obtained joint density of
(z1, z2, y1) is then integrated over the sample spaces of z1 and z2, and the resulting marginal
entropy is the desired P1\2. So anyway P1\2 can be computed, giving

H1\2(τ + 1) = −
∫∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

by Proposition 3.1. This subtracted from H1(τ + 1) results the information transferred from
x2 to x1:

T2→1 = H1(τ + 1)− H1\2(τ + 1). (44)

In principle, following the above procedure all the information flows between the system
components can be computed. But more often than not this turn out to be very tedious and
difficult. In practice, we would like to suggest different approaches, depending on the prob-
lem itself.

4.2 Continuous stochastic systems
For the continuous system (2), there is a Fokker-Planck equation governing the density evolu-
tion:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
=

1
2

2

∑
i,j=1

∂2(gijρ)

∂xi∂xj
, (45)

where

gij = gji =
2

∑
k=1

bikbjk, ij = 1, 2, (46)

and bij are the entries of the perturbation matrix B. From this it is easy to obtain the evolution
of all the entropies, and H1 in particular.

Proposition 4.1. For system (2), the marginal entropy of x1 evolves according to

dH1
dt

= −E
(

F1
∂ log ρ1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
1

)
, (47)

where E stands for expectation with respect to ρ.

Proof.
Integrate (45) with respect to x2 over Ω2 to get

∂ρ1
∂t

+
∫

Ω2

∂(F1ρ)

∂x1
dx2 =

1
2

∫

Ω2

∂2(g11ρ)

∂x2
1

dx2. (48)

Here we have done integration by parts, and applied the compact support assumption for ρ
and its derivatives. For simplicity, hereafter we will suppress the integral domain Ω, unless
otherwise noted. Multiplication of (48) by −(1 + log ρ1), followed by an integration with
respect to x1 over Ω1, yields

dH1
dt

−
∫∫

log ρ1
∂(F1ρ)

∂x1
dx1dx2 = −1

2

∫∫
log ρ1

∂2(g11ρ)

∂x2
1

dx1dx2.

Integrate by parts again, and (47) follows. Q.E.D.

As before, the key part is the evaluation of
dH1\2

dt . The result is summarized in the following
theorem:

Proposition 4.2. For the system (2), the time rate of change of the marginal entropy of x1 with x2
frozen instantaneously is

dH1\2
dt

= E
(

∂F1
∂x1

)
− 1

2
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(
g11

∂2 log ρ1

∂x2
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)
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ρ1

∂2(g11ρ1)

∂x2
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)
. (49)

Proof.
Examine a small time interval [t, t + ∆t]. We are going to prove the proposition by taking the
limit:

dH1\2
dt

= lim
∆t→0

H1\2(t + ∆t)− H1(t)
∆t

,

which boils down to the derivation of H1\2(t + ∆t), namely the marginal entropy of x1 at time
t + ∆t as x2 frozen as a parameter instantaneously at t. In principle this may be obtained
using the strategy in the preceding subsection, but the evaluation of the convolution proves
to be very difficult. To avoid the difficulty, Liang (2008) took a different approach, which we
will follow hereafter.

In the stochastic system (2), the state x = (x1, x2)
T is carried forth as time goes on. When

time reaches t, freeze x2 instantaneously and see how the state may evolves thenceforth until
t + ∆t. For convenience, denote by x1\2 the first component of x with x2 frozen as a parameter.
The system (2) is then modified to

dx1\2 = F1(x1\2, x2, t)dt + ∑
k

b1kdwk, on [t, t + ∆t], (50)

x1\2 = x1 at time t. (51)

Just as (45), correspondingly there is a modified Fokker-Planck equation for the density of x1\2,
written ρ1\2:

∂ρ1\2
∂t

+
∂(F1ρ1\2)

∂x1
=

1
2

∂2(g11ρ1\2)

∂x2
1

, t ∈ [t, t + ∆t] (52)

ρ1\2 = ρ1 at t. (53)
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Next look at H1\2(τ + 1). Freezing x2 at step τ modifies the dynamics to

Φ\2 : y1 = Φ1(x1, x2) + b11v1 + b12v2. (43)

Here we distinguish several cases: (1) If b11 = b12 = 0, then this degenerates into a de-
terministic system, and the Markov operator is the F-P operator as we derived before; (2) if
either of the last two terms vanishes, then follow the same procedure as above and a mod-
ified Markov operator P1\2 is obtained; (3) if b11 and b12 have no dependence on x1, then
b11v1 + b12v2 ∼ N(0, b2

11 + b2
12) can be combined to be one random variable with known distri-

bution, and, again, the above procedure applies, and P1\2 follows accordingly; (4) if neither of
the perturbations are zero, then we need to do a transformation from (x1, v1, v2) to (z1, z2, y1)
with some random variables z1 and z2 as simple as possible. The so-obtained joint density of
(z1, z2, y1) is then integrated over the sample spaces of z1 and z2, and the resulting marginal
entropy is the desired P1\2. So anyway P1\2 can be computed, giving

H1\2(τ + 1) = −
∫∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

by Proposition 3.1. This subtracted from H1(τ + 1) results the information transferred from
x2 to x1:

T2→1 = H1(τ + 1)− H1\2(τ + 1). (44)

In principle, following the above procedure all the information flows between the system
components can be computed. But more often than not this turn out to be very tedious and
difficult. In practice, we would like to suggest different approaches, depending on the prob-
lem itself.

4.2 Continuous stochastic systems
For the continuous system (2), there is a Fokker-Planck equation governing the density evolu-
tion:
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where

gij = gji =
2

∑
k=1

bikbjk, ij = 1, 2, (46)

and bij are the entries of the perturbation matrix B. From this it is easy to obtain the evolution
of all the entropies, and H1 in particular.

Proposition 4.1. For system (2), the marginal entropy of x1 evolves according to
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where E stands for expectation with respect to ρ.

Proof.
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Here we have done integration by parts, and applied the compact support assumption for ρ
and its derivatives. For simplicity, hereafter we will suppress the integral domain Ω, unless
otherwise noted. Multiplication of (48) by −(1 + log ρ1), followed by an integration with
respect to x1 over Ω1, yields
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Integrate by parts again, and (47) follows. Q.E.D.

As before, the key part is the evaluation of
dH1\2

dt . The result is summarized in the following
theorem:

Proposition 4.2. For the system (2), the time rate of change of the marginal entropy of x1 with x2
frozen instantaneously is
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Proof.
Examine a small time interval [t, t + ∆t]. We are going to prove the proposition by taking the
limit:

dH1\2
dt

= lim
∆t→0

H1\2(t + ∆t)− H1(t)
∆t

,

which boils down to the derivation of H1\2(t + ∆t), namely the marginal entropy of x1 at time
t + ∆t as x2 frozen as a parameter instantaneously at t. In principle this may be obtained
using the strategy in the preceding subsection, but the evaluation of the convolution proves
to be very difficult. To avoid the difficulty, Liang (2008) took a different approach, which we
will follow hereafter.

In the stochastic system (2), the state x = (x1, x2)
T is carried forth as time goes on. When

time reaches t, freeze x2 instantaneously and see how the state may evolves thenceforth until
t + ∆t. For convenience, denote by x1\2 the first component of x with x2 frozen as a parameter.
The system (2) is then modified to

dx1\2 = F1(x1\2, x2, t)dt + ∑
k

b1kdwk, on [t, t + ∆t], (50)

x1\2 = x1 at time t. (51)

Just as (45), correspondingly there is a modified Fokker-Planck equation for the density of x1\2,
written ρ1\2:

∂ρ1\2
∂t

+
∂(F1ρ1\2)

∂x1
=

1
2

∂2(g11ρ1\2)

∂x2
1

, t ∈ [t, t + ∆t] (52)

ρ1\2 = ρ1 at t. (53)
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Here g11 is the same as that defined in (46), i.e., g11 = ∑k b2
1k. Eq. (52) divided by ρ1\2 yields

∂ ft
∂t

+
1

ρ1\2

∂F1ρ1\2
∂x1

=
1

ρ1\2

∂2g11ρ1\2
∂x2

1
,

where ft is a function of x1,
ft(x1) = log ρ1\2(t, x1). (54)

We are doing this in the hope of obtaining an evolution law for H1\2, as by the definition
of Shannon entropy we will just need to consider how the expectation of − ft(x1) evolves.
Discretizing,

ft+∆t(x1) = ft(x1)−
∆t
ρ1

∂(F1ρ1)

∂x1
+

∆t
2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2),

where the fact ρ1\2 = ρ1 at time t has been used. For simplicity, the arguments have been
suppressed for functions evaluated at x1(t), and this convention will be kept throughout this
subsection. So

ft+∆t(x1\2(t + ∆t)) = ft(x1\2(t + ∆t))− ∆t
ρ1

∂(F1ρ1)

∂x1
+

∆t
2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2).

Using the Euler-Bernstein approximation (e.g., Lasota & Mackey, 1994) of (50), the x1\2(t + ∆t)
in the argument of ft on the right hand side can be expanded as

x1\2(t + ∆t) = x1(t) + F1∆t + ∑
k

b1k∆wk + O(∆t2).

And hence

ft+∆t(x1\2(t + ∆t))

= ft

(
x1 + F1∆t + ∑

k
b1k∆wk

)
− ∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t
2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2)

= ft(x1) +
∂ ft
∂x1

(
F1∆t + ∑

k
b1k∆wk

)
+

1
2

∂2 ft

∂x2
1

(
F1∆t + ∑

k
b1k∆wk

)2

−∆t
ρ1

∂(F1ρ1)

∂x1
+

∆t
2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2), (55)

where Taylor series expansion has been performed. Take expectations on both sides with
respect to their respective random variables. Recalling how density evolution is defined,
these expectations are equal (see Lasota & Mackey, 1994). Thus the left hand side results
in −H1\2(t + ∆t), and the first term on the right hand side is −H1(t). Notice that for a Wiener
process wk, ∆wk ∼ N(0, ∆t), that is to say,

E∆wk = 0, E(∆wk)
2 = ∆t;

also notice that ∆wk are independent of (x1, x2). So

E

(
∂ f1
∂x1

∑
k

b1k∆wk

)
= E

(
∂ f1
∂x1

)
∑
k

b1kE∆wk = 0.

Hence the second term on the right hand side is

∆t · E
(

F1
∂ ft
∂x1

)
.

For the same reason, the third term after expansion leaves only one sub-term of order ∆t:

1
2

E


 ∂2 ft

∂x2
1

∑
k

b1k∆wk ∑
j

b1j∆wj




=
1
2

E


 ∂2 ft

∂x2
1


∑

k
b2

1k(∆wk)
2 + ∑

k �=j
b1kb1j∆wk∆wj




 .

Using the independence between the perturbations, the summation over k �=j inside the paren-
theses must vanish upon applying expectation. The first summation is equal to g11∆t, by the
definition of gij and the fact E(∆wk)

2 = ∆t. So the whole term is

∆t
2

E

[
g11

∂2 ft

∂x2
1

]
.

These, plus the fact that
ft = log ρ1\2(t; x1) = log ρ1,

all put together, (55) followed by an expectation on both sides yields

H1\2(t + ∆t) = H1(t)− ∆t · E
(

F1
∂ log ρ1

∂x1

)
− ∆t

2
E

(
g11

∂2 log ρ1

∂x2
1

)

+∆t · E
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1
ρ1

∂(F1ρ1)

∂x1

)
− ∆t

2
E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)
+ O(∆t2).

The second and fourth terms on the right hand side can be combined to give

∆t · E
(
−F1

∂ log ρ1
∂x1

+
1
ρ1

∂(F1ρ1)

∂x1

)
= ∆t · E

(
∂F1
∂x1

)
.

So

dH1\2
dt

= lim
∆t→0

H1\2(t + ∆t)− H1(t)
∆t

= E
(

∂F1
∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
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− 1

2
E

(
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ρ1

∂2(g11ρ1)
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1

)
.

Q.E.D.

With
dH1\2

dt evaluated, now it is easy to obtain T2→1, namely, the information flow from x2 to
x1.

Theorem 4.1. For the system (2), the time rate of information transferred from x2 to x1 is
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Here g11 is the same as that defined in (46), i.e., g11 = ∑k b2
1k. Eq. (52) divided by ρ1\2 yields
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,

where ft is a function of x1,
ft(x1) = log ρ1\2(t, x1). (54)

We are doing this in the hope of obtaining an evolution law for H1\2, as by the definition
of Shannon entropy we will just need to consider how the expectation of − ft(x1) evolves.
Discretizing,
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where the fact ρ1\2 = ρ1 at time t has been used. For simplicity, the arguments have been
suppressed for functions evaluated at x1(t), and this convention will be kept throughout this
subsection. So
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Using the Euler-Bernstein approximation (e.g., Lasota & Mackey, 1994) of (50), the x1\2(t + ∆t)
in the argument of ft on the right hand side can be expanded as

x1\2(t + ∆t) = x1(t) + F1∆t + ∑
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b1k∆wk + O(∆t2).

And hence
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where Taylor series expansion has been performed. Take expectations on both sides with
respect to their respective random variables. Recalling how density evolution is defined,
these expectations are equal (see Lasota & Mackey, 1994). Thus the left hand side results
in −H1\2(t + ∆t), and the first term on the right hand side is −H1(t). Notice that for a Wiener
process wk, ∆wk ∼ N(0, ∆t), that is to say,

E∆wk = 0, E(∆wk)
2 = ∆t;

also notice that ∆wk are independent of (x1, x2). So
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For the same reason, the third term after expansion leaves only one sub-term of order ∆t:
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Using the independence between the perturbations, the summation over k �=j inside the paren-
theses must vanish upon applying expectation. The first summation is equal to g11∆t, by the
definition of gij and the fact E(∆wk)

2 = ∆t. So the whole term is
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2
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∂2 ft
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.

These, plus the fact that
ft = log ρ1\2(t; x1) = log ρ1,

all put together, (55) followed by an expectation on both sides yields

H1\2(t + ∆t) = H1(t)− ∆t · E
(

F1
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∂x1
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− ∆t

2
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+ O(∆t2).

The second and fourth terms on the right hand side can be combined to give

∆t · E
(
−F1
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∂x1

+
1
ρ1

∂(F1ρ1)

∂x1

)
= ∆t · E

(
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)
.

So

dH1\2
dt

= lim
∆t→0

H1\2(t + ∆t)− H1(t)
∆t
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(
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∂x1

)
− 1

2
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(
g11

∂2 log ρ1
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)
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2
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.

Q.E.D.

With
dH1\2

dt evaluated, now it is easy to obtain T2→1, namely, the information flow from x2 to
x1.

Theorem 4.1. For the system (2), the time rate of information transferred from x2 to x1 is
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T2→1 = −E2|1

(
∂(F1ρ1)

∂x1

)
+

1
2
E2|1

(
∂2(g11ρ1)

∂x2
1

)
, (56)

where E2|1 is the integration operator defined in Theorem 3.4.

Proof.
Subtracting (49) from (47), one obtains

T2→1 = −E
(

F1
∂ log ρ1

∂x1

)
− E

(
∂F1
∂x1

)
+

1
2

E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)

= −E
(

1
ρ1

∂(F1ρ1)

∂x1

)
+

1
2

E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)
, (57)

where E is the expectation with respect to ρ(x1, x2). Notice that the conditional density of x2
given x1 is

ρ2|1(x2|x1) =
ρ(x1, x2)

ρ1(x1)
.

The operator

E
(

1
ρ1

·
)
=

∫∫

Ω

(
ρ

ρ1
·
)

dx

is then simply the integration operator E2|1 as defined before in Theorem 3.4. The result thus
follows.

Notice that in (56), the first term on the right hand side is precisely that in (20) i.e., the result
of Liang & Kleeman (2005) based on intuitive argument for deterministic systems. This
derivation supplies an alternative proof of the argument, and hence Theorem 3.4.

Above is the information flow from x2 to x1. Likewise, the flow from x1 to x2 can be derived.
It is

T1→2 = −E1|2

(
∂(F2ρ2)

∂x2

)
+

1
2
E1|2

(
∂2(g22ρ2)

∂x2
2

)
, (58)

where ρ2 =
∫

ρ dx1 is the marginal density of x2, and E1|2 is the operator such that, for any
function f ∈ L1(Ω), E1|2 f =

∫∫
Ω ρ1|2(x1|x2) f (x) dx.

4.3 Properties
The above-derived information flow between system components possesses a very impor-
tant property, namely the property of transfer directionality or asymmetry as emphasized in
Schreiber (2000). One may have observed that the transfer in one direction need not imply
anything about the transfer in the other direction, in contrast to the traditional correlation
analysis or mutual information analysis. Particularly, in the extreme case that one component
evolves independently from the other, the observation is concretized in the following theorem.

Theorem 4.2. (Causality)
If the evolution of x1 is independent of x2, then T2→1 = 0.

Proof.
This property holds for formalisms with all the systems, but we here just prove with the
continuous case. For the discrete system, the proof is lengthy, and the reader is referred to
Liang & Kleeman (2007a) for details.

In (56), if F1 = F1(x1), and g11 is independent of x2, integration can be taken for ρ2|1 with
respect to x2 inside the double integrals, which gives

∫

Ω2

ρ2|1(x2|x1) dx2 = 1.

The right hand side hence becomes

−
∫

Ω1

∂(F1ρ1)

∂x1
dx1 +

∫

Ω1

∂(g11ρ1)

∂x2
dx1.

By the compact support assumption, these integrations both vanish, leaving a zero T2→1.

Alternatively, if neither F1 nor g11 has dependency on x2, the integrals in (48) can be taken
within the integrands, making ρ into ρ1. This way the whole equation becomes a 1D
Fokker-Planck equation for ρ1, and hence x1 is totally decoupled from the system, behaving
like an independent variable. By intuition there should be no information flowing from x2.
Q.E.D.

This theorem shows that, between two evolving state variables x1 and x2, evaluation of T2→1
and T1→2 is able to tell which one causes which one and, in a quantitative way, tell how
important one is to the other. Our information analysis thus gives a quantitative measure of
the causality between two dynamical events. For this reason, this property is also referred to
as the property of causality.

Another property holds only for the continuous system (2). Observe that the two terms of
(56), the first is the same in form as that in (20), i.e., the corresponding deterministic system.
Stochasticity contributes from the second term. An interesting observation is that:

Theorem 4.3. Given a stochastic system component, if the stochastic perturbation is independent of
another component, then the information transfer from the latter is the same in form as that for the
corresponding deterministic system.

Proof.
It suffices to consider only component x1. If the stochastic perturbation g11 = ∑k b2

1k is inde-
pendent of x2, then

E2|1

(
∂2(g11ρ1)

∂x2
1

)
=

∫
∂2(g11ρ1)

∂x2
1

dx1 = 0.

Here we have used the fact
∫

ρ2|1dx2 = 1. In this case, (56) and (20) have precisely the same
form. Q.E.D.

This property is also very interesting since a great deal of noise in real systems appear to
be additive; in other words, bij, and hence gij, are often constants. By the theorem these
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where E2|1 is the integration operator defined in Theorem 3.4.
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∂x2
1

)
, (57)

where E is the expectation with respect to ρ(x1, x2). Notice that the conditional density of x2
given x1 is

ρ2|1(x2|x1) =
ρ(x1, x2)

ρ1(x1)
.

The operator

E
(

1
ρ1

·
)
=

∫∫

Ω

(
ρ

ρ1
·
)

dx

is then simply the integration operator E2|1 as defined before in Theorem 3.4. The result thus
follows.

Notice that in (56), the first term on the right hand side is precisely that in (20) i.e., the result
of Liang & Kleeman (2005) based on intuitive argument for deterministic systems. This
derivation supplies an alternative proof of the argument, and hence Theorem 3.4.

Above is the information flow from x2 to x1. Likewise, the flow from x1 to x2 can be derived.
It is

T1→2 = −E1|2

(
∂(F2ρ2)

∂x2

)
+

1
2
E1|2

(
∂2(g22ρ2)

∂x2
2

)
, (58)

where ρ2 =
∫

ρ dx1 is the marginal density of x2, and E1|2 is the operator such that, for any
function f ∈ L1(Ω), E1|2 f =

∫∫
Ω ρ1|2(x1|x2) f (x) dx.

4.3 Properties
The above-derived information flow between system components possesses a very impor-
tant property, namely the property of transfer directionality or asymmetry as emphasized in
Schreiber (2000). One may have observed that the transfer in one direction need not imply
anything about the transfer in the other direction, in contrast to the traditional correlation
analysis or mutual information analysis. Particularly, in the extreme case that one component
evolves independently from the other, the observation is concretized in the following theorem.

Theorem 4.2. (Causality)
If the evolution of x1 is independent of x2, then T2→1 = 0.

Proof.
This property holds for formalisms with all the systems, but we here just prove with the
continuous case. For the discrete system, the proof is lengthy, and the reader is referred to
Liang & Kleeman (2007a) for details.

In (56), if F1 = F1(x1), and g11 is independent of x2, integration can be taken for ρ2|1 with
respect to x2 inside the double integrals, which gives

∫

Ω2

ρ2|1(x2|x1) dx2 = 1.

The right hand side hence becomes

−
∫

Ω1

∂(F1ρ1)

∂x1
dx1 +

∫

Ω1

∂(g11ρ1)

∂x2
dx1.

By the compact support assumption, these integrations both vanish, leaving a zero T2→1.

Alternatively, if neither F1 nor g11 has dependency on x2, the integrals in (48) can be taken
within the integrands, making ρ into ρ1. This way the whole equation becomes a 1D
Fokker-Planck equation for ρ1, and hence x1 is totally decoupled from the system, behaving
like an independent variable. By intuition there should be no information flowing from x2.
Q.E.D.

This theorem shows that, between two evolving state variables x1 and x2, evaluation of T2→1
and T1→2 is able to tell which one causes which one and, in a quantitative way, tell how
important one is to the other. Our information analysis thus gives a quantitative measure of
the causality between two dynamical events. For this reason, this property is also referred to
as the property of causality.

Another property holds only for the continuous system (2). Observe that the two terms of
(56), the first is the same in form as that in (20), i.e., the corresponding deterministic system.
Stochasticity contributes from the second term. An interesting observation is that:

Theorem 4.3. Given a stochastic system component, if the stochastic perturbation is independent of
another component, then the information transfer from the latter is the same in form as that for the
corresponding deterministic system.

Proof.
It suffices to consider only component x1. If the stochastic perturbation g11 = ∑k b2

1k is inde-
pendent of x2, then

E2|1

(
∂2(g11ρ1)

∂x2
1

)
=

∫
∂2(g11ρ1)

∂x2
1

dx1 = 0.

Here we have used the fact
∫

ρ2|1dx2 = 1. In this case, (56) and (20) have precisely the same
form. Q.E.D.

This property is also very interesting since a great deal of noise in real systems appear to
be additive; in other words, bij, and hence gij, are often constants. By the theorem these
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stochastic systems thus function like deterministic in terms of information flow. Of course,
the similarity is just in form; they are different in reality. The “deterministic” part of (56)
(i.e., the first term) actually need not be deterministic, for stochasticity contributes to the state
evolution and hence is embedded in the marginal density. As an illustration of the difference,
the differential entropy for deterministic systems may go to minus infinity, e.g., in the case of
the attractor of a fixed point or limit cycle, while this does not make an issue for stochastic
systems (Ruelle, 1997).

5. Applications

The information flow formalism has been verified with benchmark problems, and applied to
the study of several important dynamical system problems. Particularly, in Liang & Kleeman
(2007a) we computed the transfers within a Hénon map, and obtained a result unique to our
formalism just as one may expect on physical ground. In this section, we present two of these
applications/verifications, echoing the challenges initially posed in the introduction.

5.1 Baker transformation
The baker transformation is a 2D mapping Φ : Ω → Ω, Ω = [0, 1] × [0, 1], that mimics the
kneading of a dough; it is given by

Φ(x1, x2) =

{
(2x1, x2

2 ) 0 ≤ x1 ≤ 1
2 , 0 ≤ x2 ≤ 1

(2x1 − 1, 1
2 x2 +

1
2 )

1
2 < x1 ≤ 1, 0 ≤ x2 ≤ 1

. (59)

As introduced in the beginning, physicists have observed and intuitively argued that,
upon applying the transformation, information flows continuingly from the stretching
direction (here x1) to the folding direction (x2), while no transfer occurs the other way (see
Lasota & Mackey, 1994). However, until Liang & Kleeman (2007a), this important physical
phenomenon had not ever been quantitatively studied. In the following, we give a brief
presentation of the Liang & Kleeman result.

To start, first look at the F-P operator. It is easy to check that the baker transformation is
invertible, and measure preserving (the Jacobian J = 1), so by Eq. (14) its joint entropy stays
unchanged. (But one of its components is not; see below.) The inverse map is given by

Φ−1(x1, x2) =

{
( x1

2 , 2x2) 0 ≤ x2 ≤ 1
2 , 0 ≤ x1 ≤ 1

( x1+1
2 , 2x2 − 1) 1

2 ≤ x2 ≤ 1, 0 ≤ x1 ≤ 1
(60)

Using Φ−1, we can find the counterimage of [0, x1]× [0, x2] to be

1) 0 ≤ x2 < 1
2 ,

Φ−1([0, x1]× [0, x2]) = [0,
x1
2
]× [0, 2x2]; (61)

2) 1
2 ≤ x2 ≤ 1,

Φ−1([0, x1]× [0, x2]) = Φ−1
(
[0, x1]× [0,

1
2
]

)
∪ Φ−1

(
[0, x1]× [

1
2

, x2]

)

= [0,
x1
2
]× [0, 1] ∪ [

1
2

,
x1 + 1

2
]× [0, 2x2 − 1]. (62)

The F-P operator P is thus (cf. Lasota & Mackey, 1994)

Pρ(x1, x2) =
∂2

∂x2∂x1

∫∫

Φ−1([0,x1]×[0,x2])
ρ(s, t) dsdt,

which, after a series of transformations, leads to

Pρ(x1, x2) =

{
ρ( x1

2 , 2x2), 0 ≤ x2 < 1
2 ,

ρ( 1+x1
2 , 2x2 − 1), 1

2 ≤ x2 ≤ 1.
(63)

We now prove the following important result:

Theorem 5.1. For the baker transformation (59),

(a) T2→1 = 0,

(b) T1→2 > 0,

at any time steps.

Proof.
(a) With (63), we know that, upon one transformation, the marginal density of x1 increases
from

ρ1 =
∫ 1

0
ρ(x1, x2) dx2

to
∫ 1

0
Pρ(x1, x2) dx2 =

∫ 1/2

0
ρ(

x1
2

, 2x2) dx2 +
∫ 1

1/2
ρ(

x1 + 1
2

, 2x2 − 1) dx2

=
1
2

∫ 1

0

[
ρ
( x1

2
, x2

)
+ ρ

(
x1 + 1

2
, x2

)]
dx2

=
1
2

[
ρ1

( x1
2

)
+ ρ1

(
x1 + 1

2

)]
. (64)

Note that the (59) as a whole is invertible. Its x1 direction, however, is not. Consider x1 only,
the transformation reduces to a dyadic mapping, Φ1 : [0, 1] → [0, 1], Φ1(x1) = 2x1 (mod 1). It
is easy to obtain

Φ−1
1 ([0, x1]) = [0,

x1
2
] ∪ [

1
2

,
1 + x1

2
]

for x1 < 1. So it has an F-P operator

(Pρ)1\2(x1) =
∂

∂x1

∫

Φ−1
1 ([0,x1])

ρ1(s) ds

=
∂

∂x1

∫ x1/2

0
ρ1(s) ds +

∂

∂x1

∫ (1+x1)/2

1/2
ρ1(s) ds

=
1
2

[
ρ1

( x1
2

)
+ ρ1

(
1 + x1

2

)]
.

This is exactly the same as (64), implying that

T2→1 = 0, (65)
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Lasota & Mackey, 1994). However, until Liang & Kleeman (2007a), this important physical
phenomenon had not ever been quantitatively studied. In the following, we give a brief
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To start, first look at the F-P operator. It is easy to check that the baker transformation is
invertible, and measure preserving (the Jacobian J = 1), so by Eq. (14) its joint entropy stays
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We now prove the following important result:

Theorem 5.1. For the baker transformation (59),

(a) T2→1 = 0,

(b) T1→2 > 0,

at any time steps.

Proof.
(a) With (63), we know that, upon one transformation, the marginal density of x1 increases
from
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Note that the (59) as a whole is invertible. Its x1 direction, however, is not. Consider x1 only,
the transformation reduces to a dyadic mapping, Φ1 : [0, 1] → [0, 1], Φ1(x1) = 2x1 (mod 1). It
is easy to obtain

Φ−1
1 ([0, x1]) = [0,
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2
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2

,
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2
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for x1 < 1. So it has an F-P operator

(Pρ)1\2(x1) =
∂
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Φ−1
1 ([0,x1])

ρ1(s) ds

=
∂
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∫ x1/2

0
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1/2
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=
1
2

[
ρ1
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2
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This is exactly the same as (64), implying that

T2→1 = 0, (65)
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which is just as expected.

(b) To compute the transfer in the opposite direction, first compute the marginal distribution

∫ 1

0
Pρ(x1, x2) dx1 =

{ ∫ 1
0 ρ

( x1
2 , 2x2

)
dx1, 0 ≤ x2 < 1

2 ;∫ 1
0 ρ

(
x1+1

2 , 2x2 − 1
)

dx1, 1
2 ≤ x2 ≤ 1.

(66)

This substituted in

∆H2 = −
∫ 1

0

∫ 1

0
Pρ(x1, x2) ·

[
log

(∫ 1

0
Pρ(λ, x2)dλ

)]
dx1dx2

+
∫ 1

0

∫ 1

0
ρ(x1, x2) ·

[
log

(∫ 1

0
ρ(λ, x2)dλ

)]
dx1dx2, (67)

after a series of transformation of variables, gives

∆H2 = − log 2 + (I + II), (68)

where

I =
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ·

[
log

∫ 1
0 ρ(λ, x2)dλ∫ 1/2

0 ρ(λ, x2)dλ

]
dx1dx2, (69)

II =
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ·


log

∫ 1
0 ρ(λ, x2)dλ∫ 1

1/2 ρ(λ, x2)dλ


 dx1dx2. (70)

Note both I and II are nonnegative, because ρ(x1, x2) ≥ 0 and
∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1/2

0
ρ(x1, x2) dx1 (71)

∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1

1/2
ρ(x1, x2) dx1. (72)

Moreover, the two equalities cannot hold simultaneously, otherwise ρ will be zero, contra-
dicting to the fact that it is a density distribution. So I + II is strictly positive.

On the other hand, in the folding or x2 direction the transformation is always invertible, and
the Jacobian J2 = 1

2 . By Corollary 3.1,

∆H2\1 = E log
1
2
= − log 2. (73)

So,

T1→2 = ∆H2 − ∆H2\1 = I + II > 0. (74)

Q.E.D.

In plain language, Eqs. (74) and (65) tell that there is always information flowing from x1 or
the stretching direction to x2 or the folding direction (T1→2 > 0), while no transfer occurs the
other way (T2→1 = 0). Illustrated in Fig. 1 is such a scenario, which has been intuitively argued
in physics. Our formalism thus yields a result just as one may have expected on physical
grounds.

Fig. 1. Illustration of the baker transformation, and the associated information flow (middle)
between the components.

5.2 Langevin equation
The formulas (56) and (58) with the stochastic system (2) are expected to be applicable in a
wide variety of fields. To help further understand them, Liang (2008) examined a 2D linear
system which hereafter we will be using:

dx = A xdt + Bdw, (75)

where w is a Wiener process, and A = (aij) and B = (bij) are constant matrices. For conve-
nience, suppose that initially x is Gaussian:

x ∼ N(µ, C).

Then it is Gaussian all the time because the system is linear (cf. Gardiner, 1985). Write the
mean and covariance as

µ(t) =
(

µ1(t)
µ2(t)

)
, C(t) =

(
c11(t) c12(t)
c21(t) c22(t)

)
.

It is easy to find the equations according to which they evolve:

dµ

dt
= A µ, (76a)

dC
dt

= A C + C AT + B BT . (76b)

(B BT is the matrix (gij) we have seen before.) Solve them for µ and C, and we obtain the
probability density distribution at any time:

ρ(x) =
1

2π(det C)1/2 e−
1
2 (x−µ)T C−1(x−µ). (77)

Substitute this into (56) and (58), and the transfers T2→1 and T2→2 are obtained accordingly.

As an example, let A =

[
−0.5 0.1

a21 −0.5

]
, B =

[
1 1
1 1

]
. It is easy to show that both the

eigenvalues of A are negative; the system is hence stable and has an equilibrium solution:

µ(∞) =

(
0
0

)
, C(∞) =

(
2.44 2.20
2.20 2.00

)
,
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which is just as expected.
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Fig. 2. A solution of (76) and the corresponding information transfers with the matrices A and
B and initial condition as shown in the text. (a) µ1 and µ2; (b) c11, c12 = c21, c22; (c) a sample
path starting from (1,2); (d) the computed information transfers T2→1 (upper) and T1→2 = 0.

no matter how the system is initialized. Figs. 2a,b give the time evolutions of µ and C with

initial conditions µ(0) =
(

1
2

)
, and C(0) =

(
9 0
0 9

)
; For reference, in Fig. 2c we also plot

a sample path starting from x(0) = µ(0). Clearly, though initially x1 (red line) and x2 (blue
line) they differ by a significant value, soon they begin to merge and thenafter almost follow
the same path. To analyze the information transfer, observe that in this case the vector field
component

F2 = −0.5x2,

has no dependence on x1; furthermore,

gij = ∑
k

bikbjk

are all constants. So by Theorem 4.2, the information transferred from x1 to x2 should vanish
at all times:

T1→2 = 0.

This assertion is confirmed by the computed result. In Fig. 2d, T1→2 is zero through time. The
other transfer, T2→1, increases monotonically and eventually approaches to a limit.

Comparing Figs. 2c and 2d one may have more to talk about. Obviously the typical sample
paths of x1 and x2 in the former are highly correlated—-In fact they are almost the same. This

is in drastic contrast to the zero information flow from x1 to x2, namely T1→2, in the latter.
The moral here is, even though x1(t) and x2(t) are highly correlated, the evolution of x2 has
nothing to do with x1. To x1, x2 is causal, while to x2, x1 is not. Through this simple example
one sees how information transfer extends the traditional notion of correlation analysis
and/or mutual information analysis by including causality.

6. Summary

The past few years have seen a major advance in the formulation of information flow or in-
formation transfer, a fundamental general physics and dynamical system concept which has
important applications in different disciplines. This advance, beginning with an elegant for-
mula obtained by Liang & Kleeman (2005) for the law of entropy production

dH
dt

= E(∇ · F)

for system (10), has led to important scientific discoveries in the applied fields such as at-
mospheric science and oceanography. In this chapter, a concise introduction of the system-
atic research has been given within the framework of 2D dynamical systems. The resulting
transfer is measured by the rate of entropy transferred from one component to another. The
measure possesses a property of transfer asymmetry and, if the stochastic perturbation to the
receiving component does not rely on the giving component, has a form same as that for the
corresponding deterministic system. Explicit formulas, i.e., (56) and (58), have been obtained
for generic stochastic systems (2), which we here write down again for easy reference:
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where E stands for the mathematical expectation, and gij = ∑2
k=1 bikbjk, i = 1, 2.

We have applied the results to examine the information flow within the baker transformation
and a linear system. In the former, it is proved that there is always information flowing from
the stretching direction to the folding direction, while no information is transferred the other
way. In the latter, one sees that correlation does not necessarily mean causality; for two highly
correlated time series, the one-way information transfer could be zero. Information flow anal-
ysis thus extends the traditional notion of correlation analysis with causality quantitatively
represented, and this quantification is firmly based on a rigorous mathematical and physical
footing.
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Introduction 

The problem of controller reduction plays an important role in control theory and has 
attracted lots of attentions[1-10] in the fields of control theory and application. As noted by 
Anderson and Liu[2], controller reduction could be done by either direct or indirect methods. 
In direct methods, designers first constrain the order of the controller and then seek for the 
suitable gains via optimization. On the other hand, indirect methods include two reduction 
methodologies: one is firstly to reduce the plant model, and then design the LQG controller 
based on this model; the other is to find the optimal LQG controller for the full-order model, 
and then get a reduced-order controller by controller reduction methods. Examples of direct 
methods include optimal projection theory[3-4] and the parameter optimization approach[5] . 
Examples of indirect methods include LQG balanced realization[6-8], stable factorization[9] 
and canonical interactions[10]. 
In the past, several model reduction methods based on the information theoretic measures 
were proposed, such as model reduction method based on minimal K-L information 
distance[11], minimal information loss method(MIL)[12] and minimal information loss based 
on cross-Gramian matrix(CGMIL)[13]. In this paper, we focus on the controller reduction 
method based on information theoretic principle. We extend the MIL and CGMIL model 
reduction methods to the problem of LQG controller reduction. 
The proposed controller reduction methods will be introduced in the continuous-time case. 
Though, they are applicable for both of continuous- and discrete-time systems. 
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LQG Control 

LQG is the most fundamental and widely used optimal control method in control theory. It 
concerns uncertain linear systems disturbed by additive white noise. LQG compensator is 
an optimal full-order regulator based on the evaluation states from Kalman filter. The LQG 
control method can be regarded as the combination of the Kalman filter gain and the 
optimal control gain based on the separation principle, which guarantees the separated 
components could be designed and computed independently. In addition, the resulting 
closed-loop is (under mild conditions) asymptotically stable[14]. The above attractive 
properties lead to the popularity of LQG design. 
The LQG optimal closed-loop system is shown in Fig. 1 
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Fig. 1. LQG optimal closed-loop system 
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appropriate dimensions. ( )w t and ( )v t are mutually independent zero-mean white 

Gaussian random vectors with covariance matrices Q  and R ,respectively, and 
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While in the latter part, the optimal control law u  would be replaced with the 
reduced-order suboptimal control law, such as ru and Gu . 
 
The optimal controller is given by 
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where L andK are Kalman filter gain and optimal control gain derived by two Riccati 
equations, respectively. 

 
Model Reduction via Minimal Information Loss Method (MIL)[12] 

Different from minimal K-L information distance method, which minimizes the information 
distance between outputs of the full-order model and reduced-order model, the basic idea of 
MIL is to minimize the state information loss caused by eliminating the state variables with 
the least contributions to system dynamics. 
Consider the n-order plant 
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where ( ) l
rx t R , l n , ( ) p

ry t R , , ,r r rA B C are constant matrices. 
Define 

( ) ( ),rx t x t                                  (7) 
 

where ( )rx t is the aggregation state vector of ( )x t and l nR  is the aggregation matrix. 
From (5), (6) and (7), we obtain 
 

, , .r r rA A B B C C                              (8) 
 

In information theory, the information of a stochastic variable is measured by the entropy 
function[15]. The steady-state entropy of system (5) and (6) are 
 

1( ) ln(2 ) ln det ,
2 2
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The steady-state information loss from (5) and (6) is defined by 
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The aggregation matrixminimizing (13) consists of l eigenvectors corresponding to the l 
largest eigenvalues of the steady-state covariance matrix . 

 
MIL-RCRP: Reduced-order Controller Based-on Reduced-order Plant Model 

The basic idea of this method is firstly to find a reduced-order model of the plant, then 
design the suboptimal LQG controller according to the reduced-order model. 
We have obtained the reduced-order model as (6). The LQG controller of the reduced-order 
model is given by 
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The stability of the closed-loop system is not guaranteed and must be verified. 

MIL-RCFP: Reduced-order Controller Based on Full-order Plant Model 

In this method , the basic idea is first to find a full-order LQG controller based on the 
full-order plant model, then get the reduced-order controller by minimizing the information 
loss between the states of the closed-loop systems with full-order and reduced-order 
controllers. 
The full-order LQG controller is given by as (3) and (4). Then we use MIL method to obtain 
the reduced-order controller, which approximates the full-order controller. 
The l-order Kalman filter is given by 
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of the l eigenvectors corresponding to the l largest eigenvalues of the steady-state covariance 
matrix of the full-order LQG controller. 
In what follows, we will propose an alternative approach, the CGMIL method, to the LQG 
controller-reduction problem. This method is based on the information theoretic properties 
of the system cross-Gramian matrix[16]. The steady-state entropy function corresponding to 
the cross-Gramian matrix is used to measure the information loss of the plant system. The 
two controller-reduction methods based on CGMIL, called CGMIL-RCRP and CGMIL-RCFP, 
respectively, possess the similar manner as MIL controller reduction methods. 

 
Model Reduction via Minimal Cross-Gramian  
Information Loss Method (CGMIL)[16] 

In the viewpoint of information theory, the steady state information of (5) can be measured 
by the entropy function ( )H x , which is defined by the steady-state covariance matrix  . 
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From Linear system theory, the controllability matrix and observability matrix satisfy the 
following Lyapunov equation respectively: 
 

0
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By comparing the above equations, we observe that the steady-state covariance matrix is 
equal to the controllability matrix of (5), and the steady-state covariance matrix of the dual 
system is equal to the observability matrix. We called ( )H x  and ( )H x  the 
“controllability information” and “observability information”, respectively. In MIL method, 
only “controllability information” is involved in deriving the reduced-order model, while 
the “observability information” is not considered.  
In order to improve MIL model reduction method, CGMIL model reduction method was 
proposed in [13]. By analyzing the information theoretic description of the system, a 
definition of system “cross-Gramian information” (CGI) was defined based on the 
information properties of the system cross-Gramian matrix. This matrix indicates the 
“controllability information” and “observability information” comprehensively. 
Fernando and Nicholson first define the cross-Gramian matrix by the step response of the 
controllability system and observability system. The cross-Gramian matrix of the system is 
defined by the following equation: 
 

T T T
cross 0 0

(e )(e ) e et t t tdt dt,
 

  A A A AG b c bc               (23) 

 
which satisfies the following Sylvester equation: 
 

cross cross 0.  G GA A bc                       (24) 
 

From [16], the cross-Gramian matrix satisfies the relationship between the controllability 
matrix and the observability matrix as the following equation: 
 

2
cross .C OW WG                              (25) 

 
As we know that, the controllability matrix CW  corresponds to the steady-state covariance 

matrix of the system, while the observability matrix OW  corresponds to the steady-state 
covariance matrix of the dual system, which satisfy the following equations: 
 

Tlim { ( ) ( )},C t
E t t


W = x x                         (26) 

Tlim { ( ) ( )}.O t
E t t


 W = x x                         (27) 

 

Combine equation (25)、(26) and (27), we obtain: 
 

2 T T
cross lim { ( ) ( )} { ( ) ( )}.C O t

W W E t t E t t


  G = x x x x             (28) 

 
The cross-Gramian matrix corresponds to the steady-state covariance information of the 
original system and the steady-state covariance information of the dual system. Here we 
define a new stochastic state vector ( )t , and the relationship among ( )t , ( )x t and ( )x t  
satisfies the following equation: 
 

T

T T 2
cross

lim { ( ) ( )} lim ( ( ), ( ))

lim { ( ) ( )} { ( ) ( )} .
t t

t

E t t f t t

E t t E t t
 





 



 

  x x

x x x x G
      (29) 

 
We called ( )t as “cross-Gramian stochastic state vector”, which denotes the cross-Gramian 
information of the system. 
From the above part, we know that the steady-state covariance matrix of ( )t is the 

cross-Gramian matrix 2
crossG , the steady information entropy is called cross-Gramian 

information 2
cross cross( )I G , which satisfies the following equation: 

 
2

cross cross( )I H ( )G                           (30) 
 

where is the steady form of the stochastic state vector ( )t , that is lim ( )
t

t


  , and the 

information entropy of the steady-state is defined as follows: 
 

2 2
cross cross cross

1( ) ln(2 e) ln det .
2 2
nI H   ( )G G              (31) 

 
And the following equation can be obtained: 
 

2
cross cross

1( ) ln(2 e) ln det .
2 2
nI   G PQ                 (32) 

2
cross cross

( ) ( )( ) .
2

H HI 


x xG                    (33) 

 
From the above, we get that the cross-Gramian matrix indicates the controllability matrix 
and observability matrix comprehensively. 
CGMIL model reduction method is suit for SISO system. The basic idea of the algorithm is 
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presented as follows, for continuous-time linear system. 
The cross-Gramian matrix of the full-order system and the reduced-order system are as 
follows: 

cross cross 0,  G GA A bc                        (34) 

cross cross 0.r r  G GA A bc                        (35) 
 

When the system input is zero mean Gaussian white noise signal, the cross-Gramian 
information of the two systems can be obtained as: 
 

2 2
cross cross cross

1( ) ln(2 e) ln det ,
2 2
nI H   ( )G G            (36) 

r 2 r 2 r
cross cross r cross

1( ) ln(2 e) ln det .
2 2
lI H   ( )G G           (37) 

 
The cross-Gramian information loss is: 
 

2 r 2 r
cross cross cross cross cross r

2 2 r
cross cross

( ) ( )
1ln(2 e) [ln det ln det ].

2 2

I I I H H
n l

    


   

( ) ( )G G

G G

 
         (38) 

 
In order to minimize the information loss, we use the same method with the MIL method: 
 

2 2 .r
cross crossG G                            (39) 

 
where the aggregation matrix  is adopted as the l  ortho-normal eigenvectors 
corresponding to the l th largest eigenvalues of the cross-Gramian matrix, then the 
information loss is minimized. 
Theoretical analysis and simulation verification show that, cross-Gramian information is a 
good information description and CGMIL algorithm is better than the MIL algorithm in the 
performance of model reduction. 

 
CGMIL-RCRP: Reduced-order Controller Based-on  
Reduced-order Plant Model By CGMIL 

In this section, we apply the similar idea as method 1 of MIL model reduction to obtain the 
reduced-order controller. 
The LQG controller of the reduced-order model consists of Kalman filter and control law as 
follows: 

1 1 1 1ˆ ˆ ,GC GC GC GCx A x B y                         (40) 

1 1 1ˆ .G GC Gu C x                           (41) 
 

where 1 1 1 1 1 1GC G G G G GA A B K L C   , 1 1,GC GB L 1 1.GC GC K  
 
The r-order filer gain and control gain are obtained: 
 

1 1
1 1 1 1 1( ) ,T T T

G G G G GL S C V S C V                    (42) 
1 1

1 1 1 1 1.
T T T

G G G G GK R B P R B P                       (43) 
 

where 1GS and 1GP satisfy the following Riccati equations 
 

1
1 1 1 1 1 1 1 1 0,T T

G G G G G G G GP A A P P B R B P Q                 (44) 
1

1 1 1 1 1 1 1 1 0.T T
G G G G G G G GA S S A S C V C S W                (45) 

 
And the state space equation of the r -order closed-loop system is as follow: 
 

1

1 1 1 1 1 1 1 11

1

1 1 1 1 1 1 1 1

ˆˆ

       ,
ˆ

GC

GC G G GC GC G G GG

G

G G G G G G G G

x A BC x w
B C A B C B C x L vx

A BK x w
L C A B K L C x L v

       
               

     
            




              (46) 

 1
1

0 .
ˆG
G

x
y C v

x
 

  
 

                       (47) 

 
CGMIL-RCFP: Reduced-order Controller Based  
on Full-order Plant Model By CGMIL 

Similar to the second method of MIL controller reduction method，the reduced-order 
controller obtained by the full-order controller using CGMIL method is: 
 

2 2 2 2ˆ ˆ ,G GC G GCx A x B y                           (48) 

2 2 2ˆ .G GC Gu C x                              (49) 
 

where 2 2 2 ,GC G c GA A    2 2 ,GC GB L 2 2GC GC K  , 2G is the aggregation 

matrix consists of the l largest eigenvalues corresponding to the l th largest eigenvectors of 
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the cross-Gramian matrix of the full-order controller. The r -order filter gain and control 
gain is obtained: 

1
2 2 2 ,T

G G GL L SC V                           (50) 
1

2 2 2 .
T

G G GK K R B P                          (51) 
 

The state space equation of the reduced-order controller is then given by: 
 

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆ( )
ˆ ˆ .

G GC G GC G G G G G G G G

G GC G G G

x A x B y A BK LC x Ly
u C x K x

  



         

   


(52) 

 
Stability Analysis of the Reduced-Order Controller 

Here we present our conclusion in the case of discrete systems. 
Suppose the full-order controller is stable, and we analyze the stability of the reduced-order 
controller obtained by method MIL-RCFP. 
Conclusion 1.1 [Lyapunov Criterion] The discrete-time time-invariant linear autonomous 
system, when the state 0ex  is asymptotically stable, that is the amplitude of all of the 

eigenvalues of G ( )i G ( 1, 2,..., )i n less than 1. If and only if for any given positive 

definite symmetric matrix Q , the discrete-time Lyapunov equation: 
 

,TG PG Q P                             (53) 
 

has the uniquely positive definite symmetric matrixP . 
The system parameter of the full-order controller is: cA A BK LC   . From 
Lyapunov Criterion, the following equation is obtained: 
 

.T
c cA PA Q P                             (54) 

 

Multiplying leftly by the aggregation matrix c  and rightly by T
c , we get: 

 

( ) .T T T
c c c c c c c cA P A Q P                       (55) 

 
Because 2c c c cA A   , the following equation is obtained: 
 

2 2 .T T T
c c c c c c c cA P A Q P                        (56) 

 

When '
1[ , ,..., ]T T

c c l n    is assumed, where 1,...,l n  is the n-l smallest 
eigenvectors corresponding to the n-l smallest eigenvalues of the steady-state covariance 

matrix c . The aggregation matrix '
c consists of the orthogonal eigenvectors, when 

P and Q are positive definite matrix, ' '( )Tc cP  and ' '( )Tc cQ  are positive definite. 

The matrix ( )Tc cP  consists of the first l l main diagonal elements of 

matrix ' '( )Tc cP  ; similarly, the matrix ( )Tc cQ  consists of the first l l main 

diagonal elements of matrix ' '( )Tc cQ  . If ' '( )Tc cP  and ' '( )Tc cQ  are positive 

definite, then ( )Tc cP  and ( )Tc cQ  are positive definite. As a result, the 
reduced-order controller obtained from method MIL-RCFP is stable. 

 
Illustrative Example  

1. Lightly Damped Beam 
We applied these two controller-reduction methods to the lightly damped, simply 
supported beam model described in [11] as (5). 
The full-order Kalman filter gain and optimal control gain are given by 
 

[2.0843  2.2962  0.1416  0.1774  -0.2229
       -0.4139  -0.0239  -0.0142  0.0112  -0.0026] ,T
L 

               (57) 

[0.4143  0.8866  0.0054  0.0216  -0.0309
        -0.0403  0.0016  -0.0025  -0.0016  0.0011].
K 

                (58) 

 
The proposed methods are compared with that given in [11], which will be noted by method 
3 later. The order of the reduced controller is 2. We apply the two CGMIL controller 
reduction methods and the first MIL controller reduction method (MIL-RCRP) to this model. 
The reduced-order Kalman filter gains and control gains of the reduced-order closed-loop 
systems are given as follows: 
 

MIL-RCRP: 1 1[-1.5338;-2.6951] , [-0.1767   -0.9624]T
r rL K   

CGMIL-RCRP: 1 1[-3.0996  -0.0904] , [-0.9141  -0.3492]T
G GL K   

CGMIL-RCFP: 2 2[0.4731  0.9706] , [0.4646  -0.9785]T
G GL K   

Method 3: 3 3[2.1564  2.2826] , [0.3916   0.8752].T
r rL K   

 
Three kinds of indices are used to illustrate the performances of the reduced-order 
controllers. 
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a) We define the output mean square errors to measure the performances of the 
reduced-order controllers 

 
* 2

*0
( ) / ,

T

aE y t dt T                             (59) 

 
where * 1,2,3  indicates the closed-loop systems obtained from method 1,2,3, 
respectively. T is the simulation length. 

b) We compare the reduced-order controllers with the full-order one by using 
relative error indices 
 

* 2
*0

( ( ) ( )) / ,
T

bE y t y t dt T                         (60) 

 
where ( )y t is the system output of the full-order closed-loop system. 

c) We also use the LQG performance indices given by following equations, to 
illustrate the controller performances 

 

 *
* *0

1 ( ) ( ) ( ) ( )  .
T T TJ x t Qx t u t Ru t dt

T
                   (61) 

 
The performances of the reduced-order controllers are illustrated by simulating the 
responses of the zero-input and Gaussian white noise, respectively. The simulation results 
are shown in the following figures and diagrams. 
As shown in Fig. 1 (Response to initial conditions), when input noise and observation noise 
are zero, the system initial states are set as (0) 1/ , 1,...10ix i i  .The reduced-order 
closed-loop system derived by method 3 is close to the full-order one. 
 

 

 
Fig. 1. Zero-input response for full-order system and reduced-order system 
 
In Fig. 2 (Response of Gaussian white noise), almost all the reduced-order closed-loop system 
are close to the full-order one except the reduced-order system obtained by CGMIL 2. 
 

 
Fig. 2. Gaussian white noise response for full-order system and reduced-order system 

 
As illustrated in Fig. 3 (Bode Plot), the reduced-order closed-loop systems obtained from 
method 1 and 3 are close to the full-order closed-loop system. 
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Fig. 3. Bode plots for full-order system and reduced-order system 

 
 CGMIL-RCRP CGMIL-RCFP Method 3 MIL-RCRP 

*
aE of the zero-input 0.4139 0.3694 0.3963 0.4139 
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2. Deethanizer Model 
Distillation column is a common operation unit in chemical industry. We apply these two 
MIL controller-reduction methods to a 30th-order deethanizer model. 
The order of the reduced-order controller is 2. The reduced-order Kalman filter gains and 
control gains of the reduced-order closed-loop systems are given as follows: 
 

MIL-RCRP: 1 [-0.0031 0.0004]TrL  , 1 [-0.2289   -0.1007;-0.3751   -0.5665]TrK  ; 

MIL-RCFP: 1 [-0.0054 -0.0082]TrL  , 2 [32.8453    2.0437;-9.4947    6.6710]TrK  ; 
 
We use the same performances as example 1 to measure the reduced-order controller. 
 

Fig. 4 (Impulse Response): When the system input is impulse signal, the reduced-order 
closed-loop system is close to the full-order system. 
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Fig. 5 (Step Response): When the system input is step signal, the reduced-order closed-loop 
system is close to the full-order system. 
 

 
Fig. 5. Step response for full-order system and reduced-order system 

 
Fig. 6 (Gaussian white noise Response): When the system input is Gaussian white noise, the 
reduced-order closed-loop system is close to the full-order system and outputs are near 
zero. 
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Fig. 6. Gaussian white response for full-order system and reduced-order system 
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Diagram.2 Performances of the reduced-order controllers 

Conclusion 

1. This paper proposed two controller-reduction methods based on the information 
principle—minimal information loss(MIL). Simulation results show that the 
reduced-order controllers derived from the proposed two methods can approximate 
satisfactory performance as the full-order ones. 

2. According to the conclusion of literature [17], the closed-loop system with optimal 
LQG controller is stable. However, its own internal stability can not be guaranteed. If 
the full-order controller is internal stability, the reduced-order controller is generally 
stable. We would modify the parameters such as the weighting matrix or noise 
intensity to avoid the instability of the controller. 

3. The performances of the two reduced-order controllers obtained by CGMIL method 
approximate the full-order one satisfactorily and under certain circumstances. CGMIL 
method is a better information interpretation instrument of the control system relative 
to the MIL method, while it is only suit for single-variable stable system.  
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1. The problem statement of the optimum structure selection  
in nonlinear dynamic systems of random structure 

The most interesting and urgent, but unsolved till now, problem in the theory of the 
dynamic systems of random structure is the synthesis problem for the optimum control of 
the structure selection in the sense of some known criterion on the basis of the information 
obtained from the meter. The classical results known in this direction [1] allow to solve the 
problem of the optimum control only by the system itself (or its specific structure), but not 
by the selection of the structure. 
In this connection the solution of the synthesis problem for the optimum selection control of 
the structure for the nonlinear stochastic system by the observations of the state vector 
under the most general assumptions on the character of the criterion applied for the 
selection optimality is of theoretical and practical interest. 
To solve the given problem we formulate it as follows. 
For the nonlinear dynamic system of random structure, generally [1] described in the l-th 
state by the vector equation of form 

           0 00, , ,l ll
tf t f t n t                                           (1) 

where  1,l S  is the state number (number of the structure); 
       0, , ,llf t f t   are nonlinear vector and matrix functions of the appropriate 

dimension n(l)  N and     ,l lm n      1max ,..., SN n n ; 

(t) is the state vector of dimension N in any structure, 
 l
tn  is the Gaussian white normalized vector - noise of dimension m(l); the observer of the 

state vector of which is described, in its turn, by the equation 
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     , ll
tZ H t W                                                        (2) 

where Z is the M - dimensional vector of the output signals of the meter; 
   ,lH t  is the vector - function of the observation of the l-th structure of dimension М; 

is the Gaussian white vector - noise with the zero average and matrix of intensities    l
WD t , 

we should find such a law of transition  t Z l s  , , , 1,  from one structure into another, 

which would provide on the given interval of time T = [t0, tK] the optimum of some 
probabilistic functional J0 generally nonlinearly dependent on the a posteriori density of 

distribution (,t/Z(),  [t0, t]) = (,Z,t) of the state vector : 
 

 
*

0 , ,
T

J Z t d dt


         

where * is the domain of defining argument  in which the optimum is searched; 
Ф is the given nonlinear analytical function. 
Thus the different versions of the form of function Ф allow to cover a wide class of the 
optimality conditions by accuracy of:  
- the probability maximum (minimum) of vector  in the area *: Ф() = ; 
- the deviation minimum of the required probability density  from the given one g: 

   2g    ,   g    ,   ln
g

 


  
 
 
 

 (the Kulback criterion) etc.;  

 - the information maximum on the state vector :   ln ln T
   

 
 

 
   
      

 (the 

Fisher criterion ) etc. 
The similar formulation of the problem covers the selection problem for the optimum 
structure and in the nonobservable stochastic systems of random structure as well - in this 
case in the expression for J0 by  we understood the prior density of vector . Thus the form 
of function Ф should be selected taking into account, naturally, the physical features of the 
problem solved. 
The analysis of the physical contents of the structure selection control providing the 
optimum of functional J0 shows that as the vector determining subsequently the control of 
the structural transitions, it is most expedient to use the vector of intensities of the state 
change [1, 2] 
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where  lr Z t  , ,  is the intensity of transitions from state l into state r, requiring while its 
forming, for example, in order to prevent the frequent state change, the minimum of its 

quadratic form on the given interval of time Т for * , i.e. 

   
*

min , , , ,T

T

Z t Z t d dt


      . 

 
As far as vector   contains the zero components, then in essence, from here on the search 
not of vector   itself, but vector 0 , related to it by the relationship  = E 0 0 , is carried out, 
where 0  is the vector formed from vector   by eliminating the zero components; 
Е0 is the matrix formed from the unit one by adding the zero rows to form the appropriate 
zero elements in vector  . 
And finally the minimized criterion J takes the form 

      
*

0 0, , , , , ,T

T

J Z t Z t Z t d dt


                                         (3) 

In its turn, for process  described by equations (1), the density of its a posteriori distribution 
 (DAPD) can be given as 

       
1 1

, , , , , ,
s s

l
Z

l l

Z t Z l t t     
 

   , 

where  Z(l)(,t) is the DAPD of the extended vector 
l


 (l is the state number). 

In the case of the continuous process , which is most typical for practice , when the restored 
values of the l-th state coincide with the final value of the process of the r-th state, functions 
 Z(l)(,t), 1,l S , are described by the following system of the Stratonovich generalized 
equations [1]: 
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   ˆ l
pqD t  is the algebraic addition of the pq-th element in the determinant  

   l
WD t  of matrix    l

WD t ; 

p, q are indexes of the respective components of vectors; 
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L  is the Fokker –Planck (FP) operator;  

or entering vector 0 (,Z,t) and vector          
Ts

Z Z Z,t ,t ... ,t      1 , we have in the 

general form: 
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, , , , , ,Z T
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      ,Z Z ZU L Q                                                        (4) 
 

where ES is the unit matrix of dimension S; 
IS is the unit row of dimension S; 

  is the symbol of the Kronecker product; 
 

 

 

 

 

 







Z

Z

Z

Z
s










...
.
 

 
For the nonobservable dynamic systems the FP generalized equations are derived from (4) 
at Q = 0. 
Taking into account that introducing vector  Z for density  the expression has the form 

 
   , , ,s ZZ t I t    , 

 
functional (3) is given as  
 

       
*

0 0 *, , , , , ,T
S Z

T T

J I t Z t Z t d dt W t dt


                                (5) 

and for the simplification of the subsequent solution the vector equation (4) is rewritten as 
follows: 
 

         


      Z
Z Z S S Z

T
S Z Zt

U E I E E U F          .  (6) 

 

Then the problem stated finally can be formulated as the problem of search of vector 0, that 
provides the synthesis of such a vector  Z described by equation (6), which would deliver 
the minimum to functional (5). The synthesis of the optimum vector  Z allows immediately 

to solve the problem of the selection of the optimum structure by defining the maximal 

components of the vector of the state probabilities    ,ZP t t d  




   [1]. 

 
2. The general solution of the synthesis problem  
for the stochastic structure control 

For the further solution of the problem we use the method of the dynamic programming, 
according to which by search of the optimum control in the class of the limited piecewise-
continuous functions with values from the open area  * the problem is reduced to the 
solution of the functional equation [3] 

*
*min 0dV W

dt 

   
 

                                                    (7) 

 

under the final condition V(tK) = 0 with respect to optimum functional V, parametrically 

dependent on time t  T and determined on a set of vector - functions  Z, satisfying 
equation (6). 
For the linear systems functional V is found as the integrated quadratic form [3] 
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v is a SS matrix , whence we have: 
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* 0 0
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and taking into account equation (6) for  Z we obtain the initial expression for the 
subsequent definition of the optimum one  0* 

        
*

* 0 0 0
v v v .T T T T

Z Z Z Z Z S Z
dV W U F I d
dt t



         


        
      (8) 

The analysis of the given expression shows that the definition of vector  
 0* from the solution of the functional equation (7) is reduced to the classical problem of 
search of vector - function realizing the minimum of the certain integral (8). Thus the 
required vector - function  0*(,Z,t) should satisfy the following system of the Euler 
equations: 

   *
0v v 2 0 ,T T

Z ZF        

whence 
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equation (6). 
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The analysis of the given expression shows that the definition of vector  
 0* from the solution of the functional equation (7) is reduced to the classical problem of 
search of vector - function realizing the minimum of the certain integral (8). Thus the 
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The substitution of the found optimum law for the change of state  0* into (6) allows to 
write down the equations for the optimum (in the sense of (5)) vector  Z 
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the integration of which, in its turn, completes the solution of the selection problem of the 
optimum structure by defining the maximal component of the vector of the state 
probabilities  
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The equations required for defining the matrix function v(,t), included in (9), follow from 
the constrain 
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after substituting the found vector  0* into (8) 
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where    0 1
1 1...
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 is the auxiliary vector introduced for convenience in 

transformations and simplification of the record of equation (10). 
The joint solution of systems (9, 10) under the boundary-value constrains 

   0 0, , v , 0z z kt t      exhausts, in essence, the theoretical solution of the problem 
stated, including the prior case as well - for the nonobservable dynamic systems of random 
structure. 
It should be noted that in case of forming  0* in the assumption of its independence on , 
the integrated dependence  0* on  Z follows from the constrain of minimization of the 
functional equation (8)  
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which after substitution into (6) and (8) results in forming a system already of the integro-
differential (as distinct from (9, 10)) equations with partial derivatives, the solution search of 
which appears to be much more difficult than in the first case. 

In spite of the fact that the found theoretical solution of the problem stated defines the basic 
feasibility of the optimum selection of the process structure , the practical solution of the 
boundary-value problem directly for the conjugated system of equations with the partial 
derivatives (9, 10) represents a problem now. 
Then in this connection as one of the solution methods of this problem (as the most 
universal one)  we consider the method using the expansion of functions  Z, v into series 

by some system of the orthonormal functions 1
T

N   
 
of vector argument: 

               v , , , ; ,zt B t t A t A t B t         are ordinary and block matrixes of 
factors of expansion determined in the course of solving. In this case the problem is reduced 
to the point-to-point boundary-value problem of integration of the matrix system already of 
the ordinary differential equations: 
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the solution of which appears to be already much easier and can be carried out by various 
traditional ways : the ranging short method , the method of the invariant plunge etc. The 
feature of the practical realization of the solution in this case is the absence of the rigid 
requirements to its accuracy, as in case of the structure selection the number of the maximal 

components of vector      P t A t d


    , rather than its value is only defined. For the 

illustration of the real feasibility of applying the similar approach we consider the example. 
For the nonlinear stochastic process of random structure described by the equation 
 

   ,l
tf t n   , 

 

where         1 22 31,2; , , , 0,01 ,l f t f t           
nt  is the Gaussian normalized white noise,  
the equation of the observer has the form 
 

   ,l
tZ H t W  , 

 

where        1 22 2 31,2; , 0,5 , , 1, 2 0,1 ;l H t H t         
Wt  is the Gaussian normalized white noise. 
It is required to carry out the structure selection of process  providing the maximum of 
probability of its occurrence in the given limits * min max, ; ,       0 5 0 7  in time 
interval Т = [0; 300] s., i.e. the minimizing criterion 
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In this case equations (9, 10) for the optimum vector  Z and conjugated matrix function V 
have the form: 
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The solution of the given problem was carried out on the basis of the approximation of 
functions  Z, V by the Fourier series in interval [-5; 5] within the accuracy of 4 terms of 
expansion and integration of the obtained system of equations for factors of expansion by 
means of the approximated method of the invariant plunge on time interval [0; 300] s. When 
integration and formation of the approximated values of functions  Z(1),  Z(2) had been 
taken place, the numbers of the structures selected by the character of the maximal state 
probability at the current time, appeared to be distributed in time as follows: 

- in interval [0; 48] s - the second structure; 
- in interval [48; 97] s - the first structure; 
- in interval [97; 300] s - the second structure. 

Concurrently the integration of the system of the DAPD equations  Z(1),  
 Z(2) was carried out for the traditional case of the uncontrolled change of states with the 
unit intensity [1] and it was established that in the latter case the value of the minimized 
criterion J had appeared to be by a factor of 1,35 higher than that of in the optimum control 
of the structure selection. 
Thus it allows to make a conclusion not only on the theoretical solution of the general 
problem for the optimum structure control of the stochastic dynamic systems, but on the 
feasibility of the effective practical application of the method developed as well. It is obvious 
that for the dynamic systems of the great dimension again there arises the traditional 
problem of the numerical realization of the approach suggested. As far as one of the ways of 
simplifying the control algorithms lays in the direction of the preliminary solution 
approximation of the vector equation of the distribution density, then for the multistructural 
system we apply the approach suggested in [1], allowing to write down the differential 
equations of the parameters of density, approximating the initial one. Thus it should be 
taken into account the character of the approximation , which arises only in the 
multistructural system, - only the normalized densities of the state vectors of each structure 
(ignoring the probabilities of occurring the structures themselves) are approximated. 
In this case the function of the distribution density  of the state vector can be given as [1] 
 

   
1

, ,
S

l l
l

t P t   


 ,                                                  (11) 

 
where Pl is the probability of the l-th structure; 
l(,t) is the distribution density  in the l-th structure. 
Then the scheme of the synthesis of the structure control, following from the similar 
approach, we consider in detail. Thus we investigate the prior case (for the nonobservable 
structures), as a more adequate one to the practical applications (due to the character of 
forming the terminal control requiring the whole set of measurements on the given time 
interval of optimization, that for a number of practical problems is unacceptable). But it 
should be noted that the synthesis of the a posteriori control on the basis of the approach 
described below does not practically differ from the prior one - only by the additional 
component caused by the observation availability in the right-hand part of the equations of 
parameters (12) [1] given below (not affecting the procedure of forming the control 
required). So, we investigate the synthesis method for the structure control using the 
approximating representation of the densities of the state vectors of the dynamic structures. 
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required). So, we investigate the synthesis method for the structure control using the 
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3. Suboptimum selection control of nonlinear dynamic structures 

In solving the practical problems of the analysis and synthesis of systems with random 
structure to describe densities l one uses, as a rule, their Gaussian approximation l  which 
results in specifying the parameters determining l  - the vector of the mathematical 

expectation  ˆ l  and the covariance matrix  lR , in the form of the known system of the 
ordinary differential equations (providing the required trade-off of accuracy against the 
volume of the computing expenses [4]). 
In the case investigated below for the continuous process , when the restored values of the 
l-th state coincide with the final values of the process of the r-th state, the system of 
equations for parameters  , obtained on the basis of the Gaussian approximation , has the 
following form [1, 4]: 
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               (12) 

1, ,l S  

l̂P  is the probability of the l-th process structure under the Gaussian approximation; 

    ˆ , ,l l
lr R t   is the intensity of transitions from state l into state r. 

To find the solution required in the general form we present the given system as follows. 
Introduce vectors 
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and using the operation of transformation of matrix A with components aij (i,j=m,n) into 
vector А(v): 

 

А( ) = mnnnmm ааааааааа ............ 212221212111
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we previously write down the equations of parameters  , separating the components into 
dependent and independent ones on intensities  rl: 
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and then unifying vectors ̂  and R(V) into the generalized vector  V

ˆ
X̂

R


  as well. 

Then as the vector, determining the structural transition control in the system examined, we 
use, similarly to the above-stated, the vector of intensities of the state change  
 

         SP X t P X t P X t P X t P X t     21 1 12 32
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that results in the following form of the minimized criterion J: 
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*

0 0
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For the problem solution in view of the designations accepted the system of equations (13) is 
given as: 

    1 0 0
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SP E P P E I E E       
  

   X X t T P X E   0 0, , ,
                                                (15) 

 
where    is the symbol of the Kronecker product; 
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IS  is the unit row of dimension S; 
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Thus the solution of the problem stated is reduced, first, to the definition of vector  0 in 
(16), providing the minimum of functional (14) (in view of the use in the latter as the density 

function its approximation  ˆ, , ,P X t  , in this case a Gaussian one), and, secondly, to the 

selection of the maximal component in vector Р̂  the number of which will define the 
number of the required structure of the state vector. 
The first stage of the solution - the definition of the optimum vector  0 can be carried out by 
means of the principle of the maximum [5]. In this case the Hamiltonian Н* has the form  
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the integration of which exhausts the theoretical solution of the problem stated- the 
subsequent selection of the maximal component of vector Р̂ , determining the current 
number of the required structure of the state vector , does not represent any problem. 
Moreover, as above, in selecting the structure the exact value of the maximal component of 
vector Р̂  is not essentially required, only its number is of importance. In practical solving of 
problem (17) this allows to use the approximated methods focused on the required trade-off 
of accuracy against the volume of the calculations, for example, already approved method of 
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the approximated invariant plunge, transforming system (17) into the system of the 
ordinary differential equations solved in the real time [6]: 
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where *Р̂ , Х* are approximated solutions of system (17); 
D is the matrix of the weight factors for the deviation of the approximated solution from the 
required one [6]. 
The example illustrating the feasibility of the real application of the approach given is 
considered in [7]. 
To reduce the computing expenses on the basis of the approximation of the DAPD let us 
consider the algorithm of the synthesis using the local criterion. 

 
4. The a posteriori local - optimum control for the structure selection 
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where  0 is the non-negatively defined scalar function generally dependent already 
directly on vector z , 
is typical for the process control in the real time. 
In this case the solution is reduced to the search of such vector 
 0 =  0(,z,t), which would provide the minimum of criterion (18) provided that vector 
Z(,t) is described by the known vector equation with partial derivatives, deduced in [1] 
and transformed in paragraph 1 to the following form (6): 
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where U(Z) is the vector - function representing the vector generalization of the right-hand 
part of the Stratonovich equation [1]; 
F(Z) is the matrix function linearly dependent on the component of  vector Z. 
In the case considered this allows to obtain the expression of the minimized function 
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The substitution of the found optimum vector  0* (20) (or (22)) in equation (6) allows to 
form the equation, describing the required vector Z of the distribution densities of the 
extended state vectors for the system with the intensity of their change, which provides the 
optimum of functional (18) (or (21), respectively). So, in case of selecting as the criterion of 
optimality (18) we have: 
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It is obvious that the integration of the equations obtained completes the solution of the 
selection problem of the optimum structure in the sense of (18) or (21) by the subsequent 
definition of the maximal component of the vector of the state probabilities 
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It should be noted that from the point of view of the computing expenses the solution of 
equations (23), (24) appears to be not much more complicated than the initial system of the 
integro-differential equations (6) (a basic one in the theory of the dynamic systems of 
random structure [1]) and incommensurably more simple than the solution of the point-to-
point boundary-value problem for two systems of the integro-differential equations with 
partial derivatives, given in paragraph 2. Moreover, the solution of the equations given 
allows to obtain in the real time the exact solution of the problem stated, while the approach, 
considered in paragraph 2, provides only the formation of the current suboptimum solution. 
For the comparative efficiency estimation of the both methods we consider the example. 
As the target we choose an observable two-structural nonlinear dynamic system described 
in paragraph 2, for which functions U(Z), F(Z) determining the right-hand part of 
equation (6) have the form:  
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where z is the output signal of the nonlinear observer of process . 
As far as according to the constrains of the example given in paragraph 2, the selection of 
the process structure is required to be carried out, proceeding from the provision of the 
probability maximum of its occurrence in the given limits * min max0, 5; 0,7        , 

then for forming the non-negatively defined criterion function  0  in (18), ensuring in 
minimizing J the performance of the given criterion, we accomplish the following additional 
constructions. 

The condition of providing the maximum of probability    
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we obtain the required criterion function  0 as follows: 
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where A = max – min. 
In this case equation (23) for the optimum vector Z takes the form 
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where z is the output signal of the nonlinear observer of process . 
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the process structure is required to be carried out, proceeding from the provision of the 
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The solution of the given equation was carried out similarly to paragraph 2 on the basis of 
approximation of functions Z(1),(2) by the Fourier series on  interval [-5; 5] within the 
accuracy of 4 terms of expansion and integration of the obtained system of equations for the 
expansion factors on the time interval [0; 300] s. When integration and formation of the 
approximated values of functions Z(1),Z(2) had been taken place, the numbers of structures, 
chosen by the character of the maximal state probability at the current time, appeared to be 
distributed in time as follows: 
- in interval [0; 53] s - the second structure; 
- in interval [53; 119] s -the first structure; 
- in interval [119; 300] s -the second structure. 
The comparative analysis of the solution obtained with that of suggested in paragraph 2 
shows that with their practically identical accuracy (upon completing the simulation the 
difference of the probability values for occurring  process  in the limits * was less than 7 %) 
the computing expenses were reduced rather sufficiently in the case considered: the volume 
of the operative memory, required for the solution, has been decreased by a factor of ~ 3,5 , 
the solution time - by a factor of ~ 2,1. 
Thus, despite of the less generality from the point of view of the theory, the local control in 
the real multistructural systems has obvious advantages over the terminal one (especially in 
the systems using the real-time measuring information). In summary we consider the 
investigated problem of the control synthesis by the local criterion on the basis of applying 
the approximating representations of the distribution density. 

 
5. Suboptimum structure control on the basis  
of the local generalized criterions 

In this case taking into account the character of the criterions given in paragraphs 3; 4 and 
preliminary reasoning the minimized local criterion J is written down in the following form: 
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where  0  is the non-negatively defined scalar function. 

In this case the solution is reduced to the search of such vector  0 0 ˆ , ,p x t  , which 
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The final solution of the problem stated - the selection of the number of the structure, 
providing the optimum of functional (26) at the real time, is carried out similarly to that of 
given in paragraph 3 by solving equation (16) in case of the found optimum law *0  - for 
construct vector р̂  and define its maximal component, the number of which will define the 
number of the structure required for the state vector. Following the stated above in 
paragraphs 3, 4, in this case the optimum function *0  is synthesized from the constrain 
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The solution of the given equation was carried out similarly to paragraph 2 on the basis of 
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the computing expenses were reduced rather sufficiently in the case considered: the volume 
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the solution time - by a factor of ~ 2,1. 
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the real multistructural systems has obvious advantages over the terminal one (especially in 
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The final solution of the problem stated - the selection of the number of the structure, 
providing the optimum of functional (26) at the real time, is carried out similarly to that of 
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The substitution (27) into (16) results in the required equations describing the evolution of 
the parameters of the distribution densities for the state vectors in the structures and the 
probabilities of occurring of those for the system optimum in the sense of (26): 
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Then the structure selection is carried out similarly to that of stated above on the basis of 
defining the number of the maximal component for vector р̂  being sufficiently trivial 
operation, which does not practically affect the total volume of the computing expenses. 
Despite some reduction in the generality of the solution considered in comparison, for 
example, with the similar terminal one, obtained in paragraph 3, its obvious advantage is 
the absence of the need for the solution of the point-to-point boundary-value problem and, 
as a consequence, the feasibility to apply the optimum solution simultaneously with the 
essential reduction of the computing expenses for the real systems as compared to the 
general case. 
So, the comparative analysis of the solution obtained with that of suggested in paragraph 3, 
which has been carried out on the basis of the numerical simulation, has shown that with 
their practically identical accuracy (upon completing the simulation the difference of values 
for the probabilities of occurring process  within the limits of interval * was less than 9 %) 
the computing expenses in the considered case were reduced rather essentially: the volume 
of the operative memory required for their solution, has decreased by a factor of ~ 3,7 , the 
solution time -by a factor of  2,4 . 
The practical recommendations here are obvious and do not require the additional 
comments. 
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Vibration control and mitigation is an open issue in many engineering applications. Passive 
strategies was widely studied and applied in many contests, such as automotive, 
aerospatial, seismic and similar. One open question is how to choose opportunely devices 
parameters to optimize performances in vibration control.  In case of isolators, whose the 
main scope is decoupling structural elements from the vibrating support, optimal 
parameters must satisfy both vibration reduction and displacement limitation. 
This paper is focused on the a multi-objective optimization criterion for linear viscous-elastic 
isolation devices, utilised for decreasing high vibration levels induced in mechanical and 
structural systems, by random loads. In engineering applications base isolator devices are 
adopted for reducing the acceleration level in the protected system and, consequently, the 
related damage and the failure probability in acceleration sensitive contents and equipment. 
However, since these devices act by absorbing a fraction of input energy, they can be 
subjected to excessive displacements, which can be unacceptable for real applications. 
Consequently, the mechanical characteristics of these devices must be selected by means of 
an optimum design criterion in order to attain a better performance control. 
The proposed criterion for the optimum design of the mechanical characteristics of the 
vibration control device is the minimization of a bi-dimensional objective function, which 
collects two antithetic measures: the first is the index of device efficiency in reducing the 
vibration level, whereas the second is related to system failure, here associated, as in common 
applications, to the first exceeding of a suitable response over a given admissible level. 
The multi-objective optimization will be carried out by means of a stochastic approach: in 
detail, the excitation acting at the support of the protected system will be assumed to be a 
stationary stochastic coloured process.  
The design variables of optimization problem, collected in the design vector (DV), are the 
device frequency and the damping ratio. As cases of study, two different problems will be 
analysed: the base isolation of a rigid mass and the tuned mass damper positioned on a 
MDoF structural system, subject to a base acceleration. 

20
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The non dominated sorting genetic algorithm in its second version (NSGA-II) is be adopted 
in order to obtain the Pareto sets and the corresponding optimum DV values for different 
characterizations of system and input. 
Keywords: Random vibrations, multi-objective stochastic optimization, base isolator, tuned mass 
damper, genetic algorithm.  

 
Introduction 

Dynamic actions are nowadays a wide engineering topic in many applicative and research 
areas, such as automotive, civil and aerospace. One main problem is how properly model 
dynamic actions, because of there are many real conditions where it is practically impossible 
to accurate predict future dynamic actions (i.e. earthquakes, wind pressure, sea waves and 
rotating machinery induced vibrations). In those cases external loads can be suitably 
modelled only by using random processes, and as direct consequence, also systems 
responses are random processes. In these environments, random dynamic analysis seems to 
be the most suitable method to get practical information concerning systems response and 
reliability (see for example [1]). It is obvious that also structural optimization methods seem 
to be practically approached by means of random vibrations theory. Concerning this 
problem, some recent works have been proposed, typically based on Standard Optimization 
Problem (SOP), which finds the optimum solution that coincides with the minimum or the 
maximum value of a scalar Objective Function (OF). The first problem definition of structural 
optimization was proposed by [2], in which constraints were defined by using probabilistic 
indices of the structural response and the OF was defined by the structural weight, leading 
to a standard nonlinear constrained problem.  
In the field of seismic engineering, the use of a stochastic defined OF has been proposed for 
the optimum design of the damping value of a vibrations control device placed on the first 
story of a building [3], and was defined by the maximum displacement under a white noise 
excitation. A specific and more complete stochastic approach has also been proposed by [4], 
aimed to stiffness-damping simultaneous optimization of structural systems. In this work 
the sum of system response mean squares due to a stationary random excitation was 
minimized under constraints on total stiffness capacity and total damping capacity. 
More recently, an interesting stochastic approach for optimum design of damping devices in 
seismic protection has been proposed by [5], aimed to minimize the total building life-cycle 
cost. It was based on a stochastic dynamic approach for failure probability evaluation, and 
the OF was defined in a deterministic way. The optimization problem was formulated by 
adopting as design variables the location and the amount of the viscous elastic dampers, 
adopting as constraints the failure probability associated to the crossing of the maximum 
inter-storey drift over a given allowable value.  Reliability analysis was developed by means 
of the application of the first crossing theory in stationary conditions.  
Another interesting work in the field of stochastic structural optimization regards the 
unconstrained  optimization of single [6] and multiple [7] tuned mass dampers, by using as 
OF the structural displacement covariance of the protected system and modelling the input 
by means of a stationary white noise process. 
However, the SOP does not usually hold correctly many real structural problems, where 
often different and conflicting objectives may exist. In these situations, the SOP is utilized by 
selecting a single objective and then incorporating the other objectives as constraints. The 

main disadvantage of this approach is that it limits  the choices available to the designer, 
making the optimization process a rather difficult task.  
Instead of unique SOP solution, a set of alternative solutions can be usually achieved. They 
are known as the set of Pareto optimum solutions, and represent the best solutions in a wide 
sense, that means they are superior to other solutions in the search space, when all objectives 
are considered. If any other information about the choice or preference is given, no one of 
the corresponding trade-offs can be said to be better than the others. Many works in last 
decade have been done by different authors in the field of multi-objective structural 
optimization, for systems subject to static or dynamic loads [8]. 
This work deals with a multi-objective optimization of linear viscous-elastic devices, which 
are introduced in structural and mechanical systems in order to reduce vibrations level 
induced by random actions applied at the support. As application, two different problems 
are considered: first, the vibration base isolation of a rigid mass subject to support 
acceleration. In detail  this is the problem of a vibration absorber for a rigid element isolated 
from a vibrating support, subject to a random acceleration process. This represents a typical 
application in many real problems, in mechanical, civil and aeronautics engineering. The 
main system is a rigid mass linked with the support by means of a linear viscous-elastic 
element (fig.1). In the multi-objective optimization, the OF is a vector which contains two 
elements: the first one is an index of device performance in reducing the vibration level, here 
expressed by the acceleration reduction factor. This is assumed to be, in stochastic meaning, 
the ratio between the mass and the support acceleration variances.  
The second objective function is the displacement of the protected mass. In probabilistic 
meaning it is obtained in terms of the maximum displacement which will not be exceeded in 
a given time interval and with a given probability. This is achieved by adopting the 
threshold crossing probability theory. Design variables, which are assumed to be the isolator 
damping ratio S  and its pulsation s , are collected in the design vector (DV).  The 
support acceleration is modelled as a filtered stationary stochastic process. 
In order to obtain the Pareto set in the two dimensions space of OFs, and the optimum 
solution in the space of design variables, a specific genetic algorithm approach (the NSGA-II 
one) is adopted in the two cases of study. A sensitive analysis on the optimum solution is 
finally performed under different environmental conditions. 

 
Multi-objective stochastic optimization of random vibrating systems 

The proposed stochastic multi-objective optimization criterion is adopted in this study in 
order to define the optimum mechanical parameters in classical problems of vibration 
control.  As before mentioned, two applications are considered which regard, in general, the 
limitation of vibration effects in mechanical and structural systems subject to base 
accelerations.  
The optimization problem could be formulated as the search of design parameters, collected 
in the Design Vector (DV) b , defined in the admissible domain bΩ , able to minimize a 
given  OF.  This problem, in general, can be formulated in a standard deterministic way, or 
in a stochastic one, for example by means of response spectral moments. This approach, as 
before mentioned, has anyway some limits, because when designer looks for the optimum 
solution, he has to face with the selection of the most suitable criterion for measuring 
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performance. It is evident that many different quantities, which have a direct influence on 
the performance, can be considered as efficient criteria. At the same time, those quantities 
which must satisfy some imposed requirements, and cannot be assumed as criteria, are then 
used as constraints. It is common in optimization problems, therefore, to use a single OF 
subjected to some probabilistic constraints, as in the first stochastic optimization problem 
[2]. Usually, inequality constraints on system failure probability are utilised.  
In the multi-objective formulation the conflict which may or may not exist between the 
different criteria is an essential point. Only those quantities which are competing should be 
considered as independent criteria. The others can be combined into a single criterion, 
which represents the whole group.  
 
Case of study: protection of a rigid mass from a vibrating support 
Let us consider first the case of the isolation of a rigid mass positioned on a vibrating support. 
In engineering applications the mass can represent a subsystem located on a vibrating 
mechanical support, as motor device, airplane structure, seismic isolated building and similar. 
In all these situations, the main goal is to limit the induced accelerations and to control the 
displacement of the rigid mass with respect to the support. The first objective is related to 
excessive inertial forces transmitted for example to electronic or mechanical devices, which can 
be sensitive to this effect (i.e. acceleration sensitive contents and equipment). The second 
objective is related to an excessive displacement of the protected mass, which can become 
unacceptable, for example, if the system is located quite closer to other elements, or if the 
vibration isolator has a limited acceptable lateral deformation over which it will collapse. 
The protected element is modelled as a rigid body having a mass m.  The isolator device is 
modelled as a simple viscous-elastic element, which connects the vibrating base with the 
supported mass (Fig. 1). 
 

 
Fig. 1. Schematic Model of a rigid mass isolated from a vibrating support by means of an 
isolation device. 

The stiffness k  and the damping c  of the isolator device must be optimized in order to 
minimize the vibration effects on the rigid mass m .  
 

The base acceleration is a stochastic coloured process ( )bX t  modelled by means of a 
second order linear filter [9]: 
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The space state covariance matrix TZZR ZZ  is obtained by solving the Lyapunov 

equation: 
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Formulation of multi-objective optimization  
of device mechanical characteristics 
The multi-objective stochastic optimization problem concerns the evaluation of DV 

( , )s s b  which is able to satisfy the reduction of the transmitted inertial acceleration 
in the rigid mass and to limit the displacement of this one with respect to the support. These 
two criteria conflict each others because, when the support rigidity grows at that time the 
acceleration reduction (i.e. the performance) and the lateral displacement decrease. This 
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The two objective functions are plotted in  Figure 2 in terms of  ratio  /s f   and s . 
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Fig. 2. Conflicting aspect of the two proposed objective functions. 
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corresponding objective vectors are described as the Pareto front or Trade-off surface.  
Unfortunately, the Pareto optimum concept almost does not give a single solution, but a set 
of possible solutions, that cannot be used directly to find the final design solution by an 
analytic way. On the contrary, usually the decision about the “best solution” to be adopted 
is formulated by so-called (human) decision maker (DM), while rarely DM doesn’t have any 
role and a generic Pareto optimal solution is considered acceptable (no - preference based 
methods). On the other hand, several preference–based methods exist in literature. A more 
general classification of the preference–based method is considered when the preference 
information is used to influence the search [12]. Thus, in a priori methods, DM’s preferences 
are incorporated before the search begins: therefore, based on the DM’s preferences, it is 
possible to avoid producing the whole Pareto optimal set. In progressive methods, the DM’s 
preferences are incorporated during the search: this scheme offers the sure advantage to 
drive the search process but the DM may be unsure of his/her preferences at the beginning 
of the procedure and may be informed and influenced by information that becomes 
available during the search. A last class of methods is a posteriori: in this case, the optimiser 
carries out the Pareto optimal set and the DM chooses a solution (“searches first and decides 
later”). Many researchers view this last category as standard so that, in the greater part of 
the circumstances, a MOOP is considered resolved once that all Pareto optimal solutions are 
recognized. In the category of a posteriori approaches, different Evolutionary Algorithms (EA) 
are presented. In [13] an algorithm for finding constrained Pareto-optimal solutions based 
on the characteristics of a biological immune system (Constrained Multi-Objective Immune 
Algorithm, CMOIA) is proposed. Other diffused algorithms are the Multiple Objective 
Genetic Algorithm (MOGA) [14] and the Non dominated Sorting in Genetic Algorithm 
(NSGA) [15]. In this work the NSGA-II [16] will be adopted in order to obtain the Pareto sets 
and the correspondent optimum DV values for different systems and input configurations, 
for both the analysed problems (the vibration base isolation of a rigid mass and the TMD 
positioned on MDoF system subject to a base acceleration). Particularly, the  Real Coded GA 
[17], Binary Tournament Selection [18], Simulated Binary Crossover (SBX) [19] and polynomial 
mutation [17] are used.  

 
Multi-objective optimization of isolator mechanical characteristics 

In this section the results of this first optimization problem are analysed. It is assumed that 
the admissible domain for  b is the following: 
 

  , : 0.01 2.5  1 rad/sec 30 rad/secs s s s        bΩ . (23) 

 
System parameters are listed in table 1.  
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Filter damping ratio f  0.6  

Filter pulsation f  20.94 (rad/sec) 

Power spectral density 0S  1000 cm2/sec3 

T  103 sec 

Max probability of failure 

fP  10-2  

 

Table 1. System parameters. 
 
Concerning NDGA-II setup, after several try and error analyses, the parameters reported in 
table 2 have been adopted for the analysis. The selection derives from considerations about 
the equilibrium of computing cost and solution stability. The population size has been 
chosen as 500 in order to obtain a continuum Pareto front, and the maximum iteration 
number here used (100) has been determined after several numerical experiments (type try 
and error) which indicated that it is the minimum value to obtain  stable solutions. This 
means that adopting a smaller iterations number, some differences in Pareto fronts 
(obtained for the same input data) take place. 
 

Maximum generation 500  

Population size  100  

Crossover probability  0.9  

Mutation probability 0.1  
 

Table 2. NDGA-II setup. 
 

Symbols OF2 (cm) OF1 (cm) 
opt
S (rad/sec) opt

S  

 171.3159 0.2227 1 0.6256 

 39.5099 0.3896 2.7629 0.7276 

 
110.5646 0.2624 1.3313 0.6910 

 
1.7741 0.9402 17.8002 2.1599 

 

Table 3. Some numerical data  from figure 3. 

 
Fig. 3. Pareto front. 
 

 
Fig. 4. Space of DV  elements.   
 
Figures 3 and 4 show the Pareto front and the space of DV elements, respectively, in this 
first case of multi-objective optimization problem. More precisely, in figure 4 on X-axis the 
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optimum frequency of the device opt
s  is plotted, whereas on the Y-axis the optimum 

damping ratio opt
T  is shown. The vertical line corresponds to the filter frequency f . In 

Table 3 some numerical data derived from these figures are also reported. 
 
From figure 3 first of all it is possible to notice that a larger level of protection is related to an 
increase of allowable displacement. Anyway an asymptotic limit value of performance 
exists, that means that the reduction of transmitted acceleration is in the analysed example 
at least about 0.2.  Moreover, some interesting observations can be carried out by observing 
the slope of Pareto front, which is not a convex curve. It is possible to distinguish three 
different portions of the Pareto front, which correspond to different criteria in using the 
vibration control strategy. In fact, on the left section of the Pareto front, which is related to a 
low efficiency, by means of a little grow of maximum allowable displacement one can obtain 
a large increase of performance (the slope is high). Then, in the second portion of Pareto set, 
the slope of the front reduces and, finally, in the right part an increase of performance is 
obtained only by means of a large increase of maximum admissible displacement.  In this 
last situation, only little variations of optimum design variables take place (fig. 4). On the 
contrary, the reduction of maximum displacement is reached by increasing both frequency 
and damping. The variation is fast as the displacement reduces. Moreover, if the imposed 
displacement is very low, the control strategy acts by increasing the system frequency and 
by increasing quickly also the damping, which is associated to energy dissipation.    
Figures 5, 7 and 9 show different Pareto fronts obtained for different values of power spectral 
density, filter damping ratio and filter pulsation. Figures 6, 8 and 10 show the corresponding 
optimum design variables.  All the other parameters adopted are the same of figure 3. 
 

 
Fig. 5. Sensitivity of Pareto front for different values of power spectral density.  

 
Fig. 6. Space of DV elements of multi-objective problem for different values of power 
spectral density. 
 

With reference to figure 5 it is possible to notice that a variation of power spectral density 
induces variation of optimum Pareto front, due to non-linearity of OF2. It is evident that 
higher performances are associated with low values of 0S , but the maximum level of 
vibration reduction (expressed by the asymptotic value of OF1) is about the same in all cases, 
also if this situation corresponds to larger displacements for higher values of 0S . This 
outcome is quite clear, because the requirement on the maximum displacement is associated 
to 0S  by means of a non-linear formulation; meanwhile the vibration reduction is a linear 
function of this parameter. 
However, the strategy adopted for the optimal solution in terms of design variables are 
about the same for all values of 0S , as shown in figure 6, where the same variability of the 

Pareto set for all values of 0S  can be observed.  
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Fig. 7. Sensitivity of Pareto front for different values of filter damping ratio. 
 

 
Fig. 8. Space of DV  elements of multi-objective problem for different values of filter 
damping ratio. 

 
Fig. 9. Pareto front for different values of filter pulsation. 
 

 
Fig. 10. Space of DV elements of multi-objective problem for different values of filter 
pulsation. 
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Moreover, one can deduce that the variability of both input parameters modify the Pareto set, 
but the excitation frequency f influences the optimum solution more than f . Actually, 

from figure 9 it is possible to notice that the maximum performance of TMD changes as f  

varies. Moreover, the initial slopes (for very small admissible displacement) are quite different. 
In detail, the variation of OF1 is greater for higher values of f  and tends to decrease as this 

parameter grows up. Also the optimization strategy in terms of optimum design variables 
changes (fig. 10). On the left portion of DV space only little variations of optimum DV  take 
place, whereas they correspond to the points located at the bottom on the right of Pareto front 
in figure 9. These values correspond to the asymptotic value of OF2, where the minimum is 
attained for each displacement. So that, they tend to be located in a small region of the DV 
space, quite closer to this unconditional optimum solution point. 

 
Conclusions 

In the present study a multi-objective optimization design criterion for linear viscous elastic 
vibration control devices has been proposed. More in detail, the problem of an isolator 
device for the vibration control of a single rigid mass have been analysed.  
The analysis has been carried out by adopting a stochastic approach, by assuming that the 
excitations acting on the base of the protected systems are stationary stochastic coloured 
processes. 
In the multi-objective optimization problems two antithetic objectives are considered: the 
maximization of control strategy performance, expressed in stochastic terms by means of the 
reduction of transmitted acceleration in the protected systems, and the limitation in 
stochastic terms of the displacement of the vibrations control device.  The design variables 
are the mechanical characteristics - frequency and damping ratio- of the device.  
In order to perform the stochastic multi-objective optimization, the non dominated sorting 
genetic algorithm in its second version (NSGA-II) has been adopted, which supplies the 
Pareto set and the corresponding optimum design variables for different system and input 
configurations.  
The sensitivity analysis carried out has showed that the optimum solution (i.e. the 
maximization of control strategy, expressed in terms of reduction of the response of the 
main system, and the limitation of the device displacement) is reached, in the two analysed 
problems, by adopting different strategies, in function of input and system characterization. 
These strategies act by varying the optimum frequency and damping ratio of the device 
differently, in function of the allowable performance.  
The novelty of the proposed method is in using a multi-dimensional criterion for the design. 
Nowadays, this is a very important issue in modern Technical Codes [20], in which several 
performance requirements, which often can conflict each others, are fixed. In these 
situations, the designer must select the design variables which make available all objectives 
and the use of a multi-dimension criterion is very useful in this context.  
The validation of the proposed method is demonstrated by developing two applications, in 
which several parameters involved have been changed. Therefore, results attained by the 
proposed method can be utilised in order to support the designers in the definition of possible 
structural solutions in vibration control strategy by using linear viscous-elastic devices.  
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Moreover, one can deduce that the variability of both input parameters modify the Pareto set, 
but the excitation frequency f influences the optimum solution more than f . Actually, 

from figure 9 it is possible to notice that the maximum performance of TMD changes as f  

varies. Moreover, the initial slopes (for very small admissible displacement) are quite different. 
In detail, the variation of OF1 is greater for higher values of f  and tends to decrease as this 

parameter grows up. Also the optimization strategy in terms of optimum design variables 
changes (fig. 10). On the left portion of DV space only little variations of optimum DV  take 
place, whereas they correspond to the points located at the bottom on the right of Pareto front 
in figure 9. These values correspond to the asymptotic value of OF2, where the minimum is 
attained for each displacement. So that, they tend to be located in a small region of the DV 
space, quite closer to this unconditional optimum solution point. 

 
Conclusions 

In the present study a multi-objective optimization design criterion for linear viscous elastic 
vibration control devices has been proposed. More in detail, the problem of an isolator 
device for the vibration control of a single rigid mass have been analysed.  
The analysis has been carried out by adopting a stochastic approach, by assuming that the 
excitations acting on the base of the protected systems are stationary stochastic coloured 
processes. 
In the multi-objective optimization problems two antithetic objectives are considered: the 
maximization of control strategy performance, expressed in stochastic terms by means of the 
reduction of transmitted acceleration in the protected systems, and the limitation in 
stochastic terms of the displacement of the vibrations control device.  The design variables 
are the mechanical characteristics - frequency and damping ratio- of the device.  
In order to perform the stochastic multi-objective optimization, the non dominated sorting 
genetic algorithm in its second version (NSGA-II) has been adopted, which supplies the 
Pareto set and the corresponding optimum design variables for different system and input 
configurations.  
The sensitivity analysis carried out has showed that the optimum solution (i.e. the 
maximization of control strategy, expressed in terms of reduction of the response of the 
main system, and the limitation of the device displacement) is reached, in the two analysed 
problems, by adopting different strategies, in function of input and system characterization. 
These strategies act by varying the optimum frequency and damping ratio of the device 
differently, in function of the allowable performance.  
The novelty of the proposed method is in using a multi-dimensional criterion for the design. 
Nowadays, this is a very important issue in modern Technical Codes [20], in which several 
performance requirements, which often can conflict each others, are fixed. In these 
situations, the designer must select the design variables which make available all objectives 
and the use of a multi-dimension criterion is very useful in this context.  
The validation of the proposed method is demonstrated by developing two applications, in 
which several parameters involved have been changed. Therefore, results attained by the 
proposed method can be utilised in order to support the designers in the definition of possible 
structural solutions in vibration control strategy by using linear viscous-elastic devices.  
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1. Introduction     

Determination of the sensitivity gradients as well as probabilistic moments of composite 
materials and even micro-heterogeneous structures was a subject of many both theoretical 
and computational analyses reported in (Christensen, 1977; Fu at al., 2009; Kamiński, 2005; 
Kamiński, 2009). Usually it was assumed that there exists some Representative Volume 
Element, small in comparison to the entire structure and on the basis of some boundary 
problem solution on this RVE (like uniform extension for example) the elastic or even 
inelastic effective tensors were determined. Therefore, using some well established 
mathematical and numerical methods, sensitivity (via analytical, gradient or Monte-Carlo) 
or probabilistic (using simulations, spectral analyses or the perturbations) were possible 
having quite universal character in the sense that the effective tensors formulas are 
independent of the constituents design. Let us remind also that this cell problem was solved 
most frequently using rather expensive Finite Element Method based computations (even to 
determine the hysteretic multi-physics behavior) and did not allow full accounting for the 
reinforcing particles interactions or the other chemical processes between the components 
modeling. The challenges in the nanomechanics as one may recognize also below are 
slightly different – although one needs to predict the effective behavior of the solid 
reinforced with the nanoparticles, the formulas for effective properties may be addressed 
through experimental results calibration to the specific components. Such an experimental 
basis makes it possible to give analytical formulas even for the strain-dependent material 
models, which was rather impossible in the micromechanics before. Furthermore, it is 
possible now to account for the particle agglomeration phenomenon, where the 
dimensionless parameter describing this agglomeration size is directly included into the 
effective parameter model (Bhowmick, 2008; Heinrich et al., 2002a). Taking this development 
into consideration, there is a need to answer the question – how the particular models for those 
effective parameters (like shear modulus here) are sensitive to the design parameters included 
into the particular model. Moreover, taking into account manufacturing and experimental 
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statistics it is necessary to determine how this uncertainty (or even stochasticity) propagates 
and influences probabilistic characteristics of the effective parameters.  
Therefore, the main now is to collect various models for the effective shear modulus describing 
the solids with nanoparticles, group them into some classes considering the similarities in the 
mathematical form of the physical assumptions. Next, sensitivity gradients of input 
parameters are determined and the probabilistic characteristics are considered by a 
randomization of those parameters and, finally, we study some of those theories in the 
presence of stochastic ageing under non-stationary stochastic processes. Mathematical basis for 
those studies is given by the stochastic generalized perturbation theory, where all random 
parameters and functions are expanded via Taylor series with random coefficients. A 
comparison of the same order quantities and classical integration known from the probability 
theory allows for a determination of the desired moments and coefficients with a priori 
assumed accuracy. Now up to fourth order central probabilistic moments as well as the 
coefficients of variation, asymmetry and concentration are computed – computational part is 
completed thanks to the usage of symbolic algebra system MAPLE. The main advantage of the 
perturbation method applied behind the Monte-Carlo simulation is that the preservation of a 
comparable accuracy is accompanied now by significantly smaller computational time and, 
further, parametric representation of the resulting moments. Let us mention that the sensitivity 
analysis is the inherent part of the perturbation approach – since first order partial derivatives 
are anyway necessary in the equations for the probabilistic moments (up to 10th order 
derivatives are computed now). Finally, the stochastic ageing phenomenon was modeled, 
where the output probabilistic moments time fluctuations were obtained. The results obtained 
and the methods applied in the paper may be further used in optimization of the effective 
parameters for solids with nanoparticles as well as reliability (and/or durability) analysis for 
such materials or structures made of them.  

 
2. Comparison of various available theories  

As it is known from the homogenization method history, one of the dimensionless 
techniques leading to the description of the effective parameters is the following relation 
describing the shear modulus:  
 

0
)( GfG eff  , (1) 

 
where 0G  stands for the virgin, unreinforced material and f means the coefficient of this 
parameter increase, related to the reinforcement portion applied into it. As it is known, the 
particular characterization of this coefficient strongly depends on the type of the 
reinforcement - long or short fibers or reinforcing particles, arrangement of this 
reinforcement – regular or chaotic, scale of the reinforcement related to the composite 
specimen (micro or nano, for instance) or, of course, the volumetric ratios of both 
constituents. It is not necessary to underline that the effective nonlinear behavior of many 
traditional and nano-composites, not available in the form of simple approximants, needs 
much more sophisticated techniques based usually on the computer analysis with the use of 
the Finite Element Method. Let us note also that the elastomers are some specific composite 
materials, where usually more than two components are analyzed – some interface layers 
are inserted also (Fukahori, 2004) between them (the so-called SH and GH layers), which 

 

 

practically makes this specimen 4-component. Therefore, traditional engineering and 
material-independent theories for the effective properties seem to be no longer valid in this 
area (Christensen, 1977).  
The development of effective shear modulus for the elastomers resulted in various models, 
which can be generally divided into (a) linear theories based on the volume fractions of the 
inclusions, (b) linear elastic fractal models as well as (c) stress-softening fractal models. The 
first group usually obeys the following, the most known approximations, where the 
coefficient f is modeled using   
 

 Einstein-Smallwood equation  
 

5.21f , (2) 
 

 Guth-Gold relation  
 

21.145.21  f , (3) 
 

 Pade approximation  
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where φ is the inclusions volume fraction; eqn (2) is introduced under the assumptions on 
perfect rigidity of the reinforcing particles and the elastomeric matrix incompressibility. The 
effectiveness of those approximations is presented in Fig. 1, where the parameter φ belongs 
to the interval [0.0,0.4] resulting in the range of the coefficient f varying from 1 (effective 
parameter means simply virgin material modulus) up to about 6 at the end of φ variability 
interval. As it can be expected, the Einstein-Smallwood approximation gives always the 
lower bound, whereas the upper bound is given by Guth-Gold approach for 325.00   
and by Padè approximation for 325.0 . Taking into account the denominator of eqn (4) 
one must notice that the singularity is observed for φ=0.5 and higher volume ratios returns 
the negative results, which are completely wrong, so that this value is the upper bound of 
this model availability. The other observation of rather general character is that now the 
increase of shear modulus is measured not in the range of single percents with respect to the 
matrix shear modulus value (like the composites with micro-inclusions) but is counted in 
hundreds of percents, which coincides, for example with the results obtained for the 
effective viscosities of the fluids with solid nano-particles.  
The second class of the homogenized characteristics is proposed for elastomers taking into 
account the fractal character of the reinforcing particles chains and can be proposed as  
 
















c

cf




,

,1
44

5

4
1

 

 
(5) 

where  

b


  (6) 



Sensitivity analysis and stochastic modelling of the effective properties for reinforced elastomers 413 

 

statistics it is necessary to determine how this uncertainty (or even stochasticity) propagates 
and influences probabilistic characteristics of the effective parameters.  
Therefore, the main now is to collect various models for the effective shear modulus describing 
the solids with nanoparticles, group them into some classes considering the similarities in the 
mathematical form of the physical assumptions. Next, sensitivity gradients of input 
parameters are determined and the probabilistic characteristics are considered by a 
randomization of those parameters and, finally, we study some of those theories in the 
presence of stochastic ageing under non-stationary stochastic processes. Mathematical basis for 
those studies is given by the stochastic generalized perturbation theory, where all random 
parameters and functions are expanded via Taylor series with random coefficients. A 
comparison of the same order quantities and classical integration known from the probability 
theory allows for a determination of the desired moments and coefficients with a priori 
assumed accuracy. Now up to fourth order central probabilistic moments as well as the 
coefficients of variation, asymmetry and concentration are computed – computational part is 
completed thanks to the usage of symbolic algebra system MAPLE. The main advantage of the 
perturbation method applied behind the Monte-Carlo simulation is that the preservation of a 
comparable accuracy is accompanied now by significantly smaller computational time and, 
further, parametric representation of the resulting moments. Let us mention that the sensitivity 
analysis is the inherent part of the perturbation approach – since first order partial derivatives 
are anyway necessary in the equations for the probabilistic moments (up to 10th order 
derivatives are computed now). Finally, the stochastic ageing phenomenon was modeled, 
where the output probabilistic moments time fluctuations were obtained. The results obtained 
and the methods applied in the paper may be further used in optimization of the effective 
parameters for solids with nanoparticles as well as reliability (and/or durability) analysis for 
such materials or structures made of them.  

 
2. Comparison of various available theories  

As it is known from the homogenization method history, one of the dimensionless 
techniques leading to the description of the effective parameters is the following relation 
describing the shear modulus:  
 

0
)( GfG eff  , (1) 

 
where 0G  stands for the virgin, unreinforced material and f means the coefficient of this 
parameter increase, related to the reinforcement portion applied into it. As it is known, the 
particular characterization of this coefficient strongly depends on the type of the 
reinforcement - long or short fibers or reinforcing particles, arrangement of this 
reinforcement – regular or chaotic, scale of the reinforcement related to the composite 
specimen (micro or nano, for instance) or, of course, the volumetric ratios of both 
constituents. It is not necessary to underline that the effective nonlinear behavior of many 
traditional and nano-composites, not available in the form of simple approximants, needs 
much more sophisticated techniques based usually on the computer analysis with the use of 
the Finite Element Method. Let us note also that the elastomers are some specific composite 
materials, where usually more than two components are analyzed – some interface layers 
are inserted also (Fukahori, 2004) between them (the so-called SH and GH layers), which 

 

 

practically makes this specimen 4-component. Therefore, traditional engineering and 
material-independent theories for the effective properties seem to be no longer valid in this 
area (Christensen, 1977).  
The development of effective shear modulus for the elastomers resulted in various models, 
which can be generally divided into (a) linear theories based on the volume fractions of the 
inclusions, (b) linear elastic fractal models as well as (c) stress-softening fractal models. The 
first group usually obeys the following, the most known approximations, where the 
coefficient f is modeled using   
 

 Einstein-Smallwood equation  
 

5.21f , (2) 
 

 Guth-Gold relation  
 

21.145.21  f , (3) 
 

 Pade approximation  
 



21
5.21...0.55.21 2


f , (4) 

 
where φ is the inclusions volume fraction; eqn (2) is introduced under the assumptions on 
perfect rigidity of the reinforcing particles and the elastomeric matrix incompressibility. The 
effectiveness of those approximations is presented in Fig. 1, where the parameter φ belongs 
to the interval [0.0,0.4] resulting in the range of the coefficient f varying from 1 (effective 
parameter means simply virgin material modulus) up to about 6 at the end of φ variability 
interval. As it can be expected, the Einstein-Smallwood approximation gives always the 
lower bound, whereas the upper bound is given by Guth-Gold approach for 325.00   
and by Padè approximation for 325.0 . Taking into account the denominator of eqn (4) 
one must notice that the singularity is observed for φ=0.5 and higher volume ratios returns 
the negative results, which are completely wrong, so that this value is the upper bound of 
this model availability. The other observation of rather general character is that now the 
increase of shear modulus is measured not in the range of single percents with respect to the 
matrix shear modulus value (like the composites with micro-inclusions) but is counted in 
hundreds of percents, which coincides, for example with the results obtained for the 
effective viscosities of the fluids with solid nano-particles.  
The second class of the homogenized characteristics is proposed for elastomers taking into 
account the fractal character of the reinforcing particles chains and can be proposed as  
 
















c

cf




,

,1
44

5

4
1

 

 
(5) 

where  

b


  (6) 



Stochastic Control414  

 

is also dimensionless parameter relating cluster size ξ to the size of the primary particle of 
carbon black constituting the reinforcing aggregate diameter (b). The condition that c   
means that no aggregate overlap (smaller concentrations coefficients); otherwise the second 
approximation in eqn (5) is valid. The introduction of parameter Ξ enables to analyze the 
whole spectra of elastomers without precise definition of their aggregates dimensions in nm.  
The response surface of the coefficient f with respect to two input quantities ]4.0,0.0[  and 

]0.10,0.1[  is given below – the upper surface is for the non-overlapping situation, while the 
lower one – for the aggregates overlap. Both criteria return the same, intuitionally clear, result 
that the larger values of both parameters the larger final coefficient f, however now, under the 
fractal concept, its value is essentially reduced and is once more counted in percents to the 
original unreinforced matrix value. Observing the boundary curves for φmax it is apparent that 
this increase for overlapping and not overlapped cases has quite different character.  

 

 
Fig. 1. A comparison of various volumetric approximations for the coefficient f 
 

 
Fig. 2. Coefficient f for the rubbers with the carbon black aggregates by DLA clusters  
 

 

 

The model presented above is, as one can compare, the special case of more general 
approach, where it is assumed  
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df means the mass fractal dimension and D is the spectral dimension as a measure of the 
aggregate connectivity (it is enough to put df=2.5 and D=4/3 to obtain eqn (5)). This 
equation has no parameter visualization according to the larger number of the independent 
variables.  
Finally, the homogenization rules under stress-softening were considered- with Mullins effect 
(Dorfmann et al., 2004), where for carbon black and silica reinforcements the overlapped 
configuration c   was noticed. Additionally, the cluster size ξ was considered as the 
deformation-dependent quantity )(E   with E being some scalar deformation variable 
related explicitly to the first strain tensor invariant, however, some theories of deformation 
independent cluster sizes are also available. Those theories are closer to the realistic situations 
because the function )(E   is recovered empirically and it results in the following formulas 
describing the coefficient f varying also together with the strain level changes:  
 

 the exponential cluster breakdown  
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and  

 the power-law cluster breakdown  
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The following notation is employed here   
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where C  and dw is the fractal dimension representing the displacement of the particle 
from its original position. Because 0  stands for the initial value of the parameter ξ one can 
rewrite eqn (10) as  
 

                                    ffw dddCX  3
2

0 1  . 
(12) 

 
Below one can find numerical illustration of those parameters variability for some 
experimentally driven combinations of the input parameters for the specific elastomers.  
As one may expect, larger volumetric fractions of the reinforcement lead to larger values of 
the coefficient f; the smaller the values of the strain measure E the more apparent differences 
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the coefficient f; the smaller the values of the strain measure E the more apparent differences 
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between the values f are computed for various combinations of materials and their 
volumetric ratios. Comparison of Figs. 3 and 4 shows that independently from the model 
(exponential or power-law) the smallest values of the parameter f are computed for 40% 
silica reinforcement, and then in turn – for 40% carbon black, 60% silica and 60% carbon 
black. So that it can be concluded that, in the context of the coefficient f, the carbon black 
reinforcement results in larger reinforcement of the elastomer since G(eff) is higher than for 
the reinforcement by silica for the same volumetric amount of those particles. Comparing 
the results for all models presented in Figs. 1-4 one can generally notice that the power-law 
cluster breakdown theory returns the largest values of the studied coefficient f for small 
values of the stretch of the elastomer analyzed.  
 

 
Fig. 3. The curve f=f(E) for the exponential cluster breakdown  
 

 
Fig. 4. The curve f=f(E) for the power-law cluster breakdown  

 

 

3. Design sensitivity analysis  

As it is known from the sensitivity and optimization theory, one of the milestones in the 
optimal design of the elastomers would be numerical (or analytical when available) 
determination of the sensitivity coefficients for the effective modulus as far as the 
homogenization theory is employed in the design procedure. Then, by simple partial 
differentiation of initial eqn (1) with respect to some elastomers design parameter h one 
obtains  
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Considering the engineering aspects of this equation, the second component of the R.H.S. 
may be neglected because the design parameters are connected in no way with the 
unreinforced material, so that the only issue is how to determine the partial derivatives of 
the coefficient f with respect to some design variables like the volumetric ratio of the 
reinforcement, the cluster size, the exponents and powers as well as the strain rate in stress-
dependent models. Further usage of those sensitivities consists in determination of the 
response functional, like strain energy of the hyperelastic effective medium for the 
representative stress state on the elastomer specimen, a differentiation of this functional 
w.r.t. design parameter and, finally, determination of the additional optimal solution.  
First, we investigate the sensitivity coefficients as the first partial derivatives of the 
coefficient f with respect to the reinforcement volumetric ratio, accordingly to the analysis 
performed at the beginning of Sec. 2. As it could be expected (see Fig. 5), the Einstein-
Smallwood returns always positive constant value, which is interpreted obviously that the 
higher coefficient φ, the larger value of the parameter f. The remaining gradients are also 
always positive, whereas the upper bounds gives the Guth-Gold model in the interval 

]25.0,0.0[ , for larger volumetric ratios of the reinforcement the Padè approximation 
exhibit almost uncontrolled growth.  
 

 
Fig. 5. Sensitivity coefficients for the volumetric coefficient f   
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Fig. 4. The curve f=f(E) for the power-law cluster breakdown  

 

 

3. Design sensitivity analysis  

As it is known from the sensitivity and optimization theory, one of the milestones in the 
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Considering the engineering aspects of this equation, the second component of the R.H.S. 
may be neglected because the design parameters are connected in no way with the 
unreinforced material, so that the only issue is how to determine the partial derivatives of 
the coefficient f with respect to some design variables like the volumetric ratio of the 
reinforcement, the cluster size, the exponents and powers as well as the strain rate in stress-
dependent models. Further usage of those sensitivities consists in determination of the 
response functional, like strain energy of the hyperelastic effective medium for the 
representative stress state on the elastomer specimen, a differentiation of this functional 
w.r.t. design parameter and, finally, determination of the additional optimal solution.  
First, we investigate the sensitivity coefficients as the first partial derivatives of the 
coefficient f with respect to the reinforcement volumetric ratio, accordingly to the analysis 
performed at the beginning of Sec. 2. As it could be expected (see Fig. 5), the Einstein-
Smallwood returns always positive constant value, which is interpreted obviously that the 
higher coefficient φ, the larger value of the parameter f. The remaining gradients are also 
always positive, whereas the upper bounds gives the Guth-Gold model in the interval 

]25.0,0.0[ , for larger volumetric ratios of the reinforcement the Padè approximation 
exhibit almost uncontrolled growth.  
 

 
Fig. 5. Sensitivity coefficients for the volumetric coefficient f   
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The next results computed deal with the sensitivity coefficients of the coefficient f for the 
theory including the fractal character of the reinforcement for the non-overlapped and 
overlapped configurations of the elastomer, however now there are two design variables – 
the volumetric ratio φ as well as the parameter Ξ; the results are given in Figs. 6-7 
accordingly, where larger absolute values are obtained in both cases for the elastomer with 
no overlapping effect.  
 

 
Fig. 6. Sensitivity for rubbers with carbon black aggregates by DLA clusters to volumetric 
ratio of the reinforcement 
 

 
Fig. 7. Sensitivity for rubbers with carbon black aggregates by DLA clusters to Ξ 
 
As it is quite clear from those surfaces variability, when the model with overlapping is 
considered, the resulting sensitivity gradients are dependent in a comparable way on both 
parameters φ and Ξ. However, the model with the overlap effect exhibits significant changes 
to the parameter Ξ, while almost no – with respect to the variable φ. Further, one may find 
easily that the lower value of Ξ (dimensionless cluster size), the higher are the gradients 
with respect to φ. Physical interpretation of this result is that the elastomers with the 
reinforcing particles more independent from each other are more sensitive to this 

 

 

reinforcement volumetric ratios than the elastomers with larger clusters. Both models return 
here positive values, so that increasing of those parameters return an increase of the studied 
gradient value. Fig. 7 contains analogous results for the gradients computed with respect to 
the cluster size Ξ and now, contrary to the previous results, all combinations of input 
parameters return negative gradients. This gradient is almost linearly dependent on the 
parameter φ for the case without overlapping and highly nonlinear w.r.t. Ξ, whereas the 
overlap effect results in similar dependence of these gradients on both parameters. Quite 
analogously to the previous figure, the smaller value of the parameter Ξ, the larger output 
gradient value and opposite interrelation of this gradient to parameter φ.  
Finally, we study the sensitivity coefficients for the exponential and power-law cluster 
breakdown with respect to the scalar deformation variable E (the results are presented in 
Figs. 8 and 9). Contrary to the previous sensitivity gradients, all the results are negative as 
one could predict from Figs. 3 and 4. Significantly larger absolute values are obtained for the 
exponential cluster breakdown here but, independently from the model, the highest 
sensitivity is noticed for 0E  and then it systematically increases (its absolute values) to 
almost 0 for 3E  and the differences between the elastomers with various reinforcement 
ratios monotonously vanish. The interrelations between different elastomers sensitivities 
depends however on the model and the power-law the largest absolute values are obtained 
for 60% carbon black; then in turn we have 60% silica, 40% carbon black and 40% silica. So, 
the carbon black reinforcement leads to larger sensitivity of the elastomer for the strain ratio 
E in the power-law cluster breakdown concept. The exponential model shows somewhat 
different tendency – 60% carbon black and 60% silica return almost the same gradients 
values where those first are little larger for intermediate values of E. The sensitivity of the 
carbon black elastomer apparently prevails, however for smaller amount of the 
reinforcement.  
 

 
Fig. 8. Sensitivity coefficients for the exponential cluster breakdown via the scalar variable E 
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Fig. 9. Sensitivity coefficients for the power-law cluster breakdown to the scalar variable E 

 
4. Effective behaviour for the elastomers with random parameters 

The next step towards a more realistic description of the effective modulus for the 
elastomers reinforced with some fillers is probabilistic analysis, where some composite 
parameters or even their larger group is considered as the random variable or the vector of 
random variables. As is it known, there exists a variety of different mathematical 
approaches to analyze such a problem like determination of the probabilistic moments for 

)()( effG . One may use the algebraic transforms following basic probability theory 
definitions, Monte-Carlo simulation approaches, some spectral methods as well as some of 
the perturbation methods. Because the statistical description for )(0 G  comes from the 
experiments we will focus here on determination of the random characteristics for )(f  
only. Because of some algebraic complexity of especially eqns (7-12) the stochastic 
perturbation technique based on the Taylor series expansion will be employed. To provide 
this formulation the random variable of the problem is denoted by b(ω) and the probability 
density of it as )(bg . The expected value of this variable is expressed by  
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while the mth order moment as   
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According to the main philosophy of this method, all functions in the basic deterministic 
problem (heat conductivity, heat capacity, temperature and its gradient as well as the 
material density) are expressed similarly to the following finite expansion of a random 
function f:  
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where ε is a given small perturbation (taken usually as equal to 1), b  denotes the first 
order variation of b  from its expected value  
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while the nth order variation is given as follows:  
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Using this expansion, the expected values are exactly given by  
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for any natural m with μ2m being the ordinary probabilistic moment of 2mth order. Usually, 
according to some previous convergence studies, we may limit this expansion-type 
approximation to the 10th order. Quite similar considerations lead to the expressions for 
higher moments, like the variance, for instance  
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The third probabilistic moment may be recovered from this scheme as  
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using the lowest order approximation; the fourth probabilistic moment computation 
proceeds from the following formula:  
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For the higher order moments we need to compute the higher order perturbations which 
need to be included into all formulas, so that the complexity of the computational model 
grows non-proportionally together with the precision and the size of the output information 
needed. This method may be applied as well to determine )()( effG  - one may apply the 
Taylor expansion to both components of the R.H.S. of eqn (1), differentiate it symbolically at 
least up to the given nth order (similarly to eqn (13) w.r.t. variable h) like below  
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and include those derivatives into the probabilistic moment equations shown above.  
  

 
Fig. 10. The expected value of the volumetric coefficient f  
 

 

 

The set of equations (20-23) with definitions given by (16) is implemented into the computer 
algebra system MAPLE, v. 11, as before, to determine the basic probabilistic characteristics 
for the function )(f . The results of numerical analysis are presented in Figs. 10-25, where 
expected value of the input random variables are marked on the horizontal axes, its 
standard deviation corresponds to 15% of this expectation, while the output probabilistic 
moments of the parameter f are given on the vertical axes; the different theories for those 
coefficient calculations are compared analogously as in the previous sections. The Gaussian 
input random variables with given first two probabilistic moments are considered in all 
those computational illustrations  
 

 
Fig. 11. The coefficient of variation of the volumetric coefficient f  
 
Probabilistic moments and coefficients of up to 4th order of the simple volumetric 
approximations are given in Figs. 10-13 – there are in turn expected values, standard 
deviations, asymmetry and kurtosis. All the resulting functions increase here together with 
an increase of the reinforcement volumetric ratio φ. For the first two order characteristics the 
largest value is returned by the Guth-Gold model and the smallest - in the case of the 
Einstein-Smallwood approximation. Let us note also that the random dispersion of the 
output coefficient f is not constant and almost linearly dependent in all the models analyzed 
on the expected value of φ and is never larger here than the input value α(φ)=0.15. Third 
and fourth order characteristics demonstrate the maximum for the Guth-Gold theory for φ 
varying from 0 to the certain critical value, while for higher values the characteristics 
computed for the Pade approximants prevail significantly. All those characteristics are equal 
to 0 for the Einstein-Smallwood model because of a linear transform of the parameter φ in 
this model and it preserves exactly the character of the probability density function in a 
transform between the input φ and the output f. For the two remaining theories (with β>0)  
larger area of the probability density function remains above the expected value of f, while 
the concentration around this value if higher than for the Gaussian variables.   
Now the basic probabilistic characteristics are compared for the homogenization model 
accounting for the clusters aggregation in the elastomers; the input coefficient φ is the input 
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and include those derivatives into the probabilistic moment equations shown above.  
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Gaussian random parameter here also. Decisively larger values are obtained for the 
configuration without overlapping effect and all the characteristics are once more positive. 
In the case of expected values and standard deviations the influence of the coefficient φ on 
those quantities significantly prevail and has a clear linear character. A nonlinear variability 
with respect to Ξ is noticed for upper bound on the values of φ and has quite similar 
character in both Figs. 14 and 15. The maximum value of the coefficient of variation is about 
0.02, which is around seven times smaller than the input coefficient, so that the random 
dispersion significantly decreases in this model.   
 

 
Fig. 12. The coefficients of asymmetry of the volumetric coefficient f  
 

 
Fig. 13. The kurtosis of the volumetric coefficient f  
 

 

 

 
Fig. 14. The expected values of the coefficient f including aggregation 
 

 
Fig. 15. The standard deviations of the coefficient f including aggregation 
 

 
Fig. 16. Third central probabilistic moments of the coefficient f including aggregation 
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Fig. 17. Fourth central probabilistic moments of the coefficient f including aggregation 
 
Third central probabilistic moments increase rapidly from almost 0 only for the smallest 
values of Ξ and largest values of φ – it results in β=0 for the overlapping aggregates and 
β=1.5 for the aggregates with no overlap. Fourth moments variations are more apparent for 
larger values of φ and the entire spectrum of the parameter Ξ. The resulting kurtosis equal 0 
and almost 2 – without and with this overlap, respectively. It is seen that the larger values of 
φ and the smaller Ξ, the larger 3rd and 4th probabilistic moments. So that, analogously to the 
previous theories, larger part of the resulting PDF is above the median and its concentration 
is higher than that typical for the Gaussian distribution (for the model without aggregates 
overlapped). The distribution of the random parameter f is almost the same like for the 
Gaussian input (except the coefficient of variation).  
 

 
Fig. 18. The expected values for the exponential cluster breakdown to the scalar variable E 
 

 

 

The probabilistic coefficients for the exponential (Figs. 18-21) and for the power-law (Figs. 
22-25) cluster breakdowns are contrasted next; now the overall strain measure E is the 
Gaussian input variable. As one may predict from the deterministic result, all the expected 
values decrease together with an increase of the E expectation. The coefficient of variation 
α(f) (see Fig. 19) behave in a very interesting way – all they increase monotonously from 0 
(for 0E ) to some maximum value (around a half of the considered strains scale) and next, 
they start to monotonously decrease; maximum dispersion is obtained for 60% of the carbon 
black here.  
 

 
Fig. 19. Coefficients of variation for exponential cluster breakdown to the scalar variable E 

 

 
Fig. 20. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 
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Fig. 19. Coefficients of variation for exponential cluster breakdown to the scalar variable E 

 

 
Fig. 20. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 
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Fig. 21. The kurtosis for the exponential cluster breakdown to the scalar variable E 
 
The asymmetry coefficient β(f) and the kurtosis κ(f) also behave similarly to α(f), where the 
additional maxima appear for larger and smaller values of the strain measure E; the 
coefficient β(f) remains positive for all values of the parameter E. Within smaller E values 
range we notice that larger values of both coefficients are observed for the carbon black and 
they increase also together with an increase of the reinforcement volumetric ratio. Similarly 
as before, the PDFs concentration is higher than that for the Gaussian distribution and a 
right part of resulting distributions prevail. The expected values for the power-law cluster 
breakdown are shown in Fig. 22; they decrease together with the expectation of the strain 
measure E and the larger the reinforcement volume is, the larger is the expectation E[f]. The 
coefficients of variation are less predictable here (Fig. 23) – they monotonously increase for 
40% of both reinforcing particles, whereas for 60% silica and carbon black they 
monotonously increase until some maximum and afterwards they both start to decrease; the 
particular values are close to those presented in Fig. 19.  
 

 
Fig. 22. The expected values for the power-law cluster breakdown to the scalar variable E 

 

 

 
Fig. 23. Coefficients of variation for power-law cluster breakdown to the scalar variable E 
 

 
Fig. 24. Asymmetry coefficient for the power-law cluster breakdown to the scalar variable E 
 
The coefficients of asymmetry and kurtosis do not increase as those in Figs. 20-21 – they 
simply monotonously increase from 0 value typical for E=0 to their maxima for E=3 (the 
only exception in this rule is kurtosis of the elastomer with 60% of the silica particles). Both 
coefficients have larger values for the carbon black than for silica and they increase together 
with the additional reinforcement volumetric ratio increase. Although coefficients of 
asymmetry exhibit the values quite close to those obtained for the exponential breakdown 
approach, the kurtosis is approximately two times smaller than before (Fig. 25 vs. Fig. 21).  
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Fig. 21. The kurtosis for the exponential cluster breakdown to the scalar variable E 
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particular values are close to those presented in Fig. 19.  
 

 
Fig. 22. The expected values for the power-law cluster breakdown to the scalar variable E 
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Fig. 25. The kurtosis for the power-law cluster breakdown to the scalar variable E 

 
5. Homogenized parameters for elastomers subjected to the stochastic aging  

The engineering practice in many cases leads to the conclusion that the initial values of 
mechanical parameters decrease stochastically together with the time being. As far as some 
periodic measurements are available one can approximate in some way those stochastic 
process moments, however a posteriori analysis is not convenient considering the reliability 
of designed structures and materials. This stochasticity does not need result from the cyclic 
fatigue loading (Heinrich et al., 2002b), but may reflect some unpredictable structural 
accidents, aggressive environmental influences etc. This problem may be also considered in 
the context of the homogenization method, where the additional formula for effective 
parameters may include some stochastic processes. Considering above one may suppose for 
instance the scalar strain variable E as such a process, i.e. 
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where superscript 0 denotes here the initial random distribution of the given parameter and 
dotted quantities stand for the random variations of those parameters (measured in years). 
From the stochastic point of view it is somewhat similar to the Langevin equation approach 
(Mark, 2007), where Gaussian fluctuating white noise was applied. It is further assumed that 
all aforementioned random variables in eqns (25,26) are Gaussian and their first two 
moments are given; the goal would be to find the basic moments of the process ),( tf   to be 
included in some stochastic counterpart of eqn (1). The plus in eqn (25) suggests that the 
strain measure with some uncertainty should increase with time (Mark, 2007) according to 
some unpredictable deformations; introduction of higher order polynomium is also possible 
here and does not lead to significant computational difficulty. A determination of the first 
two moments of the process given by eqn (25) leads to the formulas 
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Now four input parameters are effectively needed to provide the analysis for stochastic 
ageing of any of the models presented above; the additional computational analysis was 
performed with respect to the exponential and power-law cluster breakdown models below.  
This part of computational experiments started from the determination of the expected 
values (Fig. 26), coefficients of variation (Fig. 27), the asymmetry coefficients (Fig. 28) and 
the kurtosis (Fig. 29) time fluctuations in the power-law model. For this purpose the 
following input data are adoped: 3][ 0 EE , 103.0][  yearEE  , 2

00 ])[01.0()( EEEVar   and 
2])[01.0()( EEEVar   , so that the initial strain measure has extremely large expected value  

and it still stochastically increases; the time scale for all those experiments marked on the 
horizontal axis is given of course in years. A general observation is that all of those 
characteristics decrease together with a time increment, not only the expected value. The 
elastomer shear modulus become closer to the matrix rather together with the time being 
and the random distribution of the output coefficient f converges with time to the Gaussian 
one, however the coefficient of variation also tends to 0 (for at least 60% silica). The 
interrelations between different elastomers are the same for expectations, asymmetry and 
kurtosis – larger values are obtained for silica than for the carbon black and the higher 
volumetric ratio (in percents) the higher values of those probabilistic characteristics; this 
result remains in the perfect agreement with Figs. 22-25 (showing an initial state to this 
analysis).  
 

 
Fig. 26. The expected values for the power-law cluster breakdown to the scalar variable E 
 
The coefficient of variation exhibit exactly the inverse interrelations – higher values are 
typical for silica reinforcement and for smaller amount of the reinforcing particles in the 
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elastomer specimen. For 40% silica the expected value of the reinforcement coefficient f 
becomes smaller than 1 after almost 25 years of such a stochastic ageing. It is apparent that 
we can determine here the critical age of the elastomer when it becomes too weak for the 
specific engineering application or, alternatively, determine the specific set of the input data 
to assure its specific design durability.   
 

 
Fig. 27. Coefficients of variation for power-law cluster breakdown to the scalar variable E 
 

 
Fig. 28. Asymmetry coefficient for the power-law cluster breakdown to the scalar variable E 
 
The input data set for the stochastic ageing of the elastomer according to the exponential 
cluster breakdown model is exactly the same as in the power-law approach given above. It 
results in the expectations (Fig. 30), coefficients of variation (Fig. 31), asymmetry coefficients 

 

 

(Fig. 32) and kurtosis (Fig. 33) time variations for ]50,0[ yearst . Their time fluctuations are 
generally similar qualitatively as before because all of those characteristics decrease in time. 
The expectations are slightly larger than before and never crosses a limit value of 1, whereas 
the coefficients are of about three order smaller than those in Fig. 27. The coefficients )(t  
are now around two times larger than in the case of the power-law cluster breakdown. The 
interrelations between the particular elastomers are different than those before – although 
silica dominates and E[f] increases together with the reversed dependence on the 
reinforcement ratio, the quantitative differences between those elastomers are not similar at 
all to Figs. 26-27. 
 

 
Fig. 29. The kurtosis for the power-law cluster breakdown to the scalar variable E 
 

 
Fig. 30. The expected values for the exponential cluster breakdown to the scalar variable E 
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The particular elastomers coefficients of asymmetry and kurtosis histories show that larger 
values are noticed for the carbon black than for the silica and, at the same time, for larger 
volume fractions of the reinforcements into the elastomer.  
 

 
Fig. 31. Coefficients of variation for exponential cluster breakdown to the scalar variable E 
 

 
Fig. 32. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 

 

 

 
Fig. 33. The kurtosis for the exponential cluster breakdown to the scalar variable E 

 
6. Concluding remarks 

1. The computational methodology presented and applied here allows a comparison of 
various homogenization methods for elastomers reinforced with nanoparticles in terms of 
parameter variability, sensitivity gradients as well as the resulting probabilistic moments. 
The most interesting result is the overall decrease of the probabilistic moments for the 
process f(ω;t) together with time during stochastic ageing of the elastomer specimen defined 
as the stochastic increase of the general strain measure E. For further applications an 
application of the non-Gaussian variables (and processes) is also possible with this model.  
2. The results of probabilistic modeling and stochastic analysis are very useful in stochastic 
reliability analysis of tires, where homogenization methods presented above significantly 
simplify the computational Finite Element Method model. On the other hand, one may use 
the stochastic perturbation technique applied here together with the LEFM or EPFM 
approaches to provide a comparison with the statistical results obtained during the basic 
impact tests (to predict numerically expected value of the tensile stress at the break) 
(Reincke et al., 2004).  
3. Similarly to other existing and verified homogenization theories, one may use here the 
energetic approach, where the effective coefficients are found by the equity of strain 
energies accumulated into the real and the homogenized specimens and calculated from the 
additional Finite Element Method experiments, similarly to those presented by Fukahori, 
2004 and Gehant et al., 2003. This technique, nevertheless giving the relatively precise 
approximations (contrary to some upper and lower bounds based approaches), needs 
primary Representative Volume Element consisting of some reinforcing cluster.  
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1. Introduction 

It is well understood nowadays that design is not an one-step process, but that it evolves 
along many phases which, starting from an initial idea, include drafting, preliminary 
evaluations, trial and error procedures, verifications and so on. All those steps can include 
considerations that come from different areas, when functional requirements have to be met 
which pertain to fields not directly related to the structural one, as it happens for noise, 
environmental prescriptions and so on; but even when that it’s not the case, it is very 
frequent the need to match against opposing demands, for example when the required 
strength or stiffness is to be coupled with lightness, not to mention the frequently 
encountered problems related to the available production means. 
All the previous cases, and the many others which can be taken into account, justify the 
introduction of particular design methods, obviously made easier by the ever-increasing use of 
numerical methods, and first of all of those techniques which are related to the field of mono- 
or multi-objective or even multidisciplinary optimization, but they are usually confined in the 
area of deterministic design, where all variables and parameters are considered as fixed in 
value. As we discuss below, the random, or stochastic, character of one or more parameters 
and variables can be taken into account, thus adding a deeper insight into the real nature of the 
problem in hand and consequently providing a more sound and improved design. 
Many reasons can induce designers to study a structural project by probabilistic methods, for 
example because of uncertainties about loads, constraints and environmental conditions, 
damage propagation and so on; the basic methods used to perform such analyses are well 
assessed, at least for what refers to the most common cases, where structures can be assumed 
to be characterized by a linear behaviour and when their complexity is not very great. 
Another field where probabilistic analysis is increasingly being used is that related to the 
requirement to obtain a product which is ‘robust’ against the possible variations of 
manufacturing parameters, with this meaning both production tolerances and the settings of 
machines and equipments; in that case one is looking for the ‘best’ setting, i.e. that which 
minimizes the variance of the product against those of design or control variables. 
A very usual case – but also a very difficult to be dealt – is that where it is required to take 
into account also the time variable, which happens when dealing with a structure which 
degrades because of corrosion, thermal stresses, fatigue, or others; for example, when 
studying very light structures, such as those of aircrafts, the designer aims to ensure an 
assigned life to them, which are subjected to random fatigue loads; in advanced age the 
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aircraft is interested by a WFD (Widespread Fatigue Damage) state, with the presence of 
many cracks which can grow, ultimately causing failure. This case, which is usually studied 
by analyzing the behaviour of significant details, is a very complex one, as one has to take 
into account a large number of cracks or defects, whose sizes and locations can’t be 
predicted, aiming to delay their growth and to limit the probability of failure in the 
operational life of the aircraft within very small limits (about 10-7±10-9). 
The most widespread technique is a ‘decoupled’ one, in the sense that a forecast is 
introduced by one of the available methods about the amount of damage which will 
probably take place at a prescribed instant and then an analysis in carried out about the 
residual strength of the structure; that is because the more general study which makes use of 
the stochastic analysis of the structure is a very complex one and still far away for the actual 
solution methods; the most used techniques, as the first passage theory, which claim to be 
the solution, are just a way to move around the real problems. 
In any case, the probabilistic analysis of the structure is usually a final step of the design 
process and it always starts on the basis of a deterministic study which is considered as 
completed when the other starts. That is also the state that will be considered in the present 
chapter, where we shall recall the techniques usually adopted and we shall illustrate them 
by recalling some case studies, based on our experience. 
For example, the first case which will be illustrated is that of a riveted sheet structure of the 
kind most common in the aeronautical field and we shall show how its study can be carried 
out on the basis of the considerations we introduced above. 
The other cases which will be presented in this paper refer to the probabilistic analysis and 
optimization of structural details of aeronautical as well as of automotive interest; thus, we 
shall discuss the study of an aeronautical panel, whose residual strength in presence of 
propagating cracks has to be increased, and with the study of an absorber, of the type used 
in cars to reduce the accelerations which act on the passengers during an impact or road 
accident, and whose design has to be improved. In both cases the final behaviour is 
influenced by design, manufacturing process and operational conditions. 

 
2. General methods for the probabilistic analysis of structures 

If we consider the n-dimensional space defined by the random variables which govern a generic 
problem (“design variables”) and which consist of geometrical, material, load, environmental 
and human factors, we can observe that those sets of coordinates (x) that correspond to failure 
define a domain (the ‘failure domain’ Ωf) in opposition to the remainder of the same space, that is 
known as the ‘safety domain’ (Ωs) as it corresponds to survival conditions. 
In general terms, the probability of failure can be expressed by the following integral: 
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where fi represents the joint density function of all variables, which, in turn, may happen to 
be also functions of time. Unfortunately that integral cannot be solved in a closed form in 
most cases and therefore one has to use approximate methods, which can be included in one 
of the following typologies: 
1) methods that use the limit state surface (LSS, the surface that constitutes the boundary of 
the failure region) concept: they belong to a group of techniques that model variously the 

LSS in both shape and order and use it to obtain an approximate probability of failure; 
among these, for instance, particularly used are FORM (First Order Reliability Method) and 
SORM (Second Order Reliability Method), that represent the LSS respectively through the 
hyper-plane tangent to the same LSS at the point of the largest probability of occurrence or 
through an hyper-paraboloid of rotation with the vertex at the same point. 
2) Simulation methodologies, which are of particular importance when dealing with complex 
problems: basically, they use Monte-Carlo (MC) technique for the numerical evaluation of the 
integral above and therefore they define the probability of failure on a frequency basis. 
As pointed above, it is necessary to use a simulation technique to study complex structures, 
but in the same cases each trial has to be carried out through a numerical analysis (for 
example by FEM); if we couple that circumstance with the need to perform a very large 
number of trials, which is the case when dealing with very small probabilities of failure, 
very large runtimes are obtained, which are really impossible to bear. Therefore different 
means have been introduced in recent years to reduce the number of trials and to make 
acceptable the simulation procedures. 
In this section, therefore, we resume briefly the different methods which are available to 
carry out analytic or simulation procedures, pointing out the difficulties and/or advantages 
which characterize them and the particular problems which can arise in their use.  

 
2.1 LSS-based analytical methods 
Those methods come from an idea by Cornell (1969), as modified by Hasofer and Lind 
(1974) who, taking into account only those cases where the design variables could be 
considered to be normally distributed and uncorrelated, each defined by their mean value I 
and standard deviation I, modeled the LSS in the standard space, where each variable is 
represented through the corresponding standard variable, i.e. 
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If the LSS can be represented by a hyperplane (fig. 1), it can be shown that the probability of 
failure is related to the distance  of LSS from the origin in the standard space and therefore 
is given by 
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Fig. 1. Probability of failure for a hyperplane LSS 
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2.1 LSS-based analytical methods 
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(1974) who, taking into account only those cases where the design variables could be 
considered to be normally distributed and uncorrelated, each defined by their mean value I 
and standard deviation I, modeled the LSS in the standard space, where each variable is 
represented through the corresponding standard variable, i.e. 
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If the LSS can be represented by a hyperplane (fig. 1), it can be shown that the probability of 
failure is related to the distance  of LSS from the origin in the standard space and therefore 
is given by 
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Fig. 1. Probability of failure for a hyperplane LSS 
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Fig. 2. The search for the design point according to RF’s method 
 
It can be also shown that the point of LSS which is located at the least distance β from the 
origin is the one for which the elementary probability of failure is the largest and for that 
reason it is called the maximum probability point (MPP) or the design point (DP). 
Those concepts have been applied also to the study of problems where the LSS cannot be 
modeled as an hyperplane; in those cases the basic methods try to approximate the LSS by 
means of some polynomial, mostly of the first or the second degree; broadly speaking, in 
both cases the technique adopted uses a Taylor expansion of the real function around some 
suitably chosen point to obtain the polynomial representation of the LSS and it is quite 
obvious to use the design point to build the expansion, as thereafter the previous Hasofer 
and Lind’s method can be used. 
It is then clear that the solution of such problems requires two distinct steps, i.e. the research 
of the design point and the evaluation of the probability integral; for example, in the case of 
FORM (First Order Reliability Method) the most widely applied method, those two steps are 
coupled in a recursive form of the gradient method (fig. 2), according to a technique 
introduced by Rackwitz and Fiessler (RF’s method). If we represent the LSS through the 
function g(x) = 0 and indicate with I the direction cosines of the inward-pointing normal to 
the LSS at a point x0, given by 
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starting from a first trial value of u, the kth n-uple is given by 
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thus obtaining the required design point within an assigned approximation; its distance 
from the origin is just  and then the probability of failure can be obtained through eq. 3 
above. 
One of the most evident errors which follow from that technique is that the probability of 
failure is usually over-estimated and that error grows as curvatures of the real LSS increase; 
to overcome that inconvenience in presence of highly non-linear surfaces, the SORM 

(Second Order Reliability Method) was introduced, but, even with Tved’s and Der 
Kiureghian’s developments, its use implies great difficulties. The most relevant result, due 
to Breitung, appears to be the formulation of the probability of failure in presence of a 
quadratic LSS via FORM result, expressed by the following expression: 
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where I is the i-th curvature of the LSS; if the connection with FORM is a very convenient 
one, the evaluation of curvatures usually requires difficult and long computations; it is true 
that different simplifying assumptions are often introduced to make solution easier, but a 
complete analysis usually requires a great effort. Moreover, it is often disregarded that the 
above formulation comes from an asymptotic development and that consequently its result 
is so more approximate as  values are larger. 
As we recalled above, the main hypotheses of those procedures are that the random 
variables are uncorrelated and normally distributed, but that is not the case in many 
problems; therefore, some methods have been introduced to overcome those difficulties. 
For example, the usually adopted technique deals with correlated variables via an 
orthogonal transformation such as to build a new set of variables which are uncorrelated, 
using the well known properties of matrices. For what refers to the second problem, the 
current procedure is to approximate the behaviour of the real variables by considering 
dummy gaussian variables which have the same values of the distribution and density 
functions; that assumption leads to an iterative procedure, which can be stopped when 
the required approximation has been obtained: that is the original version of the 
technique, which was devised by Ditlevsen and which is called Normal Tail 
Approximation; other versions exist, for example the one introduced by Chen and Lind, 
which is more complex and which, nevertheless, doesn’t bring any deeper knowledge on 
the subject. 
At last, it is not possible to disregard the advantages connected with the use of the Response 
Surface Method, which is quite useful when dealing with rather large problems, for which it 
is not possible to forecast a priori the shape of the LSS and, therefore, the degree of the 
approximation required. That method, which comes from previous applications in other 
fields, approximate the LSS by a polynomial, usually of second degree, whose coefficients 
are obtained by Least Square Approximation or by DOE techniques; the procedure, for 
example according to Bucher and Burgund, evolves along a series of convergent trials, 
where one has to establish a center point for the i-th approximation, to find the required 
coefficients, to determine the design point and then to evaluate the new approximating 
center point for a new trial. 
Beside those here recalled, other methods are available today, such as the Advanced Mean 
Value or the Correction Factor Method, and so on, and it is often difficult to distinguish 
their own advantages, but in any case the techniques which we outlined here are the most 
general and known ones; broadly speaking, all those methods correspond to different 
degree of approximation, so that their use is not advisable when the number of variables 
is large or when the expected probabilities of failure is very small, as it is often the case, 
because of the overlapping of the errors, which can bring results which are very far from 
the real one. 
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technique, which was devised by Ditlevsen and which is called Normal Tail 
Approximation; other versions exist, for example the one introduced by Chen and Lind, 
which is more complex and which, nevertheless, doesn’t bring any deeper knowledge on 
the subject. 
At last, it is not possible to disregard the advantages connected with the use of the Response 
Surface Method, which is quite useful when dealing with rather large problems, for which it 
is not possible to forecast a priori the shape of the LSS and, therefore, the degree of the 
approximation required. That method, which comes from previous applications in other 
fields, approximate the LSS by a polynomial, usually of second degree, whose coefficients 
are obtained by Least Square Approximation or by DOE techniques; the procedure, for 
example according to Bucher and Burgund, evolves along a series of convergent trials, 
where one has to establish a center point for the i-th approximation, to find the required 
coefficients, to determine the design point and then to evaluate the new approximating 
center point for a new trial. 
Beside those here recalled, other methods are available today, such as the Advanced Mean 
Value or the Correction Factor Method, and so on, and it is often difficult to distinguish 
their own advantages, but in any case the techniques which we outlined here are the most 
general and known ones; broadly speaking, all those methods correspond to different 
degree of approximation, so that their use is not advisable when the number of variables 
is large or when the expected probabilities of failure is very small, as it is often the case, 
because of the overlapping of the errors, which can bring results which are very far from 
the real one. 
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2.2 Simulation-based reliability assessment 
In all those cases where the analytical methods are not to be relied on, for example in 
presence of many, maybe even not gaussian, variables, one has to use simulation methods to 
assess the reliability of a structure: about all those methods come from variations or 
developments of an ‘original’ method, whose name is Monte-Carlo method and which 
corresponds to the frequential (or a posteriori) definition of probability. 
 

 
Fig. 3. Domain Restricted Sampling 
 
For a problem with k random variables, of whatever distribution, the method requires the 
extraction of k random numbers, each of them being associated with the value of one of the 
variables via the corresponding distribution function; then, the problem is run  with the 
found values and its result (failure of safety) recorded; if that procedure is carried out N 
times, the required probability, for example that corresponding to failure, is given by Pf = 
n/N, if the desired result has been obtained n times. 
Unfortunately, broadly speaking, the procedure, which can be shown to lead to the ‘exact’ 
evaluation of the required probability if N = ∞, is very slow to reach convergence and 
therefore a large number of trials have to be performed; that is a real problem if one has to deal 
with complex cases where each solution is to be obtained by numerical methods, for example 
by FEM or others. That problem is so more evident as the largest part of the results are 
grouped around the mode of the result distribution, while one usually looks for probability 
which lie in the tails of the same distribution, i.e. one deals with very small probabilities, for 
example those corresponding to the failure of an aircraft or of an ocean platform and so on. 
It can be shown, by using Bernouilli distribution, that if p is the ‘exact’ value of the required 
probability and if one wants to evaluate it with an assigned emax error at a given confidence 
level defined by the bilateral protection factor k, the minimum number of trials to be carried 
out is given by 
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for example, if p = 10-5 and we want to evaluate it with a 10% error at the 95% confidence 
level, we have to carry out  at least Nmin = 1.537·108 trials, which is such a large number that 
usually larger errors are accepted, being often satisfied to get at least the order of magnitude 
of the probability. 
It is quite obvious that various methods have been introduced to decrease the number of trials; 
for example, as we know that no failure point is to be found at a distance smaller than β from 
the origin of the axis in the standard space, Harbitz introduced the Domain Restricted 
Sampling (fig. 3), which requires the design point to be found first and then the trials are 
carried out only at distances from the origin larger than β; the Importance Sampling Method is 
also very useful, as each of the results obtained from the trials is weighted according to a 
function, which is given by the analyst and which is usually centered at the design point, with 
the aim to limit the number of trials corresponding to results which don’t lie in the failure 
region. 
 

 
Fig. 4. The method of Directional Simulation 
 
One of the most relevant technique which have been introduced in the recent past is the one 
known as Directional  Simulation; in the version published by Nie and Ellingwood, the 
sample space is subdivided in an assigned number of sectors through radial hyperplanes 
(fig. 4); for each sector the mean distance of the LSF is found and the corresponding 
probability of failure is evaluated, the total probability being given by the simple sum of all 
results; in this case, not only the number of trials is severely decreased, but a better 
approximation of the frontier of the failure domain is achieved, with the consequence that 
the final probability is found with a good approximation. 
Other recently appeared variations are related to the extraction of random numbers; those 
are, in fact, uniformly distributed in the 0-1 range and therefore give results which are rather 
clustered around the mode of the final distribution. That problem can be avoided if one 
resorts to use not really random distributions, as those coming from k-discrepancy theory, 
obtaining points which are better distributed in the sample space. 
A new family of techniques have been introduced in the last years, all pertaining to the 
general family of genetic algorithms; that evocative name is usually coupled with an 
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imaginative interpretation which recalls the evolution of animal settlements, with all its 
content of selection, marriage, breeding and mutations, but it really covers in a systematic 
and reasoned way all the steps required to find the design point of an LSS in a given region 
of space. In fact, one has to define at first the size of the population, i.e. the number of 
sample points to be used when evaluating the required function; if that function is the 
distance of the design point from the origin, which is to be minimized, a selection is made 
such as to exclude from the following steps all points where the value assumed by the 
function is too large. After that, it is highly probable that the location of the minimum is 
between two points where the same function shows a small value: that coupling is what 
corresponds to marriage in the population and the resulting intermediate point represents 
the breed of the couple. Summing up the previous population, without the excluded points, 
with the breed, gives a new population which represents a new generation; in order to look 
around to observe if the minimum point is somehow displaced from the easy connection 
between parents, some mutation can be introduced, which corresponds to looking around 
the new-found positions. 
It is quite clear that, besides all poetry related to the algorithm, it can be very useful but it 
is quite difficult to be used, as it is sensitive to all different choices one has to introduce in 
order to get a final solution: the size of the population, the mating criteria, the measure 
and the way of the introduction in breed of the parents’ characters, the percentage and the 
amplitude of mutations, are all aspects which are to be the objects of single choices by the 
analyst and which can have severe consequences on the results, for example in terms of 
the number of generations required to attain convergence and of the accuracy of the 
method. 
That’s why it can be said that a general genetic code which can deal with all reliability 
problems is not to be expected, at least in the near future, as each problem requires specific 
cares that only the dedicated attentions of the programmer can guarantee. 

 
3. Examples of analysis of structural details 

An example is here introduced to show a particular case of stochastic analysis as applied to 
the study of structural details, taken from the authors’ experience in research in the 
aeronautical field. 
Because of their widespread use, the analysis of the behaviour of riveted sheets is quite 
common in aerospace applications; at the same time the interest which induced the authors 
to investigate the problems below is focused on the last stages of the operational life of 
aircraft, when a large number of fatigue-induced cracks appear at the same time in the 
sheets, before at least one of them propagates up to induce the failure of the riveted joint: the 
requirement to increase that life, even in presence of such a population of defects (when we 
say that a stage of Widespread Fatigue Damage, WFD, is taking place) compelled the 
authors to investigate such a scenario of a damaged structure. 

 
3.1 Probabilistic behaviour of riveted joints 
One of the main scopes of the present activity was devoted to the evaluation of the 
behaviour of a riveted joint in presence of damage, defined for example as a crack which, 
stemming from the edge of one of the holes of the joint, propagates toward the nearest one, 
therefore introducing a higher stress level, at least in the zone adjacent to crack tip. 

It would be very appealing to use such easy procedures as compounding to evaluate SIF’s for 
that case, which, as it is now well known, gives an estimate of the stress level which is built by 
reducing the problem at hand to the combination of simpler cases, for which the solution is 
known; that procedure is entirely reliable, but for those cases where singularities are so near to 
each other to develop an interaction effect which the method is not able to take into account. 
Unfortunately, even if a huge literature is now available about edge cracks of many 
geometry, the effect of a loaded hole is not usually treated with the extent it deserves, may 
be for the particular complexity of the problem; for example, the two well known papers by 
Tweed and Rooke (1979; 1980) deal with the evaluation of SIF for a crack stemming from a 
loaded hole, but nothing is said about the effect of the presence of other loaded holes toward 
which the crack propagates. 
Therefore, the problem of the increase of the stress level induced from a propagating crack 
between loaded holes could be approached only by means of numerical methods and the 
best idea was, of course, to use the results of FEM to investigate the case. Nevertheless, 
because of the presence of the external loads, which can alter or even mask the effects of 
loaded holes, we decided to carry out first an investigation about the behaviour of SIF in 
presence of two loaded holes.  
The first step of the analysis was to choose which among the different parameters of the 
problem were to be treated as random variables.  
Therefore a sort of sensitivity analysis was to be carried out; in our case, we considered a 
very specific detail, i.e. the space around the hole of a single rivet, to analyze the influence of 
the various parameters. 
By using a Monte-Carlo procedure, some probability parameters were introduced according to 
experimental evidence for each of the variables in order to assess the required influence on the 
mean value and the coefficient of variation of the number of cycles before failure of the detail. 
In any case, as pitch and diameter of the riveted holes are rather standardized in size, their 
influence was disregarded, while the sheet thickness was assumed as a deterministic 
parameter, varying between 1.2 and 4.8 mm; therefore, the investigated parameters were the 
stress level distribution, the size of the initial defect and the parameters of the propagation 
law, which was assumed to be of Paris’ type.  
For what refers to the load, it was supposed to be in presence of traction load cycles with R = 0 
and with a mean value which followed a Gaussian probability density function around 60, 90 
and 120 MPa, with a coefficient of variation varying according assigned steps; initial crack sizes 
were considered as normally distributed from 0.2 mm up to limits depending on the examined 
case, while for what concerns the two parameters of Paris’ law, they were considered as 
characterized by a normal joint pdf between the exponent n and the logarithm of the other one. 
Initially, an extensive exploration was carried out, considering each variable in turn as 
random, while keeping the others as constant and using the code NASGRO® to evaluate the 
number of cycles to failure; an external routine was written in order to insert the crack code in 
a M-C procedure. CC04 and TC03 models of NASGRO® library were adopted in order to take 
into account corner- as well as through-cracks. For all analyses 1,000 trials/point were carried 
out, as it was assumed as a convenient figure to be accepted to obtain rather stabilized results, 
while preventing the total runtimes from growing unacceptably long; the said M-C procedure 
was performed for an assigned statistics of one input variable at the time. 
The results obtained can be illustrated by means of the following pictures and first of all of 
the fig. 5 where the dependence of the mean value of life from the mean amplitude of 
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imaginative interpretation which recalls the evolution of animal settlements, with all its 
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out, as it was assumed as a convenient figure to be accepted to obtain rather stabilized results, 
while preventing the total runtimes from growing unacceptably long; the said M-C procedure 
was performed for an assigned statistics of one input variable at the time. 
The results obtained can be illustrated by means of the following pictures and first of all of 
the fig. 5 where the dependence of the mean value of life from the mean amplitude of 
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remote stress is recorded for different cases where the CV (coefficient of variation) of stress 
pdf was considered as being constant. The figure assesses the increase of the said mean life 
to failure in presence of higher CV of stress, as in this case rather low stresses are possible 
with a relatively high probability and they influence the rate of propagation in a higher 
measure than large ones.  
 

 
Fig. 5. Influence of the remote stress on the cycles to failure 
 
In fig. 6  the influence of the initial geometry is examined for the case of a corner crack, 
considered to be elliptical in shape, with length c and depth a; a very interesting aspect of 
the consequences of a given shape is that for some cases the life for a through crack is longer 
than the one recorded for some deep corner ones; that case can be explained with the help of 
the plot of Fig. 7 where the growth of a through crack is compared with those of quarter 
corner cracks, recording times when a corner crack becomes a through one: as it is clarified 
in the boxes in the same picture, each point of the dashed curve references to a particular 
value of the initial depth. 
 

 
Fig. 6. Influence of the initial length of the crack on cycles to failure 

 
Fig. 7. Propagation behaviour of a corner and a through crack 
 
It can be observed that beyond a certain value of the initial crack depth, depending on the 
sheet thickness, the length reached when the corner crack becomes a through one is larger 
than that obtained after the same number of cycles when starting with a through crack, and 
this effect is presumably connected to the bending effect of corner cracks. 
For what concerns the influence exerted by the growth parameters, C and n according to the 
well known  Paris’ law, a first analysis was carried out in order to evaluate the influence of 
spatial randomness of propagation parameters; therefore the analysis was carried out 
considering that for each stage of propagation the current values of C and n were randomly 
extracted on the basis of a joint normal pdf between lnC and n. The results, illustrated in 
Fig. 8, show a strong resemblance with the well known experimental results by Wirkler. 
Then an investigation was carried out about the influence of the same ruling parameters on 
the variance of cycles to failure. It could be shown that the mean value of the initial length 
has a little influence on the CV of cycles to failure, while on the contrary is largely affected 
by the CV of the said geometry. On the other hand, both statistical parameters of the 
distribution of remote stress have a deep influence on the CV of fatigue life. 
 

 
Fig. 8. Crack propagation histories with random parameters 
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Once the design variables were identified, the attention had to be focused on the type of 
structure that one wants to use as a reference; in the present case, a simple riveted lap joint 
for aeronautical application was chosen (fig. 9), composed by two 2024-T3 aluminium 
sheets, each 1 mm thick, with 3 rows of 10 columns of 5 mm rivets and a pitch of 25 mm. 
Several reasons suggest to analyze such a structure before beginning a really probabilistic 
study; for example, the state of stress induced into the component by external loads has to 
be evaluated and then it is important to know the interactions between existing singularities 
when a MSD (Multi-Site Damage) or even a WFD (Widespread Fatigue Damage) takes 
place. Several studies were carried out, in fact (for example, Horst, 2005), considering a 
probabilistic initiation of cracks followed by a deterministic propagation, on the basis that 
such a procedure can use very simple techniques, such as compounding (Rooke, 1986). Even 
if such a possibility is a very appealing one, as it is very fast, at least once the appropriate 
fundamental solutions have been found and recorded, some doubts arise when one comes 
to its feasibility. 
The fundamental equation of compounding method is indeed as follows: 
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Fig. 9. The model used to study the aeronautical panel in WFD conditions 
 
where the SIF at the crack tip of the crack we want to investigate is expressed by means of 
the SIF at the same location for the fundamental solution, K*, plus the increase, with respect 
to the same ‘fundamental’ SIF, (Ki –K*), induced by each other singularity, taken one at a 
time, plus the effect of interactions between existing singularities, still expressed as a SIF, Ke. 
As the largest part of literature is related to the case of a few cracks, the Ke term is usually 
neglected, but that assumption appears to be too weak when dealing with WFD studies, 
where the singularities approach each other; therefore one of the main reasons to carry out 
such deterministic analysis is to verify the extent of this approximation. It must be stressed 
that no widely known result is available for the case of rivet-loaded holes, at least for cases 
matching with the object of the present analysis; even the most known papers, which we 
quoted above deal with the evaluation of SIF for cracks which initiate on the edge of a 

loaded hole, but it is important to know the consequence of rivet load on cracks which arise 
elsewhere. 
Another aspect, related to the previous one, is the analysis of the load carried by each pitch 
as damage propagates; as the compliance of partially cracked pitches increases with 
damage, one is inclined to guess that the mean load carried by those zones decreases, but 
the nonlinearity of stresses induced by geometrical singularities makes the quantitative 
measure of such a variation difficult to evaluate; what’s more, the usual expression adopted 
for SIF comes from fundamental cases where just one singularity is present and it is given as 
a linear function of remote stress. One has to guess if such a reference variable as the stress 
at infinity is still meaningful in WFD cases. 
Furthermore, starting to study the reference structure, an appealing idea to get a fast 
solution can be to decompose the structure in simple and similar details, each including one 
pitch, to be analyzed separately and then added together, considering each of them as a 
finite element or better as a finite strip; that idea induces to consider the problem of the 
interactions between adjacent details. 
In fact, even if the structure is considered to be a two-dimensional one, the propagation of 
damage in different places brings the consequence of varying interactions, for both normal 
and shearing stresses. For all reasons above, an extensive analysis of the reference structure 
is to be carried out in presence of different MSD scenarios; in order to get fast solutions, use 
can be made of the well known BEASY® commercial code, but different cases are to be 
verified by means of more complex models. 
On the basis of the said controls, a wide set of scenarios could be explored, with two, three 
and also four cracks existing at a time, using a two-dimensional DBEM model; in the present 
case, a 100 MPa remote stress was considered, which was transferred to the sheet through 
the rivets according to a 37%, 26% and 37% distribution of load, as it is usually accepted in 
literature; that load was applied through an opportune pressure distribution on the edge of 
each hole. This model, however, cannot take into account two effects, i.e. the limited 
compliance of holes, due to the presence of rivets and the variations of the load carried by 
rivets mounted in cracked holes; both those aspects, however, were considered as not very 
relevant, following the control runs carried out by FEM. 
 

 
Fig. 10. The code used to represent WFD scenarios 
 
For a better understanding of the following illustrations, one has to refer to fig. 10, where we 
show the code adopted to identify the cracks; each hole is numbered and each hole side is 
indicated by a capital letter, followed, if it is the case, by the crack length in mm; therefore, 
for example, E5J7P3 identifies the case when three cracks are present, the first, 5 mm long, 
being at the left side of the third hole (third pitch, considering sheet edges), another, 7 mm 
long, at the right side of the fifth hole (sixth pitch), and the last, 3 mm long, at the left side of 
the eight hole (eighth pitch). 
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Fig. 11. Behaviour of J2K2Mx scenario 
 

 
Fig. 12. Mean longitudinal stress loading different  pitches for a 2 mm crack in pitch 7 
 

 
Fig. 13. Mean longitudinal stress loading different pitches for a 4 mm crack in pitch 7 

In fig. 11 a three cracks scenario is represented, where in pitch 6 there are two cracks, each 2 
mm long and another crack is growing at the right edge of the seventh hole, i.e. in the 
adjacent seventh pitch; if we consider only LEFM, we can observe that the leftmost crack (at 
location J) is not much influenced by the presence of the propagating crack at location M, 
while the central one exhibits an increase in SIF which can reach about 20%.  
 

 
Fig. 14. Mean longitudinal stress loading different pitches for a 12 mm crack in pitch 7 

 
The whole process can be observed by considering the mean longitudinal stress for different 
scenarios, as illustrated in Fig. 12, 13 and 14; in the first one, we can observe a progressive 
increase in the mean longitudinal stress around pitch no. 6, which is the most severely 
reduced and the influence of the small crack at location M is not very high. 
As the length of crack in pitch 7 increases, however, the mean longitudinal stresses in both 
pitches 6 and 7 becomes quite similar and much higher of what is recorded in safe zones, 
where the same longitudinal stresses are not much increased in respect to what is recorded 
for a safe structure, because the transfer of load is distributed among many pitches. 
The main results obtained through the previously discussed analysis can be summarized by 
observing that in complex scenarios high interactions exist between singularities and 
damaged zones, which can prevent the use of simple techniques such as compounding, but 
that the specific zone to be examined gets up to a single pitch beyond the cracked ones, of 
course on both sides. At the same time, as expected, we can observe that for WFD 
conditions, in presence of large cracks, the stress levels become so high that the use of LEFM 
can be made only from a qualitative standpoint. 
If some knowledge about what to expect and how the coupled sheets will behave during the 
accumulation of damage has been obtained at this point of the analysis, we also realize, as 
pointed above, that no simple method can be used to evaluate the statistics of failure times, 
as different aspects will oppose and first of all the amount of the interactions between 
cracked holes; for that reason the only way which appears to be of some value is the direct 
M-C interaction as applied to the whole component, i.e. the evaluation of the ‘true’ history 
foe the sheets, to be performed the opportune number of times to extract reliable statistics; 
as the first problem the analyst has to overcome in such cases is the one related to the time 
consumption, it is of uttermost importance to use the most direct and quick techniques to 
obtain the desired results; for example, the use of DBEM coupled with an in-house 
developed code can give, if opportunely built, such guarantees. 
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In the version we are referring to, the structure was considered to be entirely safe at the 
beginning of each trial; then a damage process followed, which was considered as to be of 
Markow type. For the sake of brevity we shall not recall here the characters of such a 
process, which we consider to be widely known today; we simply mention that we have to 
define the initial scenario, the damage initiation criterion and the transitional probabilities 
for damage steps. In any case, we have to point out that other hypothesis could be assumed 
and first that of an initial damage state as related to EIFS (Equivalent Initial Flaw Size) or to 
the case of a rogue flaw, for example, don’t imply any particular difficulty. 
Two possible crack locations were considered at each hole, corresponding to the direction 
normal to the remote stress;  the probability distribution of crack appearance in time was 
considered as lognormal, given by the following function: 
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with an immediate meaning of the different parameters; it has to be noted that in our case 
the experimental results available in literature were adapted to obtain P-S-N curves, in order 
to make the statistics dependent on the stress level. At each time of the analysis the 
extraction of a random number for each of the still safe locations was carried out to 
represent the probability of damage cumulated locally and compared with the probability 
coming from eq. (10) above; in the positive case, a new crack was considered as initiated in 
the opportune location. 
In order to save time, the code started to perform the search only at a time where the 
probability to find at least one cracked location was not less than a quantity p chosen by the 
user; it is well known that, if pf is the probability of a given outcome, the probability that the 
same outcome is found at least for one among n cases happening simultaneously is given 
by: 

 nfp11p  ;            (11) 
 

in our case n is the number of possible locations, thus obtaining the initial analysis time, by 
inverting the probability function corresponding to eq. (11) above; in our trials it was 
generally adopted p = 0.005, which revealed to be a conservative choice, but of course other 
values could also be accepted. A particular choice had also to be made about the kind and 
the geometry of the initial crack; it is evident that to follow the damage process accurately a 
defect as small as possible has to be considered, for example a fraction of mm, but in that 
case some difficulties arise. 
For example, such a small crack would fall in the range of short cracks and would, therefore, 
require a different treatment in propagation; in order to limit our analysis to a two-
dimensional case we had to consider a crack which was born as a through one and therefore 
we choose it to be characterized by a length equal to the thickness of the sheet, i.e., 1.0 mm 
in our case. 
Our choice was also justified by the fact that generally the experimental tests used to define 
the statistics represented in eq. (10) above record the appearance of a crack when the defect 
reaches a given length or, if carried out on drilled specimens, even match the initiation and 
the failure times, considering that in such cases the propagation times are very short. Given 

an opportune integration step, the same random extraction was performed in 
correspondence of still safe locations, up to the time (cycle) when all holes were cracked; 
those already initiated were considered as propagating defects, integrating Paris-Erdogan’s 
law on the basis of SIF values recorded at the previous instant. Therefore, at each step the 
code looked for still safe locations, where it performed the random extraction to verify the 
possible initiation of defect, and at the same time, when it met a cracked location, it looked 
for the SIF value recorded in the previous step and, considering it as constant in the step, 
carried out the integration of the growth law in order to obtain the new defect length. 
The core of the analysis was the coupling of the code with a DBEM module, which in our 
case was the commercial code BEASY®; a reference input file, representing the safe 
structure, was prepared by the user and submitted to the code, which analyzed the file, 
interpreted it and defined the possible crack locations; then, after completing the evaluations 
needed at the particular step, it would build a new file which contained the same structure, 
but as damaged as it came from the current analysis and it submitted it to BEASY®; once the 
DBEM run was carried out, the code read the output files, extracted the SIF values 
pertaining to each location and performed a new evaluation. For each ligament the analysis 
ended when the distance between two singularities was smaller than the plastic radius, as 
given by Irwin 
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where σy is the yield stress and KI the mode-I SIF; that measure is adopted for cracks 
approaching a hole or an edge, while for the case of two concurrent cracks the limit distance 
is considered to be given by the sum of the plastic radiuses pertaining to the two defects. 
Once such limit distance was reached, the ligament was considered as broken, in the sense 
that no larger cracks could be formed; however, to take into account the capability of the 
ligament to still carry some load, even in the plastic field, the same net section was still 
considered in the following steps, thus renouncing to take into account the plastic behaviour 
of the material. Therefore, the generic M-C trial was considered as ended when one of three 
conditions are verified, the first being the easiest, i.e. when a limit number of cycles given by 
the user was reached. The second possibility was that the mean longitudinal stress 
evaluated in the residual net section reached the yield stress of the material and the third, 
obviously, was met when all ligaments were broken. Several topics are to be further 
specified and first of all the probabilistic capabilities of the code, which are not limited to the 
initiation step. The extent of the probabilistic analysis can be defined by the user, but in the 
general case, it refers to both loading and propagation parameters. 
For the latter, user inputs the statistics of the parameters, considering a joint normal density 
which couples lnC and n, with a normal marginal distribution for the second parameter; at 
each propagation step the code extracted at each location new values to be used in the 
integration of the growth law. 
The variation of remote stress was performed in the same way, but it was of greater 
consequences; first of all we have to mention that a new value of remote stress was extracted 
at the beginning of each step from the statistical distribution that, for the time being, we 
considered as a normal one, and then kept constant during the whole step: therefore, 
variations which occurred for shorter times went unaccounted. The problem which was met 
when dealing with a variable load concerned the probability of crack initiation, more than 
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extraction of a random number for each of the still safe locations was carried out to 
represent the probability of damage cumulated locally and compared with the probability 
coming from eq. (10) above; in the positive case, a new crack was considered as initiated in 
the opportune location. 
In order to save time, the code started to perform the search only at a time where the 
probability to find at least one cracked location was not less than a quantity p chosen by the 
user; it is well known that, if pf is the probability of a given outcome, the probability that the 
same outcome is found at least for one among n cases happening simultaneously is given 
by: 

 nfp11p  ;            (11) 
 

in our case n is the number of possible locations, thus obtaining the initial analysis time, by 
inverting the probability function corresponding to eq. (11) above; in our trials it was 
generally adopted p = 0.005, which revealed to be a conservative choice, but of course other 
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the geometry of the initial crack; it is evident that to follow the damage process accurately a 
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dimensional case we had to consider a crack which was born as a through one and therefore 
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the statistics represented in eq. (10) above record the appearance of a crack when the defect 
reaches a given length or, if carried out on drilled specimens, even match the initiation and 
the failure times, considering that in such cases the propagation times are very short. Given 

an opportune integration step, the same random extraction was performed in 
correspondence of still safe locations, up to the time (cycle) when all holes were cracked; 
those already initiated were considered as propagating defects, integrating Paris-Erdogan’s 
law on the basis of SIF values recorded at the previous instant. Therefore, at each step the 
code looked for still safe locations, where it performed the random extraction to verify the 
possible initiation of defect, and at the same time, when it met a cracked location, it looked 
for the SIF value recorded in the previous step and, considering it as constant in the step, 
carried out the integration of the growth law in order to obtain the new defect length. 
The core of the analysis was the coupling of the code with a DBEM module, which in our 
case was the commercial code BEASY®; a reference input file, representing the safe 
structure, was prepared by the user and submitted to the code, which analyzed the file, 
interpreted it and defined the possible crack locations; then, after completing the evaluations 
needed at the particular step, it would build a new file which contained the same structure, 
but as damaged as it came from the current analysis and it submitted it to BEASY®; once the 
DBEM run was carried out, the code read the output files, extracted the SIF values 
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where σy is the yield stress and KI the mode-I SIF; that measure is adopted for cracks 
approaching a hole or an edge, while for the case of two concurrent cracks the limit distance 
is considered to be given by the sum of the plastic radiuses pertaining to the two defects. 
Once such limit distance was reached, the ligament was considered as broken, in the sense 
that no larger cracks could be formed; however, to take into account the capability of the 
ligament to still carry some load, even in the plastic field, the same net section was still 
considered in the following steps, thus renouncing to take into account the plastic behaviour 
of the material. Therefore, the generic M-C trial was considered as ended when one of three 
conditions are verified, the first being the easiest, i.e. when a limit number of cycles given by 
the user was reached. The second possibility was that the mean longitudinal stress 
evaluated in the residual net section reached the yield stress of the material and the third, 
obviously, was met when all ligaments were broken. Several topics are to be further 
specified and first of all the probabilistic capabilities of the code, which are not limited to the 
initiation step. The extent of the probabilistic analysis can be defined by the user, but in the 
general case, it refers to both loading and propagation parameters. 
For the latter, user inputs the statistics of the parameters, considering a joint normal density 
which couples lnC and n, with a normal marginal distribution for the second parameter; at 
each propagation step the code extracted at each location new values to be used in the 
integration of the growth law. 
The variation of remote stress was performed in the same way, but it was of greater 
consequences; first of all we have to mention that a new value of remote stress was extracted 
at the beginning of each step from the statistical distribution that, for the time being, we 
considered as a normal one, and then kept constant during the whole step: therefore, 
variations which occurred for shorter times went unaccounted. The problem which was met 
when dealing with a variable load concerned the probability of crack initiation, more than 
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the propagation phase; that’s because the variation of stress implies the use of some damage 
accumulation algorithm, which we used in the linear form of Miner’s law, being the most 
used one. 
 

 
Fig. 15. Cdfs’ for a given number of cracked holes in time 

 
However, we have to observe that if the number of cycles to crack initiation is a random 
variable, as we considered above, the simple sum of deterministic ratios which appears in 
Miner’s law cannot be accepted, as pointed out by Hashin (1980;  1983), the same sum 
having a probabilistic meaning; therefore, the sum of two random variables, i.e. the  damage 
cumulated and the one corresponding to the next step, has to be carried out by performing 
the convolution of the two pdfs’ involved. This task is carried out by the code, in the present 
version, by a rather crude technique, recording in a file both the damage cumulated at each 
location and the new one and then performing the integration by the trapezoidal rule. 
At the end of all M-C trials, a final part of our code carried out the statistical analysis of 
results in such a way as to be dedicated to the kind of problem in hand and to give useful 
results; for example, we could obtain, as usually, the statistics of initiation and failure times, 
but also the cumulative density function (cdf) of particular scenarios, as that of cracks longer 
than a given size, or including an assigned number of holes, as it is illustrated in fig. 15. 

 
4. Multivariate optimization of structures and design 

The aim of the previous discussion was the evaluation of the probability of failure of a given 
structure, with assigned statistics of all the design variables involved, but that is just one of 
the many aspects which can be dealt within a random analysis of a structural design. In 
many cases, in fact, one is interested to the combined effects of input variables on some kind 
of answer or quality of the resulting product, which can be defined as weight, inertia, 
stiffness, cost, or others; sometimes one wishes to optimize one or several properties of the 
result, either maximizing or minimizing them, and different parameters can give to the 

design opposing tendencies, as it happens for example when one wishes to increase some 
stiffness of the designed component, while keeping its weight as low as possible.  
 

 
Fig. 16. How the statistics of the result depend on the mean value of the control variables 

 
In any case, one must consider that, at least in the structural field for the case of large 
deformations, the relationship between the statistic of the response and that of a generic 
design variable for a complex structure is in general a non-linear one; it is in fact evident 
from fig. 16 that two different mean values for the random variable x, say xA and xB, even in 
presence of the same standard variation, correspond to responses centered in yA and yB, 
whose coefficients of variation are certainly very different from each other. In those cases, 
one has to expect that small variations of input can imply large differences for output 
characteristics, in dependence of the value around which input is centered; that aspect is of 
relevant importance in all those cases where one has to take into account the influences 
exerted by manufacturing processes and by the settings of the many input parameters 
(control variables), as they can give results which mismatch with the prescribed 
requirements, if not themselves wrong. 
Two are the noteworthy cases, among others, i.e. that were one wish to obtain a given result 
with the largest probability, for example to limit scraps, and the other, where one wishes to 
obtain a design, which is called ‘robust’, whose sensitivity to the statistics of control 
variables is as little as possible. 
Usually, that problem can be solved for simple cases by assigning the coefficients of 
variation of the design variables and looking for the corresponding mean values such as to 
attain the required result; the above mentioned hypothesis referring to the constancy of the 
coefficients of variation is usually justified with the connection between variance and 
quality levels of the production equipments,  not to mention the effect of the nowadays 
probabilistic techniques, which let introduce just one unknown in correspondence of each 
variable. 
Consequently, while in the usual probabilistic problem we are looking for the consequences 
on the realization of a product arising from the assumption of certain distributions of the 
design variables, in the theory of optimization and robust design the procedure is reversed, 
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as we now look for those statistical parameters of the design variables such as to produce an 
assigned result (target), characterized by a given probability of failure. 
It must be considered, however, that no hypothesis can be introduced about the uniqueness 
of the result, in the sense that more than one design can exist such as to satisfy the assigned 
probability, and that the result depends on the starting point of the analysis, which is a well 
known problem also in other cases of probabilistic analysis. Therefore, the most useful way 
to proceed is to define the target as a function of a given design solution, for example of the 
result of a deterministic procedure, in order to obtain a feasible or convenient solution. 
The main point of multi-objective optimization is the search for the so-called Pareto-set 
solutions; one starts looking for all feasible solutions, those which don’t violate any 
constraint, and then compare them; in this way, solutions can be classified in two groups, 
i.e. the dominating ones, which are better than the others for all targets (the ‘dominated’ 
solutions) and which are non-dominating among each other. In other words, the Pareto-set 
is composed by all feasible solutions which are non-dominating each other, i.e. which are 
not better for at least one condition, while they are all better than the dominated solutions. 
As it is clear from above, the search for Pareto-set is just a generalization of the optimization 
problem and therefore a procedure whatever of the many available ones can be used; for 
example, genetic algorithm search can be conveniently adopted, even if in a very general 
way (for example, MOGA, ‘Multi-Objective Genetic Algorithm’ and all derived kinds), 
coupled with some comparison technique; it is evident that this procedure can be used at 
first in a deterministic field, but, if we apply at each search a probabilistic sense, i.e. if we say 
that the obtained solution has to be a dominating one with a given probability of success (or, 
in reverse, of failure) we can translate the same problem in a random sense; of course, one 
has to take into account the large increase of solutions to be obtained in such a way as to 
build a statistic for each case to evaluate the required probability. 
In any case, at the end of the aforesaid procedure one has a number of non-dominating 
solutions, among which the ‘best’ one is hopefully included and therefore one has to match 
against the problem of choosing among them. That is the subject of a ‘decision making’ 
procedure, for which several techniques exist, none of them being of general use; the basic 
procedure is to rank the solutions according to some principle which is formulated by the 
user, for example setting a ‘goal’ and evaluating the distance from each solution, to end 
choosing that whose distance is a minimum. The different commercial codes (for example, 
Mode-Frontier is well known among such codes) usually have some internal routines for 
managing decisions, where one can choose among different criteria. 
More or less, the same procedure which we have just introduced can be used to obtain a 
design which exhibits an assigned probability of failure (i.e. of mismatching the required 
properties)  by means of a correct choice of the mean values of the control variables. This 
problem can be effectively dealt with by an SDI (Stochastic Design Improvement)  process, 
which is carried out through an convenient number of  MC (here called runs) as well as of 
the analysis of the intermediate results. In fact, input - i.e. design variables x - and output - 
i.e. target y - of an engineering system can be connected by means of a functional relation of 
the type 

 n21 x,,x,xFy      (12) 
 
which in the largest part of the applications cannot be defined analytically, but only rather 
ideally deduced because of the its complex nature; in practice, it can be obtained by 

considering a sample xi and examining the response yi, which can be carried out by a 
simulation procedure and first of all by one of M-C techniques, as recalled above. 
Considering a whole set of M-C samples, the output can be expressed by a linearized Taylor 
expansion centered about the mean values of the control variables, as 
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where i represents the vector of mean values of input/output variables and where the 
gradient matrix G can be obtained numerically, carrying out a multivariate regression of y 
on the x sets obtained by M-C sampling. If y0 is the required target, we can find the new x0 
values inverting the relation above, i.e. by 
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as we are dealing with probabilities, the real target is the mean value of the output, which 
we compare with the mean value of the input, and, considering that, as we shall illustrate 
below, the procedure will evolve by an iterative technique, it can be stated that the relation 
above has to be modified as follows, considering the update between the k-th and the (k+1)-
th step: 
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The SDI technique is based on the assumption that the cloud of points corresponding to the 
results obtained from a set of MC trials can be moved toward a desired position in the N-
dimensional space such as to give the desired result (target) and that the amplitude of the 
required displacement can be forecast through a close analysis of the points which are in the 
same cloud (fig 17): in effects, it is assumed that the shape and size of the cloud don't change 
greatly if the displacement is small enough; it is therefore immediate to realize that an SDI 
process is composed by several sets of MC trials (runs) with intermediate estimates of the 
required displacement. 
 

 
Fig. 17. The principles of SDI processes 
 
It is also clear that the assumption about the invariance of the cloud can be kept just in order 
to carry out the multivariate regression which is needed to perform a new step - i.e. the 
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as we now look for those statistical parameters of the design variables such as to produce an 
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constraint, and then compare them; in this way, solutions can be classified in two groups, 
i.e. the dominating ones, which are better than the others for all targets (the ‘dominated’ 
solutions) and which are non-dominating among each other. In other words, the Pareto-set 
is composed by all feasible solutions which are non-dominating each other, i.e. which are 
not better for at least one condition, while they are all better than the dominated solutions. 
As it is clear from above, the search for Pareto-set is just a generalization of the optimization 
problem and therefore a procedure whatever of the many available ones can be used; for 
example, genetic algorithm search can be conveniently adopted, even if in a very general 
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In any case, at the end of the aforesaid procedure one has a number of non-dominating 
solutions, among which the ‘best’ one is hopefully included and therefore one has to match 
against the problem of choosing among them. That is the subject of a ‘decision making’ 
procedure, for which several techniques exist, none of them being of general use; the basic 
procedure is to rank the solutions according to some principle which is formulated by the 
user, for example setting a ‘goal’ and evaluating the distance from each solution, to end 
choosing that whose distance is a minimum. The different commercial codes (for example, 
Mode-Frontier is well known among such codes) usually have some internal routines for 
managing decisions, where one can choose among different criteria. 
More or less, the same procedure which we have just introduced can be used to obtain a 
design which exhibits an assigned probability of failure (i.e. of mismatching the required 
properties)  by means of a correct choice of the mean values of the control variables. This 
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which is carried out through an convenient number of  MC (here called runs) as well as of 
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to carry out the multivariate regression which is needed to perform a new step - i.e. the 
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evaluation of the G matrix - but that subsequently a new and correct evaluation of the cloud 
is needed; in order to save time, the same evaluation can be carried out every k steps, but of 
course, as k increases, the step amplitude has to be correspondently decreased. It is also 
immediate that the displacement is obtained by changing the statistics of the design 
variables and in particular by changing their mean (nominal) values, as in the now available 
version of the method all distributions are assumed to be uniform, in order to avoid the 
gathering of results around the mode value. It is also to be pointed out that sometimes the 
process fails to accomplish its task because of the existing physical limits, but in any case 
SDI allows to quickly appreciate the feasibility of a specific design, therefore making easier 
its improvement. 
Of course, it may happen that other stochastic variables are present in the problem (the so 
called background variables): they can be characterized by any type of statistical 
distribution included in the code library, but they are not modified during the process. 
Therefore, the SDI process is quite different for example from the classical design 
optimization, where the designer tries to minimize a given objective function with no 
previous knowledge of the minimum value, at least in the step of the problem formulation. 
On the contrary, in the case of the SDI process, it is first stated what is the value that the 
objective function has to reach, i.e. its target value, according to a particular criterion which 
can be expressed in terms of maximum displacement, maximum stress, or other. The SDI 
process gives information about the possibility to reach the objective within the physical 
limits of the problem and determines which values the project variables must have in order 
to get it. In other words, the designer specifies the value that an assigned output variable 
has to reach and the SDI process determines those values of the project variables which 
ensure that the objective variable becomes equal to the target in the mean sense. Therefore, 
according to the requirements of the problem, the user defines a set of variables as control 
variables, which are then characterized from a uniform statistical distribution (natural 
variability) within which the procedure can let them vary, while observing the 
corresponding physical (engineering) limits. In the case of a single output variable, the 
procedure evaluates the Euclidean or Mahalanobis distance of the objective variable from 
the target after each trial: 
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where yi is the value of the objective variable obtained from the i-th iteration, y* is the target 
value and N is the number of trials per run. Then, it is possible to find among the worked 
trials that one for which the said distance gets the smallest value and subsequently the 
procedure redefines each project variable according to a new uniform distribution with a 
mean value equal to that used in such “best" trial. The limits of natural variability are 
accordingly moved of the same quantity of the mean in such way as to save the amplitude 
of the physical variability.  
If the target is defined by a set of output variables, the displacement toward the condition 
where each one has a desired (target) value is carried out considering the distance as 
expressed by: 
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where k represents the generic output variable. If the variables are dimensionally different it 
is advisable to use a normalized expression of the Euclidean distance: 
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but in this case it is of course essential to assign weight factors ωk to define the relative 
importance of each variable. Several variations of the basic procedures are available; for 
example, it is possible to define the target by means of a function which implies an equality 
or even an inequality; in the latter case the distance is to be considered null if the inequality 
is satisfied. Once the project variables have been redefined a new run is performed and the 
process restarts up to the completion of the assigned number of shots. It is possible to plan a 
criterion of arrest in such way as to make the analysis stop when the distance from the target 
reaches a given value. In the most cases, it is desirable to control the state of the analysis 
with a real-time monitoring with the purpose to realize if a satisfactory condition has been 
obtained. 

 
5. Examples of multivariate optimization  

5.1 Study of a riveting operation 
The first example we are to illustrate is about the study of a riveting operation; in that case 
we tried to maximize the residual compression load between the sheets (or, what is the 
same, the traction load in the stem of the rivet) while keeping the radial stress acting on the 
wall of the hole as low as possible; the relevant parameters adopted to work out this 
example are recorded in Tab. 1. 
 

RGR Hole Radius Variable mm 2.030 2.055
RSTEM Shank Radius Variable mm 1.970 2.020
LGR Shank Length Variable mm 7.600 8.400
AVZ Hammer Stroke Variable mm 3.500 4.500
EYG Young Modulus Variable MPa 65,000 75,000
THK Sheets Thickness Constant mm 1.000
SIZ Yield Stress Constant MPa 215.000
VLZ Hammer Speed Constant mm/sec 250.000

 
Table 1. Relevant parameters for riveting optimization 
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evaluation of the G matrix - but that subsequently a new and correct evaluation of the cloud 
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immediate that the displacement is obtained by changing the statistics of the design 
variables and in particular by changing their mean (nominal) values, as in the now available 
version of the method all distributions are assumed to be uniform, in order to avoid the 
gathering of results around the mode value. It is also to be pointed out that sometimes the 
process fails to accomplish its task because of the existing physical limits, but in any case 
SDI allows to quickly appreciate the feasibility of a specific design, therefore making easier 
its improvement. 
Of course, it may happen that other stochastic variables are present in the problem (the so 
called background variables): they can be characterized by any type of statistical 
distribution included in the code library, but they are not modified during the process. 
Therefore, the SDI process is quite different for example from the classical design 
optimization, where the designer tries to minimize a given objective function with no 
previous knowledge of the minimum value, at least in the step of the problem formulation. 
On the contrary, in the case of the SDI process, it is first stated what is the value that the 
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where yi is the value of the objective variable obtained from the i-th iteration, y* is the target 
value and N is the number of trials per run. Then, it is possible to find among the worked 
trials that one for which the said distance gets the smallest value and subsequently the 
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of the physical variability.  
If the target is defined by a set of output variables, the displacement toward the condition 
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expressed by: 
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where k represents the generic output variable. If the variables are dimensionally different it 
is advisable to use a normalized expression of the Euclidean distance: 
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but in this case it is of course essential to assign weight factors ωk to define the relative 
importance of each variable. Several variations of the basic procedures are available; for 
example, it is possible to define the target by means of a function which implies an equality 
or even an inequality; in the latter case the distance is to be considered null if the inequality 
is satisfied. Once the project variables have been redefined a new run is performed and the 
process restarts up to the completion of the assigned number of shots. It is possible to plan a 
criterion of arrest in such way as to make the analysis stop when the distance from the target 
reaches a given value. In the most cases, it is desirable to control the state of the analysis 
with a real-time monitoring with the purpose to realize if a satisfactory condition has been 
obtained. 

 
5. Examples of multivariate optimization  

5.1 Study of a riveting operation 
The first example we are to illustrate is about the study of a riveting operation; in that case 
we tried to maximize the residual compression load between the sheets (or, what is the 
same, the traction load in the stem of the rivet) while keeping the radial stress acting on the 
wall of the hole as low as possible; the relevant parameters adopted to work out this 
example are recorded in Tab. 1. 
 

RGR Hole Radius Variable mm 2.030 2.055
RSTEM Shank Radius Variable mm 1.970 2.020
LGR Shank Length Variable mm 7.600 8.400
AVZ Hammer Stroke Variable mm 3.500 4.500
EYG Young Modulus Variable MPa 65,000 75,000
THK Sheets Thickness Constant mm 1.000
SIZ Yield Stress Constant MPa 215.000
VLZ Hammer Speed Constant mm/sec 250.000

 
Table 1. Relevant parameters for riveting optimization 
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It is to be said that in this example no relevant result was obtained, because of the ranges of 
variation of the different parameters were very narrow, but in any case it can be useful to 
quote it, as it defines a procedure path which is quite general and which shows very clearly 
the different steps we had to follow. The commercial code used was Mode-Frontier®, which 
is now very often adopted in the field of multi-objective optimization; that code let the user 
build his own problem with a logic procedure which makes use of icons, each of them 
corresponding to a variable or to a step of the procedure, through which the user can readily 
build his problem as well as the chosen technique of solution; for example, with reference to 
the table above, in our case the logic tree was that illustrated in fig. 18. 
 

 
Fig. 18. The building of the problem in Mode-Frontier environment 

 
Summarizing the procedure, after defining all variables and parameters, the work can be set 
to be run by means of an user-defined script (AnsysLsDyna.bat in fig. 18), in such a way that 
the code knows that the current values of variables and parameters are to be found 
somewhere (in Ansys02.inp), to be worked somehow, for example according to a DOE 
procedure or to a genetic algorithm or other, and that the relevant results will be saved in 
another file (in Output.txt in our case); those results are to be compared with all the 
previously obtained ones in order to get the stationary values of interest (in our case, the 
largest residual load and the smallest residual stress). 
The kernel of the procedure, of course, is stored in the script, where the code finds how to 
pass from input data to output results; in our case, the input values were embedded in an 
input file for Ansys® preprocessor, which would built a file to be worked by Ls-Dyna® to 
simulate the riveting operation; as there was no correct correspondence between those two 
codes, a home-made routine was called to match requirements; another home-made routine 
would then extract the results of interest from the output files of Ls-Dyna®. 
A first pass from Mode-Frontier® was thus carried out, in such a way as to perform a simple 
3-levels DOE analysis of the problem; a second task which was asked from the code was to 
build the response surface of the problem; there was no theoretical reason to behave in such 
a way, but it was adopted just to spare time, as each Ls-Dyna trial was very time-expensive, 
if compared with the use of RS: therefore the final results were ‘virtual’, in the sense that 
they didn’t came from the workout of the real problem, but from its approximate analytic 
representation. 
 

 
Fig. 19. Pareto-set for the riveting problem 
 
Thus, the Pareto-set for the riveting problem was obtained, as it is shown in fig. 19; it must 
be realized that the number of useful non dominated results was much larger than it can be 
shown in the same picture, but, because of the narrow ranges of variance, they overlap and 
don’t appear as distinct points. 
The last step was the choice of the most interesting result, which was carried out by means 
of the Decision Manager routine, which is also a part of Mode-Frontier code. 

 
5.2 The design improvement of a stiffened panel 
As a second example we show how a home-made procedure, based on the SDI technique, 
was used to perform a preliminary robust design of a complex structural component; this 
procedure is illustrated with reference to the case of a stiffened aeronautical panel, whose 
residual strength in presence of cracks had to be improved. Numerical results on the 
reference component had been validated by using experimental results from literature. 
To demonstrate the procedure described in the previous section, a stiffened panel 
constituted by a skin made of Al alloy 2024 T3, divided in three bays by four stiffeners made 
of Al alloy 7075 T5 (E = 67000 MPa, σy = 525 MPa, σu = 579 MPa, δult = 16%) was 
considered. The longitudinal size of the panel was 1830 mm, its transversal width 1190 mm, 
the stringer pitch 340 mm and the nominal thickness 1.27 mm; the stiffeners were 2.06 mm 
high and 45 mm wide. Each stiffener was connected to the skin by two rows of rivets 4.0 
mm diameter.  
A finite element model constituted by 8-noded solid elements had been previously 
developed and analyzed by using the WARP 3D® finite element code. The propagation of 
two cracks, with the initial lengths of 120 mm and 150 mm respectively, had been simulated 
by considering the Gurson-Tveergard model, as implemented in the same code, whose 
parameters were calibrated.  
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Fig. 20. The model of the stiffened panel 
 
In the proposed application of the SDI procedure, a substructure of the panel was 
considered (fig. 20), corresponding to its single central bay (the part of the panel within the 
two central stringers) with a fixed width equal to 680 mm, where a central through-crack 
was assumed to exist, with an initial length of 20 mm. The pitch between the two stringers 
and their heights were considered as design variables. As natural variables the stringers 
pitch (±10.0 range) and the stringers height (±0.4 mm range) were assumed, while the 
engineering intervals of the variables was considered to be respectively [306 ÷374 mm] and 
[1.03 ÷ 3.09 mm]. An increment of the maximum value of the residual strength curve (Rmax) 
of the 10 %, with a success probability greater than 0.80, was assumed as the target.  
 

 
Fig. 21. Path of clouds for Rmax as a function of the stringer pitch 

 
Fig. 22. Stringer pitch vs. Target 
 

 
Fig 23. Target vs. shot per run 

 

 
Fig. 24. Mean value of target vs. shot 
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Fig. 25. R-curves obtained for the best shot of each run 
 

 
Fig. 26. The global FEM model of the absorber 
 
A total of 6 runs, each one of 15 shots, were considered adequate to satisfy the target, even if 
at the end of the procedure an extended MC had to be performed in order to assess the 
obtained results from the 15 shots of the last satisfying run. In the following fig. 21 and 22 
the design variables vs. the maximum value of the residual strength are illustrated. In 
correspondence to these two plots we recorded in fig. 23 the values assumed by the 
maximum value of the R-curve for each shot. In the same figure the reference value 
(obtained by considering the initial nominal value of the design variables) of the maximum 
value of the R-curve is reported together with the target value (dashed line). As it is possible 
to observe, 9 of the 15 shots of the 5th run overcame the target value; it means that by using 
the corresponding mean value of the design variable the probability to satisfy the target is of 
about 0.60.   
Therefore, another run (the 6th) was carried out and just one shot didn’t overcome the target 
value, so that the approximate probability to satisfy the target is about 0.93. The mean 
values of the design variables in the 6th run were respectively 318.8 mm for the stringer 
pitch and 2.89 mm for the stinger height; the mean value of the output variable was 116000 

N. An extended MC (55 trials) was performed on the basis of the statistics of the 6th run and 
the results showed in the fig. 24 were obtained, where the mean value of the residual 
strength vs. the number of the trial has been recorded. The new mean of the output variable 
was 117000 N with a standard deviation of 1800 N and the probability to satisfy the target 
was exactly 0.80. At the end, in  fig. 25, the six R-curves corresponding to the six best shots 
for each run are reported, together with the reference R-curve. 

 
5.3 Optimization of an impact absorber 
As a last example, the SDI procedure was applied to reduce the maximum value of the 
displacement in time of a rigid barrier that impacted the rear substructure of a vehicle (fig. 
26) in a crash test. The reasons which lie behind such a choice are to be found in the 
increasing interest in numerical analysis of crashworthiness of vehicles because of the more 
strict regulations concerning the protection of the occupants and related fields. In Europe 
the present standards to be used in homologation of vehicles are more or less derived by 
U.S. Code of Federal Regulations, CFR-49.571, but ever-increasing applications are done 
with reference to other standards, and first of all to EURONCAP. The use of such standards, 
who are mainly directed to limit biomechanical consequences of the impact - which are 
controlled by referring the results to standard indexes related to different parts of human 
body - implies that, besides the introduction of specific safety appliances, as safety belts and 
airbags, the main strength of car body has to be located in the cell which holds passengers, 
in order to obtain a sufficient survival volume for the occupants; the other parts of the 
vehicle are only subsidiary ones, because of the presence of absorbers which reduce the 
impact energy which is released on the cell. 
We can add to all previous considerations that the present case study was adopted as it is 
well known that vehicle components come from mass production, where geometrical 
imperfections are to be expected as well as a certain scatter of the mechanical properties of 
the used materials; therefore, it can't be avoided that the said variations induce some 
differences of response among otherwise similar components, what can be relevant in 
particular cases and first of all in impact conditions; the analysis which we carried out was 
directed to define, through the use of the previously sketched procedure, the general criteria 
and the methodology required to develop a robust design of those vehicle components 
which are directly used to limit plastic deformations in impact (impact absorber). In our 
particular case, the study was carried out with reference to the mentioned substructure, 
whose effective behaviour in impact (hammer) conditions is known and is associated to 
those deterministic nominal values of the design variable actually in use, with the 
immediate objective to obtain a reduction of the longitudinal deformation of the impact 
absorber. 
The substructure is a part of a rear frame of a vehicle, complete with cross-bar and 
girders, where impact absorbers are inserted; the group is acted upon by a hammer which 
is constrained to move in the longitudinal direction of the vehicle with an initial impact 
speed of 16 km/h; the FE model used for the structure consisted of about 23400 nodes and 
about 21900  elements of beam, shell and contact type, while the hammer was modelled as 
a “rigid wall". The thicknesses of the internal and external C-shaped plates of the impact 
absorbers were selected as project variables, with a uniform statistical distribution in the 
interval [1.7mm±1.9mm]; lower and upper engineering limits were respectively 1.5 mm 
and 2.1 mm. 
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This choice was carried out by preliminary performing, by using the probabilistic module of 
ANSYS® ver 8.0 linked to the explicit FE module of LS-Dyna® included in the same code, a 
sensitivity analysis of an opportune set of design variables on the objective variable, which 
is, as already stated before, the maximum displacement of the hammer. 
As design variables to be involved in the sensitivity analysis we chose, besides the inner and 
outer thicknesses of the C-shaped profile of the impact absorbers, the mechanical properties 
of the three materials constituting the main components of the substructure (the unique 
young modulus and the three yielding stresses); it was clear from the obtained results that 
while the relationship existing between the thicknesses of the inner and outer C-shaped 
profile of the impact absorber and the objective variable is quite linear, as well as the 
relationship between the yielding stress of the impact absorber material and the same 
objective variable, a relationship between the other considered variables and the objective 
variable is undetermined. 
 

 
Table 2. The properties of the variables used in the absorber case 
 
It was also quite evident that the only design variables which influence the objective one 
were the mechanical properties of the material of the impact absorber and the thicknesses of 
its profiles. A preliminary deterministic run, carried out with the actual design data of the 
structure gave for the objective variable a 95.94 mm “nominal" value, which was reached 
after a time of 38.6 ms from the beginning of the impact. The purpose of SDI in our case was 

assumed the reduction of that displacement by 10% with respect to this nominal value and 
therefore an 86.35 mm target value was assigned. 
The mechanical properties of the three materials constituting the absorbers and the rear 
crossbar of the examined substructure were also considered as random; it was assumed that 
their characteristic stress-strain curves could vary according to a uniform law within 0.5% of 
the nominal value. This was made possible by introducing a scale factor for the 
characteristic curves of the materials, which were considered as uniformly distributed in the 
interval [0.95,1.05]. 
Moreover, four stress-strain curves were considered for each material, corresponding to as 
many specific values of the strain-rate. The relationship among those curves and the static 
one was represented, according to the method used in Ls-Dyna®, by means of a scale factor 
which let us pass from one curve to another as a function of the strain-rate; also those factors 
were assumed to be dependent on that applied to the static curve, in order to avoid possible 
overlapping. 
Therefore, the simulation involved 14 random variables, among which only 2 were 
considered as project variables; in the following Tab. 2 the properties of all the variables are 
listed. To work out the present case, the commercial well known St-Orm® code was used 
coupled with the Ls-Dyna® explicit solver for each deterministic FEM analysis and ran on a 
2600 MHz bi-processor PC, equipped with a 2 Gb RAM; SDI processing required 9 runs 
with 25 shots each, with a total of 225 MC trials, and the time required to complete a single 
LS-Dyna® simulation being of about 2 hours. 
As we already pointed out, the stochastic procedure develops through an MC iterative 
process where the input variables are redefined in each trial in such a way as to move the 
results toward an assigned target; therefore, we need first to assess what we mean as an 
attained target. 
After every run the statistics of the output variables could be obtained, as well as the 
number of times that the target was reached, which could be considered as the probability of 
attainment of the target for the particular design, expressed through the mean values of the 
input variables. It is noteworthy to specify that these data are only indicative, because the 
MC procedure developed within a single set of trials is not able to give convergent results 
due to the low number of iterations. 
Therefore, considering the procedure as ended when a run was obtained where all trials 
gave the desired target value, it was opportune to perform a final MC convergent process to 
evaluate the extent by which the target had been indeed reached, using the statistical 
distributions of the variables of the last run. For the same reason, a real-time monitoring 
could induce the designer to stop the procedure even if not all trials - but “almost" all - of 
the same run give the target as reached, also to comply with production standard and 
procedures. As we already pointed out in the previous paragraphs, the stochastic procedure 
develops through an MC iterative process where the input variables are redefined in each 
trial in such a way as to move the results toward an assigned target; therefore, we needed 
first to assess what we meant as an attained target. 
For what concerns our case study, the detailed data for every run are recorded in Tab. 3; if 
compared with the first run, the mean of the displacement distribution in the 9th run is 
reduced of 8.6% and 23/25 shots respect the target: therefore, the results of the 9th run may 
be considered as acceptable. 
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be considered as acceptable. 
 



Stochastic Control468

 
Table 3. Values of control variables in the different runs 

 

 
Fig. 27. Thickness of internal plate vs. shot 

 
In the plots of fig. 27 and fig. 28 the values of the thickness of the internal and external plates 
of the impact absorber versus the current number of shots have been illustrated. The 
variable which was subjected to the largest modifications in the SDI procedure was the 
thickness of the external plate of the impact absorber and in fact from an analysis of 
sensitivity it resulted to influence at the largest extent the distance from the target. For what 
concerns the other random variables, it resulted from the same analysis of sensitivity that 
only the material of the absorbers influences in a relevant measure the behaviour of the 
substructure. 

 
Fig. 28. Thickness of external plate vs. shot 

 

 
Fig. 29. Scatter plot of the objective variable 
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It is possible to appreciate from the scatter plots of fig. 29 and fig. 30 how the output variable 
approached the target value: in the 9th run, only 2 points fall under the line that represents the 
target and in both cases the distance is less than 0.02 and that is why the 9th run has been 
considered a good one, in order to save more iterations. In fig. 31 the experimental data related 
to the displacement of the rigid barrier vs. the time are recorded together with the numerical 
results obtained before and after the application of the SDI procedure. 
 

 
Fig. 30. Scatter plot of the distance to target 
 

 
Fig. 31. Output variable vs. Time 

The new nominal value of the design variables after the application of SDI procedure is 1.98 
mm for both of them. A very good agreement of the numerical solution is observed in 
comparison to the experimental data in the first part of the curve, where they are practically 
overlapped and where the attention has been focused during the development of numerical 
simulations necessary to complete the SDI process. The general conclusion from this study 
was that the classical numerical simulations based on nominal values of the input variables 
are not exhaustive of the phenomenon in the case of crash analyses and can bring to 
incorrect interpretations of the dynamic behaviour of the examined structure. On the 
contrary, by using an SDI approach, it is possible to have a better understanding of the 
influence of each input variable on the structural dynamic behaviour and to assign the most 
appropriate nominal values in order to have results as near as possible to the target values, 
also in presence of their natural variability. 

 
6. Some useful commercial codes 

To fully appreciate the examples above, it may be interesting to summarize briefly the main 
characteristics of the commercial codes we mentioned in the preceding sections and which 
have interesting capabilities in the probabilistic analysis of structures; what follows doesn’t 
want to constitute either a complete listing or an assessment of value for those codes, but 
only a survey of the codes we have used insofar, here published to clarify some of the topics 
we have just described. 
First of all we have to recall that the recent versions of Ansys® couple the well-established 
deterministic capabilities in FE field with some new routines which work in a probabilistic 
environment; that innovation is so much interesting because, as we already pointed out, the 
design refers to structures whose study can’t be carried out in a closed form by recourse to 
an analytical formulation; in those cases we can only hope to obtain the answer of the 
structure for a given set of loads and boundary conditions and therefore an FE run 
corresponds just to a single value of the variable set. It is only natural, therefore, that Ansys® 
extended its capabilities to carry out a Monte-Carlo analysis of the problem, for given 
statistics of the different variables and parameters. 
Therefore, on the basis of a sample file (which Ansys® calls the “analysis file” of the 
problem) using the well renowned capabilities of its pre-processor, it is possible to 
characterize each variable with a distribution – to be chosen among a rather limited family 
of types – and then entrust the code with the task to perform a given amount of trials, from 
whose results the statistics of the response, as well as its sensitivities, can be recovered. A 
very useful characteristic of Ansys® is that the code can build a Response Surface on the 
basis of the obtained results and can carry on new trials using it; therefore it is quite 
common to carry out a limited number of M-C trials – whose amount depends on the 
complexity of the structure – maybe using some DOE choice, by which the Response Surface 
can be derived. 
NESSUS®, distributed by SWRI, is a widely known and fully probabilistic code; it includes 
several probabilistic distributions to represent parameters and variables and is provided 
with both analytical and simulative methods; even if FORM, SORM, AMV+ and others are 
present, its main feature is the capability to be interfaced with Ansys®, Abaqus®, Ls-Dyna®, 
other FE codes and, at last, even with Matlab®, which widens the range of problems it can 
deal with; under those circumstances, it can work not just with the basic M-C method, but 
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also with a complete set of numerical simulative methods such as Importance Sampling, 
Adaptive Importance Sampling, and others. The outputs it can give are such as the 
cumulative distribution function of the results, the probability of failure or the performance 
level for a given probability of failure, the probabilistic sensitivity factors and the confidence 
bounds of the requested result. One important feature of NESSUS® is its capability to deal 
not only with components but also with systems, via such methods as the Efficient Global 
Reliability Analysis and the Probabilistic Fault-Tree Analysis. 
STRUREL®, distributed by RCP, is a complete package which is similar to NESSUS®, but has 
many more capabilities, as it can deal, for example, with both time-invariant and time-
variant problems. It is really much more difficult to be used, but its advantages are quite 
evident for the expert user; beside the capabilities we already quoted for the previous code, 
it can carry out risk and cost analysis, failure mode assessment, reliability assessment for 
damaged structure, development and optimisation of strategies for inspection and 
maintenance, reliability oriented structural optimisation. It can also be interfaced with 
Permas® FE code and with user-made Fortran® routines, in such a way as to make the user 
able to match with very general and complex problems; a last, but very important feature is 
the capability to carry out random vibration analysis, with reference, for example, to wave, 
wind and earthquake loading. 
The next two codes are of quite different nature, as they are to be used when one is 
interested in optimisation and in the building of a robust design. The first one, ST-Orm®, 
distributed by EASi Engineering, uses the SDI technique to find the setting of the control 
variables of a design which ensures that the assigned target is reached with a given 
probability; it uses M-C to obtain a cloud of results and then, applying multilinear 
regressions and new M-C trials, it generates families of new clouds to reach the desired 
target value. It claims to be a meta-code, in the sense that its tasks can be subdivided among 
a number of computers, each one performing a simple task in parallel, in order to save time. 
An useful characteristic of this code is the possibility to distinguish among the control 
variables, which are probabilistic variables which can vary in each cloud, and environment 
parameters which, even if random in character, always exhibit the same distribution, i.e. 
they are not displaced with clouds. All variables and parameters span in their ranges, which 
can vary with clouds but cannot go beyond the physical limits which are given by the user, 
in such a way as to exclude impossible runs. 
The last code is the well assessed Mode-Frontier®, whose aim is to carry out a multi-
objective optimisation for a given problem; it works with both deterministic and random 
variables and one of its capabilities is to build the logic of the problem by means of an iconic 
and very appealing method; as we already discussed, the kernel of the code is formed by a 
script which can be used to organize all operations and to interface with a large number of 
external routines. Once the Pareto-set of the problem is obtained, it can be submitted to the 
Decision Manager of the code, which, following different methods can help the user to 
choose among the previous results the one which is more convenient. 

 
7. Conclusions and acknowledgments 

From all the preceding sections it is apparent how a probabilistic study can contribute to the 
improvement of a structural design, as it can take into account the uncertainties that are 
present in all human projects, getting to such an accurate result as to examine also the 

manufacturing tolerances and coming to optimize scraps. It is to be understood, however, 
that such results are not easy to obtain and that it seldom happens that a first-trial analysis is 
a sound one: a good result is only achieved after many steps have been carried out, and first 
of all an accurate calibration with experimental data. It happens indeed that one of the more 
thorny problems the user has to struggle with is the accurate description of the material 
used in a particular application, as new problems usually require the description of the 
behaviour of the material in very particular conditions, which is not often available; 
therefore it happens that new tests have to be created in order to deal with new 
specifications and that the available tests only apparently match the requirements. 
It is quite clear, therefore, that in many cases the use of such new techniques can be justified 
only in particular conditions, for example when one is dealing with mass production, or 
when failure involves the loss of many lives or in other similar conditions. 
We want to acknowledge the help given by the technicians of many firms, as well by the 
researchers of our University, first of all by ing. G. Lamanna, to cooperate – and sometimes 
also to support – the researches which have been quoted in the present chapter. 
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1. Introduction     

The prediction of earthquake ground motions in accordance with recorded observations 
from past events is the core business of engineering seismology. An attenuation model 
presents values of parameters characterising the intensities and properties of ground 
motions estimated of projected earthquake scenarios (which are expressed in terms of 
magnitude and distance). Empirical attenuation models are developed from regression 
analysis of recorded strong motion accelerograms. In situations where strong motion data 
are scarce the database of records has to cover a very large area which may be an entire 
continent (eg. Ambrasey model for Europe) or a large part of a continent (eg. Toro model for 
Central & Eastern North America) in order that the size of the database has statistical 
significance (Toro et al., 1997; Ambrasey, 1995). Thus, attenuation modelling based on 
regression analysis of instrumental data is problematic when applied to regions of low and 
moderate seismicity. This is because of insufficient representative data that has been 
collected and made available for model development purposes. 
 
An alternative approach to attenuation modelling is use of theoretical models. Unlike an 
empirical model, a theoretical model only makes use of recorded data to help ascertain 
values of parameters in the model rather than to determine trends from scratch by 
regression of data. Thus, much less ground motion data is required for the modelling. Data 
that is available could be used to verify the accuracies of estimates made by the theoretical 
model. Ground motion simulations by classical wave theory provides comprehensive  
description of the earthquake ground motions but information that is available would 
typically not be sufficient as input to the simulations. The heuristic source model of Brune 
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(1970) which defines the frequency content of seismic waves radiated from a point source is 
much simpler. The model has only three parameters : seismic moment, distance and the 
stress parameter. Combining this point source model with a number of filter functions 
which represent modification effects of the wave travel path and the site provides estimates 
for the Fourier amplitude spectrum of the motion generated by the earthquake on the 
ground surface. The source model (of Brune) in combination with the various filter 
functions are collectively known  as the seismological model (Boore, 1983). Subsequent 
research by Atkinson and others provides support for the proposition that simulations from 
a well calibrated point source model are reasonably consistent with those from the more 
realistic finite fault models. 
 
The Fourier spectrum as defined by the seismological model only provides description of the 
frequency properties of the ground motions and not the phase angles of the individual 
frequency components of the waveforms. Thus, details of the wave arrival times which are 
required for providing a complete description of the ground shaking remain uncertain as 
they have not been defined by the seismological model. With stochastic modelling, the pre-
defined frequency content is combined with random phase angles that are generated by the 
Monte Carlo process. Thus, acceleration time-histories based on randomised wave arrival 
details are simulated. The simulations can be repeated many times (for the same earthquake 
scenario and source-path-site conditions) in order that response spectra calculated from 
every simulated time-histories can be averaged to obtain a smooth, ensemble averaged, 
response spectrum. 
 
The seismological model has undergone continuous development since its inception in the 
early 1980’s. For example, the original Brune source model has been replaced by the 
empirical source model of Atkinson (1993) which was developed from seismogram data 
recorded in Central and Eastern North America to represent conditions of intraplate 
earthquakes. A similar model was subsequently developed by Atkinson & Silva (2000) 
which was developed from data recorded in Western North America to represent conditions 
of interplate earthquakes. A model to account for the complex spread of energy in space 
taking into account the wave-guide phenomenon and the dissipation of energy along the 
wave travel path has also been developed (Atkinson & Boore, 1995). The amplification and 
attenuation of upward propagating waves  taking into account the effects of the shear wave 
velocity gradient of the earth crust close to the ground surface have also been modelled by 
Boore & Joyner (1997).  
 
The authors have been making use of the developing seismological model as described for 
constraining the frequency properties of projected earthquake scenarios for different regions 
around the world including regions of low-moderate seismicity where strong motion data is 
scarce (Chandler & Lam, 2002; Lam et al., 2002, 2003, 2006, 2009; Balendra et al., 2001; 
Yaghmaei_Sabegh & Lam, 2010; Tsang et al., 2010). It is typically assumed in the simulations 
that the intraplate source model that was originally developed for Central and Eastern North 
America is generally applicable to other intra-plate regions. Values of parameters for 
defining filter functions of the wave travel path could be ascertained by making references 
to results of seismic surveys, and in conjunction with Intensity data where necessary. Thus, 
earthquake ground motions that are recorded locally are not essential for model 

 

development and time-histories simulations. Basic principles of the simulations and an 
introductory description of the seismological model can be found in the review article 
written by the authors (Lam et al., 2000a). More detailed descriptions of the techniques for 
constraining filter functions in the absence of locally recorded ground motions can be found 
in Tsang & Lam (2010). Operating this modelling procedure is a very involved process. With 
the view of obtaining quick estimates of the response spectrum without undertaking 
stochastic simulations, the authors have developed a manual calculation procedure which is 
known as the Component Attenuation Model (CAM). CAM was developed from collating the 
experience the authors acquired in the development of response spectrum models by the 
stochastic procedure. The development and application of seismological modelling 
technique as applied to different countries, which forms the basis of CAM, has been 
reported in a range of journals spanning a period of ten years since 2000 (eg. Lam et al., 
2000a-c; Chandler & Lam, 2004; Lam & Chandler, 2005; Hutchinson et al., 2003 ; Wilson et al., 
2003). The writing of this book chapter enables CAM to be presented in a coherent, compact, 
and complete manner. 

 
2. Background to the Component Attenuation Model     

A response spectrum for seismic design purposes can be constructed in accordance with 
parameters characterising the acceleration, velocity and displacement (A, V and D) demand 
properties of the earthquake. Response spectra presented in different formats are made up 
of zones representing these entities as shown in Figure 1. 
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The velocity response spectrum in the tri-partite format of Fig.1a in logarithmic scale is the 
much preferred format to use in the earthquake engineering literature given that spectral 
values are presented over a wide period range (eg. 0.1s – 10s) and with good resolution. 
Once the response spectral velocity values have  been identified from the spectrum, the 
corresponding values of the response spectral accelerations and displacements are 
automatically known by means of the displayed transformation relationships.  The 
alternative displacement response spectrum format of Fig. 1b which provides a direct 
indication of the drift demand of the structure in an earthquake was proposed initially by 
Priestley (1995) when the displacement-based approach of seismic assessment was first 
introduced. The acceleration-displacement response spectrum (ADRS) diagram format of 
Fig. 1d is also much preferred  by the engineering community given that the spectral 
acceleration (A) values are effectively values of the base shear that have been normalised 
with respect to the mass of the single-degree-of-freedom system. Consequently, the 
acceleration-displacement (force-displacement) relationship of a structure can be 
superposed onto the ADRS diagram to identify the performance point which represents the 
estimated seismic response behaviour of the system as shown in Fig. 2. Diagrams 
representing seismic demand and capacity in this format are also known as the Capacity 
Spectrum. The importance of the velocity and displacement (V and D) demands as opposed 
to the acceleration (A) demand in the context of protecting lives and lowering the risks of 
overturning and collapses is  evident from Figure 2 in which typical performance points 
associated with ultimate behaviour of the structure are shown. 
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Fig. 2. Use of capacity spectrum for modelling collapse and overturning 
 
The Component Attenuation Model (CAM) is an innovative framework by which the velocity 
and displacement demand on SDOF systems are expressed as product of component factors 
representing conditions of the source, path, local and site. The source factor is generic and 
hence used across different regions. Other factors that represent the path and local effects 
can be estimated in accordance with geophysical information of the region. The attenuation 
relationship is obtained by combining the generic source factor with the area specific factors. 
Further details of the CAM factors can be found in Sections 3 and 4.  
 
It is shown in the velocity response spectrum of Fig. 3 that predictions of the spectral values 
by different empirical attenuation models can be highly variable and particularly in the low 
period range. Clearly, there is much less variability in the estimation of Vmax  in the median 
period range of 0.5s – 1.0s  than that of Amax  in the lower period range. Predictions by the 
whole range of attenuation models for the highest point on the velocity spectrum are 

 

conservatively represented by the Component Attenuation Model (CAM) for rock conditions. 
The displacement demand behaviour of the earthquake in the high period range is also well 
constrained by the earthquake magnitude (and hence seismic moment). The apparent 
variability displayed in the high period (low frequency) range by certain models in Fig. 3 is 
only reflective of the poor resolution of the recorded data and not in the ground motions 
itself. Thus, the viability of generalising the predictions of the response spectrum parameters 
(Vmax and Dmax) is well demonstrated. Consequently, CAM is formulated to provide 
estimates for these demand parameters. 
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Fig. 3. Comparison of response spectra from different attenuation relationships  
(M7 R=30km on rock) 

 
3. Formulation of the Component Attenuation Model     

The Component Attenuation Model which comprises a number of component factors for 
estimation of the maximum velocity and displacement demand (Vmax and Dmax) is 
represented diagrammatically in Figure 4 and Equations (1) – (10).   
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3. Formulation of the Component Attenuation Model     

The Component Attenuation Model which comprises a number of component factors for 
estimation of the maximum velocity and displacement demand (Vmax and Dmax) is 
represented diagrammatically in Figure 4 and Equations (1) – (10).   
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4. The Component Factors     

4.1 The V and D  factors 
The component factors  V and D as defined by equations (2) and (6-8) are for predicting 
the values of the Vmax and Dmax  parameters at a reference distance of 30km (Lam et al., 
2000b). These equations were obtained from ensemble average response spectra that were 
simulated in accordance with the seismological source model of Atkinson (1993). The 
alternative expression of equation (8) for calculation of the value of D was derived from a 
theoretical approach presented by Lam and Chandler (2005). Predictions for the value of  D 
from both approaches are very consistent for M < 6.5. For higher moment magnitude, 
equations (6-7) provide less conservative predictions.   Ground motions so simulated have 
been scaled to a reference distance of 30 km as opposed to the usual 1km. This reference 
distance value is unique to CAM and is based on conditions of low and moderate seismicity 
which is characterised by moderate ground shaking with return periods of  500 – 2500 years.  

 
4.2 The V and D  factors 
The component factors V and D  are representing reduction in the seismic demand as the 
result of energy dissipation along the wave travel path. The effects of this form of 
attenuation, which are known as anelastic attenuation, are only significant to the prediction 
of the value of the Vmax and Dmax  parameters at long distances. Thus, simple expressions like 
equations (3) and (9) have been used to represent its effects at close distances of R < 50 km. 
At longer distances, the determination of the V and D  factors  are expressed as functions of 
the Quality factor (Q0) at a reference frequency of 1 hertz. The effects the value of Q0  have 
upon the rate of wave attenuation is shown in the schematic diagram of Figure 5. Clearly, 
the higher the value of Q0,  the better the wave transmission quality of the earth crust. 
Seismically active regions of young geological formations such as California  have the value 
of Q0  in the order of 100 – 200. Regions of ancient geological formation (intercontinental 
shield regions) such as Central and Eastern North America and parts of Central and Western 
Australia have the value of Q0  typically exceeding 500. 
 

High Q value     eg. Qo= 600        low rate of energy dissipation

Low Q value     eg. Qo= 100 high rate of energy dissipation

schematic diagram – not to scale

schematic diagram – not to scale  
Fig. 5. Schematic representation of the effects of Quality factor on energy dissipation.  
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In a study by Chandler and Lam (2004) on the attenuation of long distance earthquakes, 
expressions defining the value of  V and D  (ie. rate of decrease in the values of the Vmax 
and Dmax  parameters) as function of Q0 and R have been derived from stochastic simulations 
of the seismological model. Functions defining the value of D is represented graphically by  
Fig.6  whilst values of V  can be estimated using equation (11) once the value of D has been 
identified. It is noted that Fig. 6  is restricted to earthquakes with moment magnitude not 
exceeding 8. The attenuation modelling of (M>8) mega magnitude earthquakes like the 
subduction earthquakes generated from off-shore of Sumatra would involve stochastic 
simulations of the seismological model (Lam et al., 2009) and is beyond the scope of this 
book chapter.  
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Fig. 6. Chart for determination of the value of D as function of Q0 and R 

 

)11(300for5.0or     4.0
)11(200for6.0
)11(100for8.0

ckmR
bkmR
akmR

DDV

DV

DV









   

 
4.3 The G  factor 
The G factor represents the effects of the geometrical spread of energy in space as seismic 
waves are radiated from a point source at the depth of rupture within the earth’s crust.  At 
close range to the point source (R < 50km), spherical attenuation applies. The intensity of 
wave energy decreases in proportion to 1/R2 (as area of the surface of a sphere is 
proportional to the square of its radius). The rate of attenuation of the Fourier amplitude of 
the simulated wave is accordingly proportional to 1/R which is consistent with equations 
(4) and (10). The geometrical attenuation of seismic waves becomes more complex when the 
value of R is sufficiently large that reflection of waves from the Moho discontinuity and the 
associated wave-guide effects as shown in Figure 7 needs be taken into account. Thus, the 
depth of earth crust  D in the region (ie. depth to the reflective surface of Moho) is an 
important modelling parameter. The value of D on land typically varies between 30 km and 
60 km. Higher values are found in mountainous regions. Spherical attenuation may be 
assumed in the range R < 1.5D and cylindrical attenuation in the range R > 2.5D according 
to Atkinson & Boore (1995). Functions defining the value of the G factor for different values 
of D in the long distance range are represented graphically by  Fig.8.   
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 Fig. 7. Schematic representation of geometrical attenuation 
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 Fig. 8. G factor expressed as function of distance (R) and crustal depth (D) 

 
4.4 The V and D  factors 
The crustal factor represents effects of modifications to the seismic waves as they propagate 
up the (rock) crust, and are made up of two components: (i) mid-crustal amplification and 
(ii) upper crustal modifications.  
 
The amplitude of seismic waves generated at the source of the earthquake is proportional to 
the shear wave velocity of the earth crusts surrounding the fault rupture raised to the power 
of 3 (Atkinson & Silva, 1997). The  V and D factors as described in Section 4.1 are both 
based on shear wave velocity of 3.8 km/s   which is representative of conditions of the fault 
source at depths exceeding 12 km. For most moderate and large magnitude shallow 
earthquakes of M ≥ 6, the centroid of the ruptured surface is constrained to a depth of 
around 5 km if the rupture area is of the order of 100 km2  or larger. In this depth range, the 
shear wave velocity is estimated to average at around 3.5 km/s based on models presented 
by Boore and Joyner (1997). The mid-crustal factor is accordingly equal to 1.3 (being 3.8/3.5 
raised to the power of 3). 
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In a study by Chandler and Lam (2004) on the attenuation of long distance earthquakes, 
expressions defining the value of  V and D  (ie. rate of decrease in the values of the Vmax 
and Dmax  parameters) as function of Q0 and R have been derived from stochastic simulations 
of the seismological model. Functions defining the value of D is represented graphically by  
Fig.6  whilst values of V  can be estimated using equation (11) once the value of D has been 
identified. It is noted that Fig. 6  is restricted to earthquakes with moment magnitude not 
exceeding 8. The attenuation modelling of (M>8) mega magnitude earthquakes like the 
subduction earthquakes generated from off-shore of Sumatra would involve stochastic 
simulations of the seismological model (Lam et al., 2009) and is beyond the scope of this 
book chapter.  
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4.3 The G  factor 
The G factor represents the effects of the geometrical spread of energy in space as seismic 
waves are radiated from a point source at the depth of rupture within the earth’s crust.  At 
close range to the point source (R < 50km), spherical attenuation applies. The intensity of 
wave energy decreases in proportion to 1/R2 (as area of the surface of a sphere is 
proportional to the square of its radius). The rate of attenuation of the Fourier amplitude of 
the simulated wave is accordingly proportional to 1/R which is consistent with equations 
(4) and (10). The geometrical attenuation of seismic waves becomes more complex when the 
value of R is sufficiently large that reflection of waves from the Moho discontinuity and the 
associated wave-guide effects as shown in Figure 7 needs be taken into account. Thus, the 
depth of earth crust  D in the region (ie. depth to the reflective surface of Moho) is an 
important modelling parameter. The value of D on land typically varies between 30 km and 
60 km. Higher values are found in mountainous regions. Spherical attenuation may be 
assumed in the range R < 1.5D and cylindrical attenuation in the range R > 2.5D according 
to Atkinson & Boore (1995). Functions defining the value of the G factor for different values 
of D in the long distance range are represented graphically by  Fig.8.   
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4.4 The V and D  factors 
The crustal factor represents effects of modifications to the seismic waves as they propagate 
up the (rock) crust, and are made up of two components: (i) mid-crustal amplification and 
(ii) upper crustal modifications.  
 
The amplitude of seismic waves generated at the source of the earthquake is proportional to 
the shear wave velocity of the earth crusts surrounding the fault rupture raised to the power 
of 3 (Atkinson & Silva, 1997). The  V and D factors as described in Section 4.1 are both 
based on shear wave velocity of 3.8 km/s   which is representative of conditions of the fault 
source at depths exceeding 12 km. For most moderate and large magnitude shallow 
earthquakes of M ≥ 6, the centroid of the ruptured surface is constrained to a depth of 
around 5 km if the rupture area is of the order of 100 km2  or larger. In this depth range, the 
shear wave velocity is estimated to average at around 3.5 km/s based on models presented 
by Boore and Joyner (1997). The mid-crustal factor is accordingly equal to 1.3 (being 3.8/3.5 
raised to the power of 3). 
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Upward propagating seismic shear waves can be modified rapidly by the upper 1-2 km of 
the earth’s crust shortly before the wave fronts reaches the ground surface. Much is 
attributed to the shear wave velocity gradient of the crustal medium. Meanwhile, seismic 
waves could also be attenuated fairly rapidly through energy dissipation by the typically 
highly fissured rocks in the upper 3-4 km of the earth’s crust. These path effects can be 
difficult to track if measurements have only been taken from the ground surface. Upper 
crustal modifications were well demonstrated by the study of Abercrombie (1997) in which 
seismometer records collected from several km deep boreholes were analysed. Stochastic 
simulations undertaken the authors based on the generic rock profile of Boore and Joyner 
(1997) and principles of quarter wave-length method for the calculation of frequency 
dependent amplification revealed an upper crustal factor of about 1.2 (Lam et al., 2000b) 
when co-existing attenuation in the upper crust (based on parameters that are consistent 
with strong ground shaking in active regions like California) had also been taken into 
account. The attenuation parameter that can be used to characterised upper crustal 
attenuation is known as Kappa (Anderson & Hough, 1984). The value of this parameter for 
strong ground shaking in generic rock is in order of 0.04 – 0.07 (Atkinson & Silva, 1997; 
Atkinson & Boore, 1998; Tsang & Lam, 2010).  For conditions of moderate ground shaking 
and in regions of older geological formation (which is characterised by a lower Kappa value 
of the order of 0.02-0.03) a higher upper crustal factor of 1.5 in the velocity controlled region 
of the response spectrum is estimated (Lam & Wilson, 2004). Behaviour of amplification in 
the displacement controlled region of the response spectrum is more robust and is 
insensitive to the  Kappa value. 
 
In summary, the combined crustal factor V for modelling the velocity demand (Vmax) is 
accordingly in the range 1.5 – 2.0 (based on the product of “1.3” and “1.2 – 1.5”) depending 
on the intensity of ground shaking and type geological formation, whilst the combined 
crustal factor D for modelling the displacement demand (Dmax) is in the order of 1.5 - 1.6. 
However, much lower values of V or D should be assumed for continental “shield” areas 
where there are much less modifications of the upward propagating waves by the very hard 
rock in those areas. 
 
These crustal factor values can be compared with the ratio of ground shaking estimated in 
regions of very different geological formation but of the same earthquake scenario and 
source processes. The inferred ratio of ground shaking between Western Australia and 
Southeastern Australia has been found to be 1.5 – 1.7 based on the Intensity model of Gaull et 
al. (1990) developed for both regions. Similarly, the inferred ratio of ground shaking 
between the mid-continental region of Central and Eastern North America and that of Mexican 
Gulf  (of younger geological formations) has been found to be 1.5 – 1.6 based on the 
stochastic model of Toro et al. (1997). The inferred ratio between Western North American and 
Central and Eastern North America has been found to be in between 1.3 – 1.8 based on the 
stochastic model of Atkinson and Silva (2000). These inferred ratios are all in broad 
agreement with the values of the V  and D   factors that have been recommended by CAM. 
 
Recommendations that have been made in the above enable quick estimates of the response 
spectrum parameters to be made whilst alleviating the need for any rigorous analysis of 
strong motion or seismological data. Precise evaluation of the crustal factors would involve 

 

measuring and modelling the shear wave velocity gradient of the earth crusts in the region 
(Chandler et al., 2005a & 2006a; Lam et al, 2006; Tsang et al., 2010), constraining Kappa values 
either by analysis of Coda Wave data or by making use of generic correlations between values 
of Kappa and shear wave velocity parameters of the earth’s crust in the region (Chandler et 
al., 2005b & 2006b), and calculating filter functions that take into account both the 
amplification and attenuation effects. Stochastic simulations of the seismological model that 
have incorporated these developed filter functions can provide direct estimates of the crustal 
effects on ground shaking in projected earthquake scenarios. However, it is beyond the 
scope of this book chapter to present details of these modelling processes. 

 
5. Comparison with recorded data and examples     

The Component Attenuation Model as described is essentially a tool for providing estimates of 
the response spectrum parameters for rock outcrops. Meanwhile, velocity parameters of 
ground shaking on average sites can be inferred from Intensity data collected from historical 
earthquake events. Comparisons of the two sets of data provide estimates of the site factors 
that represent the difference between ground shaking on rock and that on an average site in 
pre-determined earthquake scenarios. This calibration process for constraining the site factor 
is illustrated in the schematic diagram of Figure 9. 
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Fig. 9. Inferring Site factor 
 
Using this calibration approach, the value of S factor for average sites have been found to be 
1.5 – 1.8 in a study undertaken for three regions within Central China (Tsang et al., 2010); 1.5 
for Australia on average (Lam et al., 2003); 1.7 for Northern Iran (Yaghmaei-Sabegh and 
Lam, 2010); and a slightly higher value of about 2.0 for the South China region surrounding 
Hong Kong. Importantly, this range of calibrated site factors obtained from different studies 
are in broad agreement and consistent with the site factor recommended by NEHRP for 
common shallow soil sites.  
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have incorporated these developed filter functions can provide direct estimates of the crustal 
effects on ground shaking in projected earthquake scenarios. However, it is beyond the 
scope of this book chapter to present details of these modelling processes. 
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1.5 – 1.8 in a study undertaken for three regions within Central China (Tsang et al., 2010); 1.5 
for Australia on average (Lam et al., 2003); 1.7 for Northern Iran (Yaghmaei-Sabegh and 
Lam, 2010); and a slightly higher value of about 2.0 for the South China region surrounding 
Hong Kong. Importantly, this range of calibrated site factors obtained from different studies 
are in broad agreement and consistent with the site factor recommended by NEHRP for 
common shallow soil sites.  
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Further evaluation of the CAM expressions have been undertaken by Lumantarna et al. 
(2010) based on comparing response spectrum parameters calculated from the CAM 
expressions presented in this book chapter and those calculated from some 196 
accelerogram records that were made available from data resources provided online by the 
Pacific Earthquake Engineering Research Centre (PEER). This database of strong motion 
accelerograms were mainly made up of records taken from California and with a few 
records from Southern Europe (Italy) and from Turkey. These records which were mainly 
post 1980 (except for a few taken in the 1970’s) were all recorded on Class B sites (soft rock 
and stiff soil) with shear wave velocity in the range 360 – 750 m/s and from events of 
magnitude M5 - M7 within epicentral distances 50 – 60 km and thus within the scope of the 
presented CAM expressions. CAM was then applied using the expressions outlined in 
Section 3, with  = 1.5 and S = 1.5  in view of the conditions of strong ground shaking in 
most of the recorded events. It is shown in the comparative plots of Figs. 10 – 11 that CAM 
generally provides a conservative estimate for the Vmax and Dmax values although a large 
scatter exists.  It is important to note that few recorded results exceed 2 times the CAM 
estimates with less scatter with the recorded values of Dmax. 
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6. Examples for illustrating the use of CAM 

Finally, the use of the CAM expressions for estimating the value of Vmax and Dmax are 
illustrated with two examples: (i) M5.6 event at a distance of 16km and (ii) M7 event at a 
distance of 100 km. Both earthquake scenarios are assumed to occur in the young geological 
(sandstone) formation of the Sydney basin. Crustal depth D can be taken as 30 km and value 
of Q0 is 200. Example 1 was a real event that occurred in the City of Newcastle in December 
1989, but no accelerogram records exist of that event. 

 
6.1 Example 1 
Input data is M=5.6, R=16 km 
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Response spectra of two different formats constructed in accordance with the calculated 
values of Vmax and Dmax are shown in Fig. 12 in below. 
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 Fig. 12. Response spectra constructed for example 1 

 
6.2 Example 2 
Input data is M=7, R=100 km, D=30 km and Q0 = 200 
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Further evaluation of the CAM expressions have been undertaken by Lumantarna et al. 
(2010) based on comparing response spectrum parameters calculated from the CAM 
expressions presented in this book chapter and those calculated from some 196 
accelerogram records that were made available from data resources provided online by the 
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accelerograms were mainly made up of records taken from California and with a few 
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presented CAM expressions. CAM was then applied using the expressions outlined in 
Section 3, with  = 1.5 and S = 1.5  in view of the conditions of strong ground shaking in 
most of the recorded events. It is shown in the comparative plots of Figs. 10 – 11 that CAM 
generally provides a conservative estimate for the Vmax and Dmax values although a large 
scatter exists.  It is important to note that few recorded results exceed 2 times the CAM 
estimates with less scatter with the recorded values of Dmax. 
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6. Examples for illustrating the use of CAM 

Finally, the use of the CAM expressions for estimating the value of Vmax and Dmax are 
illustrated with two examples: (i) M5.6 event at a distance of 16km and (ii) M7 event at a 
distance of 100 km. Both earthquake scenarios are assumed to occur in the young geological 
(sandstone) formation of the Sydney basin. Crustal depth D can be taken as 30 km and value 
of Q0 is 200. Example 1 was a real event that occurred in the City of Newcastle in December 
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Response spectra of two different formats constructed in accordance with the calculated 
values of Vmax and Dmax are shown in Fig. 12 in below. 
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 Fig. 13. Identification of the value of G  Fig. 14. Identification of the value of   D 
 
Response spectra of two different formats constructed in accordance with the calculated 
values of Vmax and Dmax  for the distant earthquakes are shown in Fig. 15 in below. It is noted 
that the corner period (T2) of 1.5s in the source factor has been increased to 2s by the long 
distance (path) effects which are represented by the V and D  factors. 
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 Fig. 15. Response spectra constructed for Example 2 

 
7. Conclusions     

This paper introduces the Component Attenuation Model (CAM) which is a generalised 
attenuation model that has been derived from stochastic simulations of the seismological 
model. The model is made up of a series of component factors representing the effects of the 
source, the wave travel path, modifications by the earth’s crust and that of the site. 
Expressions and charts have been presented for evaluation of the individual factors. 
Parameter values calculated by the CAM expressions have been compared with those 
calculated from some 196 recorded accelerograms obtained from the PEER database. Two 
examples illustrating the use of CAM have been shown. 
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Response spectra of two different formats constructed in accordance with the calculated 
values of Vmax and Dmax  for the distant earthquakes are shown in Fig. 15 in below. It is noted 
that the corner period (T2) of 1.5s in the source factor has been increased to 2s by the long 
distance (path) effects which are represented by the V and D  factors. 
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7. Conclusions     

This paper introduces the Component Attenuation Model (CAM) which is a generalised 
attenuation model that has been derived from stochastic simulations of the seismological 
model. The model is made up of a series of component factors representing the effects of the 
source, the wave travel path, modifications by the earth’s crust and that of the site. 
Expressions and charts have been presented for evaluation of the individual factors. 
Parameter values calculated by the CAM expressions have been compared with those 
calculated from some 196 recorded accelerograms obtained from the PEER database. Two 
examples illustrating the use of CAM have been shown. 
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1. Introduction 

We use the methods of fuzzy fractals description and genetic algorithms for laser-plasma 
interactions. We work with reduced fractals. The optimization of laser beams and target 
modelling could be obtained by the methods of artificial intelligence as in a  tokamak 
physics. Normally, the expression for Vlasov equation is  different  than it is in the case of 
tokamak. The  differences  are also true  for appropriate Maxwell equations because the 
design is different The applications of Vlasov-Maxwell equations in the case of inertial 
confinement fusion are already done by many authors. We shall find with fractal theory the 
main directions of particles movements and on such a way we will be able to calculate 
appropriate  stochastic differential equations. 
 
An energy source based on inertial fusion has several inherent advantages: 
-the underlying target physics can be established on a single shot basis using existing or 
soon to be completed facilities. 
- most, if not all, of the fusion nuclear science and technology can be developed and 
demonstrated on one repetitively pulsed facility. This includes the target physics, the 
driver/final optics, the target fabrication and injection, materials and components, and the 
chamber architecture  (  Dean, 2008 ). 
By 2010-2012, we should be poised to take full advantage of National Ignition Facility ( NIF ) 
ignition with proposals for credible designs of such advanced targets that could be fielded 
on later phases of NIF.  
NIF could also pre-qualify beam injection, tracking, beam slewing requirements for such 
targets. It mights also entertain the fielding and igniting of targets in „burst-mode“, e.g., 
several targets injected on the fly at a few Hz. This would complement the target injection 
efforts planned by the high average power laser program on smaller high-rep laser systems. 
The objective of the work is to give possibility of applications of the methods of artificial 
intelligence ( fuzzy sets and logic, genetic algorithms ) and fractals theory to get better 
understanding of inertial confinement fusion.  
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In the theory, the self-similarity of fractals is always an infinite process. But, in practice, as 
we shall see, this process must be stopped after finite time of steps. Then such a process we 
call  quasi-self-similarity. The second novelty is that  in nature, the self-similarity is 
generally non-symmetric, and it can be described inside the fuzzy sets and systems theory. 
On such a case each individual object, process etc. has the properties of originality. 
New is also the applications of fuzzy scaling on partial differential equations that describe 
the complexity of plasma behaviour . 

 
2. Laser-plasma interactions 

NIF's first four beams were fired into various-sided gold-plated cylinders known as 
hohlraums, only a few millimeters long. This was a very clear demonstration that NIF is 
indeed on the path toward ignition. It has been shown analitically that plasma filling by 
hohlraum wall ablation imposes an upper bound to hohlraum X-ray production. Current 
simulations indicate that hohlraums used in inertial confinement fusion ( ICF) are optimized 
to drive a fusion capsule to ignition before reaching the x-ray production  limits (  Dewald et 
al., 2005 ).                                                                                                                                                                   
In the future NIF ignition experiments, the deuterium-tritium fuel capsule will be placed 
inside a larger hohlraum. All 192 NIF laser beams will heat the interior of the hohlraum, 
creating x-rays that ablate ( burn off ) and implode the capsule to ignition.  Although the 
beams of high-power ultraviolet laser light only lasted a maximum of nine nanoseconds, 
that's considered long  to ignition researches.   
The Laser MegaJoule and the NIF are mainly designed for indirect drive thermonuclear 
fusion. Their beam configuration are optimized for x-ray drive.  New studies were proposed 
to employ the x-ray drive configuration for direct-drive fusion. All have focused on 
irradiation uniformity which is a key parameter for direct-drive and its optimization has 
been proposed by repointing the beams and by using different pulse shapes. A new solution 
for high-gains direct-drive fusion with the indirect drive beam irradiation of Laser 
MegaJoule is presented in the paper ( Canaud et al.,2007 ). Sources of asymmetry are due to 
facility imperfections such as power imbalance or pointing errors.  
By focusing an enormous 1.8 megajoules of energy on a pellet of deuterium-tritium fuel a 
couple of millimetres in diameter, in a pulse lasting only three nanoseconds, the NIF should 
make the pellet implode, causing centre to „ignite“ in a brief, selfsustaining fusion reaction. 
Fusion in the pellet could be induced either directly, by placing it in a cylindrical target, or  
hohlraum, about one centimetre long, and using laser pulse to induce x-rays from the 
hohlraum which would compress the pellet. Even short of ignition, laser experiments such 
as the NIF cause some fusion in their targets. 

 
3. The role of fractals theory and fuzzy scaling  for ICF design 

Quite broadly in ICF design and theory, a salient role has been played by the class of 
solutions characterized by self-similarity. The similarity property has the highly convenient 
effect of reducing systems of partial differential equations depending on both space and 
time variables into ordinary differential equations depending on only a single self-similar 
variable. In ICF there exist self-similar implosions which transform uniform density solid 
spheres into uniform density solid spheres of arbitrarily high density.  

Any practical ICF implosion begins from an initial shock. There is the inevitably non self-
similar character of the flow during the transition period between the ( non-self-similar ) 
initial conditions and the ( self-similar ) asymptotic state. High aspect ratio implosions are 
the most prone to deviating from self-similarity and stagnating in a non-isochoric 
configuration. A balance must evidently be struck between competing objectives. The 
degree of target robustness to deviations in pulse shaping is typical of self-similar 
implosions ( Clark & Tabak, 2007 ). In this situation are formed different kinds and shapes of 
fractals. 
With over 50 times more energy than present facilities and the ability to produce ignition, 
NIF  will explore new physics regimes. Ignition will allow even larger-parameter space to be 
accessed as well as new experimental capabilities like high flux neutron experiments. The 
facility contains a 192-beam Nd-glass laser system that will produce 1.8 MJ, 500 TW of 351-
nm light for target experiments  ( Moses et al., 2008). Some experiments study the effects of 
microstructure in beryllium and high-density carbon on shock propagation in capsule 
ablators. Target design efforts continue to study diagnostic signatures in simulated 
experiments. One result of these studies is understanding the importance of Advanced 
Radiographic Capability to take high-energy x-ray radiographs of the imploding core for 
ignition experiments. There are a series of images of an imploding capsule with an imposed 
asymmetry on the x-ray drive flux. Ignition experiments have stringent requirements for 
laser energy, power, stability and beam conditioning.  
To obtain ignition at ICF  laser facilities requires an energetically efficient compression of 
deuterium and tritium fuel. Ideally this compression should be spherical. However, the 
cylindrical hohlraum and temporal profiles of the required laser shocks, due to 
thermodynamic and hydrodynamic constraints, cause the fuel configuration  at peak 
compression to vary. Studies have shown this variation can depend on laser drive 
conditions and deviate significantly from a sphere. Neutron imaging can be useful 
diagnostics for determining the nature of the drive conditions  ( Grim et al., 2008). 

 
Since commercially available metrology equipment is not ideally suited for certifying meso-
scale capsules, several unique characterization tools have been developed. This include a 
very sensitive  x-ray transmission radiography system for monitoring the uniformity of 
these coatings, and quantitative analysis methods for analysing radiographs which allow 
verification of the distribution (Rastovic, 2005). 

 
One can view the Boltzmann and Vlasov-Poisson-Fokker-Planck(VPFP) equations as 
providing complementary physics since they both succeed and fail in complementary 
regimes. The Boltzmann equation gets the short distance physics correct, while the (VPFP) 
equation captures the long-distance physics (Rastovic, 2008). 

 
In addition to refraction by density gradients, a variety of parametric instabilities exist that 
convert laser energy into internal plasma waves and scattered electromagnetic waves. Since 
the irradiation of the fuel pellet requires symmetry for proper implosion and since stray 
laser light can demage optical systems, understanding the laser-plasma interaction is of 
critical importance in ICF experiments. For full simulation of ignition-scale geometries and 
times, it is impractical to use traditional Particle-In-Cell methods (Hittinger & Dorr, 2006). 
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these coatings, and quantitative analysis methods for analysing radiographs which allow 
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The change in grid resolution the collor grid requires a nonuniform differencing stencil in 
the composite grid cells adjecent to the interface.  
Within the hohlraum target of indirect drive ICF experiments, the plasma does not have a 
uniform composition. The fractal picture of the plasma can be obtained if we consider a 
plasma with N distinct material regions, i.e. as multifluid model.  

 
Piecewise linear reconstruction on these predicted cell-centeres values produces 
approximate predicted values at the cell interfaces.A fluid plasma model consists of a 
system of mass, momentum, and energy equations for each electron and ion species, 
coupled through a Lorentz force term to Maxwell's equations. Nevertheless, due to the wide 
range of spatial and temporal scales, computational laser-plasma interactions is still in need 
of major alghorithmic improvements, in order to simulate routinely at NIF-relevant scales.  

 
4. Computational models of inertial confinement  

We observe the development of the Rayleigh-Taylor ( RT) instability whenever two fluids of 
different densities are accelerated against the density gradient. The unsteady anisotropic 
and inhomogeneous turbulent process is a fundamental problem in fluid dynamics. 
 
The model of  collisionless plasmas  especially in the applied contexts of controlled fusion, 
and of laser fusion, is a highly idealized one. A way to incorporate collisional effects of a 
plasma with the background material ( e.g. a plasma system in a thermal bath or reservoir ) 
is to consider the motion of an individual particle as Brownian motion caused by collisions 
with the background medium.  
A multi-level approach on the construction of effective partioning of  unstructured graphs 
used in parallel computations is described. The quality of partitioning is estimated by its 
using in parallel iterative solution of large sparse linear systems arising in discretization of 
partial differential equations un unstructured grid. Various algorithms of balancing under 
certain constraints are considered. 
Since the nineteenth century, when Boltzmann formalized the concepts of kinetic equations, 
their range of application has been considerably extended. They are now used also in 
plasma physics. They all are characterized by a density function that satisfies a partial 
differential equation in the phase space. Possible singularities of the solution ( shock waves 
for instance ) make the chains rule no longer available. Regularity of the solution can be 
proved using  tools as averaging lemmas. 
When considering so-called microscopic quantities one discovers that the problem 
undergoes really complex dynamics. The most noticeable general result is the regularization 
by averaging on velocities which states that for f(0) element of Lebesque p integrable 
functions with bounded support in v, macroscopic quantities belong to Sobolev or Besov 
spaces with positive numbers of derivatives.  
The precise gain in regularity, and not only compactness, can be useful for regularity 
questions. This appears for instance in the topic of nondegenerate hyperbolic scalar balance 
law, where the kinetic formulation provides a method for proving regularizing effects.  
Historical progress in the mathematical theory of the Boltzmann equation has been the 
theory of Di Perna and Lions which proves global existence of weak solutions ( so-called 

renormalized solutions ) in the physical space, i.e. using only a priori estimates. If there is a 
strong solution, then the normalized solution is unique.  
State sensitivitis are partial derivatives describing how the state of a system changes when a 
design parameter is perturbed. In the context of fluid flows, these states are velocity, 
pressure, turbulence variables, etc. which are known approximately by a numerical solution 
of partial differential equations. The continuity sensitivity equation ( CSE ) is a natural 
approach to take when using adaptive methods and is useful for developing general 
purpose software. Both the flow and sensitivity solutions are taken into account for mesh 
adaptation. If an adaptive mesh generation routine is used for the flow, then the CSE only 
needs to be computed on the finest mesh. This allows a better control of the sensitivity 
solution accuracy  ( Turgeon et al., 2001) . 

 
5. Description of IFC with differential equations 

A reduced 1D Vlasov-Maxwell system introduced recently in the physical literature for 
studying laser-plasma interaction is analyzed (Carrillo & Labrunie, 2006). The electrons 
move under the effect of  an electric field E and magnetic field B. Then, their distribution 
function f(t,x,v), where x denotes the position variable, is a solution to the Vlasov equation. 
To achive a high gain in laser thermonuclear targets, deuterium-tritium fuel should be 
compressed 10000-100000 times with respect to its initial density. In practice, a 100% 
uniformity of irradiation is impossible due to nonuniform overlaping of the beams, 
nonuniform amplification in the laser path, and defects in laser amplification channels.  
The fields E and B are the sum of three parts: 

a.) the self-consistent fields created by the electrons 
b.) the electromagnetic field of a laser wave which is sent into the medium( called the 

pump wave ) 
c.) The electrostatic field E(x) generated by a background of ions which are considered 

immobile during the time scale of the wave, and/or by an external, static 
confinement potential 

The model of Vlasov equation and the two remaining Maxwell equations features a strongly 
nonlinear coupling between the kinetic and electromagnetic variables. 
Two reduced models have been defined by physicist: a.) The nonrelativistic model    ( NR ) 
approximates the relativistic dynamic by the Newtonian one.  It is physically justified when 
the temperature is low enough. b.) the quasi-relativistic model ( QR) is acceptable when the 
proportion of ultra-relativistic electrons is negligible and the pump intensity is moderate. 
An iterative procedure to solve the 1D Vlasov-Maxwell system for the NR and QR cases is 
presented. 
In the paper (DiPerna & Lions, 1989) the Vlasov-Maxwell system in its classical and 
relativistic form    is studied. The stability of solutions in weak topologies is proven and 
from this stability result the global existence of a weak solution with large initial data is 
deduced. The main tools consists of a new regularity result for velocity averages of solutions 
of some general linear transport equation. 
We obtain compactness in L(1) under some extra hypothesis on the initial data. We first 
recall a regularity result about the Vlasov-Poisson-Fokker-Planck (VPFP) system involving 
in additional control of entropy. From a probabilistic point of view, the Fokker-Planck 
equation characterizes the evolution of the probability mass density of particles in phase 
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space, if we consider the position x(t) and the velocity of the particle v(t) as random 
variables which satisfies the stochastic differential equation.  The VPFP system appears 
when we consider a great deluge of mutually interacting particles which move in a 
Brownian way. We know that for initial data small enough and satisfying some suitable 
integrability conditions, global solutions exist. The plasma region is bordered by a shock. 
Therefore, to analyze the beam region we return to the Vlasov – Poisson problem and 
introduce different scalling assumptions ( Degond et al., 2003). 
We present a collision potential for the Vlasov-Poisson-Boltzmann (VPB) system near 
vacuum in plasma physics case. This potential measures the future possible collisions 
between charged particles with different velocities and satisfied a time-decay estimate. The 
purpose of the paper (Chae et al., 2006) is to study the large-time behaviour of the VPB 
system via the robust Lyapunov functional D(f) measuring possible future collisions 
between particles. A generalized collision potential is constructed and the time-asymptotic 
equivalence between VPB system and linear Vlasov system is established.  
In the paper (Carrillo & Toscani, 1998) is intended to study the rate of convergence of 
homogeneous solutions of the Vlasov-Fokker-Planck(VFP) equation. VFP equation describes 
a plasma in which the particle change only slightly their momentum during collision events. 
Assuming that the collision between heavy particles are negligible, the collisions with light 
particles by means of Brownian motion are approximated. The aim of this work is to study 
the rate of convergence of solutions. This result can be a first step to reach some results for 
the VFP system or the non-homogeneous case. It was done for VPFP system in the paper 
(Carpio, 1998). The VFP equation has been studied in the presence of a external confinant  
potential in [ Bouchut & Dolbeault,1995] proving that the distribution of particles tend to the 
stationary distribution where in the expression the confinant external potential is also 
included. To achieve exponential decay, the smoothing effect of the Fokker-Planck term can 
be used.  

 
The multiscale representation of a function can be compressed with a controlled 
approximation loss by setting to zero the details with an absolute values less than some 
given threshold depending on the level. We construct an adaptive mesh. When 
electromagnetic waves propagate through a plasma layer, they become parametrically 
unstable. Vlasov simulations provide an exellent description of the small scales of the phase-
space mixing are saturated by the numerical dissipation of the numerical scheme. This 
category of models is motivated by the important problems of the nonlinear interaction of 
high intensity ultrashort laser pulses with plasmas, with specific application to particle 
acceleration or inertial confinement fusion purpose. Given the value of the function f at the 
mesh points at any given time step, we obtain the new value at mesh point. It is semi-
Lagrangian Vlasov method. 

 
The change in the fuzzy rule base is done using a variable-structure direct adaptive control 
algorithm to achieve the pre-defined control objectives. It has a good performance in the 
training phase as it makes use of initial rule base defined for the fuzzy logic stabilizer. It has 
a robust estimator since it depends on a variable structure technique. The adaptive nature of 
the bew controller significantly reduces the rule base size and improves its performance. 
In the paper (Besse et al., 2008) is presented a new method for the numerical solution of the 
relativistic Vlasov-Maxwell system on a phase-grid using an adaptive semi-Lagrangian 

method. The multiscale expansion of the distribution function allows to get a sparse 
representation of the data. Interaction of relativistically strong laser pulses with overdense 
plasma slabs is investigated. Vlasov codes are powerful tools to study wave-particle 
interaction with interesting results for trapping and action transfer from particles and 
waves. Since non-linear kinetic effects are important in laser-plasma interaction, we choose a 
kinetic description for the plasma.  

 
The algorithm is based on the conservation of the flux of particles, and the distribution 
function is reconstructed using various techniques that allow control of spurious oscillations 
or preservation of the positivity. Nonetheless they might be a first step toward more 
effecient adaptive solvers based on different ideas for the grid refinement or on more 
efficient implementation.  
The main way to improve the efficiency of the adaptive method is to increase the local 
character in phase-space of the numerical scheme by considering multiscale reconstruction 
with more compact support and by replacing the semi-Lagrangian method with more local-
in space-numerical scheme as compact finite difference schemes, discontinuous-Galerkin 
method or finite element residual schemes which are well suited for parallel domain 
decomposition techniques. To overcome the problem of global dependency, we decompose 
the domain into patches, each path being devoted to a processor. One patch computes its 
own local cubic spline coefficients by solving reduced linear systems. 
Thanks to a restrictive condition on the time step, the inter-processor communications are 
only done between adjencent processors, which enables us to obtain competitive results 
from a scalability point of view up to 64 processors. Parallelism is one of the underlying 
principles of the artificial neural networks. It is known that the neural networks training can 
be efficiently implemented on parallel computers. 

 
6. Methods of artificial intelligence 

Artificial neural networks ( ANNs) are computational models implemented in software or 
specialized hardware devices that attempt to capture the behavioral and adaptive features 
of biological nervous systems. In order to solve computational or engineering problems with 
neural networks, learning algorithms are used to find suitable network parameters. At 
dissipative scales, where the fluid flow is differentiable, the phase-space density of particles 
is supported an a dynamically evolved fractal set. This attractor is characterized by a non-
trivial multiscaling properties. Evolutionary algorithms provide an interesting alternative, 
or complement, to the commonly used learning algorithms, such as back-propagation. 
Instead of using a conventional learning algorithm, the characteristics of neural networks 
can be encoded in artificial genomes and evolved according to a performance criterion.  
The evolutionary synthesis of a neural network leads to several design choices. Recent 
benchmark experiments with evolution strategies, which use a floating-point representation 
of the synaptic weights, have reported excellent performance with direct encoding of a 
small, fixed architecture. The topology of a neural network can significantly effect its ability 
to solve a problem. Direct encoding is typically applied to fixed network topologies, 
however, it can also be used to evolve the architecture of an ANN (Floreano et al., 2008). 
Hybrid approaches have attracted considerable attention in the Computational Intelligence 
community. One of the most popular approaches is the hybridization between fuzzy logic 
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in space-numerical scheme as compact finite difference schemes, discontinuous-Galerkin 
method or finite element residual schemes which are well suited for parallel domain 
decomposition techniques. To overcome the problem of global dependency, we decompose 
the domain into patches, each path being devoted to a processor. One patch computes its 
own local cubic spline coefficients by solving reduced linear systems. 
Thanks to a restrictive condition on the time step, the inter-processor communications are 
only done between adjencent processors, which enables us to obtain competitive results 
from a scalability point of view up to 64 processors. Parallelism is one of the underlying 
principles of the artificial neural networks. It is known that the neural networks training can 
be efficiently implemented on parallel computers. 

 
6. Methods of artificial intelligence 

Artificial neural networks ( ANNs) are computational models implemented in software or 
specialized hardware devices that attempt to capture the behavioral and adaptive features 
of biological nervous systems. In order to solve computational or engineering problems with 
neural networks, learning algorithms are used to find suitable network parameters. At 
dissipative scales, where the fluid flow is differentiable, the phase-space density of particles 
is supported an a dynamically evolved fractal set. This attractor is characterized by a non-
trivial multiscaling properties. Evolutionary algorithms provide an interesting alternative, 
or complement, to the commonly used learning algorithms, such as back-propagation. 
Instead of using a conventional learning algorithm, the characteristics of neural networks 
can be encoded in artificial genomes and evolved according to a performance criterion.  
The evolutionary synthesis of a neural network leads to several design choices. Recent 
benchmark experiments with evolution strategies, which use a floating-point representation 
of the synaptic weights, have reported excellent performance with direct encoding of a 
small, fixed architecture. The topology of a neural network can significantly effect its ability 
to solve a problem. Direct encoding is typically applied to fixed network topologies, 
however, it can also be used to evolve the architecture of an ANN (Floreano et al., 2008). 
Hybrid approaches have attracted considerable attention in the Computational Intelligence 
community. One of the most popular approaches is the hybridization between fuzzy logic 
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and genetic algorithms (Herrera, 2008). It is all connected with the phenomena of adaptive 
behaviour.  
Although much effort has been devoted to the fuzzy scaling factors in the past decades, 
there is still no  effective solution. Most of the research works on fuzzy logic controllers have 
either neglected this issue by directly applying a set of scaling factors (Chopra et al., 
2008).We shall apply it to the nonlinear Vlasov-Fokker-Planck equation. The advantage of 
using the description with IF-AND-THEN rules  for VPFP equations is obtaining the 
possibility for description of anisotropic turbulence. Genetic algorithms can additionally 
help when there are problems with delays. Theoretical description of non-equilibrium 
transport is a challenging problem due to singular aspects of governing equations. 
    
Consider the following IF-THEN rules:  

    IF  m(1) is M(i1) and....  IF m(p) is M(ip)  
   THEN   (df/dt)=   (A(i) + E(i))f(t) +A(di)f(t-h) + B(i)u(t) + G(i)w(t),   
    i=1,2,....k                                                                                                                           (1) 

 
where M(i,j) are fuzzy sets and m(1),...  m(p) are given premise variables,  E(i) are the 
uncertain matrices and Gw(t) is stochastic control. The fuzzy system is hence given by sum 
of equations  
 

 (df/dt) = a(i) ( (A(i) + E(i))f(t) + A(di)f(t-h) + B(i)u(t) +G(i)w(t)),     i=1,2...k             (2) 
 

where a(i) are the fuzzy basis functions. The fractional integration is changed by integration 
on fractals. On these equations if possible apply the standard methods of stochastic control, 
for example the Monte Carlo method, the method of Riccati equations etc. The delay-
dependent condition show the robust stabilizability for some parameters. On such a way are 
obtained the control systems with fuzzy scaling. With delay expressions is given the 
influence of genetic algorithms. Under some conditions the system is robustly stable by the 
Lyapunov theorem (Rastovic, 2009).In the case of instabilities the natural assumption is that 
the process must be recurrent. Recent technical progress allows to investigate, both 
experimentally  and numerically, the correlation properties of fully developed turbulence in 
terms of particle trajectories. Non-equilibrium turbulent processes are anisotropic, non-local, 
multi-scale and multi-phase, and ofted are driven by shocks or acceleration. Their scaling, 
spectral and invariant properties differ substantially from those of classical Kolmogorov 
turbulence. 

 
In the paper ( Zielinski, 2005) are investigated the problems of computing the interval  of 
possible values of the latest starting times and floats of activities in networks with uncertain 
durations modeled by fuzzy or interval numbers. There has been provided a possibilistic 
representation of the problem of determining the fuzzy latest starting times of activities and 
their floats, a difficulty connected to it has been pointed out. The complexity results for 
floats are presented ( the computation of floats is probably intractable ) and some 
polynomially solvable cases are described.  It could be useful in the applications of 
Kolmogorov-Arnold-Moser theorem for describing the quasi-periodic orbits (Rastovic, 
2007). The Kolmogorov-Arnold-Moser theorem uses mainly the fractals that are called 
Cantori as it  is in the case of tokamak theory. 
 

According to Bohr the external conditions of an experiment have to be described in the 
language of classical physics. The macroscopic arrangement of the measuring part can 
interact with individual samples of the physical system in such a way that a direct 
objectively traceable ( macroscopic alternative ) effect occurs or does not occur. Being thus 
based operationally on the same kind of objective facts and effects which are already 
familiar from classical physics, this interpretation avoids the introduction of any subjective 
element ( like knowledge of observers, or human consciousness ) into the theory ( Cattaneo 
et al., 2004). A good approximation is a semi-transparent mirror in a path of a photon beam. 
No doubt this is a certain macroscopic arrangement producing a macroscopic alternative 
effect ( either the photon reaches the plasma „yes“ or it does not). In laser plasma 
interactions the description with fuzzy logic methods can be also be useful. 

 
The finite element method ( FEM ) is one of the most used techniques for solving partial 
differential problems. The idea of FEM is to divide  the domain of definition of the problem 
into small regions called elements of the mesh, where an approximation of the solution is 
searched.  
The current numerical approach to the problem of finding the best grid is the mesh 
adaptation strategy. In the paper (Manevitz & Givoli, 2003), an alternative solution to this 
problem is obtained using soft computing methods. Fuzzy logic is used for the mesh 
generation process because it allows reproducing the qualitative reasoning typical of 
humans, by translating numerical inputs into linguistic values ( such as „good“, „near“, 
„high“ ) and by evaluating some if-then rules in parallel. Solving the Poisson problem for 
example, with the FEM in an „intelligent“ way requires having an idea of the general 
behaviour of the solution over the domain. Where it will be smooth, large elements will be 
required, while elements will be smaller where the solution exibits great changes. FEM 
experts state that elements must be very small where there is a singularity in the boundary 
conditions.  

 
The Navier-Stokes equation is supercritical. The nonlinearities become stronger at small 
distance scales, making it impossible to know ( using present techniques ) whether solutions 
remain smooth for all time. Thus it is crucial to understand the scale dependence of non-
linearities in fluid mechanics. Renormalization theory, which is the systematic study of short 
distance limits, is one of the deepast ideas ever to appear in physics. Experience from 
quantum field theory suggest that we must first replace the Navier-Stokes equations with a 
„regularized“ version, in which there is a short distance cutoff.  
A „fuzzy“ version of fluid mechanics would describe even larger scale motion, which 
averages over a fluid elements. Such a „mesoscopic“ theory may be what we need to 
understand many physical phenomena, such as the stability of large vortices. A method that 
imposes a smallest possible lenght, and a largest possible wavenumber, without breaking 
symmetries could help us in mathematical,physical and engineering approaches to fluid 
mechanics. 

 
7. Conclusion 

For numerical simulations of laser-plasma interactions we can use the methods of fuzzy 
scaling and genetic algorithms for obtaining  the possibility of description of inertial 
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and genetic algorithms (Herrera, 2008). It is all connected with the phenomena of adaptive 
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either neglected this issue by directly applying a set of scaling factors (Chopra et al., 
2008).We shall apply it to the nonlinear Vlasov-Fokker-Planck equation. The advantage of 
using the description with IF-AND-THEN rules  for VPFP equations is obtaining the 
possibility for description of anisotropic turbulence. Genetic algorithms can additionally 
help when there are problems with delays. Theoretical description of non-equilibrium 
transport is a challenging problem due to singular aspects of governing equations. 
    
Consider the following IF-THEN rules:  

    IF  m(1) is M(i1) and....  IF m(p) is M(ip)  
   THEN   (df/dt)=   (A(i) + E(i))f(t) +A(di)f(t-h) + B(i)u(t) + G(i)w(t),   
    i=1,2,....k                                                                                                                           (1) 

 
where M(i,j) are fuzzy sets and m(1),...  m(p) are given premise variables,  E(i) are the 
uncertain matrices and Gw(t) is stochastic control. The fuzzy system is hence given by sum 
of equations  
 

 (df/dt) = a(i) ( (A(i) + E(i))f(t) + A(di)f(t-h) + B(i)u(t) +G(i)w(t)),     i=1,2...k             (2) 
 

where a(i) are the fuzzy basis functions. The fractional integration is changed by integration 
on fractals. On these equations if possible apply the standard methods of stochastic control, 
for example the Monte Carlo method, the method of Riccati equations etc. The delay-
dependent condition show the robust stabilizability for some parameters. On such a way are 
obtained the control systems with fuzzy scaling. With delay expressions is given the 
influence of genetic algorithms. Under some conditions the system is robustly stable by the 
Lyapunov theorem (Rastovic, 2009).In the case of instabilities the natural assumption is that 
the process must be recurrent. Recent technical progress allows to investigate, both 
experimentally  and numerically, the correlation properties of fully developed turbulence in 
terms of particle trajectories. Non-equilibrium turbulent processes are anisotropic, non-local, 
multi-scale and multi-phase, and ofted are driven by shocks or acceleration. Their scaling, 
spectral and invariant properties differ substantially from those of classical Kolmogorov 
turbulence. 

 
In the paper ( Zielinski, 2005) are investigated the problems of computing the interval  of 
possible values of the latest starting times and floats of activities in networks with uncertain 
durations modeled by fuzzy or interval numbers. There has been provided a possibilistic 
representation of the problem of determining the fuzzy latest starting times of activities and 
their floats, a difficulty connected to it has been pointed out. The complexity results for 
floats are presented ( the computation of floats is probably intractable ) and some 
polynomially solvable cases are described.  It could be useful in the applications of 
Kolmogorov-Arnold-Moser theorem for describing the quasi-periodic orbits (Rastovic, 
2007). The Kolmogorov-Arnold-Moser theorem uses mainly the fractals that are called 
Cantori as it  is in the case of tokamak theory. 
 

According to Bohr the external conditions of an experiment have to be described in the 
language of classical physics. The macroscopic arrangement of the measuring part can 
interact with individual samples of the physical system in such a way that a direct 
objectively traceable ( macroscopic alternative ) effect occurs or does not occur. Being thus 
based operationally on the same kind of objective facts and effects which are already 
familiar from classical physics, this interpretation avoids the introduction of any subjective 
element ( like knowledge of observers, or human consciousness ) into the theory ( Cattaneo 
et al., 2004). A good approximation is a semi-transparent mirror in a path of a photon beam. 
No doubt this is a certain macroscopic arrangement producing a macroscopic alternative 
effect ( either the photon reaches the plasma „yes“ or it does not). In laser plasma 
interactions the description with fuzzy logic methods can be also be useful. 

 
The finite element method ( FEM ) is one of the most used techniques for solving partial 
differential problems. The idea of FEM is to divide  the domain of definition of the problem 
into small regions called elements of the mesh, where an approximation of the solution is 
searched.  
The current numerical approach to the problem of finding the best grid is the mesh 
adaptation strategy. In the paper (Manevitz & Givoli, 2003), an alternative solution to this 
problem is obtained using soft computing methods. Fuzzy logic is used for the mesh 
generation process because it allows reproducing the qualitative reasoning typical of 
humans, by translating numerical inputs into linguistic values ( such as „good“, „near“, 
„high“ ) and by evaluating some if-then rules in parallel. Solving the Poisson problem for 
example, with the FEM in an „intelligent“ way requires having an idea of the general 
behaviour of the solution over the domain. Where it will be smooth, large elements will be 
required, while elements will be smaller where the solution exibits great changes. FEM 
experts state that elements must be very small where there is a singularity in the boundary 
conditions.  

 
The Navier-Stokes equation is supercritical. The nonlinearities become stronger at small 
distance scales, making it impossible to know ( using present techniques ) whether solutions 
remain smooth for all time. Thus it is crucial to understand the scale dependence of non-
linearities in fluid mechanics. Renormalization theory, which is the systematic study of short 
distance limits, is one of the deepast ideas ever to appear in physics. Experience from 
quantum field theory suggest that we must first replace the Navier-Stokes equations with a 
„regularized“ version, in which there is a short distance cutoff.  
A „fuzzy“ version of fluid mechanics would describe even larger scale motion, which 
averages over a fluid elements. Such a „mesoscopic“ theory may be what we need to 
understand many physical phenomena, such as the stability of large vortices. A method that 
imposes a smallest possible lenght, and a largest possible wavenumber, without breaking 
symmetries could help us in mathematical,physical and engineering approaches to fluid 
mechanics. 

 
7. Conclusion 

For numerical simulations of laser-plasma interactions we can use the methods of fuzzy 
scaling and genetic algorithms for obtaining  the possibility of description of inertial 
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controlled fusion phenomena. The same consequences of fractal plasma behaviour can be 
found as in tokamak physics (Rastovic, 2009). Only, in the case of tokamak we must use the 
fractals of the type of fuzzy Cantori, but in the case of inertial controlled fusion we must use, 
for example, the fractals of the type of circle fuzzy  Koch curves, i.e. first draw polygon and 
then on each side of the polygon draw  the first step of  the Koch curve. At some time the 
process of self-similarity must be finished . We have got the reduced fractals for fuzzy 
scaling description. On such a way we obtain the main directions of the particles 
movements and the possibility for numerical calculations. In different directions of 
intersections of the sphere should be taken the appropriate polygons. 
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1. Introduction

Randomness in gene expression has been ubiquitously observed from primitive prokaryotes
to higher eukaryotes (Elowitz et al., 2002; Johnston & Desplan, 2010; Losick & Desplan, 2008;
Maheshri & O’Shea, 2007; Raj & van Oudenaarden, 2008; Raser & O’Shea, 2004; Wernet et al.,
2006). Yet, it is widely recognized that living organisms have evolved to control and exploit
such underlying stochastic noise to optimize their dynamic characteristics to better cope with
and compete in their living environments in a variety of ways (Arkin & Fletcher, 2006). For
example, on the one hand, a stochastic switch has been shown to probabilistically regulate
expression of an adhesive virulence factor in the main causative pathogen of uncomplicated
lower urinary tract infections based on ambient temperature (Gally et al., 1993). On the other
hand, marine embryo development seems to work much more deterministically and reliably
at different rates over a range of environmental conditions (Istrail et al., 2007). Gaining in-
sights into how living organisms control stochastic effects to achieve specific functions, thus,
can have a significant implication in enhancing many aspects of our lives. That is, for exam-
ple, by understanding the control mechanisms associated with the etiology and stability of
complex non-Mendelian diseases, novel and effective therapies for prevention and treatment
of such diseases can be developed. However, owing to sheer-size complexity of even a rela-
tively simple biological system, elucidation of stochastic control mechanisms at the molecular
level may not be something which can be efficiently and effectively accomplished with the
current limitation of controllability and observability in wet-lab experiments alone. This, in
turn, makes computational analysis essential to any efforts aimed at understanding of control
and information processing mechanisms of intricate biological systems.
Detailed-level stochastic effects in biological systems are—by and large—captured and
analyzed by devising the stochastic chemical kinetics (SCK) framework (Samoilov & Arkin,
2006). Assuming that the system is spatially homogeneous, the SCK model specifies the
time-homogeneous probabilistic reaction rate function of each reaction and discrete changes
in the molecular species populations through individual discrete reaction events. While sam-
ple trajectories of a SCK model can be accurately realized via Gillespie’s stochastic simula-
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tion algorithm (SSA) (Gillespie, 1976; 1977), the computational requirements of the SSA can
be substantial due largely to the fact that it not only requires a potentially large number of
simulation runs in order to estimate the system behavior at a reasonable degree of statistical
confidence, but it also requires every single elementary-reaction event to be simulated one at
a time. As recent advances in experimental techniques have enabled us to unveil more key
components and more detailed organization structures of many biological systems, and as
we are beginning to address more complex and sophisticated biological questions than ever
before, it has become increasingly clear that no single modeling and simulation method can
satisfy the needs of a wide spectrum of such complex questions.
One approach to alleviate the computational requirements involved in analysis of SCK models
is to speed up the simulation of individual SSA by letting go of exactness. An example of this is
τ-leaping method (Gillespie, 2001), which approximates the number of firings of each reaction
in a predefined interval rather than executing each reaction individually. Another example is
model reduction, which abstracts away dynamically insignificant reactions or species in order
to make the overall systems biology analysis more efficient (Kuwahara et al., 2010; 2006).
Another approach to accelerate the analysis of SCK model is to tailor stochastic simulations
based on specific dynamical properties of interest and apply a more suitable simulation method
than the standard SSA. This chapter describes two such approaches to efficiently analyze vari-
ous dynamical properties of interest. The rest of this chapter is organized as follows. Section 2
briefly describes SCK and SSA. Section 3 presents a modified SSA to better quantify the normal
or typical behavior. Section 4 presents another modified SSA for the analysis of rare deviant
events. Section 5 presents a case study analysis of enzymatic futile cycles. Finally, Section 6
presents our conclusions.

2. Stochastic Chemical Kinetics

Stochastic chemical kinetics (SCK) is a theoretical framework that accounts for the statistics of
randomly-occurring chemical reactions (Gillespie, 1976; 1977; 2005; 2007). In the SCK frame-
work, a reaction system consists of a liquid volume, Ω, containing a population of randomly-
moving molecules. The molecules represent one or more species types. The medium is typ-
ically assumed to be “well-stirred,” meaning a given reactant molecule may be found at any
position in the medium, and may be moving in any direction, with uniform probability. A
reaction may occur whenever there is a collision among the respective reactant molecules.
When a reaction occurs, the reactants are removed from Ω, and the products are added to Ω.
Under the SCK framework, a reaction system’s time-evolution is governed by a set of proba-
bility laws which can be deduced through combinatorial methods. Suppose a reaction system
consists of N chemical species si, and the volume Ω contains xi molecules of species si at a
specific time t, for i = 1, ..., N. Also, suppose the system has M reactions R1, R2, ..., RM, and
each reaction Rj has a set of reactants Rj. Finally, let rij be the number of reactants of species
i that participate in reaction Rj, and let pij be the number of products of species i that are
produced by reaction Rj. Let νj be the change in x that results from the occurrence of Rj. The
elements of νj are given by νij = pij − rij.
Given these definitions, the SSA algorithm computes the following probabilities:

• aj (x, t) dt = the probability, given state x at time t, that Rj occurs in a small time-interval
of width dt. This is called the propensity function of reaction j.

• P0 (τ |x ) = the probability, given state x at time t, that no reaction occurs in the time-

interval (t, t + τ). It can be shown that P0 = exp
(
−τ ∑M

j=1 aj

)
, hence P0 is fully deter-

mined by the reactions’ propensities.

• The product of these is called the reaction pdf, given by fR (τ, j) dt = aj (x, t) P0 (τ |x ) dt.
The reaction pdf expresses the probability that the next reaction is Rj, and it occurs at
time t + τ.

Stochastic simulation algorithms use the reaction pdf to generate a sequence of reaction events.
Because fR (τ, j) is fully determined by the propensities, we may fully characterize the sys-
tem’s time-evolution by computing all the aj terms. In order to compute the aj terms, Gillespie
proposed the fundamental hypothesis of SCK:

aj = cj × hj (1)

where

cj = the stochastic reaction constant, (2)

hj = the total number of combinations of reactants in Rj. (3)

The stochastic reaction constant cj is closely related to the traditional reaction-rate constant
kj. It is generally possible to compute cj from kj. In many cases, especially with regard to
genetic reaction networks, the actual reaction rates are not well known. In these cases, the cj
are estimated by making an educated guess. In some cases, careful experiments have been
carried out to determine the reaction constants, but these are in the minority. As a rule of
thumb, the cj constants generally lie between 10−4 and 0.1 for “slow” and “fast” reactions,
respectively. When the cj are not precisely known, their estimated values may be tuned within
this range to reflect the relative speed expected from each reaction.
The number of reactant combinations, hj is found by a combinatorial analysis. If reaction Rj
involves multiple distinct reactants, as in s1 + s2 → s3, then the number of reactant combina-
tions is the product over the reactant populations: hj = x1 × x2. If Rj has multiple reactants of
the same species, as in 2s1 → s2, then the number of combinations is found by the n-choose-
k function, in this case hj = 0.5x1 (x1 − 1). In general, the total combinations is given by a
product over n-choose-k calculations:

hj = ∏
i∈Rj

(
xi
rij

)
. (4)

For example, the two-reaction system model shown in Figure 1 contains the reaction s2 +
2s3 → s1. The number of combinations for this reaction equals the number of s2 molecules,
times the number of pairs of s3 molecules, i.e. h2 = x2 × 0.5x3 (x3 − 1).

2.1 Gillespie’s Stochastic Simulation Algorithm (SSA).
To simulate the time-evolution of a reaction network, one may use the reaction pdf to gen-
erate a sequence of random reaction events, starting from a specified initial state x (t0) at
start-time t0. The simulation yields a sequence of system states x (t1) , x (t2) , ... that occur at
non-uniform times t1, t2, ..., and so on. This sequence is referred to as a sample path, which
represents a physically plausible sequence of reactions.
To generate a sample path, we proceed one reaction at a time. For each reaction, we generate
two random numbers:
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1. τ = the time to the next reaction, and

2. Rµ = the reaction that fires at time t + τ.

We assume the system begins in a specified initial state x0 at start-time t0. The SSA is executed
by repeating three essential tasks: (1) Generate a time for the next reaction to occur, (2) Gener-
ate the reaction that occurs at that time, and (3) Change the state x to reflect that the reaction
has occurred. Algorithm 1 implements these tasks with the proper statistics and produces a
physically realistic sample path.

(
s1 + s2 → s3

s2 + 2s3 → s1

)
h1 = x1 × x2
h2 = x2 × 0.5x3 (x3 − 1)

(a) Reactions (b) Combinations

r1 = 〈1, 1, 0〉
r2 = 〈0, 1, 2〉

ν1 = 〈−1, 1, 1〉
ν2 = 〈1, −1, −2〉

(c) Reactants (d) State changes

Fig. 1. An example of a simple two-reaction system model.

Algorithm 1 Gillespie’s stochastic simulation algorithm.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).
6: end for
7: Calculate a0
8: r1 ← a randomly generated number from U (0, 1) .
9: r2 ← a randomly generated number, uniformly distributed in the open interval (0, 1) .

10: τ ←
(

1
a0

)
ln

(
1
r1

)
.

11: µ ← the least integer for which r2 ≤ 1
a0

∑
µ
j=1 aj. Then Rµ is the next reaction that occurs

at time t + τ.
12: x ← x + νµ.
13: t ← t + τ.
14: end while

2.2 Approximations of the SSA
A number of researchers have devised methods to reduce the computational complexity of
stochastic simulations. In most cases, these methods rely on approximations that are valid

under a restricted set of reaction conditions. Two of the best-known SSA approximations
were devised by Gillespie, the τ-leaping method and the chemical Langevin equation (CLE)
method (Gillespie, 2001). These methods greatly improve the speed of stochastic simulations
in many types of reactions. These methods also help to establish the incremental SSA methods
described in section 3.

2.2.1 The τ-leap Method
The τ-leap method improves simulation speed by firing many reactions at the same time. By
contrast, the original SSA must compute each separate reaction individually. By computing
a bundle of reactions simultaneously, the τ-leap method can run many times faster than the
ordinary SSA. The τ-leap method requires a leap condition which is that all of the propensity
functions aj remain approximately constant during a sufficiently small time-interval τ. Under
this approximation, the propensity for a given reaction Rj during the τ-window is assumed
independent of other reactions that may occur during the same time-window. Let kj be the
number of times reaction Rj occurs during the time-window. Then kj can be shown to be
a Poisson distributed random variable. A sample-path can therefore be generated using the
modified SSA steps shown in Algorithm 2.

Algorithm 2 The τ-leaping method.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).

6: kj ← a random number generated from the Poisson distribution P
(

ajτ
)

.
7: end for
8: x ← x + ∑M

j=1 kjνj.
9: t ← t + τ.

10: end while

The leap condition is most likely satisfied in systems with large molecule counts. For these
systems, a single reaction produces only a small relative change in the system’s state. The
change in propensities is correspondingly small. There are convenient run-time methods that
test the τ-leap conditions, and adaptively determine the optimal time-step (Gillespie, 2001;
Gillespie & Petzold, 2003). In the context of genetic circuits, application of the τ-leap method
is complicated by the low count of DNA molecules. Reactions including DNA transcription
and translation may induce rapid changes in propensities across the reaction system.

2.2.2 The Chemical Langevin Equation Method
The Chemical Langevin Equation (CLE) method is a further approximation to the τ-leap
method that applies in systems with very large molecule counts (Gillespie, 2000; 2001). In

addition to the Leap Condition, the CLE method requires that τ � maxj

{
1/aj

}
. If these con-

ditions are satisfied, then the discrete Poisson distribution P
(

ajτ
)

approaches the continuous

Gaussian (Normal) distribution N (µ, σ) with µ = σ2 = ajτ. The τ-leap method is therefore
modified slightly to produce Algorithm 3.



Efficient Stochastic Simulation to Analyze Targeted Properties of Biological Systems 509

1. τ = the time to the next reaction, and

2. Rµ = the reaction that fires at time t + τ.

We assume the system begins in a specified initial state x0 at start-time t0. The SSA is executed
by repeating three essential tasks: (1) Generate a time for the next reaction to occur, (2) Gener-
ate the reaction that occurs at that time, and (3) Change the state x to reflect that the reaction
has occurred. Algorithm 1 implements these tasks with the proper statistics and produces a
physically realistic sample path.

(
s1 + s2 → s3

s2 + 2s3 → s1

)
h1 = x1 × x2
h2 = x2 × 0.5x3 (x3 − 1)

(a) Reactions (b) Combinations

r1 = 〈1, 1, 0〉
r2 = 〈0, 1, 2〉

ν1 = 〈−1, 1, 1〉
ν2 = 〈1, −1, −2〉

(c) Reactants (d) State changes

Fig. 1. An example of a simple two-reaction system model.

Algorithm 1 Gillespie’s stochastic simulation algorithm.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).
6: end for
7: Calculate a0
8: r1 ← a randomly generated number from U (0, 1) .
9: r2 ← a randomly generated number, uniformly distributed in the open interval (0, 1) .

10: τ ←
(

1
a0

)
ln

(
1
r1

)
.

11: µ ← the least integer for which r2 ≤ 1
a0

∑
µ
j=1 aj. Then Rµ is the next reaction that occurs

at time t + τ.
12: x ← x + νµ.
13: t ← t + τ.
14: end while

2.2 Approximations of the SSA
A number of researchers have devised methods to reduce the computational complexity of
stochastic simulations. In most cases, these methods rely on approximations that are valid

under a restricted set of reaction conditions. Two of the best-known SSA approximations
were devised by Gillespie, the τ-leaping method and the chemical Langevin equation (CLE)
method (Gillespie, 2001). These methods greatly improve the speed of stochastic simulations
in many types of reactions. These methods also help to establish the incremental SSA methods
described in section 3.

2.2.1 The τ-leap Method
The τ-leap method improves simulation speed by firing many reactions at the same time. By
contrast, the original SSA must compute each separate reaction individually. By computing
a bundle of reactions simultaneously, the τ-leap method can run many times faster than the
ordinary SSA. The τ-leap method requires a leap condition which is that all of the propensity
functions aj remain approximately constant during a sufficiently small time-interval τ. Under
this approximation, the propensity for a given reaction Rj during the τ-window is assumed
independent of other reactions that may occur during the same time-window. Let kj be the
number of times reaction Rj occurs during the time-window. Then kj can be shown to be
a Poisson distributed random variable. A sample-path can therefore be generated using the
modified SSA steps shown in Algorithm 2.

Algorithm 2 The τ-leaping method.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).

6: kj ← a random number generated from the Poisson distribution P
(

ajτ
)

.
7: end for
8: x ← x + ∑M

j=1 kjνj.
9: t ← t + τ.

10: end while

The leap condition is most likely satisfied in systems with large molecule counts. For these
systems, a single reaction produces only a small relative change in the system’s state. The
change in propensities is correspondingly small. There are convenient run-time methods that
test the τ-leap conditions, and adaptively determine the optimal time-step (Gillespie, 2001;
Gillespie & Petzold, 2003). In the context of genetic circuits, application of the τ-leap method
is complicated by the low count of DNA molecules. Reactions including DNA transcription
and translation may induce rapid changes in propensities across the reaction system.

2.2.2 The Chemical Langevin Equation Method
The Chemical Langevin Equation (CLE) method is a further approximation to the τ-leap
method that applies in systems with very large molecule counts (Gillespie, 2000; 2001). In

addition to the Leap Condition, the CLE method requires that τ � maxj

{
1/aj

}
. If these con-

ditions are satisfied, then the discrete Poisson distribution P
(

ajτ
)

approaches the continuous

Gaussian (Normal) distribution N (µ, σ) with µ = σ2 = ajτ. The τ-leap method is therefore
modified slightly to produce Algorithm 3.



Stochastic Control510

Algorithm 3 The CLE method.

1: t ← 0
2: x ← x0.
3: while t < tmax do
4: for j = 1 to M do
5: evaluate hj (x) and aj (x).
6: kj ← a random number generated from the Gaussian distribution with mean ajτ and

variance ajτ.
7: end for
8: x ← x + ∑M

j=1 kjνj.
9: t ← t + τ.

10: end while

The CLE method is applicable in systems where molecule counts are so large that they may
be approximated as continuous values. The CLE method provides a segue between stochas-
tic chemical kinetics and traditional deterministic reaction-rate equation (RRE) models. RRE
models use continuous-valued ordinary differential equations (ODEs) to model a reaction
system’s time-evolution. In the limit as all ajτ → ∞, the CLE system converges to a deter-
ministic ODE system. Hence the τ-leap and CLE conditions provide insight into the implicit
assumptions that underlie the widely used RRE methods. In systems where the τ-leap and
CLE conditions are not satisfied (or are only weakly satisfied), continuous ODE models are
invalid and a suitable SCK approach should be used.

3. Determining Typical Behavior

In the analysis of stochastic biochemical systems, one starts with two basic questions. First,
what is the system’s normal or typical behavior? Second, how robust is that behavior? These
questions are especially important for custom-designed biochemical networks, such as syn-
thetic genetic circuits. In this case, the designer is interested in verification that the system’s
actual behavior matches the designer’s intent. This section presents the incremental SSA (iSSA)
which sets out to answer these questions in small time-increments. This approach has some
characteristics in common with the popular SPICE program for simulating electronic circuits
(Nagel & Pederson, 1973). The main objective of iSSA is to provide a first-step verification
solution for synthetic biochemical systems.
Stochastic simulation algorithms generally provide a single snapshot of a system’s possible
behavior. If the system exhibits a high level of stochastic activity, the underlying behavior
may be obscured by transient “noise”. In order to understand the range of typical behaviors,
many simulation runs are needed. It is common practice to compute a simulation envelope
with the form x ±σ, where x and σ are the average and standard deviation vectors computed
over K SSA sample paths. The average, x, is considered to be the system’s typical behavior.
The standard deviation, σ, indicates the degree to which the system is expected to deviate
from the typical behavior.
The direct average method is suitable for systems that are only weakly stochastic. Direct
averaging is not suitable in systems that have multiple operating modes, leading to many di-
vergent behaviors that are all “typical.” Unfortunately, the majority of interesting biochemical
systems, especially genetic circuits, fall into this category. For example, consider a bi-stable

system that randomly converges toward one of two states. Suppose half of all SSA sample-
paths arrive at state 1, and the other half arrive at state 2. By averaging over all SSA runs, one
obtains a fictitious middle state that obscures the system’s true typical behaviors.
The averaging problem is further compounded in dynamic systems that switch between states,
particularly if the state-transitions occur at random times. The simplest example of a dynamic
multi-state system is a stochastic oscillator in which the production of some signal is alter-
nately activated and inhibited. One such oscillator is the circadian rhythm model developed
by Vilar et al. (2002). Stochastic simulation runs of the circadian rhythm are shown in Fig. 2(a),
and the average over all runs is shown in Fig. 2(b). When production is activated, it stimu-
lates a brief but intense production of an output molecule A. As the amount of A increases,
it represses its own production and eventually degrades back to zero. This pattern creates
“pulses” of A that occur at random times. Because the pulse times are random, they generally
do not occur at the same times in different simulation runs. If a direct average is computed, the
mis-aligned impulses tend to be masked by the averaging (Samad et al., 2005). The circuit’s
most relevant and interesting behaviors are consequently concealed by the averaging.
In order to obtain meaningful aggregate information from many SSA runs, the iSSA was pro-
posed by Winstead et al. (2010). In the iSSA, a conventional SSA is executed K times over
a short time increment. The time increment is chosen such that the circuit’s state changes
slightly during the increment, similar to the τ-leaping method described in Section 2. Statis-
tics are gathered at the end of the time increment. A new circuit state is selected from those
statistics, and the algorithm is repeated for another increment.
By computing average changes over small time increments, iSSA reveals the typical behavior
occurring in each increment. The results of iSSA are stochastic, and repeated iSSA simulations
may yield different results. For example, iSSA may be used to simulate a bi-stable stochastic
system. The iSSA method follows a cluster of sample paths that are close to each other, and
hence tends to arrive at one of the two stable states.

3.1 iSSA Overview
The general steps of the iSSA are shown in Algorithm 4. The iSSA is wrapped around a core
SSA algorithm, and may be specialized to perform a variety of incremental analyses. The
generic iSSA works by choosing some initial condition for an SSA run, then executing the
SSA over a brief interval. Lastly, the iSSA performs some analysis on the incremental SSA
results before proceeding to the next increment. The physical interpretation of iSSA results
depends on the particular implementation of the select function, which define how the SSA
simulation conditions are chosen, and the process function, which defines how the SSA
results are analyzed. This chapter assigns these functions to achieve a marginal probability
density evolution, and it is known as iSSA-MPDE. The iSSA also allows the use of different SSA
methods, such as the τ-leaping or CLE methods, when permitted by the reaction conditions.
The following sections examine the derivations and conditions that apply to the iSSA.

3.2 Derivation of iSSA-MPDE
The goal of an iSSA that uses marginal probability density evolution is to provide an alterna-
tive approach that reveals the time-evolution of the statistical envelope for each species, under
appropriate system conditions. The function definitions for iSSA-MPDE are given in Table 1.
In essence, iSSA-MPDE approximates each species as an independent Gaussian-distributed
random variable. At the start of each SSA run, the initial molecule counts are randomly gen-
erated using each species’ marginal Gaussian probability distribution. After all K SSA runs
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j=1 kjνj.
9: t ← t + τ.

10: end while

The CLE method is applicable in systems where molecule counts are so large that they may
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system’s time-evolution. In the limit as all ajτ → ∞, the CLE system converges to a deter-
ministic ODE system. Hence the τ-leap and CLE conditions provide insight into the implicit
assumptions that underlie the widely used RRE methods. In systems where the τ-leap and
CLE conditions are not satisfied (or are only weakly satisfied), continuous ODE models are
invalid and a suitable SCK approach should be used.

3. Determining Typical Behavior

In the analysis of stochastic biochemical systems, one starts with two basic questions. First,
what is the system’s normal or typical behavior? Second, how robust is that behavior? These
questions are especially important for custom-designed biochemical networks, such as syn-
thetic genetic circuits. In this case, the designer is interested in verification that the system’s
actual behavior matches the designer’s intent. This section presents the incremental SSA (iSSA)
which sets out to answer these questions in small time-increments. This approach has some
characteristics in common with the popular SPICE program for simulating electronic circuits
(Nagel & Pederson, 1973). The main objective of iSSA is to provide a first-step verification
solution for synthetic biochemical systems.
Stochastic simulation algorithms generally provide a single snapshot of a system’s possible
behavior. If the system exhibits a high level of stochastic activity, the underlying behavior
may be obscured by transient “noise”. In order to understand the range of typical behaviors,
many simulation runs are needed. It is common practice to compute a simulation envelope
with the form x ±σ, where x and σ are the average and standard deviation vectors computed
over K SSA sample paths. The average, x, is considered to be the system’s typical behavior.
The standard deviation, σ, indicates the degree to which the system is expected to deviate
from the typical behavior.
The direct average method is suitable for systems that are only weakly stochastic. Direct
averaging is not suitable in systems that have multiple operating modes, leading to many di-
vergent behaviors that are all “typical.” Unfortunately, the majority of interesting biochemical
systems, especially genetic circuits, fall into this category. For example, consider a bi-stable
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paths arrive at state 1, and the other half arrive at state 2. By averaging over all SSA runs, one
obtains a fictitious middle state that obscures the system’s true typical behaviors.
The averaging problem is further compounded in dynamic systems that switch between states,
particularly if the state-transitions occur at random times. The simplest example of a dynamic
multi-state system is a stochastic oscillator in which the production of some signal is alter-
nately activated and inhibited. One such oscillator is the circadian rhythm model developed
by Vilar et al. (2002). Stochastic simulation runs of the circadian rhythm are shown in Fig. 2(a),
and the average over all runs is shown in Fig. 2(b). When production is activated, it stimu-
lates a brief but intense production of an output molecule A. As the amount of A increases,
it represses its own production and eventually degrades back to zero. This pattern creates
“pulses” of A that occur at random times. Because the pulse times are random, they generally
do not occur at the same times in different simulation runs. If a direct average is computed, the
mis-aligned impulses tend to be masked by the averaging (Samad et al., 2005). The circuit’s
most relevant and interesting behaviors are consequently concealed by the averaging.
In order to obtain meaningful aggregate information from many SSA runs, the iSSA was pro-
posed by Winstead et al. (2010). In the iSSA, a conventional SSA is executed K times over
a short time increment. The time increment is chosen such that the circuit’s state changes
slightly during the increment, similar to the τ-leaping method described in Section 2. Statis-
tics are gathered at the end of the time increment. A new circuit state is selected from those
statistics, and the algorithm is repeated for another increment.
By computing average changes over small time increments, iSSA reveals the typical behavior
occurring in each increment. The results of iSSA are stochastic, and repeated iSSA simulations
may yield different results. For example, iSSA may be used to simulate a bi-stable stochastic
system. The iSSA method follows a cluster of sample paths that are close to each other, and
hence tends to arrive at one of the two stable states.

3.1 iSSA Overview
The general steps of the iSSA are shown in Algorithm 4. The iSSA is wrapped around a core
SSA algorithm, and may be specialized to perform a variety of incremental analyses. The
generic iSSA works by choosing some initial condition for an SSA run, then executing the
SSA over a brief interval. Lastly, the iSSA performs some analysis on the incremental SSA
results before proceeding to the next increment. The physical interpretation of iSSA results
depends on the particular implementation of the select function, which define how the SSA
simulation conditions are chosen, and the process function, which defines how the SSA
results are analyzed. This chapter assigns these functions to achieve a marginal probability
density evolution, and it is known as iSSA-MPDE. The iSSA also allows the use of different SSA
methods, such as the τ-leaping or CLE methods, when permitted by the reaction conditions.
The following sections examine the derivations and conditions that apply to the iSSA.

3.2 Derivation of iSSA-MPDE
The goal of an iSSA that uses marginal probability density evolution is to provide an alterna-
tive approach that reveals the time-evolution of the statistical envelope for each species, under
appropriate system conditions. The function definitions for iSSA-MPDE are given in Table 1.
In essence, iSSA-MPDE approximates each species as an independent Gaussian-distributed
random variable. At the start of each SSA run, the initial molecule counts are randomly gen-
erated using each species’ marginal Gaussian probability distribution. After all K SSA runs
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Fig. 2. (a) SSA simulations of a stochastic oscillator. (b) The average response over all SSA
sample-paths, revealing incoherent results due to misaligned SSA events.

Algorithm 4 The general iSSA framework.

1: t ← 0
2: initialize the state-information structure S using initial state x0.
3: while t < tmax do
4: for k = 1 to K do
5: select a state x based on the state-information S.
6: perform one SSA run with start time t, max-time t + τ and initial state x.
7: record the ending SSA state x′ by appending it to a state-table X′.
8: end for
9: process the state-table X′ to obtain a new state-information structure S.

10: t ← t + τ.
11: end while

are complete, the marginal distributions are estimated by computing the mean and variance
for each species. The iSSA-MPDE follows the system’s envelope as it evolves from increment
to increment, providing an indication of the system’s stochastic stability. If the standard de-
viation remains small relative to the mean, then the envelope may be regarded as a robust
indicator of typical behavior.

struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0.

select: for each species sj, generate a noise value nj from the distribution

N
(

0, S.σ2
j

)
, and set xj ← S.µj + nj.

record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances over all x′k, and store

the results in S.µ and S.σ, respectively.

Table 1. Function definitions for iSSA-MPDE.

iSSA-MPDE is derived from the CLE method discussed in Sec. 2, and inherits the τ-leap and
CLE conditions1. To derive iSSA-MPDE, consider applying the CLE method over a short time-
increment τ, beginning at time t with a fixed initial state x0. At time t + τ, the CLE method
returns a state x′ = x0 + ∑M

j=1 νj, where each νj is a vector of Gaussian-distributed random
values. Because the sum of Gaussians is also Gaussian, the ending state x′ must have a joint
Gaussian distribution. Then the distribution of x′ is fully characterized by its mean µ and its
covariance matrix Γ.
Jointly Gaussian distributions are well understood, and the reaction system’s time-evolution
can be simulated as the evolution of µ and Γ using the iSSA function definitions shown in
Table 2. We refer to this algorithm as Gaussian probability density evolution or iSSA-GPDE.
A further simplification is possible if the system is represented as a linear Gaussian network
(LGN), with the form

x′ ≈ Ax + n, (5)

where A is a linear state-transformation matrix and n is a vector of zero-mean correlated
noise with distribution N (0, Γ). This representation is very close to the linear increment ap-
proximation used in general-purpose ODE simulators, including SPICE. The linear Gaussian
model provides an intuitively convenient “signal plus noise” representation that is familiar to
designers in many disciplines, and may be useful for the design and analysis of biochemical
systems.
The computational complexity of this method can be significantly reduced by computing only
the marginal statistics, rather than the complete covariance matrix. To compute the marginal
statistics, only the diagonal entries of the covariance matrix are computed. Ignoring the re-
maining terms in Γ neglects the statistical dependencies among species in the system. To see
when this is allowed, let us examine the system’s dependency structure using a Bayesian net-
work model, as shown in Fig. 3. The Bayesian network model contains a column of nodes
for each time-index. Within each column, there is a node for each species. Two nodes are

1 It is possible to apply iSSA-MPDE under a less restrictive set of conditions, but doing so requires a
collection of refinements to the method that are beyond the scope of this chapter.
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Fig. 2. (a) SSA simulations of a stochastic oscillator. (b) The average response over all SSA
sample-paths, revealing incoherent results due to misaligned SSA events.

Algorithm 4 The general iSSA framework.

1: t ← 0
2: initialize the state-information structure S using initial state x0.
3: while t < tmax do
4: for k = 1 to K do
5: select a state x based on the state-information S.
6: perform one SSA run with start time t, max-time t + τ and initial state x.
7: record the ending SSA state x′ by appending it to a state-table X′.
8: end for
9: process the state-table X′ to obtain a new state-information structure S.

10: t ← t + τ.
11: end while

are complete, the marginal distributions are estimated by computing the mean and variance
for each species. The iSSA-MPDE follows the system’s envelope as it evolves from increment
to increment, providing an indication of the system’s stochastic stability. If the standard de-
viation remains small relative to the mean, then the envelope may be regarded as a robust
indicator of typical behavior.

struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0.

select: for each species sj, generate a noise value nj from the distribution

N
(

0, S.σ2
j

)
, and set xj ← S.µj + nj.

record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances over all x′k, and store

the results in S.µ and S.σ, respectively.

Table 1. Function definitions for iSSA-MPDE.

iSSA-MPDE is derived from the CLE method discussed in Sec. 2, and inherits the τ-leap and
CLE conditions1. To derive iSSA-MPDE, consider applying the CLE method over a short time-
increment τ, beginning at time t with a fixed initial state x0. At time t + τ, the CLE method
returns a state x′ = x0 + ∑M

j=1 νj, where each νj is a vector of Gaussian-distributed random
values. Because the sum of Gaussians is also Gaussian, the ending state x′ must have a joint
Gaussian distribution. Then the distribution of x′ is fully characterized by its mean µ and its
covariance matrix Γ.
Jointly Gaussian distributions are well understood, and the reaction system’s time-evolution
can be simulated as the evolution of µ and Γ using the iSSA function definitions shown in
Table 2. We refer to this algorithm as Gaussian probability density evolution or iSSA-GPDE.
A further simplification is possible if the system is represented as a linear Gaussian network
(LGN), with the form

x′ ≈ Ax + n, (5)

where A is a linear state-transformation matrix and n is a vector of zero-mean correlated
noise with distribution N (0, Γ). This representation is very close to the linear increment ap-
proximation used in general-purpose ODE simulators, including SPICE. The linear Gaussian
model provides an intuitively convenient “signal plus noise” representation that is familiar to
designers in many disciplines, and may be useful for the design and analysis of biochemical
systems.
The computational complexity of this method can be significantly reduced by computing only
the marginal statistics, rather than the complete covariance matrix. To compute the marginal
statistics, only the diagonal entries of the covariance matrix are computed. Ignoring the re-
maining terms in Γ neglects the statistical dependencies among species in the system. To see
when this is allowed, let us examine the system’s dependency structure using a Bayesian net-
work model, as shown in Fig. 3. The Bayesian network model contains a column of nodes
for each time-index. Within each column, there is a node for each species. Two nodes are

1 It is possible to apply iSSA-MPDE under a less restrictive set of conditions, but doing so requires a
collection of refinements to the method that are beyond the scope of this chapter.
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struct S: contains a mean vector S.µ and a covariance matrix S.Γ.
initialize: S.µ ← x0 for a given initial state x0, and S.Γ ← 0.

select: generate a correlated noise vector n from the distribution N (0, Γ), and
set x ← S.µ+ n.

record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample mean and sample covariance matrix over all x′k,

and store the results in S.µ and S.Γ, respectively.

Table 2. Function definitions for iSSA-GPDE.

connected by an edge if there is a statistical dependency between them. The structure of the
Bayesian network is determined by the system’s information matrix, J = Γ−1. An edge (and
hence a dependency) exists between nodes x′a and x′b if and only if the corresponding entry
jab in J is non-zero (Koller & Friedman, 2009). If J is approximately diagonal (i.e. if all non-
diagonal entries are small relative to the diagonal ones), then the network model contains no
edges between any pair x′a, x′b. This means that the marginal statistics of x′ are fully determined
by the statistics of x. This allows for the joint Gaussian probability distribution at time t + τ to
be approximated as a product of marginal Gaussian distributions. Instead of computing the
complete covariance matrix Γ, it is sufficient to compute the diagonal vector σ. By comput-
ing only marginal statistics in iSSA-GPDE, iSSA-MPDE is obtained, with function definitions
shown in Table 1.
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Fig. 3. A linear Gaussian Bayesian network model for a reaction system with four species.
Edges in the graph indicate statistical dependencies.

3.3 Conditions and Limitations of iSSA-MPDE
iSSA-MPDE can be interpreted as an instance of belief propagation, with the SSA serving
as a Monte Carlo estimate of the species’ conditional distributions. When the iSSA-MPDE
network is continued over several increments, the corresponding network model is extended,
as shown in Fig. 4. When the network is extended in time, loops appear. Some example

loops are indicated by bold edges in Fig. 4. Strictly speaking, belief propagation (and hence
iSSA-MPDE) is exact when applied to loop-free Bayesian networks.
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Fig. 4. Loops form when the model is unwrapped across time. (a) A dense reaction model has
many short loops. (b) A sparse reaction model has fewer loops, and a larger minimum loop
girth.

Loops are unavoidable in reaction network models. As a consequence, iSSA-MPDE corre-
sponds to loopy belief propagation, which yields inexact statistical results. Although loopy
belief propagation is inexact, it has been shown to provide a close approximation in many
application areas (Murphy et al., 1999). The method’s accuracy depends on the number of
short loops that appear in the graph. An example of a loopy graph is shown in Fig. 4(a). In
this graph, there are many loops that allow statistical information to propagate back on top of
itself, which distorts the information. A better case is shown in Fig. 4(b), in which there are
fewer loops. The highlighted loop in Fig. 4(b) contains six edges. This number is referred to
as the loop’s girth.
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belief propagation is inexact, it has been shown to provide a close approximation in many
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As a general rule, the exactness of loopy belief propagation improves when the minimum
loop girth is large. iSSA-MPDE is consequently expected to yield more accurate results for
systems with sparse dependencies, as in Fig. 4(b). In networks with dense dependencies, as in
Fig. 4(a), iSSA-MPDE may yield distorted results. Large networks of simple reactions (where
each reaction contains a small number of reactants and products) tend to be sparse in their
dependencies. There are a growing number of abstraction methods that reduce the number of
effective reactions in a large system and improve the efficiency of simulation. When a system
is abstracted in this way, the density of dependencies is unavoidably increased. iSSA-MPDE,
therefore, tends to be less attractive for use with abstracted simulation models (Kuwahara
et al., 2010; 2006).

3.4 Resolving Variable Dependencies in iSSA-MPDE
In its most basic form, as presented in Table 1, iSSA-MPDE cannot be applied to many impor-
tant types of reaction systems. This is because many systems have tightly-correlated species
which prevent the information matrix from being diagonal. Strong correlations typically arise
from conservation constraints, in which the state of one species is completely determined by
other states in the system. This section presents a method to identify conservation constraints
and correct for their effects in iSSA-MPDE. By resolving conservation constraints, the limi-
tations on iSSA-MPDE can be relaxed considerably, allowing the method to be applied in a
broader array of reaction systems.
The circadian rhythm model provides an immediate example of a system with conservation
constraints. In this model, the signal molecule A is produced from gene a via transcrip-
tion/translation reactions. The activity of gene a may be altered by the presence of a repressor
molecule R. Hence gene a may be associated with two chemical species, a and aR, which rep-
resent the gene’s active and repressed states, respectively. The two states may be represented
as distinct species governed by two reactions:

a + R → aR, (6)

aR → a + R (7)

In the first of these reactions, the activated gene a is consumed to produce the repressed gene
aR. In the second reaction, the repressed gene is consumed to produce the activated state.
At any given time, the gene is in exactly one state. This induces a conservation constraint
expressed by the equation a + aR = 1. Since iSSA-MPDE treats a and aR as independent
species, it likely produces states that violate this constraint.
The conservation problem can be resolved if the method is made aware of conservation con-
straints. Once the constraints are determined, the system may be partitioned into indepen-
dent and dependent species. iSSA-MPDE is then executed only on the independent species.
The dependent species are determined from the independent ones. This partitioning can be
computed automatically at run-time by evaluating the system’s stoichiometric matrix, as ex-
plained below.
The stoichiometric matrix embodies the network topology of any biochemical system. Several
researchers have developed methods for extracting conservation constraints from the stoichio-
metric matrix (Reder, 1988; Sauro & Ingalls, 2004; Schuster et al., 2002). This section briefly
summarizes these techniques and applies them to iSSA-MPDE.
The stoichiometric matrix N is defined as follows. If a given reaction network is composed of
N species and M reactions, then its stoichiometric matrix is an M× N matrix in which element

aij equals the net change in species j due to reaction i. In other words, the columns of N are
the state-change vectors νj, as defined in Sec. 2.

N =




a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aM,1 aM,2 · · · aM,N




Conserved cycles in a chemical reaction network appear as linear dependencies in the row
dimensions of the stoichiometric matrix. In systems where conservation constraints appear,
the sum of the conserved species must be constant. For example, consider a conservation law
of the form s1 + s2 = k for some constant k. This law dictates that the rate of appearance of s1
must equal the rate of disappearance of s2. Mathematically, this condition is expressed as

dS1
dt

+
dS2
dt

= 0 (8)

When conservation relationships are present in a biochemical network, there are linearly de-
pendent rows in the stoichiometric matrix. Following the notation in Sauro & Ingalls (2004),
one can partition the rows of N into two sections, NR and N0, which represent independent
and dependent species, respectively. Thus, one can partition N as follows:

N =

[
NR
N0

]
(9)

Since N0 is a function of NR, the concentrations of the independent species, NR, can be used
to calculate those of the dependent species N0. This relationship is determined by the link-zero
matrix, defined as the matrix L0 which satisfies

N0 = L0 × NR (10)

Equations (9) and (10) can be combined to yield

N =

[
NR

L0NR

]
(11)

Equation (11) can be further reduced by combining L0 with an identity matrix I and taking
NR as a common factor outside of the brackets, as shown in Equation (12).

N =

[
I

L0

]
NR (12)

N = LNR, (13)

where L = [I L0]
T is called the link matrix. For systems in which conservation relationships

do not exist, N = NR, thus L = I.
Based on this analysis, the species are partitioned into independent and dependent state vec-
tors, si (t) and sd (t), respectively. Due to the conservation laws, any change in si must be
compensated by a corresponding change in sd, hence

sd (t)− L0si (t) = sd (0)− L0si (0)), (14)
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do not exist, N = NR, thus L = I.
Based on this analysis, the species are partitioned into independent and dependent state vec-
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If the initial condition is given and the link-zero matrix is known, then the dependent species
can always be computed from the independent species. To compute the link-zero matrix, we
observe that

[−L0 I]
[

NR
N0

]
= 0. (15)

This equation reveals that [−L0I] is the left null-space of N. There are a variety of ways to
compute the null-space of a matrix, and most numerical tools have built-in functions for this
purpose.
iSSA-MPDE can be applied to systems with conservation constraints if the system is suitably
partitioned into independent and dependent species. The partitioning is done automatically
by identifying the linearly independent rows of the stoichiometric matrix N, which corre-
spond to the independent species in the system. The link-zero matrix is then computed as
part of the simulation’s initialization. During execution of the iSSA algorithm, the MPDE
method is applied only to the independent species. The dependent species are generated
using (14). Using this approach, the independent species must satisfy the conditions and
limitations discussed above. The dependent species only need to satisfy the conservation con-
straints expressed by (14).
To demonstrate the MPDE method with constraint resolution, the method was applied to the
circadian rhythm model. The results are shown in Fig. 5. The results obtained using this
method agree well with the pattern observed in SSA simulations. The MPDE results also
reveal the typical characteristics of the circadian rhythm system, which are difficult to discern
from the SSA simulation results shown in Fig. 2.
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Fig. 5. The circadian rhythm model simulated using iSSA-MPDE with constraint resolution.

4. Rare Deviant Event Analysis

While the previous section discusses how to determine typical behavior, this section describes
a method for more efficiently determine the likelihood of rare events. In robust biological
systems, wide deviations from highly controlled normal behavior may occur with extremely
small probability; nevertheless, they can have significant influences and profound conse-
quences in many systems (Csete & Doyle, 2004). This is particularly true in biochemical and

struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0. Independent species

are identified from the stoichiometric matrix N. The link-zero matrix
L0 is computed using (15).

select: for each independent species sj, generate a noise value nj from the dis-

tribution N
(

0, S.σ2
j

)
, and set xj ← S.µj + nj. Compute the remaining

dependent species using the conservation law (14).
record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances for each of the inde-

pendent species in x′, and store the results in S.µ and S.σ, respectively.

Table 3. Function definitions for the MPDE-iSSA method with resolved conservation con-
straints.

physiological systems in that, while the occurrence of biochemical events that leads to some
abnormal states may be rare, it can have devastating effects. In order to study the underlying
mechanisms of such rare yet catastrophic events in silico, computational simulation meth-
ods may become a useful tool. However, computational analysis of rare events can demand
significant computational costs and, even for a relatively small SCK model, computational re-
quirements for a rare event analysis with the SSA may exceed the power of the most current
computers. This section presents a simulation method for rare event analysis called weighted
SSA (wSSA) (Kuwahara & Mura, 2008). Section 4.1 first defines the properties of interest and
their computational challenges. Section 4.2 then briefly discusses the theoretical basis of the
wSSA. Finally, Section 4.3 presents the algorithm in detail.

4.1 Background
Traditionally, analysis of rare events has been associated with analysis of the first passage
time distribution (Gillespie et al., 2009), and considerable attention has been directed towards
making the analysis of the first passage time to reach a rare event of interest more efficient (e.g.,
Allen et al. (2006); Misra & Schwartz (2008)). This section formulates rare event analysis rather
differently from the analysis of the first passage time in that the property of interest here is the
time-bounded probability of X(t) reaching a certain subset of states given that the process X(t)
starts from a different state. In other words, our objective is to analyze Pt≤tmax (X → E | x0), the
probability that X moves to a state in a subset states E within time limit tmax, given X(0) = x0
where x0 �∈ E , specifically when Pt≤tmax (X → E | x0) is very small. This type of time-bounded
rare event analyses may be very useful when it comes to study of specific biological events
of interest per cell generation (i.e., before protein and RNA molecules in a mother cell are
partitioned via cell division).
A standard way to analyze Pt≤tmax (X → E | x0) is to define a Boolean random variable Y such
that Y = 1 if X(t) moves to some states in E within the time limit and Y = 0 otherwise. Then,
the average of Y gives Pt≤tmax (X → E | x0). Thus, with the SSA, Pt≤tmax (X → E | x0) can
be estimated by generating n samples of Y: Y1, . . . , Yn through n simulation runs of X(t), and
taking the sample average: 1/n ∑n

i=1 Yi. Chief among the problems in this statistical approach
to project the probability of a rare event is that it may require a large number of simulation
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spond to the independent species in the system. The link-zero matrix is then computed as
part of the simulation’s initialization. During execution of the iSSA algorithm, the MPDE
method is applied only to the independent species. The dependent species are generated
using (14). Using this approach, the independent species must satisfy the conditions and
limitations discussed above. The dependent species only need to satisfy the conservation con-
straints expressed by (14).
To demonstrate the MPDE method with constraint resolution, the method was applied to the
circadian rhythm model. The results are shown in Fig. 5. The results obtained using this
method agree well with the pattern observed in SSA simulations. The MPDE results also
reveal the typical characteristics of the circadian rhythm system, which are difficult to discern
from the SSA simulation results shown in Fig. 2.

0 100 200 300 400
Time

0

500

1000

1500

M
ol
ec
ul
es

Fig. 5. The circadian rhythm model simulated using iSSA-MPDE with constraint resolution.

4. Rare Deviant Event Analysis

While the previous section discusses how to determine typical behavior, this section describes
a method for more efficiently determine the likelihood of rare events. In robust biological
systems, wide deviations from highly controlled normal behavior may occur with extremely
small probability; nevertheless, they can have significant influences and profound conse-
quences in many systems (Csete & Doyle, 2004). This is particularly true in biochemical and

struct S: contains a mean vector S.µ and a standard-deviation vector S.σ.
initialize: S.µ ← x0 for a given initial state x0, and S.σ ← 0. Independent species

are identified from the stoichiometric matrix N. The link-zero matrix
L0 is computed using (15).

select: for each independent species sj, generate a noise value nj from the dis-

tribution N
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, and set xj ← S.µj + nj. Compute the remaining

dependent species using the conservation law (14).
record: store the kth SSA ending state as x′k, for k = 1, ..., K.
process: compute the sample means and sample variances for each of the inde-

pendent species in x′, and store the results in S.µ and S.σ, respectively.

Table 3. Function definitions for the MPDE-iSSA method with resolved conservation con-
straints.

physiological systems in that, while the occurrence of biochemical events that leads to some
abnormal states may be rare, it can have devastating effects. In order to study the underlying
mechanisms of such rare yet catastrophic events in silico, computational simulation meth-
ods may become a useful tool. However, computational analysis of rare events can demand
significant computational costs and, even for a relatively small SCK model, computational re-
quirements for a rare event analysis with the SSA may exceed the power of the most current
computers. This section presents a simulation method for rare event analysis called weighted
SSA (wSSA) (Kuwahara & Mura, 2008). Section 4.1 first defines the properties of interest and
their computational challenges. Section 4.2 then briefly discusses the theoretical basis of the
wSSA. Finally, Section 4.3 presents the algorithm in detail.

4.1 Background
Traditionally, analysis of rare events has been associated with analysis of the first passage
time distribution (Gillespie et al., 2009), and considerable attention has been directed towards
making the analysis of the first passage time to reach a rare event of interest more efficient (e.g.,
Allen et al. (2006); Misra & Schwartz (2008)). This section formulates rare event analysis rather
differently from the analysis of the first passage time in that the property of interest here is the
time-bounded probability of X(t) reaching a certain subset of states given that the process X(t)
starts from a different state. In other words, our objective is to analyze Pt≤tmax (X → E | x0), the
probability that X moves to a state in a subset states E within time limit tmax, given X(0) = x0
where x0 �∈ E , specifically when Pt≤tmax (X → E | x0) is very small. This type of time-bounded
rare event analyses may be very useful when it comes to study of specific biological events
of interest per cell generation (i.e., before protein and RNA molecules in a mother cell are
partitioned via cell division).
A standard way to analyze Pt≤tmax (X → E | x0) is to define a Boolean random variable Y such
that Y = 1 if X(t) moves to some states in E within the time limit and Y = 0 otherwise. Then,
the average of Y gives Pt≤tmax (X → E | x0). Thus, with the SSA, Pt≤tmax (X → E | x0) can
be estimated by generating n samples of Y: Y1, . . . , Yn through n simulation runs of X(t), and
taking the sample average: 1/n ∑n

i=1 Yi. Chief among the problems in this statistical approach
to project the probability of a rare event is that it may require a large number of simulation
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runs just to observe the first few instances of the rare event of interest. For example, the
spontaneous, epigenetic switching rate from the lysogenic state to the lytic state in phage λ-
infected Escherichia coli (Ptashne, 1992) is experimentally estimated to be in the order of 10−7

per cell per generation (Little et al., 1999). Thus, simulation of one cell generation via the SSA
would expect to generate sample trajectories of this rare event only once every 107 runs, and
it would require more than 1011 simulation runs to generate an estimated probability with a
95 percent confidence interval with 1 percent relative half-width. This indicates that the com-
putational requirements for obtaining results at a reasonable degree of statistical confidence
can be substantial as the number of samples needed for such results may be astronomically
high. Furthermore, this highlights the fact that computational requirements involved in rare
event analysis of even a relatively simple biological system can far exceed the ability of most
computers.

4.2 Theoretical Basis of the wSSA
The wSSA (Kuwahara & Mura, 2008) increases the chance of observing the rare events of in-
terest by utilizing the importance sampling technique. Importance sampling manipulates the
probability distribution of the sampling so as to observe the events of interest more frequently
than it would otherwise with the conventional Monte Carlo sampling. The outcome of each
biased sampling is weighted by a likelihood factor to yield the statistically correct and unbi-
ased results. Thus, the importance sampling approach can increase the fraction of samples
that result in the events of interest per a given set of simulation runs, and consequently, it
can efficiently increase the precision of the estimated probability. An illustrative example of
importance sampling is depicted in Figure 6.
By applying importance sampling to simulation of SCK models, hence, the wSSA can substan-
tially increase the frequency of observation of the rare events of interest, allowing reasonable
results to be obtained with orders of magnitude smaller simulation runs than the SSA. This
can result in a substantial increase in computational efficiency of rare event analysis of bio-
chemical systems.
In order to observe reaction events that can lead to a rare event of interest more often, for
each reaction Rj, the wSSA utilizes predilection function bj(x) to select the next reaction instead
of utilizing the propensity function aj(x). The predilection functions are defined such that
bj(x)dt is the probability with which, given X = x, one Rj reaction event should occur within
the next infinitesimal time dt, based on the bias one might have to lead X(t) towards the
events of interest. With the definition of predilection functions, the index of the next reaction
selection is sampled with the following probability:

Prob{the next reaction index is j given X = x} =
bj(x)
b0(x)

,

where b0(x) ≡ ∑M
µ=1 bµ(x). To correct the sampling bias in the reaction selection and yield the

statistically unbiased results, each weighted reaction selection is then weighted by the weight
function:

w(j, x) =
aj(x)b0(x)
a0(x)bj(x)

.

Now, consider a k-jump trajectory of X(t), and let Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) denote the prob-
ability that, given X = x0, the first reaction is Rj1 , the second reaction is Rj2 ,. . . , and the k-th

(a) (b)
Fig. 6. An illustrative example for importance sampling. Here, the probability of hitting the
area of the dart board is uniformly distributed, and the objective is to estimate the fraction
of the dark grey area, which is 0.005, by throwing ten darts. (a) With the standard approach,
each dart scores 1 if it hits the dark grey area and 0 otherwise. In this example, since no hit
is observed in ten darts, the estimate becomes 0. (b) With the importance sampling approach,
here, the dark grey area is enlarged 100 times to observe more hits and the score of the dark
grey area is reduced by 100 times to correct the unbiased results. In this example, since four
among the 10 darts hit the dark grey area, the estimate becomes 0.004, which is substantially
closer to the true value than the original estimate.

reaction is Rjk . Then, since X(t) is Markovian, this joint conditional probability can be ex-
pressed as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

ajh (xh−1)

a0(xh−1)
(16)

where xh = x0 +∑h−1
h′=1 vjh′

. Equation 16 can also be expressed in terms of the weight functions
and the predilection functions as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

[
ajh (xh−1)b0(xh−1)

bjh (xh−1)a0(xh−1)

]
bjh (xh−1)

b0(xh−1)

=
k

∏
h=1

w(jh, xh−1)
k

∏
h=1

bjh (xh−1)

b0(xh−1)
.

(17)

Hence, in the wSSA, the estimate of Pt≤tmax (X → E | x0) is calculated by first defining the
statistical weight of the i-th sample trajectory wi such that

wi =

{
∏ki

h=1 w(jh, xh−1) if X(t) moves to some state in E within the time limit,
0 otherwise,
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biased sampling is weighted by a likelihood factor to yield the statistically correct and unbi-
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that result in the events of interest per a given set of simulation runs, and consequently, it
can efficiently increase the precision of the estimated probability. An illustrative example of
importance sampling is depicted in Figure 6.
By applying importance sampling to simulation of SCK models, hence, the wSSA can substan-
tially increase the frequency of observation of the rare events of interest, allowing reasonable
results to be obtained with orders of magnitude smaller simulation runs than the SSA. This
can result in a substantial increase in computational efficiency of rare event analysis of bio-
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each reaction Rj, the wSSA utilizes predilection function bj(x) to select the next reaction instead
of utilizing the propensity function aj(x). The predilection functions are defined such that
bj(x)dt is the probability with which, given X = x, one Rj reaction event should occur within
the next infinitesimal time dt, based on the bias one might have to lead X(t) towards the
events of interest. With the definition of predilection functions, the index of the next reaction
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function:
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.

Now, consider a k-jump trajectory of X(t), and let Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) denote the prob-
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of the dark grey area, which is 0.005, by throwing ten darts. (a) With the standard approach,
each dart scores 1 if it hits the dark grey area and 0 otherwise. In this example, since no hit
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here, the dark grey area is enlarged 100 times to observe more hits and the score of the dark
grey area is reduced by 100 times to correct the unbiased results. In this example, since four
among the 10 darts hit the dark grey area, the estimate becomes 0.004, which is substantially
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reaction is Rjk . Then, since X(t) is Markovian, this joint conditional probability can be ex-
pressed as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

ajh (xh−1)

a0(xh−1)
(16)

where xh = x0 +∑h−1
h′=1 vjh′

. Equation 16 can also be expressed in terms of the weight functions
and the predilection functions as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k

∏
h=1

[
ajh (xh−1)b0(xh−1)

bjh (xh−1)a0(xh−1)

]
bjh (xh−1)

b0(xh−1)

=
k

∏
h=1

w(jh, xh−1)
k

∏
h=1

bjh (xh−1)

b0(xh−1)
.

(17)

Hence, in the wSSA, the estimate of Pt≤tmax (X → E | x0) is calculated by first defining the
statistical weight of the i-th sample trajectory wi such that

wi =
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h=1 w(jh, xh−1) if X(t) moves to some state in E within the time limit,
0 otherwise,
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where ki is the number of jumps in the i-th sample trajectory. Then, Pt≤tmax (X → E | x0) is
estimated by taking a sample average of wi:

1
n

n

∑
i=1

wi.

With an adequate choice of the predilection functions, the wSSA can increase the fraction of
sample trajectories that result in the rare events of interest. At the same time, it can lower the
variance of the estimate by having each wi smaller than 1.
In Kuwahara & Mura (2008), each predilection function has a restricted form in that each
predilection function is proportional to the corresponding propensity function. In other words,
for each reaction Rj, bj(x) is defined as:

bj(x) = αj × aj(x), (18)

where each αj > 0 is a constant. This restriction can conveniently constrain the predilection
functions such that, for each bj(x), bj(x) = 0 if and only if aj(x) = 0, avoiding the case where
a possible trajectory of a system is weighted by a factor 0. Clearly, if αj = α for all j, then
aj(x)/a0(x) = bj(x)/b0(x). Thus, such a selection of predilection functions may not be useful.
Nevertheless, the wSSA can substantially accelerate the analysis of rare events when appro-
priate predilection functions are used. While optimized selection schemes of the predilection
functions require further investigation, it is somewhat intuitive to select predilection func-
tions to alleviate the computational demands in a number of cases. For example, suppose
we are interested in analyzing the probability that a species S transitions from θ1 to θ2 where
θ1 < θ2. Then, most likely, increasing the predilection functions of the production reactions of
S and/or decreasing the predilection functions of the degradation reactions of S—even with a
small factor—would increase the fraction of the sample trajectories that result in the event of
interest. Furthermore, a procedure to choose optimized αj by running several test runs to com-
pute the variance of the statistical weights has been proposed (Gillespie et al., 2009). However,
much work remains to be done in order to more practically select predilection functions.

4.3 Algorithm of the wSSA
Algorithm 5 describes the procedure to estimate Pt≤tmax (X → E | x0) with n simulation runs
of the wSSA. Note that, while Algorithm 5 is presented in a similar fashion as the counterpart
direct method of the SSA, various optimization techniques of the direct method, such as Cao
et al. (2004); McCollum et al. (2006), can also be applied to an implementation of the wSSA
to further reduce the simulation cost. Furthermore, model abstraction techniques such as
Kuwahara & Myers (2007) can be incorporated to further accelerate the simulation process.
First, the algorithm initializes to 0 the variable q, which accumulates statistical weights of each
successful sample trajectory (line 1). Then, it generates n sample trajectories of X(t) via the
wSSA. For each simulation run, the initialization is first performed to set the weight of each
sample trajectory, w, the time, t, and the system state, x to 1, 0, and x0, respectively (line 3). It
then evaluates all the propensity functions aj(x) and all the predilection functions bj(x), and
also calculates a0(x) and b0(x) (line 4). Each Monte Carlo simulation is run up to time tmax.
If, however, a rare event (i.e., x ∈ E ) occurs within tmax, then the current sample trajectory
weight w is added to q, and the next simulation run is performed (lines 6-9). Otherwise, the
waiting time to the next reaction, τ, is sampled in the same way as in the direct method of the
SSA, while the next reaction Rµ is selected using the predilection functions (lines 10-12). Then,

w, t, and x are updated to reflect the selections of the waiting time and the next reaction (lines
13-15). Any propensity functions and predilection functions that need to be updated based on
the firing of one Rµ reaction event are re-evaluated, and a0(x) and b0(x) are re-calculated (line
16). After n sample trajectories are generated via the wSSA, the probability that X(t) reaches
some state in E within tmax given X(0) = x0 is estimated by q/n (line 19).

Algorithm 5 Estimate of Pt≤tmax (X → E | x0) via wSSA

1: q ← 0
2: for k = 1 to n do
3: w ← 1, t ← 0, x ← x0
4: evaluate all aj(x) and bj(x), and calculate a0(x) and b0(x)
5: while t ≤ tmax do
6: if x ∈ E then
7: q = q + w
8: break out of the while loop
9: end if

10: τ ← a sample of exponential random variable with mean 1/a0(x)
11: u ← a sample of unit uniform random variable
12: µ ← smallest integer satisfying ∑

µ
i=1 bi(x) ≥ ub0(x)

13: w ← w ×
(
aµ(x)/bµ(x)

)
× (b0(x)/a0(x))

14: t ← t + τ
15: x ← x + v¯
16: update aj(x) and bj(x), and re-calculate a0(x) and b0(x)
17: end while
18: end for
19: report q/n as the estimated probability

The computational complexity of Algorithm 5 and the counterpart of the standard SSA can be
compared by noticing that the multiplication/division operations in the wSSA only increases
linearly. Indeed, the operation count in Algorithm 5 differs from the counterpart of the SSA
only in the two steps: line 13; and line 16 inside the while loop. Line 13 adds a constant num-
ber of operations (i.e., 2 multiplications and 2 divisions), while line 16 includes the operations
for the update of the predilection functions bj(x), j = 1, 2, . . . , M as well as b0(x). The cost of
such updates depends on the specific form of the predilection functions and the network of
the model. However, if, as considered in this section, the predilection functions take the form
of simple scaling functions of the propensity functions, then these updates require at most
M multiplications, which does not change the overall complexity of the presented simulation
algorithm between the wSSA and the direct method of the SSA.

5. Case Study: Enzymatic Futile Cycles

This section presents case studies of the two simulation methods described in this chapter
to illustrate the usefulness of those methods. Our case studies are based on the analysis of
dynamical properties of enzymatic futile cycle models. Section 5.1 introduces the structure
of an enzymatic futile cycle model. Section 5.2 shows iSSA results on the futile cycle model.
Finally, Section 5.3 shows the results from wSSA-based rare event analysis on this model.
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This section presents case studies of the two simulation methods described in this chapter
to illustrate the usefulness of those methods. Our case studies are based on the analysis of
dynamical properties of enzymatic futile cycle models. Section 5.1 introduces the structure
of an enzymatic futile cycle model. Section 5.2 shows iSSA results on the futile cycle model.
Finally, Section 5.3 shows the results from wSSA-based rare event analysis on this model.
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5.1 Enzymatic Futile Cycle Model
The enzymatic futile cycle is composed of two enzymatic reactions running opposite direc-
tions, and is ubiquitously seen in biological systems (Voet et al., 1999). In signaling networks,
for example, this control motif can be used as a biological network building block that reg-
ulates the activity of a protein by representing a phosphorylation-dephosphorylation cycle
where the forward enzymatic reaction represents the phosphorylation of a protein via a ki-
nase or an activation of a protein via a small GTP-binding protein, while the backward enzy-
matic reaction represents the dephosphorylation of the protein via phosphatase (Goldbeter &
Koshland, 1981). A three-layered cascade of phosphorylation-dephosphorylation cycles can
form the basic structure of the mitogen-activated protein kinase cascade, which facilitates gen-
eration of a variety of responses to external stimuli and is ubiquitously seen in eukaryotes to
control many biological processes including cell proliferation and apoptosis (Chang & Karin,
2001; Huang & Ferrell, 1996).
The structure of an enzymatic futile cycle model is depicted in Figure 7. This model has six
species: S1 is the enzyme to catalyze the transformation of the protein into the active form;
S2 is the inactive form of the protein; S3 is the complex of S1 and S2; S4 is the enzyme to
catalyze the transformation of the protein into the inactive form; S5 is the active form of the
protein; and S6 is the complex of S4 and S5 (Figure 7(a)). The model has six reactions: R1 is
the formation of S3; R2 is the breakup of S3 into S1 and S2; R3 is the production of S5; R4 is
the formation of S6; R4 is the breakup of S6 into S4 and S5; and R6 is the production of S2. A
schematic of this model is shown in Figure 7(b).

S2 S5

S1

S4
(a) (b)

Fig. 7. The structure of an enzymatic futile cycle model. Here, S1 is the enzyme to catalyze the
transformation of S2 into S5, while S4 is the enzyme to catalyze the transformation of S5 into
S2. S3 is the complex of S1 and S2. S6 is the complex of S4 and S5 (a) A list of the six reactions
in the model. (b) A schematic of the enzymatic futile cycle model.

5.2 Bistable Oscillation in Enzymatic Futile Cycles with Noise Driver
To demonstrate the utility of the iSSA, this section considers an enzymatic futile cycle model
with a noise driver as shown in Fig. 8 (Samoilov et al., 2005). This model has the same two
enzymatic reactions as the original futile cycle model but also includes a species S7 and four

more reactions that involve S1 and S7 in order to simulate noise in the environment. R7 con-
verts S1 into S7; R8 is the reverse reaction of R7 and converts S7 back into S1; R9 converts S1
and S7 into two S7; and R10 is the reverse reaction of R9 and converts two S7 back into S1 and
S7.

(a) (b)
Fig. 8. Model for enzymatic futile cycle with a noise driver. Here the species S7 has been added
to introduce noise on the amount of S1 available. This model also includes four additional
reactions that convert between S1 and S7 molecules.

Simulation results for this model are expected to result in random symmetric oscillations of
species S2 and S5 as depicted in the individual SSA run shown in Figure 9(a). However,
Figure 9(b) shows that when 10 SSA runs are averaged together, S2 and S5 clearly do not ex-
hibit this behavior and potentially leading to the conclusion that this model does not oscillate.
When iSSA is applied to this model, the results reveal the expected oscillatory behavior as
shown in Figures 9(c). These plots present the results for 10 runs for each time increment and
a time step of 0.01. These results show that drawing conclusions from aggregate SSA statistics
is problematic. The iSSA, on the other hand, aggregates stochastic run statistics in small time
increments in order to produce typical behavior profiles of genetic circuits.

5.3 Rare Event Analysis in Balanced Enzymatic Futile Cycles
To illustrate the utility of wSSA, this section considers a balanced enzymatic futile cycle model
and aims at evaluating Pt≤100(X5 → 25 | x0), the probability that, given X(0) = x0, X5 moves
to 25 within 100 time units. In this study, the initial state of the enzymatic futile cycle model
is given by

X1(0) = X4(0) = 1; X2(0) = X5(0) = 50; and X3(0) = X6(0) = 0,

and the rate constants are specified as follows:

k1 = k2 = k4 = k5 = 1; and k3 = k6 = 0.1.

Because of the perfect symmetry in the rate constants as well as in the initial molecule counts
of the two enzymatic reactions in this setting, X(t) tends to stay—with high probability—
around states in which X2 and X5 are balanced from time 0. That is, X2 and X5 stay around 50.
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Enzymatic Futile Cycle Individual SSA Results
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Enzymatic Futile Cycle Mean SSA Results
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Enzymatic Futile Cycle MPDE-iSSA Results
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Fig. 9. SSA simulation results for S2 and S5 from the enzymatic futile cycle with noise driver.
(a) A single SSA sample path. (b) The mean x (t) of 10 independent SSA sample paths. (c)
iSSA results using 10 runs for each time increment and a time step of 0.01.

This implies that X5 → 25 | x0 is a rare deviant event. As the underlying Markov process has a
finite and relatively small number of states, we have computed the exact value of Pt≤100(X5 →
25 | x0) through a numerical solution, which in turn serves as the measure to compare the
accuracy of the wSSA and the SSA.
In order to increase the fraction of simulation runs that reach of the states of interest in the
wSSA for this analysis, the following predilection functions are used:

bj(x) =




aj(x) for j = 1, 2, 4, 5,
γaj(x) for j = 3,
1
γ aj(x) for j = 6,

where γ = 0.5. This biasing approach discourages the forward enzymatic reaction while
encourages the backward enzymatic reaction, resulting in an increase in the likelihood of X5
to move to low count states.
Figure 10 depicts the accuracy of the estimates of Pt≤100(X5 → 25 | x0) via the SSA and
the wSSA with respect to a number of simulation runs. In the SSA, we did not observe any
simulation runs that had resulted in X5 moving to 25 within 100 time units for the first 105

simulation runs, making the estimated probability 0 (Figure 10(a)). On the other hand, wSSA
was able to produce a reasonable estimate in the first 100 simulation runs and, throughout, it
generated an estimated probability which is in very close agreement with the true probability
(Figure 10(a)). Furthermore, the relative distance of the estimate from the true value indicates
that the estimate from the wSSA can converge to the true value more rapidly than that from
the SSA (Figure 10(b)).
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Fig. 10. Comparison of accuracy between SSA and wSSA for the estimate of Pt≤100(X5 →
25 | x0). (a) The estimated probability via the SSA and the wSSA with respect to a number of
simulation runs. The solid line represents the true probability. (b) The relative distance of the
estimated probability from the true value with respect to a number of simulation runs.

The ratio of the simulation time between the wSSA and the SSA with respect to a number
of simulation runs is illustrated in Figure 11(a). This shows that, in the worst case, the run
time of wSSA is about 1.2 times slower than the direct method of the SSA. However, since the
wSSA achieved orders of magnitude higher accuracy in estimate of Pt≤100(X5 → 25 | x0) than
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Fig. 9. SSA simulation results for S2 and S5 from the enzymatic futile cycle with noise driver.
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finite and relatively small number of states, we have computed the exact value of Pt≤100(X5 →
25 | x0) through a numerical solution, which in turn serves as the measure to compare the
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wSSA for this analysis, the following predilection functions are used:
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γaj(x) for j = 3,
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γ aj(x) for j = 6,

where γ = 0.5. This biasing approach discourages the forward enzymatic reaction while
encourages the backward enzymatic reaction, resulting in an increase in the likelihood of X5
to move to low count states.
Figure 10 depicts the accuracy of the estimates of Pt≤100(X5 → 25 | x0) via the SSA and
the wSSA with respect to a number of simulation runs. In the SSA, we did not observe any
simulation runs that had resulted in X5 moving to 25 within 100 time units for the first 105

simulation runs, making the estimated probability 0 (Figure 10(a)). On the other hand, wSSA
was able to produce a reasonable estimate in the first 100 simulation runs and, throughout, it
generated an estimated probability which is in very close agreement with the true probability
(Figure 10(a)). Furthermore, the relative distance of the estimate from the true value indicates
that the estimate from the wSSA can converge to the true value more rapidly than that from
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Fig. 10. Comparison of accuracy between SSA and wSSA for the estimate of Pt≤100(X5 →
25 | x0). (a) The estimated probability via the SSA and the wSSA with respect to a number of
simulation runs. The solid line represents the true probability. (b) The relative distance of the
estimated probability from the true value with respect to a number of simulation runs.

The ratio of the simulation time between the wSSA and the SSA with respect to a number
of simulation runs is illustrated in Figure 11(a). This shows that, in the worst case, the run
time of wSSA is about 1.2 times slower than the direct method of the SSA. However, since the
wSSA achieved orders of magnitude higher accuracy in estimate of Pt≤100(X5 → 25 | x0) than
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Fig. 11. Comparison of computation efficiency between SSA and wSSA for the estimate of
Pt≤100(X5 → 25 | x0). The ratio of the simulation time of the wSSA and the SSA with respect
to a number of simulation runs. (b) Ratio of SSA and wSSA computation time for a given level
of accuracy.

the SSA per a given number of simulation runs, the wSSA is substantially more efficient than
the SSA in computing a high precision estimate of Pt≤100(X5 → 25 | x0).
To better characterize the computational gain obtained with the wSSA over the SSA, we eval-
uated the number of runs required by SSA to achieve a given accuracy criterion ε where ε
is defined as 1 minus the relative distance of the estimate from the true probability. We then
estimated the number of simulation runs required by the SSA through a statistical argument
based on confidence intervals (see Appendix of Kuwahara & Mura (2008) for details). By fac-
toring in the estimated number of runs and the average run time, we computed the expected
computation time of SSA for given ε. Figure 11(b) shows the ratio of the expected computa-
tion time between the SSA and wSSA. This illustrates a significant computational gain that is
achieved via the wSSA. For instance, while the wSSA can estimate Pt≤100(X5 → 25 | x0) with
an accuracy of 99.9999% in 1.7 × 103 seconds, the SSA would need 1012 times as much com-
putational time, which is roughly 1.05 × 108 years of computation (i.e., 2.2 × 1019 simulation
runs) to achieve that same level of accuracy on the same computer.

6. Conclusions

During stochastic analysis of biological systems, it is important to be able to both determine
accurately and efficiently the typical behavior and the probability of rare deviant events. This
chapter has introduced two new stochastic simulation algorithms, the iSSA and wSSA, to
address these problems. The iSSA has been shown to produce a more stable typical behavior
of an oscillatory system than aggregate statistics generated by the traditional SSA. The wSSA
has been shown to produce a substantially more accurate estimate of the probability of rare
deviant events as compared to same number of runs of the SSA. Taken together, these are
powerful tools for the analysis of biological systems.
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the SSA per a given number of simulation runs, the wSSA is substantially more efficient than
the SSA in computing a high precision estimate of Pt≤100(X5 → 25 | x0).
To better characterize the computational gain obtained with the wSSA over the SSA, we eval-
uated the number of runs required by SSA to achieve a given accuracy criterion ε where ε
is defined as 1 minus the relative distance of the estimate from the true probability. We then
estimated the number of simulation runs required by the SSA through a statistical argument
based on confidence intervals (see Appendix of Kuwahara & Mura (2008) for details). By fac-
toring in the estimated number of runs and the average run time, we computed the expected
computation time of SSA for given ε. Figure 11(b) shows the ratio of the expected computa-
tion time between the SSA and wSSA. This illustrates a significant computational gain that is
achieved via the wSSA. For instance, while the wSSA can estimate Pt≤100(X5 → 25 | x0) with
an accuracy of 99.9999% in 1.7 × 103 seconds, the SSA would need 1012 times as much com-
putational time, which is roughly 1.05 × 108 years of computation (i.e., 2.2 × 1019 simulation
runs) to achieve that same level of accuracy on the same computer.

6. Conclusions

During stochastic analysis of biological systems, it is important to be able to both determine
accurately and efficiently the typical behavior and the probability of rare deviant events. This
chapter has introduced two new stochastic simulation algorithms, the iSSA and wSSA, to
address these problems. The iSSA has been shown to produce a more stable typical behavior
of an oscillatory system than aggregate statistics generated by the traditional SSA. The wSSA
has been shown to produce a substantially more accurate estimate of the probability of rare
deviant events as compared to same number of runs of the SSA. Taken together, these are
powerful tools for the analysis of biological systems.
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1. Introduction 

The theory of stopping rules has its roots in the study of the optimality properties of the 
sequential probability ratio test of Wald and Wolfowitz (1948) and Arrow, Blackwell and 
Girshick (1949). The essential idea in both of these papers was to create a formal Bayes 
problem.  
The formal Bayes problem is what we would now call an optimal stopping problem. A 
decision maker observes an adapted sequence {Rn, Fn, n  I}, with E{|Rn|} <  for all n, 
where  Fn  denotes the algebra generated by a sequence of rewards R1, …, Rn. At each time 
n a choice is to be made, to stop sampling and collect the currently available reward, Rn, or 
continue sampling in the expectation of collecting a larger reward in the future. An optimal 
stopping rule N is one that maximizes the expected reward, E{Rn}. The key to finding an 
optimal or close to optimal stopping rule is the family of equations 
 

1 n n nZ max  (R ,E{Z | }),    n 1,  2,  ...  .n F  (1) 
 
The informal interpretation of Zn, is that it is the most one can expect to win if one has 
already reached stage n; and equations (1) say that this quantity is the maximum of what 
one can win by stopping at the nth stage and what one can expect to win by taking at least 
one more observation and proceeding optimally thereafter. The plausible candidate for an 
optimal rule is to stop with 
 

 n n 1 nN min{ n : R E{Z }},|F  (2) 
 
that is, stop as soon as the current reward is at least as large as the most that one can expect 
to win by continuing. Equations (1) show that {Zn,Fn} is a supermartingale, while 
{Zmin(N,n),Fn}, is a martingale. The equations do not have a unique solution, but in the case 
where the index n is bounded, say 1 n  m for some given value of m, the solution of 
interest satisfies Zm, = Rm. Hence (1) can be solved and the optimal stopping rule can be 
found by "backward induction". The general strategy of optimal stopping theory is to 
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approximate the case where no bound m exists by first imposing such a bound, solving the 
bounded problem and then letting m  . For reviews of the many variations on this 
problem and the extensive related literature, see Freeman (1983), Petrucelli (1988) and 
Samuels (1991). 
For illustration of the stopping problem, consider the Bayesian sequential estimation 
problem of a binomial parameter under quadratic loss and constant observation cost. 
Suppose that the unknown binomial parameter p is assigned a beta prior distribution with 
integer parameters (a,b) so that 
 

   
   

  
a 1 b a 1(b 1)!

(p|a, b) p (1 p) ,    0 p 1.
(a 1)!(b a 1)!

 (3) 

 
The posterior distribution of p having observed s successes in n trials is simply (p;s+a,n+b) 
(Raiffa and Schlaifer, 1968); hence the result of sampling may be represented as a plot of s+a 
against n+b which stops when the stopping boundary is reached. If a=1, b=2, the uniform 
prior, is taken as the origin, sample paths for any other proper prior will start at the point 
(a1,b2). Consequently stopping boundaries will be obtained using the uniform prior. 
Suppose that the loss in estimating p by d is (pd)2 where  is a constant giving loss in 
terms of cost. Then the Bayes estimator is the current prior mean (s+l)/(n+2) and the Bayes 
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A lower bound for the sample size n above may now be found from (7) by setting B(s,n1)  
D(s,n1). This leads to 
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The optimal stopping boundary starts at s = 0 and n, and from (8) it may be shown that this 
sample size is at least [(/c)1/3]3. 
The approximate design obtained by (8) will be termed a one step ahead design. Both 
designs will obviously stop at the same maximum number of observations N, and will give 
the same decision after (N1) observations. The one step ahead design gives stopping 
boundaries, which will lie inside those of the optimal. The one step ahead design is similar 
to the modified Bayes rule of Amster (1963) and has been used by El-Sayyad and Freeman 
(1973) to estimate a Poisson process rate. 
The present research investigates the frequentist (non-Bayesian) stopping rules. In this 
paper, stopping rules in fixed-sample testing as well as in sequential-sample testing are 
discussed.  

 
2. Assumptions and Cost Functions in Fixed-Sample Testing 

Let c1 be the cost per hour of conducting the test, c2 be the total cost of redesign (including 
the time required to implement it). The cost of redesign c2 is undoubtedly the most difficult 
to estimate. This cost is to include whatever redesigns are necessary to make the probability 
of failure on rerun negligible. To simplify the mathematics, it is assumed that unnecessary 
design changes, caused by incorrectly abandoning the test, will also have a beneficial effect 
on performance. This assumption appears warranted for many electronic and mechanical 
systems, where the introduction of redundancies, higher-quality components, etc., can 
always be expected to improve reliability.  
It will be assumed in this section that the times of interest to the decision maker are 
restricted to those where a failure has just occurred.  
Let X1  X2  ...  Xr be the first r ordered past observations with lifetime distribution f(x|) 
from a sample of size n. Let 
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shows (s-1) or fewer failures in performance testing, then the probability of passing the test 
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approximate the case where no bound m exists by first imposing such a bound, solving the 
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The cost of abandoning the test is 
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3. Stopping Rule in Fixed-Sample Testing 

The decision rule will be based on the relative magnitude of abandoningc  and continuingc . The 

simplest rule would be:  
If continuingc < abandoningc , i.e., if 
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abandon the present test and initiate a redesign. 

 
4. Estimation of the Probability of Passing the Fixed-sample Test 

Evaluation of the cost functions for the lifetime-testing model requires, even for relatively 
simple probability distributions, the evaluation of some complicated integrals that cannot 
always be obtained in closed form. For example, using the one-parameter exponential model 
for lifetime distribution, we have 

 

 ,0x   ,xexp1)|x(f 











  (15) 

 

.xexp1)|x(F 








   (16) 

Therefore, 

 ;xexpxexp1
)!kn(

!n)|x ..., ,x(g
rn

r
r

1i

i
rr1





































   (17) 

 
 

1rs
sr

1rsr1
xexpxexp1

)!sn()!1rs(
!n)|x,x ..., ,x(g



 





























  

 

 

.xexpxexp
1sn

s
r

1i

i

































   (18) 

 
The maximum likelihood estimate for   is 
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Replacing   by   in the density functions and simplifying, we obtain 
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The change of variable 




























r

s

xexp

xexp
v   (23) 

 
leads to 

.dv)v1(v
)!sn()!1rs(

)!rn(p 1rssn

x
exp

0
pas

r0




















 


     (24) 

 
Thus, pasp is equivalent to the cumulative beta distribution with parameters (ns+1, sr).  
The situation for the Weibull distribution, 
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The maximum likelihood estimates   and 


 of the parameters  and , respectively, 

required in (26), can only be obtained by iterative methods. The appropriate likelihood 
equations for X1, …, Xr are 
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The method described above is quite general and works well for a1l closed-form or 
tabulated cumulative distribution functions, so that numerical integration techniques are not 
needed for calculating pasp . It is easy to see that the general case would involve a change of 
variable 
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where, of course, xr is a constant.  

 
4.1 Statistical Inferences for Future Order Statistics in the Same Sample 
If we deal with small size n of the fixed sample for testing and wish to find the conditional 
distribution of the sth order statistic to obtain the probability of passing the test after xr has 
been observed, then it may be suitable the following results. 
Theorem 1 (Predictive distribution of the sth order statistic Xs on the basis of the past rth order 
statistic Xr from the exponential distribution of the same sample). Let X1  X2  ...  Xr be the first r 
ordered past observations from a sample of size n from the exponential distribution with the 
probability density function (PDF) (15), which is characterized by the scale parameter  . It 
is assumed that the parameter  is unknown. Then the predictive probability density 
function of the sth order statistic Xs may be obtained on the basis of the rth order statistic Xr 
(r < s  n) from the same sample as 
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Proof. It follows readily from standard theory of order statistics (see, for example, Kendall 
and Stuart (1969)) that the joint distribution of Xr, Xs (s > r) is given by 
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Proof. It follows readily from standard theory of order statistics (see, for example, Kendall 
and Stuart (1969)) that the joint distribution of Xr, Xs (s > r) is given by 
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Making the transformation z = xsxr, xr = xr, and integrating out xr, we find the density of z 
as the beta density 
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The distribution of Xr is 
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and since Z, Xr are independent, we have the joint density of Z and Xr as 
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Making the transformation ws = z/xr, xr=xr, we find the joint density of Ws and Xr as 
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It is then straightforward to integrate out xr, leaving the density of Ws as 
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It will be noted that the technique of invariant embedding (Nechval, 1982, 1984, 1986, 1988a, 
1988b; Nechval et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009) allows one to obtain 
(39) directly from (34). This ends the proof.   
 
 
 

 

Corollary 1.1. 
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to (ws+1)xr. 
Consider, for instance, the case where n=6 simultaneously tested items have life times 
following the exponential distribution (15). Two items (r = 2) fail at times 75 and 90 hours. 
Suppose, say, we are predicting the 4th failure time (s = 4). Using (40), (41), and  = 0.95, we 
get ws=10, which yields a predicted value for Xs of 990 hours. 
Theorem 2 (Predictive distribution of the sth order statistic Xs on the basis of the past observations 
X1  X2  ...  Xr from the exponential distribution of the same sample). Under conditions of 
Theorem 1, the predictive probability density function of the sth order statistic Xs (r < s  n) 
may be obtained on the basis of the past observations (X1  X2  ...  Xr) from the same 
sample as 
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Proof. The joint probability density function of X1, X2, …, Xr, Xs is given by 
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It is then straightforward to integrate out xr, leaving the density of Ws as 
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It will be noted that the technique of invariant embedding (Nechval, 1982, 1984, 1986, 1988a, 
1988b; Nechval et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009) allows one to obtain 
(39) directly from (34). This ends the proof.   
 
 
 

 

Corollary 1.1. 
 








 







 



 








 i
1r

j
1rs

)1(
)1rn,r()1sr,ns(

1}wWPr{
1r

0i

ji
1rs

0j
ss  

 

)j1sn(
1

)i1rn()j1sn(w
1

i1rn
1

s 












  

 

. 
r

n)j1sn(w
)j1sn(r

j
1rs

)1(
)1rn,r()1sr,ns(

11
1

s
1rs

0j

j


 

















 








 



   

(40) 
 

For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to (ws+1)xr. 
Consider, for instance, the case where n=6 simultaneously tested items have life times 
following the exponential distribution (15). Two items (r = 2) fail at times 75 and 90 hours. 
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Proof. The joint probability density function of X1, X2, …, Xr, Xs is given by 
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Using the invariant embedding technique (Nechval, 1982, 1984, 1986, 1988a, 1988b; Nechval 
et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009), we then find in a straightforward 
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is the normalizing constant, which does not depend on xr. Now v can be integrated out of 
(48) in a straightforward way to give 
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Then (42) follows from (50). This completes the proof.    
Corollary 2.1. 
 

.
)]j1sn(w1)[j1sn(

1)1(
j

1rs
)1sr,ns(

11}wWPr{ r
s

1rs

0j

j
ss 








 


 





  (51) 

 
For a specified probability level , ws can be obtained such that 
 

  .wqxXPrw
q

xXPr}qQ,xX|wWPr{ srrss
r

rs
rrrrss 












  (52) 

 
Hence, with confidence , one could predict Xs to be less than or equal to xr+qrws. 
Consider a life-testing situation similar to that in the above example of Theorem 1, where n 
= 6 simultaneously tested items have life times following the exponential distribution (15). 
Two items (r = 2) fail at times 75 and 90 hours. Suppose, say, we are predicting the 4th 
failure time (s = 4). Using (44), (45), (46), and  = 0.95, we get qr = 525 and ws = 1.855, which 
yield a predicted value for Xs of 1064 hours. 
 We make two additional remarks concerning evaluation of the above probability (51):  
 (i) In the important case where s = n, expression (51) simplifies to 
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 (ii) In the special case where r = s1, we note that (s1)(ns+1)(XsXs1)/Qs1 is an F 
variate with (2, 2s2) degrees of freedom, so that appropriate probability statements can be 
read from standard tables of the F distribution. 
Theorem 3 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics Xr and X1 from the two-parameter exponential distribution of the same sample). Let X1  X2 

 ...  Xr be the first r ordered past observations from a sample of size n from the exponential 
distribution with the PDF 
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which is characterized by the scale parameter   and the shift parameter . It is assumed that 
these parameters are unknown. Then the predictive PDF of the sth order statistic Xs (s>r) 
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Proof. It is carried out in the similar way as the proof of Theorem 1.       
Corollary 3.1. 
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Hence, with confidence , one could predict Xs to be less than or equal to xr+ws(xr-x1). 
Theorem 4 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics X1  X2  ...  Xr from the two-parameter exponential distribution of the same sample). 
Under conditions of Theorem 3, the predictive probability density function of the sth order 
statistic Xs (s>r) from the same sample may be obtained as 
 

,0w    ,
q
1

)]j1sn(w1[
1)1(

j
1rs

)1sr,ns(
1r)x|x(f~ sr

s

j
1rs

0j

r
s 










 




 




 (59) 

 
where 

   ,
Q

XXW rs
s


   (60) 

 

 

 ).XX)(rn()XX(Q 1r1

r

1i
i 



 (61) 

 
Proof. The proof is carried out in the similar way as the proof of Theorem 2.       
Corollary 4.1. 
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For a specified probability level , ws can be obtained such that 
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Hence, with confidence , one could predict Xs to be less than or equal to xr+qws. 
Suppose, for instance, that n = 8 items are put on test simultaneously and that the first r = 4 
items have the lifetimes 62, 84, 106 and 144 hours. Let the lifetimes of all n items be 
distributed according to the two-parameter exponential distribution (47) with the same 
parameters  and . We wish to find a 95% prediction interval of the type (56) for s=8. We 
obtain from (55) and (56) that Pr{Xs  1408.8} = 0.95. Thus, we can be 95% confident that the 
total elapsed time will not exceed 1409 hours. 
Theorem 5 (Predictive distribution of the sth order statistic Xs on the basis of the past order 
statistics X1  X2  ...  Xr from the two-parameter Weibull distribution of the same sample). Let X1 
 X2  ...  Xr be the first r ordered past observations from a sample of size n from the two-
parameter Weibull distribution given by 
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where >0 and >0 are the shape and scale parameters, respectively, which are unknown. 
Then the predictive PDF of the sth order statistic Xs (s>r) from the same sample may be 
obtained as 
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are the maximum likelihood estimators of  and   based on the first r 
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Proof. The joint density of Y1=ln(X1), …, Yr=ln(Xr), Ys=ln(Xs) is given by 
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Parameters  and  in (64) are location and scale parameters, respectively, and it is well 
known that if   and   are estimates of  and , possessing certain invariance properties, 
then the quantities V1 and V are parameter-free. Most, if not all, proposed estimates of  and 
 possess the necessary properties; these include the maximum likelihood estimates and 
various linear estimates. Zi, i=1(1)r, are ancillary statistics, any r2 of which form a 
functionally independent set. For notational convenience we include all of z1, …, zr in (68); 
zr-1 and zr can be expressed as function of z1, …, zr only.  
Using the invariant embedding technique (Nechval, 1982, 1984, 1986, 1988a, 1988b; Nechval 
et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009), we then find in a straightforward 
manner that the joint  density of V1, V, Ws conditional   on  fixed   z= ) ..., , ,( 21 rzzz , is 
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is the normalizing constant.  
Now v1 can be integrated out of (79) in a straightforward way to give 
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Then (65) follows from (81). This completes the proof.    
Corollary 5.1. A lower one-sided conditional (1) prediction limit h on the sth order 
statistic Xs (s>r) from the same sample may be obtained from (73) as 
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   .1   (82) 
 
Let X1  X2  …  Xn denote the order statistics in a sample of size n from a continuous 
parent distribution whose cumulative distribution function F(x|) is a strictly increasing 
function of x, where   is an unknown parameter. A number of authors have considered the 
prediction problem for the future observation Xs based on the observed values X1  …  Xr, 1 
 r < s  n. Prediction intervals have been treated by Hewitt (1968), Lawless (1971), 
Lingappaiah (1973), Likes (1974), and Kaminsky (1977).  
Consider, in this section, the case when the parameter  is known. It can be shown that the 
predictive distribution of Xn, given Xi = xi for all i  r, is the same as the predictive 
distribution of Xn, given only Xr = xr, which is given by 
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for h  xr. We remark also at this point that 
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for h  xr. 

 
4.2 Statistical Inferences for Order Statistics in the Future Sample 
Theorem 6 (Predictive distribution of the lth order statistic Yl from a set of m future ordered 
observations Y1  … Yl …  Ym  on the basis of the past sample from the left-truncated Weibull 
distribution). Let X1  X2  ...  Xr be the first r ordered past observations from a sample of 
size n from the left-truncated Weibull distribution with pdf 
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which is characterized by being three-parameter (,,) where  is termed the shape 
parameter,  is the scale parameter, and  is the truncation parameter. It is assumed that the 
parameter  is known. Then the non-unbiased predictive density function of the lth order 
statistic Yl from a set of m future ordered observations Y1  … Yl …  Ym is given by 
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Proof. It can be justified by using the factorization theorem that )S,X( 1

  is a sufficient 

statistic for (,). We wish, on the basis of the sufficient statistic )S,X( 1
  for (,), to 

construct the non-unbiased predictive density function of the lth order statistic Yl from a set 
of m future ordered observations Y1  … Yl …  Ym.  
By using the technique of invariant embedding (Nechval, 1982, 1984, 1986, 1988a, 1988b; 
Nechval et al., 1999, 2000, 2001, 2003a, 2003b, 2004, 2008, 2009) of )S,X( 1

 , if X1Yl,  or 

)S,Y( l
 , if X1Yl, into a pivotal quantity  /)Y( l  or  /)X( 1 , respectively, we obtain 

an ancillary statistic   ,SXYW δ
ll 1 =   whose distribution does not depend on any unknown 

parameter, and the pdf of Wl given by 
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This ends the proof.   
Corollary 6.1. A lower one-sided (1) prediction limit h on the lth order statistic Yl from a 
set of m future ordered observations Y1  … Yl …  Ym (Pr{Yl  h|xn} = 1) may be 
obtained from (89) as 
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(Observe that an upper one-sided conditional  prediction limit h on the lth order statistic Yl 
may be obtained from a lower one-sided (1-) prediction limit by replacing 1- by .) 
Corollary 6.2. If l = 1, then a lower one-sided (1) prediction limit h on the minimum Y1 of 
a set of m future ordered observations Y1  …  Ym is given by 
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Consider, for instance, an industrial firm which has the policy to replace a certain device, 
used at several locations in its plant, at the end of 24-month intervals. It doesn’t want too 
many of these items to fail before being replaced. Shipments of a lot of devices are made to 
each of three firms. Each firm selects a random sample of 5 items and accepts his shipment if 
no failures occur before a specified lifetime has accumulated. The manufacturer wishes to 
take a random sample and to calculate the lower prediction limit so that all shipments will 
be accepted with a probability of 0.95. The resulting lifetimes (rounded off to the nearest 
month) of an initial sample of size 15 from a population of such devices are given in Table 1.  
 

Observations 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 

8 9 10 12 14 17 20 25 29 30 35 40 47 54 62 

Lifetime (in number of month intervals) 
 

Table 1. The data of resulting lifetimes 
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Goodness-of-fittesting. It is assumed that 
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where the parameters  and  are unknown; (=0.87). Thus, for this example, r = n = 15, k = 
3, m = 5, 1 = 0.95, 1.6X1 
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are i.i.d. U(0,1) rv’s (Nechval et al., 1998). We assess the statistical significance of departures 
from the left-truncated Weibull model by performing the Kolmogorov-Smirnov goodness-
of-fit test. We use the K statistic (Muller et al., 1979). The rejection region for the  level of 
significance is {K >Kn;}. The percentage points for Kn; were given by Muller et al. (1979). 
For this example,  
 

  K = 0.220 <  Kn=13;=0.05 = 0.361. (95) 
 
Thus, there is not evidence to rule out the left-truncated Weibull model. It follows from (92), 
for  
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Thus, the manufacturer has 95% assurance that no failures will occur in each shipment 
before h = 5 month intervals. 

 
5. Examples 

5.1 Example 1  
An electronic component is required to pass a performance test of 500 hours. The 
specification is that 20 randomly selected items shall be placed on test simultaneously, and 5 
failures or less shall occur during 500 hours. The cost of performing the test is $105 per hour. 
The cost of redesign is $5000. Assume that the failure distribution follows the one-parameter 

 

exponential model (15). Three failures are observed at 80, 220, and 310 hours. Should the test 
be continued? 
We have from (19) and (20) 
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abandon the present test and initiate a redesign. 

 
5.2 Example 2  
Consider the following problem. A specification for an automotive hood latch is that, of 30 
items placed on test simultaneously, ten or fewer shall fall during 3000 cycles of operation. 
The cost of performing the test is $2.50 per cycle. The cost of redesign is $8500. Seven 
failures, which follow the Weibull distribution with the probability density function (25), are 
observed at 48, 300, 315, 492, 913, 1108, and 1480 cycles. Shall the test be continued beyond 
the 1480th cycle? 
It follows from (29) and (30) that 6.2766

  and .9043.0


 In turn, these estimates yield 
pasp =0.25098. Since 
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continue the present test.  

 
6. Stopping Rule in Sequential-Sample Testing 

At the planning stage of a statistical investigation the question of sample size (n) is critical. 
For such an important issue, there is a surprisingly small amount of published literature. 
Engineers who conduct reliability tests need to choose the sample size when designing a test 
plan. The model parameters and quantiles are the typical quantities of interest. The large-
sample procedure relies on the property that the distribution of the t-like quantities is close 
to the standard normal in large samples. To estimate these quantities the maximum 
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likelihood method is often used. The large-sample procedure to obtain the sample size relies 
on the property that the distribution of the above quantities is close to standard normal in 
large samples. The normal approximation is only first order accurate in general. When 
sample size is not large enough or when there is censoring, the normal approximation is not 
an accurate way to obtain the confidence intervals. Thus sample size determined by such 
procedure is dubious. 
Sampling is both expensive and time consuming. Hence, there are situations where it is 
more efficient to take samples sequentially, as opposed to all at one time, and to define a 
stopping rule to terminate the sampling process. The case where the entire sample is drawn 
at one instance is known as “fixed sampling”. The case where samples are taken in 
successive stages, according to the results obtained from the previous samplings, is known 
as “sequential sampling”. 
Taking samples sequentially and assessing their results at each stage allows the possibility 
of stopping the process and reaching an early decision. If the situation is clearly favorable or 
unfavorable (for example, if the sample shows that a widget’s quality is definitely good or 
poor), then terminating the process early saves time and resources. Only in the case where 
the data is ambiguous do we continue sampling. Only then do we require additional 
information to take a better decision. 
In this section, the following optimal stopping rule for determining the efficient sample size 
sequentially under assigning warranty period is proposed.  
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Determining when to stop a statistical test is an important management decision. Several 
stopping criteria have been proposed, including criteria based on statistical similarity, the 
probability that the system has a desired reliability, and the expected cost of remaining 
faults. This paper presents a new stopping rule in fixed-sample testing based on the 
statistical estimation of total costs involved in the decision to continue beyond an early 
failure as well as a stopping rule in sequential-sample testing to determine when testing 
should be stopped. 
The paper considers the problem that can be stated as follows. A new product is submitted 
for lifetime testing. The product will be accepted if a random sample of n items shows less 
than s failures in performance testing. We want to know whether to stop the test before it is 
completed if the results of the early observations are unfavorable. A suitable stopping 
decision saves the cost of the waiting time for completion. On the other hand, an incorrect 
stopping decision causes an unnecessary design change and a complete rerun of the test. It 
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is assumed that the redesign would improve the product to such an extent that it would 
definitely be accepted in a new lifetime testing. The paper presents a stopping rule based on 
the statistical estimation of total costs involved in the decision to continue beyond an early 
failure. Sampling is both expensive and time consuming. The cost of sampling plays a 
fundamental role and since there are many practical situations where there is a time cost 
and an event cost, a sampling cost per observed event and a cost per unit time are both 
included. Hence, there are situations where it is more efficient to take samples sequentially, 
as opposed to all at one time, and to define a stopping rule to terminate the sampling 
process. One of these situations is considered in the paper. The practical applications of the 
stopping rules are illustrated with examples.  
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1. Introduction

Volatility clustering, evaluated through slowly decaying auto-correlations, Hurst effect or 1/ f
noise for absolute returns, is a characteristic property of most financial assets return time series
Willinger et al. (1999). Statistical analysis alone is not able to provide a definite answer for
the presence or absence of long-range dependence phenomenon in stock returns or volatility,
unless economic mechanisms are proposed to understand the origin of such phenomenon
Cont (2005); Willinger et al. (1999). Whether results of statistical analysis correspond to long-
range dependence is a difficult question and subject to an ongoing statistical debate Cont
(2005).
Extensive empirical analysis of the financial market data, supporting the idea that the long-
range volatility correlations arise from trading activity, provides valuable background for fur-
ther development of the long-ranged memory stochastic models Gabaix et al. (2003); Plerou
et al. (2001). The power-law behavior of the auto-regressive conditional duration process Sato
(2004) based on the random multiplicative process and it’s special case the self-modulation
process Takayasu (2003), exhibiting 1/ f fluctuations, supported the idea of stochastic mod-
eling with a power-law probability density function (PDF) and long-range memory. Thus
the agent based economic models Kirman & Teyssiere (2002); Lux & Marchesi (2000) as well
as the stochastic models Borland (2004); Gontis et al. (2008; 2010); Queiros (2007) exhibiting
long-range dependence phenomenon in volatility or trading volume are of great interest and
remain an active topic of research.
Properties of stochastic multiplicative point processes have been investigated analytically and
numerically and the formula for the power spectrum has been derived Gontis & Kaulakys
(2004). In the more recent papers Kaulakys et al. (2006); Kaulakys & Alaburda (2009); Ruseckas
& Kaulakys (2010) the general form of the multiplicative stochastic differential equation (SDE)
was derived in agreement with the model earlier proposed in Gontis & Kaulakys (2004). Since
Gontis & Kaulakys (2004) a model of trading activity, based on a SDE driven Poisson-like
process, was presented Gontis et al. (2008) and in the most recent paper Gontis et al. (2010) we
proposed a double stochastic model, whose return time series yield two power-law statistics,
i.e., the PDF and the power spectral density (PSD) of absolute return, mimicking the empirical
data for the one-minute trading return in the NYSE.
In this chapter we present theoretical arguments and empirical evidence for the non-linear
double stochastic model of return in financial markets. With empirical data from NYSE and
Vilnius Stock Exchange (VSE) demonstrating universal scaling of return statistical properties,
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which is also present in the double stochastic model of return Gontis et al. (2010). The sections
in this chapter follow the chronology of our research papers devoted to the stochastic model-
ing of financial markets. In the second sections we introduce multiplicative stochastic point
process reproducing 1/ f β noise and discuss it’s possible application as the stochastic model
of financial market. In the section 3 we derive multiplicative SDE statistically equivalent to the
introduced point process. Further, in the section 4 we propose a Poisson-like process driven by
multiplicative SDE. More sophisticated version of SDE reproducing statistics of trading activ-
ity in financial markets is presented in the section 5 and empirical analysis of high frequency
trading data from NYSE in the section 6. Section 7 introduces the stochastic model with a
q-Gaussian PDF and power spectrum S( f ) ∼ 1/ f β and the section 8 the double stochastic
model of return in financial market. We present scaled empirical analysis of return in New
York and Vilnius stock exchanges in comparison with proposed model in the sections 9. Short
conclusions of the most recent research results is presented in the section 10.

2. 1/ f noise: from physics to financial markets

The PSD of a large variety of different evolutionary systems at low frequencies have 1/ f
behavior. 1/ f noise is observed in condensed matter, river discharge, DNA base sequence
structure, cellular automatons, traffic flow, economics, financial markets and other complex
systems with the evolutionary elements of self-organization (see, e.g., a bibliographic list of
papers by Li (2009)). Considerable amount of such systems have fractal nature and thus their
statistics exhibit scaling. It is possible to define a stochastic model system exhibiting fractal
statistics and 1/ f noise, as well. Such model system may represent the limiting behavior of
the dynamical or deterministic complex systems, explaining the evolution of the complexity
into chaotic regime.
Let us introduce a multiplicative stochastic model for the time interval between events in time
series, defining in such a way the multiplicative point process. This model exhibits the first
order and the second order power-law statistics and serves as the theoretical description of
the empirical trading activity in the financial markets Gontis & Kaulakys (2004).
First of all we consider a signal I(t) as a sequence of the random correlated pulses

I(t) = ∑
k

akδ(t − tk) (1)

where ak is a contribution to the signal of one pulse at the time moment tk, e.g., a contribution
of one transaction to the financial data. Signal (1) represents a point process used in a large
variety of systems with the flow of point objects or subsequent actions. When ak = ā is
constant, the point process is completely described by the set of times of the events {tk} or
equivalently by the set of inter-event intervals {τk = tk+1 − tk}.
Various stochastic models of τk can be introduced to define a such stochastic point process. In
the papers Kaulakys & Meškauskas (1998); Kaulakys (1999; 2000) it was shown analytically
that the relatively slow Brownian fluctuations of the inter-event time τk yield 1/ f fluctuations
of the signal (1). In the generalized version of the model Gontis & Kaulakys (2004) we have
introduced a stochastic multiplicative process for the inter-event time τk,

τk+1 = τk + γτ
2µ−1
k + τ

µ
k σεk. (2)

Here the inter-event time τk fluctuates due to the external random perturbation by a sequence
of uncorrelated normally distributed random variable {εk} with zero expectation and unit

variance, σ denotes the standard deviation of the white noise and γ � 1 is a damping con-
stant. Note that from the big variety of possible stochastic processes we have chosen the
multiplicative one as it yields multifractal intermittency and power-law PDF. Certainly, in Eq.
(2) the τk diffusion has to be restricted in some area 0 < τmin < τk < τmax. Multiplicativity
is specified by µ (pure multiplicativity corresponds to µ = 1, while other values of might be
considered as well).
The iterative relation (2) can be rewritten as Langevin SDE in k-space, inter-event space,

dτk = γτ
2µ−1
k + στ

µ
k dWk. (3)

Here we interpret k as continuous variable while Wk defines the Wiener noise in inter-event
space.
Steady state solution of the stationary Fokker-Planck equation with zero flow, corresponding
to (3), gives the probability density function for τk in the k-space (see, e.g., Gardiner (1986))

Pk(τk) = Cτα
k =

α + 1

τ
(α+1)
max − τ

(α+1)
min

τα
k , α = 2γ/σ2 − 2µ. (4)

The steady state solution (4) assumes Ito convention involved in the relation between expres-
sions (2), (3) and (4) and the restriction for the diffusion 0 < τmin < τk < τmax. In the limit
τmin → 0 and τmax → ∞ the explicit expression of the signal’s I(t) PSD Sµ( f ) was derived in
Gontis & Kaulakys (2004):

Sµ( f ) =
Ca2

√
πτ(3 − 2µ) f

(
γ

π f

) α
3−2µ Γ( 1

2 + α
3−2µ )

cos( πα
2(3−2µ)

)
. (5)

Equation (5) reveals that the multiplicative point process (2) results in the PSD S( f ) ∼ 1/ f β

with the scaling exponent

β = 1 +
2γ/σ2 − 2µ

3 − 2µ
. (6)

Analytical results (5) and (6) were confirmed with the numerical calculations of the PSD ac-
cording to equations (1) and (2).
Let us assume that a ≡ 1 and the signal I(t) counts the transactions in financial markets.
In that case the number of transactions in the selected time window τd, defined as N(t) =
t+τd∫

t
I(t)dt, measures the trading activity. PDF of N for the pure multiplicative model, with

µ = 1, can be expressed as, for derivation see Gontis & Kaulakys (2004),

P(N) =
C′τ2+α

d (1 + γN)

N3+α(1 + γ
2 N)3+α

∼
{

1
N3+α , N � γ−1,

1
N5+2α , N � γ−1.

(7)

Numerical calculations confirms the obtained analytical result (7).
In the case of pure multiplicativity, µ = 1, the model has only one parameter, 2γ/σ2, which
defines scaling of the PSD, the power-law distributions of inter-event time and the number
of deals N per time window. The model proposed with the adjusted parameter 2γ/σ2 nicely
describes the empirical PSD and the exponent of power-law long range distribution of the
trading activity N in the financial markets, see Gontis & Kaulakys (2004) for details.
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which is also present in the double stochastic model of return Gontis et al. (2010). The sections
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papers by Li (2009)). Considerable amount of such systems have fractal nature and thus their
statistics exhibit scaling. It is possible to define a stochastic model system exhibiting fractal
statistics and 1/ f noise, as well. Such model system may represent the limiting behavior of
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into chaotic regime.
Let us introduce a multiplicative stochastic model for the time interval between events in time
series, defining in such a way the multiplicative point process. This model exhibits the first
order and the second order power-law statistics and serves as the theoretical description of
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akδ(t − tk) (1)

where ak is a contribution to the signal of one pulse at the time moment tk, e.g., a contribution
of one transaction to the financial data. Signal (1) represents a point process used in a large
variety of systems with the flow of point objects or subsequent actions. When ak = ā is
constant, the point process is completely described by the set of times of the events {tk} or
equivalently by the set of inter-event intervals {τk = tk+1 − tk}.
Various stochastic models of τk can be introduced to define a such stochastic point process. In
the papers Kaulakys & Meškauskas (1998); Kaulakys (1999; 2000) it was shown analytically
that the relatively slow Brownian fluctuations of the inter-event time τk yield 1/ f fluctuations
of the signal (1). In the generalized version of the model Gontis & Kaulakys (2004) we have
introduced a stochastic multiplicative process for the inter-event time τk,

τk+1 = τk + γτ
2µ−1
k + τ

µ
k σεk. (2)

Here the inter-event time τk fluctuates due to the external random perturbation by a sequence
of uncorrelated normally distributed random variable {εk} with zero expectation and unit

variance, σ denotes the standard deviation of the white noise and γ � 1 is a damping con-
stant. Note that from the big variety of possible stochastic processes we have chosen the
multiplicative one as it yields multifractal intermittency and power-law PDF. Certainly, in Eq.
(2) the τk diffusion has to be restricted in some area 0 < τmin < τk < τmax. Multiplicativity
is specified by µ (pure multiplicativity corresponds to µ = 1, while other values of might be
considered as well).
The iterative relation (2) can be rewritten as Langevin SDE in k-space, inter-event space,

dτk = γτ
2µ−1
k + στ

µ
k dWk. (3)

Here we interpret k as continuous variable while Wk defines the Wiener noise in inter-event
space.
Steady state solution of the stationary Fokker-Planck equation with zero flow, corresponding
to (3), gives the probability density function for τk in the k-space (see, e.g., Gardiner (1986))

Pk(τk) = Cτα
k =

α + 1
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(α+1)
max − τ
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k , α = 2γ/σ2 − 2µ. (4)

The steady state solution (4) assumes Ito convention involved in the relation between expres-
sions (2), (3) and (4) and the restriction for the diffusion 0 < τmin < τk < τmax. In the limit
τmin → 0 and τmax → ∞ the explicit expression of the signal’s I(t) PSD Sµ( f ) was derived in
Gontis & Kaulakys (2004):

Sµ( f ) =
Ca2
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Equation (5) reveals that the multiplicative point process (2) results in the PSD S( f ) ∼ 1/ f β

with the scaling exponent

β = 1 +
2γ/σ2 − 2µ

3 − 2µ
. (6)

Analytical results (5) and (6) were confirmed with the numerical calculations of the PSD ac-
cording to equations (1) and (2).
Let us assume that a ≡ 1 and the signal I(t) counts the transactions in financial markets.
In that case the number of transactions in the selected time window τd, defined as N(t) =
t+τd∫

t
I(t)dt, measures the trading activity. PDF of N for the pure multiplicative model, with

µ = 1, can be expressed as, for derivation see Gontis & Kaulakys (2004),

P(N) =
C′τ2+α

d (1 + γN)

N3+α(1 + γ
2 N)3+α

∼
{

1
N3+α , N � γ−1,

1
N5+2α , N � γ−1.

(7)

Numerical calculations confirms the obtained analytical result (7).
In the case of pure multiplicativity, µ = 1, the model has only one parameter, 2γ/σ2, which
defines scaling of the PSD, the power-law distributions of inter-event time and the number
of deals N per time window. The model proposed with the adjusted parameter 2γ/σ2 nicely
describes the empirical PSD and the exponent of power-law long range distribution of the
trading activity N in the financial markets, see Gontis & Kaulakys (2004) for details.
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Ability of the model to simulate 1/ f noise as well as to reproduce long-range power-law
statistics of trading activity in financial markets promises wide interpretation and application
of the model. Nevertheless, there is an evident need to introduce Poisson-like flow of trades
in high frequency time scales of financial markets.

3. Power-law statistics arising from the nonlinear stochastic differential equations

In the previous section we introduced the stochastic multiplicative point process, which was
proposed in Gontis & Kaulakys (2004), presented a formula for the PSD and discussed a pos-
sible application of the model to reproduce the long-range statistical properties of financial
markets. The same long-range statistical properties pertaining to the more general ensemble
of stochastic systems can be derived from the SDE or by the related Fokker-Plank equation.
Supposing that previously introduced multiplicative point process reflects long-range statis-
tical properties of financial markets, we feel the need to derive multiplicative SDE statistically
equivalent to the introduced point process. It would be very nice if the SDE was applicable
towards the modeling of financial markets as well.
Transition from the occurrence number, k, space SDE to the actual time, t, space in the SDE(3)
can be done according to the relation dt = τkdk. This transition yields

dτ = γτ2µ−2 + στµ−1/2dW. (8)

One can transform variables in the SDE (8) from inter-event time, τ, to the average intensity
of the signal, I(t), which itself can be expressed as x = a/τ, or to the number of events per
unit time interval n = 1/τ. Applying Ito transform of variables to the SDE (8) gives new SDE
for x

dx = (σ2 − γ)
x4−2µ

a3−2µ
+

σx5/2−µ

a3/2−µ
dW. (9)

One can introduce scaled time

ts =
σ2

a3−2µ
t, (10)

and some new parameters

η =
5
2
− µ, λ = 2

(
γ

σ2 +
3
2
− µ

)
, (11)

in order to obtain the class of Ito SDE

dx = (η − λ

2
)x2η−1 + xηdWs. (12)

Eq. (12), as far as it corresponds to the point process discussed in the previous section, should
generate the power-law distributions of the signal intensity,

P(x) ∼ x−λ, (13)

and 1/ f β noise,

S( f ) ∼ 1
f β

, β = 1 − 3 − λ

2η − 2
. (14)

In some cases time series obtained from SDE (12) may diverge, thus hampering numerical
calculations. In the real systems some diffusion restriction mechanisms are present, thus re-
stricting diffusion of SDE solutions seems rather natural. One can introduce the exponential
restriction into SDE (12) setting distribution densities Gardiner (1986):

P(x) ∼ x−λ exp
{
−

( xmin
x

)m
−

(
x

xmax

)m}
. (15)

In that case SDE (12) is rewritten as

dx =

(
η − λ

2
+

m
2

{( xmin
x

)m
−

(
x

xmax

)m})
x2η−1 + xηdWs, (16)

where m is parameter responsible for sharpness of restriction.
Many numerical simulations were performed to prove validity of power-law statistics (14)-
(15) for the class of SDE (16) Kaulakys et al. (2006). Recently (see Ruseckas & Kaulakys (2010))
it was shown that power-law statistics (14)-(15) can be derived directly from the SDE, without
relying on the formalization of point processes (namely model discussed in previous section).
This, more general, derivation serves as additional justification of equations and provides
further insights into the origin of power-law statistics.

4. Fractal point process driven by the nonlinear stochastic differential equation

In the previous section starting from the point process (1) we derived the class of nonlinear
SDE (12) or, with limits towards diffusion, (16) . One can consider the appropriate SDE as an
initial model of long-range power-law statistics driving another point process in microscopic
level. In Gontis & Kaulakys (2006; 2007) we proposed to model trading activity in financial
markets as Poisson-like process driven by nonlinear SDE.
From the SDE class (16) one can draw SDE for the number of point events or trades per unit
time interval, n, which would be expressed as

dn =

{
η − λ

2
+

m
2

(n0
n

)m
}

n2η−1dts + nηdWs. (17)

The Poisson-like flow of events can be introduced by conditional probability of inter-event
time, τ,

ϕ(τ|n) = n exp(−nτ). (18)

Note that here τ is measured in scaled time, ts, units and the expectation of instantaneous
inter-event time, for instantaneous n, is

〈τ〉n =

∞∫

0

τϕ(τ|n)dτ =
1
n

. (19)

The long-range PDF of n, time series obtained from the with Eq. (17) related Fokker-Plank
equation, has an explicit form:

P(t)
m (n) =

m
n0Γ( λ−1

m )

(n0
n

)λ
exp

(
−

(n0
n

)m)
. (20)
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Ability of the model to simulate 1/ f noise as well as to reproduce long-range power-law
statistics of trading activity in financial markets promises wide interpretation and application
of the model. Nevertheless, there is an evident need to introduce Poisson-like flow of trades
in high frequency time scales of financial markets.

3. Power-law statistics arising from the nonlinear stochastic differential equations

In the previous section we introduced the stochastic multiplicative point process, which was
proposed in Gontis & Kaulakys (2004), presented a formula for the PSD and discussed a pos-
sible application of the model to reproduce the long-range statistical properties of financial
markets. The same long-range statistical properties pertaining to the more general ensemble
of stochastic systems can be derived from the SDE or by the related Fokker-Plank equation.
Supposing that previously introduced multiplicative point process reflects long-range statis-
tical properties of financial markets, we feel the need to derive multiplicative SDE statistically
equivalent to the introduced point process. It would be very nice if the SDE was applicable
towards the modeling of financial markets as well.
Transition from the occurrence number, k, space SDE to the actual time, t, space in the SDE(3)
can be done according to the relation dt = τkdk. This transition yields

dτ = γτ2µ−2 + στµ−1/2dW. (8)

One can transform variables in the SDE (8) from inter-event time, τ, to the average intensity
of the signal, I(t), which itself can be expressed as x = a/τ, or to the number of events per
unit time interval n = 1/τ. Applying Ito transform of variables to the SDE (8) gives new SDE
for x

dx = (σ2 − γ)
x4−2µ

a3−2µ
+

σx5/2−µ

a3/2−µ
dW. (9)

One can introduce scaled time
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a3−2µ
t, (10)

and some new parameters

η =
5
2
− µ, λ = 2

(
γ

σ2 +
3
2
− µ

)
, (11)

in order to obtain the class of Ito SDE

dx = (η − λ

2
)x2η−1 + xηdWs. (12)

Eq. (12), as far as it corresponds to the point process discussed in the previous section, should
generate the power-law distributions of the signal intensity,

P(x) ∼ x−λ, (13)

and 1/ f β noise,

S( f ) ∼ 1
f β

, β = 1 − 3 − λ

2η − 2
. (14)

In some cases time series obtained from SDE (12) may diverge, thus hampering numerical
calculations. In the real systems some diffusion restriction mechanisms are present, thus re-
stricting diffusion of SDE solutions seems rather natural. One can introduce the exponential
restriction into SDE (12) setting distribution densities Gardiner (1986):

P(x) ∼ x−λ exp
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−
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−
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In that case SDE (12) is rewritten as
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+
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2

{( xmin
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−
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x2η−1 + xηdWs, (16)

where m is parameter responsible for sharpness of restriction.
Many numerical simulations were performed to prove validity of power-law statistics (14)-
(15) for the class of SDE (16) Kaulakys et al. (2006). Recently (see Ruseckas & Kaulakys (2010))
it was shown that power-law statistics (14)-(15) can be derived directly from the SDE, without
relying on the formalization of point processes (namely model discussed in previous section).
This, more general, derivation serves as additional justification of equations and provides
further insights into the origin of power-law statistics.

4. Fractal point process driven by the nonlinear stochastic differential equation

In the previous section starting from the point process (1) we derived the class of nonlinear
SDE (12) or, with limits towards diffusion, (16) . One can consider the appropriate SDE as an
initial model of long-range power-law statistics driving another point process in microscopic
level. In Gontis & Kaulakys (2006; 2007) we proposed to model trading activity in financial
markets as Poisson-like process driven by nonlinear SDE.
From the SDE class (16) one can draw SDE for the number of point events or trades per unit
time interval, n, which would be expressed as

dn =
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η − λ

2
+

m
2

(n0
n
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}

n2η−1dts + nηdWs. (17)

The Poisson-like flow of events can be introduced by conditional probability of inter-event
time, τ,

ϕ(τ|n) = n exp(−nτ). (18)

Note that here τ is measured in scaled time, ts, units and the expectation of instantaneous
inter-event time, for instantaneous n, is

〈τ〉n =

∞∫

0

τϕ(τ|n)dτ =
1
n

. (19)

The long-range PDF of n, time series obtained from the with Eq. (17) related Fokker-Plank
equation, has an explicit form:
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Similarly the long-range PDF of τ can be written as

P(t)
m (τ) = τ

∞∫

0

nϕ(τ|n)P(n)dn =
m

τ0Γ( λ−1
m )

τ

τ0

∞∫

0

x2−λ exp
(
− 1

xm − x
τ

τ0

)
dx, (21)

here we have performed substitution of parameters τ0 = 1
n0

. The integral in (21) has an explicit
form, when m = 1

Pm=1(τ) =
2

τ0Γ(λ − 1)

(
τ

τ0

) λ−1
2

Kλ−3

(
2
√

τ

τ0

)
(22)

Here Kn(z) is the modified Bessel function of the second kind. When τ → ∞, we get

Pm=1(τ) ≈
√

π

τ0Γ(λ − 1)

(
τ

τ0

) λ
2 −

3
4

exp
(
−2

√
τ

τ0

)
. (23)

The integral in (21) can be expressed via special functions, when m = 2. However, we can
obtain asymptotic behavior for small and large τ

τ0
. When τ

τ0
→ ∞, using the method of the

steepest descent we get

P(t)
m=2(τ) =

2
10−λ

3

τ0Γ( λ−1
2 )

√
π

3

(
τ

τ0

) λ−1
3

exp

(
−3

(
τ

2τ0

) 2
3
)

, (24)

while in case of τ
τ0

→ 0 one can obtain

P(t)
m=2(τ) →




2Γ(3−λ)

τ0Γ( λ−1
2 )

(
τ
τ0

)λ−2
1 < λ < 3

Γ( λ−3
2 )

τ0Γ( λ−1
2 )

τ
τ0

λ > 3
(25)

5. Fractal trading activity of financial market driven by the nonlinear stochastic
differential equation

We will investigate how previously introduced modulated Poisson stochastic point process
can be adjusted to the empirical trading activity, defined as number of transactions in the
selected time window τd. In order to obtain the number of events, N, in the selected time
window, τd, one has to integrate the stochastic signal Eq. (17) in the corresponding time
interval. We denote the integrated number of events, N, as

N(t, τd) =
∫ t+τd

t
n(t′)dt′ (26)

and call it the trading activity in case of the financial markets.
Detrended fluctuation analysis Plerou et al. (2000) is one of the ways to analyze the second or-
der statistics related to the autocorrelation of trading activity. The exponents of the detrended
fluctuation analysis, ν, obtained by fits for each of the 1000 US stocks show a relatively nar-
row spread of ν around the mean value ν = 0.85 ± 0.01 Plerou et al. (2000). We use relation
β = 2ν − 1 between the exponents ν of the detrended fluctuation analysis and the exponents
β of the PSD Beran (1994) and in this way define the empirical value of the exponent for

the power spectral density β = 0.7. Our analysis of the Vilnius stock exchange (VSE) data
confirmed that the PSD of trading activity is the same for various liquid stocks even for the
emerging markets Gontis & Kaulakys (2004). The histogram of exponents obtained by fits to
the cumulative distributions of trading activites of 1000 US stocks Plerou et al. (2000) gives the
value of exponent λ = 4.4 ± 0.05 describing the power-law behavior of the trading activity.
Empirical values of β = 0.7 and λ = 4.4 confirm that the time series of the trading activity
in real markets are fractal with the power law statistics. Time series generated by stochastic
process (17) are fractal in the same sense.
Nevertheless, we face serious complications trying to adjust model parameters to the empiri-
cal data of the financial markets. For the pure multiplicative model, setting µ = 1 or η = 3/2,
we have to take λ = 2.7 to get β = 0.7, while empirical λ value being noticeably different
- 4.4, i.e. it is impossible to reproduce the empirical PDF and PSD with the same exponent
of multiplicativity η. We have proposed possible solution of this problem in our publications
Gontis & Kaulakys (2004) deriving PDF for the trading activity N, see Eq. (7). When N � γ−1

one can obtain exactly the required values of λ = 5+ 2α = 4.4 and β = 0.7 for γσ = γ
σ2 = 0.85.

Despite model being able to mimic empirical data under certain conditions, we cannot ac-
cept it as the sufficiently accurate model of the trading activity since the empirical power law
distribution is achieved only for very high values of the trading activity. This discrepancy
provides insight to the mechanism of the power law distribution converging to the normal
distribution through increasing values of the exponent, though empirically observed power
law distribution in wide area of N values cannot be reproduced. Let us notice here that the
desirable power law distribution of the trading activity with the exponent λ = 4.4 may be
generated by the model (17) with η = 5/2. Moreover, only the smallest values of τ or high
values of n contribute to the power spectral density of trading activity Kaulakys et al. (2006).
Thus we feel incentive to combine the stochastic processes with two values of µ or η: (i) µ � 0
or η � 5/2 for the main area of τ and n diffusion and (ii) µ = 1 or η � 3/2 for the lowest
values of τ or highest values of n. Therefore, we introduce a new SDE for n, which includes
two powers of the multiplicative noise,

dn =

[
(

5
2
− λ

2
) +

m
2

(n0
n

)m
]

n4

(nε + 1)2 dt +
n5/2

(nε + 1)
dW, (27)

where a new parameter ε defines crossover between two areas of n diffusion. The correspond-
ing iterative equation for τk in such a case is expressed as

τk+1 = τk +

[
(

λ + 2
2

− η)− m
2

(
τ

τ0

)m]
τk

(ε + τk)2 +
τk

ε + τk
εk, (28)

where εk denotes uncorrelated normally distributed random variable with the zero expecta-
tion and unit variance.
Eqs. (27) and (28) define related stochastic variables n and τ, respectively, and they should
reproduce the long-range statistical properties of the trading activity and of waiting time in
the financial markets. We verify this by the numerical calculations. In Figure 1 we present the
PSD calculated for the equivalent processes (a)-(27) and (b)-(28) (see Gontis & Kaulakys (2004)
for details of calculations). This approach reveals the structure of the PSD in wide range of
frequencies and shows that the model exhibits not one, but two rather different power laws
with the exponents β1 = 0.34 and β2 = 0.74. In Figure 1 we also present the distributions of
trading activity (c) and (d), which now have correct exponents. From many numerical calcu-
lations performed with the multiplicative point processes we can conclude that combination
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Similarly the long-range PDF of τ can be written as
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Here Kn(z) is the modified Bessel function of the second kind. When τ → ∞, we get

Pm=1(τ) ≈
√

π

τ0Γ(λ − 1)

(
τ

τ0

) λ
2 −

3
4

exp
(
−2

√
τ

τ0

)
. (23)

The integral in (21) can be expressed via special functions, when m = 2. However, we can
obtain asymptotic behavior for small and large τ

τ0
. When τ

τ0
→ ∞, using the method of the

steepest descent we get

P(t)
m=2(τ) =

2
10−λ

3

τ0Γ( λ−1
2 )

√
π

3

(
τ

τ0

) λ−1
3

exp

(
−3

(
τ

2τ0

) 2
3
)

, (24)

while in case of τ
τ0

→ 0 one can obtain

P(t)
m=2(τ) →




2Γ(3−λ)

τ0Γ( λ−1
2 )

(
τ
τ0

)λ−2
1 < λ < 3

Γ( λ−3
2 )

τ0Γ( λ−1
2 )

τ
τ0

λ > 3
(25)

5. Fractal trading activity of financial market driven by the nonlinear stochastic
differential equation

We will investigate how previously introduced modulated Poisson stochastic point process
can be adjusted to the empirical trading activity, defined as number of transactions in the
selected time window τd. In order to obtain the number of events, N, in the selected time
window, τd, one has to integrate the stochastic signal Eq. (17) in the corresponding time
interval. We denote the integrated number of events, N, as

N(t, τd) =
∫ t+τd

t
n(t′)dt′ (26)

and call it the trading activity in case of the financial markets.
Detrended fluctuation analysis Plerou et al. (2000) is one of the ways to analyze the second or-
der statistics related to the autocorrelation of trading activity. The exponents of the detrended
fluctuation analysis, ν, obtained by fits for each of the 1000 US stocks show a relatively nar-
row spread of ν around the mean value ν = 0.85 ± 0.01 Plerou et al. (2000). We use relation
β = 2ν − 1 between the exponents ν of the detrended fluctuation analysis and the exponents
β of the PSD Beran (1994) and in this way define the empirical value of the exponent for

the power spectral density β = 0.7. Our analysis of the Vilnius stock exchange (VSE) data
confirmed that the PSD of trading activity is the same for various liquid stocks even for the
emerging markets Gontis & Kaulakys (2004). The histogram of exponents obtained by fits to
the cumulative distributions of trading activites of 1000 US stocks Plerou et al. (2000) gives the
value of exponent λ = 4.4 ± 0.05 describing the power-law behavior of the trading activity.
Empirical values of β = 0.7 and λ = 4.4 confirm that the time series of the trading activity
in real markets are fractal with the power law statistics. Time series generated by stochastic
process (17) are fractal in the same sense.
Nevertheless, we face serious complications trying to adjust model parameters to the empiri-
cal data of the financial markets. For the pure multiplicative model, setting µ = 1 or η = 3/2,
we have to take λ = 2.7 to get β = 0.7, while empirical λ value being noticeably different
- 4.4, i.e. it is impossible to reproduce the empirical PDF and PSD with the same exponent
of multiplicativity η. We have proposed possible solution of this problem in our publications
Gontis & Kaulakys (2004) deriving PDF for the trading activity N, see Eq. (7). When N � γ−1

one can obtain exactly the required values of λ = 5+ 2α = 4.4 and β = 0.7 for γσ = γ
σ2 = 0.85.

Despite model being able to mimic empirical data under certain conditions, we cannot ac-
cept it as the sufficiently accurate model of the trading activity since the empirical power law
distribution is achieved only for very high values of the trading activity. This discrepancy
provides insight to the mechanism of the power law distribution converging to the normal
distribution through increasing values of the exponent, though empirically observed power
law distribution in wide area of N values cannot be reproduced. Let us notice here that the
desirable power law distribution of the trading activity with the exponent λ = 4.4 may be
generated by the model (17) with η = 5/2. Moreover, only the smallest values of τ or high
values of n contribute to the power spectral density of trading activity Kaulakys et al. (2006).
Thus we feel incentive to combine the stochastic processes with two values of µ or η: (i) µ � 0
or η � 5/2 for the main area of τ and n diffusion and (ii) µ = 1 or η � 3/2 for the lowest
values of τ or highest values of n. Therefore, we introduce a new SDE for n, which includes
two powers of the multiplicative noise,

dn =

[
(

5
2
− λ

2
) +

m
2

(n0
n

)m
]

n4

(nε + 1)2 dt +
n5/2

(nε + 1)
dW, (27)

where a new parameter ε defines crossover between two areas of n diffusion. The correspond-
ing iterative equation for τk in such a case is expressed as

τk+1 = τk +

[
(

λ + 2
2

− η)− m
2

(
τ

τ0

)m]
τk

(ε + τk)2 +
τk

ε + τk
εk, (28)

where εk denotes uncorrelated normally distributed random variable with the zero expecta-
tion and unit variance.
Eqs. (27) and (28) define related stochastic variables n and τ, respectively, and they should
reproduce the long-range statistical properties of the trading activity and of waiting time in
the financial markets. We verify this by the numerical calculations. In Figure 1 we present the
PSD calculated for the equivalent processes (a)-(27) and (b)-(28) (see Gontis & Kaulakys (2004)
for details of calculations). This approach reveals the structure of the PSD in wide range of
frequencies and shows that the model exhibits not one, but two rather different power laws
with the exponents β1 = 0.34 and β2 = 0.74. In Figure 1 we also present the distributions of
trading activity (c) and (d), which now have correct exponents. From many numerical calcu-
lations performed with the multiplicative point processes we can conclude that combination
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of two power laws of spectral density arise only when the multiplicative noise is a crossover
of two power laws as in Eqs. (27) and (28).
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Fig. 1. (a) PSD, S( f ), of the τ dependent flow generated by Eq. (28), (b) S( f ) calculated from n
time series generated by Eq. (27), (c) PDF, P(N), of number of trades, obtained by integrating
signal, within time window of τd = 100s, N, generated by Eq. (28), (d) corresponding inverse
cumulative distribution, P>(N), of N. Statistical properties are represented by gray curves,
while black lines approximate their power laws: (a) and (b) black lines give approximation
S( f ) ∼ 1/ f β1,2 with β1 = 0.34 and β2 = 0.74, (c) black line gives approximation P(N) ∼ N−λ

with exponent λ = 4.3, (d) black line gives approximation P>(N) ∼ N−λ with exponent
λ = 3.3. Statistical properties were obtained using corresponding model parameter values:
λ = 4.3; ε = 0.07; τ0 = 1; m = 6.

Thus as of now we have introduced the complete set of equations defining the stochastic
model of the trading activity in the financial markets. We have proposed this model follow-
ing our growing interest in the stochastic fractal point processes Gontis & Kaulakys (2004);
Kaulakys et al. (2005; 2006). Our objective to reproduce, in details, statistics of trading activity
is the cause for rather complicated form of the SDE (27) and thus there is low expectation of
analytical results. Therefore we focus on the numerical analysis and direct comparison of the
model with the empirical data.
In order to achieve general description of statistics for different stocks we introduce the scaling
into Eq. (27) utilizing scaled rate x = n/n0 and ε′ = εn0. After the substitution Eq. (27)
becomes

dx =

[
(

5
2
− λ

2
) +

m
2

x−m
]

x4

(xε′ + 1)2 dt +
x5/2

(xε′ + 1)
dW. (29)

We have eliminated parameter n0 as it is specific for each stock. By doing so we also de-
crease number of model parameters to three, which must be defined from the empirical data
of trading activity in the financial markets.

One can solve Eq. (29) using the method of discretization. Thus we introduce variable step
of integration ∆t = hk = κ2/xk, and the differential equation (29) transforms into the set of
difference equations

xk+1 = xk + κ2
[
(

5
2
− λ

2
) +

m
2

x−m
k

]
x3

k
(xkε′ + 1)2 + κ

x2
k

(xkε′ + 1)
εk, (30)

tk+1 = tk + κ2/xk (31)

with κ � 1 being small parameter and εk defining Gaussian noise with zero mean and unit
variance .
With the substitution of variables, namely τ = 1/n, one can transform Eq. (27) into

dτ =

[
λ − 3

2
− m

2

(
τ

τ0

)m]
1

(ε + τ)2 dt +
√

τ

ε + τ
dW (32)

with limiting time τ0 = 1/n0. Further we argue that this form of driving SDE is more suitable
for the numerical analysis. First of all, the powers of variables in this equation are lower, but
the main advantage is that the Poissonian-like process can be included into the procedure of
numerical solution of SDE. As we did with SDE for n we should also introduce a scaling of
Eq. (32). It is done by defining the non-dimensional scaled time ts = t/τ0, scaled inter-trade
time y = τ/τ0 and ε′ = ε/τ0. After those transformations Eq. (32) becomes

dy =
1
τ2

0

[
λ − 3

2
− m

2
ym

]
1

(ε′ + y)2 dts +
1
τ0

√
y

ε′ + y
dWs. (33)

As in the real discrete market trading we can choose the instantaneous inter-trade time yk
as a step of numerical calculations, hk = yk, or even more precisely as the random variables
with the exponential distribution P(hk) = 1/yk exp(−hk/yk). We obtain iterative equation
resembling tick by tick trades in the financial markets,

yk+1 = yk +
1
τ2

0

[
λ − 3

2
− m

2
ym

k

]
hk

(ε′ + yk)2 +
1
τ0

√
ykhk

ε′ + yk
εk. (34)

In this numerical procedure the sequence of 1/yk gives the modulating rate, n, and the se-
quence of hk is the Poissonian-like inter-trade times. Seeking higher precision one can use the
Milshtein approximation for Eq. (33) instead of Eq. (34).

6. Analysis of empirical stock trading data

Previously, see Gontis et al. (2008), we have analyzed the tick by tick trades of 26 stocks on
NYSE traded for 27 months from January, 2005. In this chapter we will briefly discuss main
results and valuable conclusions, providing important insights, of the empirical analysis pre-
sented in Gontis et al. (2008). Empirical analysis is very important as starting from it we can
adjust the parameters of the Poisson-like process driven by SDE Eq. (27) or Eq. (34) to numer-
ically reproduce the empirical trading statistics.
An example of the empirical histogram of τk and N(t, τd) and the PSD of IBM trade sequence
are shown on Figure 2. The histograms and PSD of the sequences of trades for all 26 stocks are
similar to IBM shown on Fig. 2. From the histogram, P(τk), we can obtained model parameter
τ0 value for every stock. One can define the exponent λ′ from the power-law tail P(N) ∼ N−λ′
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of two power laws of spectral density arise only when the multiplicative noise is a crossover
of two power laws as in Eqs. (27) and (28).
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Fig. 1. (a) PSD, S( f ), of the τ dependent flow generated by Eq. (28), (b) S( f ) calculated from n
time series generated by Eq. (27), (c) PDF, P(N), of number of trades, obtained by integrating
signal, within time window of τd = 100s, N, generated by Eq. (28), (d) corresponding inverse
cumulative distribution, P>(N), of N. Statistical properties are represented by gray curves,
while black lines approximate their power laws: (a) and (b) black lines give approximation
S( f ) ∼ 1/ f β1,2 with β1 = 0.34 and β2 = 0.74, (c) black line gives approximation P(N) ∼ N−λ

with exponent λ = 4.3, (d) black line gives approximation P>(N) ∼ N−λ with exponent
λ = 3.3. Statistical properties were obtained using corresponding model parameter values:
λ = 4.3; ε = 0.07; τ0 = 1; m = 6.

Thus as of now we have introduced the complete set of equations defining the stochastic
model of the trading activity in the financial markets. We have proposed this model follow-
ing our growing interest in the stochastic fractal point processes Gontis & Kaulakys (2004);
Kaulakys et al. (2005; 2006). Our objective to reproduce, in details, statistics of trading activity
is the cause for rather complicated form of the SDE (27) and thus there is low expectation of
analytical results. Therefore we focus on the numerical analysis and direct comparison of the
model with the empirical data.
In order to achieve general description of statistics for different stocks we introduce the scaling
into Eq. (27) utilizing scaled rate x = n/n0 and ε′ = εn0. After the substitution Eq. (27)
becomes

dx =

[
(

5
2
− λ

2
) +

m
2

x−m
]

x4

(xε′ + 1)2 dt +
x5/2

(xε′ + 1)
dW. (29)

We have eliminated parameter n0 as it is specific for each stock. By doing so we also de-
crease number of model parameters to three, which must be defined from the empirical data
of trading activity in the financial markets.

One can solve Eq. (29) using the method of discretization. Thus we introduce variable step
of integration ∆t = hk = κ2/xk, and the differential equation (29) transforms into the set of
difference equations

xk+1 = xk + κ2
[
(

5
2
− λ

2
) +

m
2

x−m
k

]
x3

k
(xkε′ + 1)2 + κ

x2
k

(xkε′ + 1)
εk, (30)

tk+1 = tk + κ2/xk (31)

with κ � 1 being small parameter and εk defining Gaussian noise with zero mean and unit
variance .
With the substitution of variables, namely τ = 1/n, one can transform Eq. (27) into

dτ =

[
λ − 3

2
− m

2

(
τ

τ0

)m]
1

(ε + τ)2 dt +
√

τ

ε + τ
dW (32)

with limiting time τ0 = 1/n0. Further we argue that this form of driving SDE is more suitable
for the numerical analysis. First of all, the powers of variables in this equation are lower, but
the main advantage is that the Poissonian-like process can be included into the procedure of
numerical solution of SDE. As we did with SDE for n we should also introduce a scaling of
Eq. (32). It is done by defining the non-dimensional scaled time ts = t/τ0, scaled inter-trade
time y = τ/τ0 and ε′ = ε/τ0. After those transformations Eq. (32) becomes

dy =
1
τ2

0

[
λ − 3

2
− m

2
ym

]
1

(ε′ + y)2 dts +
1
τ0

√
y

ε′ + y
dWs. (33)

As in the real discrete market trading we can choose the instantaneous inter-trade time yk
as a step of numerical calculations, hk = yk, or even more precisely as the random variables
with the exponential distribution P(hk) = 1/yk exp(−hk/yk). We obtain iterative equation
resembling tick by tick trades in the financial markets,

yk+1 = yk +
1
τ2

0

[
λ − 3

2
− m

2
ym

k

]
hk

(ε′ + yk)2 +
1
τ0

√
ykhk

ε′ + yk
εk. (34)

In this numerical procedure the sequence of 1/yk gives the modulating rate, n, and the se-
quence of hk is the Poissonian-like inter-trade times. Seeking higher precision one can use the
Milshtein approximation for Eq. (33) instead of Eq. (34).

6. Analysis of empirical stock trading data

Previously, see Gontis et al. (2008), we have analyzed the tick by tick trades of 26 stocks on
NYSE traded for 27 months from January, 2005. In this chapter we will briefly discuss main
results and valuable conclusions, providing important insights, of the empirical analysis pre-
sented in Gontis et al. (2008). Empirical analysis is very important as starting from it we can
adjust the parameters of the Poisson-like process driven by SDE Eq. (27) or Eq. (34) to numer-
ically reproduce the empirical trading statistics.
An example of the empirical histogram of τk and N(t, τd) and the PSD of IBM trade sequence
are shown on Figure 2. The histograms and PSD of the sequences of trades for all 26 stocks are
similar to IBM shown on Fig. 2. From the histogram, P(τk), we can obtained model parameter
τ0 value for every stock. One can define the exponent λ′ from the power-law tail P(N) ∼ N−λ′
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Fig. 2. Trading statistics of IBM stocks. (a) Empirical histogram of the inter-trade time τk
sequence, P(τ); (b) histogram of trading activity, P(N), calculated in the time interval τd =
600 s; (c) PSD, S( f ), of the sequence of trades (gray curve), straight black lines approximate
PSD S( f ) ∼ 1/ f β1,2 with β1 = 0.33 and β2 = 0.94.

of N histogram. The PSD exhibits two scaling exponents β1 and β2 if approximated by power-
law S( f ) ∼ f−β1,2 .
Empirical values of β1 and β2 fluctuate around 0.3 and 0.9, respectively, same behavior is
observed in different stochastic model realizations. The crossover frequency fc of two power-
laws exhibits some fluctuations around the value fc ≈ 10−3 Hz as well. One can observe
considerable fluctuations of the exponent λ′ around the mean value 4.4. We would like to
note that the value of histogram exponent, λ′, for integrated trading activity N is higher than
for n, as λ′ increases with higher values of time scale τd.
From the point of view of the proposed model parameter τ0 is specific for every stock and re-
flects the average trading intensity in the calm periods of stock exchange. In previous section
we have shown that one can eliminate these specific differences in the model by scaling trans-
form of Eq. (32) arriving to the nondimensional SDE (33) and its iterative form (34). These
equations and parameters σ′ = σ/τ0, λ, ε′ and m = 2 define model, which has to reproduce,
in details, power-law statistics of the trading activity in the financial markets. From the anal-
ysis based on the research of fractal stochastic point processes Gontis & Kaulakys (2004; 2006;
2007); Kaulakys et al. (2005; 2006) and by fitting the numerical calculations to the empirical
data we arrive at the conclusion that model parameters should be set as σ′ = 0.006, λ = 4.3,
ε′ = 0.05 in order to achieve best results. In Figure 3 we have presented statistical properties
obtained from our model using aforementioned parameter values - PDF of the sequence of
τk = hk, (a), and the PSD of the sequence of trades as point events, (b).
For every selected stock one can easily scale the model sequence of inter-trade times τk = hk
by empirically defined τ0 to get the model sequence of trades for this stock. One can scale the
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Fig. 3. Distribution of the Poisson-like inter-event times τk = hk, (a), and power spectrum, (b),
of the sequence of point events calculated from Eq. (34) with the adjusted parameters m = 2,
σ′ = 0.006, λ = 4.3, ε′ = 0.05, τ0 = 1.

10
-8

10
-6

10
-4

10
-2

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

P
(

τ)

τ

(a)

10
-8

10
-6

10
-4

10
-2

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

P
(

τ)

τ

(b)

Fig. 4. Distribution of inter-trade times, τ, for (a) IBM and (b) MMM stocks; empirical his-
togram, gray curve, modeled Poisson-like distribution, black solid curve, distribution of driv-
ing τ = yk in Eq. (34), black dashed curve. Model parameters are the same as in Fig. 3. τ0 = 5s
for IBM and τ0 = 7.25s for MMM stocks.

model power spectrum S( f ) by 1/τ2
0 for getting the model power spectrum Sstock( f ) for the

selected stock Sstock( f ) = S( f )/τ2
0 .

Previously we have proposed the iterative Eq. (34) as quite accurate stochastic model of trad-
ing activity in the financial markets. Nevertheless, one has to admit that real trading activity
often has considerable trend as number of shares traded and the whole activity of the markets
increases. This might have considerable influence on the empirical long-range distributions
and power spectrum of the stocks in consideration. The trend has to be eliminated from the
empirical data for the detailed comparison with the model. Only few stocks from the selected
list have stable trading activity in the considered period.
In Figure 4, Figure 5 and Figure 6 we compare the model statistical properties with the em-
pirical statistics of the stocks with stable trading activity. As we show in Figure 4, the model
Poisson-like distribution can be easily adjusted to the empirical histogram of inter-trade time,
with τ0 = 5 s for IBM trade sequence and with τ0 = 7.25 s for MMM trading. The comparison
with the empirical data is limited by the available accuracy, 1 s, of stock trading time tk. The
probability distribution of driving τ = yk Eq. (34), dashed line, illustrates different market
behavior in the periods of the low and high trading activity. The Poissonian nature of the
stochastic point process hides these differences by considerable smoothing of the PDF. In Fig-
ure 5 one can see that the long-range memory properties of the trading activity reflected in
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Fig. 2. Trading statistics of IBM stocks. (a) Empirical histogram of the inter-trade time τk
sequence, P(τ); (b) histogram of trading activity, P(N), calculated in the time interval τd =
600 s; (c) PSD, S( f ), of the sequence of trades (gray curve), straight black lines approximate
PSD S( f ) ∼ 1/ f β1,2 with β1 = 0.33 and β2 = 0.94.

of N histogram. The PSD exhibits two scaling exponents β1 and β2 if approximated by power-
law S( f ) ∼ f−β1,2 .
Empirical values of β1 and β2 fluctuate around 0.3 and 0.9, respectively, same behavior is
observed in different stochastic model realizations. The crossover frequency fc of two power-
laws exhibits some fluctuations around the value fc ≈ 10−3 Hz as well. One can observe
considerable fluctuations of the exponent λ′ around the mean value 4.4. We would like to
note that the value of histogram exponent, λ′, for integrated trading activity N is higher than
for n, as λ′ increases with higher values of time scale τd.
From the point of view of the proposed model parameter τ0 is specific for every stock and re-
flects the average trading intensity in the calm periods of stock exchange. In previous section
we have shown that one can eliminate these specific differences in the model by scaling trans-
form of Eq. (32) arriving to the nondimensional SDE (33) and its iterative form (34). These
equations and parameters σ′ = σ/τ0, λ, ε′ and m = 2 define model, which has to reproduce,
in details, power-law statistics of the trading activity in the financial markets. From the anal-
ysis based on the research of fractal stochastic point processes Gontis & Kaulakys (2004; 2006;
2007); Kaulakys et al. (2005; 2006) and by fitting the numerical calculations to the empirical
data we arrive at the conclusion that model parameters should be set as σ′ = 0.006, λ = 4.3,
ε′ = 0.05 in order to achieve best results. In Figure 3 we have presented statistical properties
obtained from our model using aforementioned parameter values - PDF of the sequence of
τk = hk, (a), and the PSD of the sequence of trades as point events, (b).
For every selected stock one can easily scale the model sequence of inter-trade times τk = hk
by empirically defined τ0 to get the model sequence of trades for this stock. One can scale the
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Fig. 3. Distribution of the Poisson-like inter-event times τk = hk, (a), and power spectrum, (b),
of the sequence of point events calculated from Eq. (34) with the adjusted parameters m = 2,
σ′ = 0.006, λ = 4.3, ε′ = 0.05, τ0 = 1.
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Fig. 4. Distribution of inter-trade times, τ, for (a) IBM and (b) MMM stocks; empirical his-
togram, gray curve, modeled Poisson-like distribution, black solid curve, distribution of driv-
ing τ = yk in Eq. (34), black dashed curve. Model parameters are the same as in Fig. 3. τ0 = 5s
for IBM and τ0 = 7.25s for MMM stocks.

model power spectrum S( f ) by 1/τ2
0 for getting the model power spectrum Sstock( f ) for the

selected stock Sstock( f ) = S( f )/τ2
0 .

Previously we have proposed the iterative Eq. (34) as quite accurate stochastic model of trad-
ing activity in the financial markets. Nevertheless, one has to admit that real trading activity
often has considerable trend as number of shares traded and the whole activity of the markets
increases. This might have considerable influence on the empirical long-range distributions
and power spectrum of the stocks in consideration. The trend has to be eliminated from the
empirical data for the detailed comparison with the model. Only few stocks from the selected
list have stable trading activity in the considered period.
In Figure 4, Figure 5 and Figure 6 we compare the model statistical properties with the em-
pirical statistics of the stocks with stable trading activity. As we show in Figure 4, the model
Poisson-like distribution can be easily adjusted to the empirical histogram of inter-trade time,
with τ0 = 5 s for IBM trade sequence and with τ0 = 7.25 s for MMM trading. The comparison
with the empirical data is limited by the available accuracy, 1 s, of stock trading time tk. The
probability distribution of driving τ = yk Eq. (34), dashed line, illustrates different market
behavior in the periods of the low and high trading activity. The Poissonian nature of the
stochastic point process hides these differences by considerable smoothing of the PDF. In Fig-
ure 5 one can see that the long-range memory properties of the trading activity reflected in
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Fig. 5. Modeled, black curves, and empirical, gray curves, PSD of trading activity, N, for (a)
IBM and (b) MMM stocks. Parameters are the same as in Fig. 3. τ0 = 5s for IBM and τ0 = 7.25s
for MMM stocks.

10
-8

10
-6

10
-4

10
-2

10
1

10
2

10
3

P
(
N
)

N

(a)

10
-8

10
-6

10
-4

10
-2

10
1

10
2

10
3

P
(
N
)

N

(b)

Fig. 6. Modeled, black curve, and empirical, gray curve, PDF of trading activity, N, for (a)
IBM and (b) MMM stocks in the time interval τd = 300s. Parameters are the same as in Fig. 3.
τ0 = 5s for IBM and τ0 = 7.25s for MMM stocks.

the PSD are universal and arise from the scaled driving SDE (29) and (33). One can obtain the
PSD of the selected stock’s trading sequence by scaling model PSD, Figure 3 (b), by 1/τ2

0 . The
PDF of integrated trading activity N is more sensitive to the market fluctuations. Even the
intraday fluctuations of market activity, which are not included in this model, make consider-
able influence on PDF of N for low values. Nevertheless, as we demonstrate in Figure 6, the
model is able to reproduce the power-law tails very well.
In this section we have shown results of the empirical analysis of stocks traded on NYSE. We
have used those results as a basis for adjustment of the previously introduced trading activity
model parameters. Aforementioned model is based on Poisson-like process, which we have
introduced as scalable in previous sections, similar scalability as we see in this section is an
inherent feature of actual financial markets.
A new form of scaled equations provides the universal description with the same parameters
applicable for all stocks. The proposed new form of the continuous stochastic differential
equation enabled us to reproduce the main statistical properties of the trading activity and
waiting time, observable in the financial markets. In proposed model the fractured power-
law distribution of spectral density with two different exponents arise. This is in agreement
with the empirical power spectrum of the trading activity and volatility and implies that the
market behavior may be dependent on the level of activity. One can observe at least two stages
in market behavior: calm and excited. Ability to reproduce empirical PDF of inter-trade time

and trading activity as well as the power spectrum in very detail for various stocks provides
a background for further stochastic modeling of volatility.

7. The stochastic model with a q-Gaussian PDF and power spectrum S( f ) ∼ 1/ f β

In section (3) we have introduced the class of SDE (12), (16) exhibiting power-law statistics
and proposed Poisson like process modulated by this type of SDE. The latter serves as an
appropriate model of trading activity in the financial markets Gontis et al. (2008). In this
section we generalize the earlier proposed nonlinear SDE within the non-extensive statistical
mechanics framework, Tsallis (2009), to reproduce the long-range statistics with a q-Gaussian
PDF and power spectrum S( f ) ∼ 1/ f β.
The q-Gaussian PDF of stochastic variable r with variance σ2

q can be written as

P(r) = Aq expq

(
− r2

(3 − q)σ2
q

)
, (35)

here Aq is a constant of normalization, while q defines the power law part of the distribution.
P(r) is introduced through the variational principle applied to the generalized entropy Tsallis
(2009), which is defined as

Sq = k
1 −

∫
[p(r)]qdr

1 − q
.

The q-exponential of variable x is defined as

expq(x) = (1 + (1 − q)x)
1

1−q (36)

here we assume that the q-mean µq = 0. With some transformation of parameters σq and q,
namely

λ =
2

q − 1
, r0 = σq

√
3 − q
q − 1

,

we can rewrite the q-Gaussian PDF in a more transparent form:

Pr0,λ(r) =
Γ(λ/2)√

πr0Γ(λ/2 − 1/2)

(
r2

0
r2

0 + r2

) λ
2

. (37)

Looking for the appropriate form of the SDE we start from the general case of a multiplicative
equation in the Ito convention with Wiener process W:

dr = a(r)dt + b(r)dW. (38)

If the stationary distribution of SDE (38) is the q-Gaussian (37), then the coefficients of drift,
a(r), and diffusion, b(r), in the SDE are related as follows Gardiner (1986):

a(r) = −λ

2
r

r2
0 + r2

b(r)2 + b(r)
db(r)

dr
. (39)

From our previous experience modeling one-over-f noise and trading activity in financial mar-
kets Gontis & Kaulakys (2004); Kaulakys et al. (2005), building nonlinear stochastic differen-
tial equations exhibiting power law statistics Kaulakys et al. (2006); Kaulakys & Alaburda
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Fig. 5. Modeled, black curves, and empirical, gray curves, PSD of trading activity, N, for (a)
IBM and (b) MMM stocks. Parameters are the same as in Fig. 3. τ0 = 5s for IBM and τ0 = 7.25s
for MMM stocks.
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Fig. 6. Modeled, black curve, and empirical, gray curve, PDF of trading activity, N, for (a)
IBM and (b) MMM stocks in the time interval τd = 300s. Parameters are the same as in Fig. 3.
τ0 = 5s for IBM and τ0 = 7.25s for MMM stocks.

the PSD are universal and arise from the scaled driving SDE (29) and (33). One can obtain the
PSD of the selected stock’s trading sequence by scaling model PSD, Figure 3 (b), by 1/τ2

0 . The
PDF of integrated trading activity N is more sensitive to the market fluctuations. Even the
intraday fluctuations of market activity, which are not included in this model, make consider-
able influence on PDF of N for low values. Nevertheless, as we demonstrate in Figure 6, the
model is able to reproduce the power-law tails very well.
In this section we have shown results of the empirical analysis of stocks traded on NYSE. We
have used those results as a basis for adjustment of the previously introduced trading activity
model parameters. Aforementioned model is based on Poisson-like process, which we have
introduced as scalable in previous sections, similar scalability as we see in this section is an
inherent feature of actual financial markets.
A new form of scaled equations provides the universal description with the same parameters
applicable for all stocks. The proposed new form of the continuous stochastic differential
equation enabled us to reproduce the main statistical properties of the trading activity and
waiting time, observable in the financial markets. In proposed model the fractured power-
law distribution of spectral density with two different exponents arise. This is in agreement
with the empirical power spectrum of the trading activity and volatility and implies that the
market behavior may be dependent on the level of activity. One can observe at least two stages
in market behavior: calm and excited. Ability to reproduce empirical PDF of inter-trade time

and trading activity as well as the power spectrum in very detail for various stocks provides
a background for further stochastic modeling of volatility.

7. The stochastic model with a q-Gaussian PDF and power spectrum S( f ) ∼ 1/ f β

In section (3) we have introduced the class of SDE (12), (16) exhibiting power-law statistics
and proposed Poisson like process modulated by this type of SDE. The latter serves as an
appropriate model of trading activity in the financial markets Gontis et al. (2008). In this
section we generalize the earlier proposed nonlinear SDE within the non-extensive statistical
mechanics framework, Tsallis (2009), to reproduce the long-range statistics with a q-Gaussian
PDF and power spectrum S( f ) ∼ 1/ f β.
The q-Gaussian PDF of stochastic variable r with variance σ2

q can be written as

P(r) = Aq expq

(
− r2

(3 − q)σ2
q

)
, (35)

here Aq is a constant of normalization, while q defines the power law part of the distribution.
P(r) is introduced through the variational principle applied to the generalized entropy Tsallis
(2009), which is defined as

Sq = k
1 −

∫
[p(r)]qdr

1 − q
.

The q-exponential of variable x is defined as

expq(x) = (1 + (1 − q)x)
1

1−q (36)

here we assume that the q-mean µq = 0. With some transformation of parameters σq and q,
namely

λ =
2

q − 1
, r0 = σq

√
3 − q
q − 1

,

we can rewrite the q-Gaussian PDF in a more transparent form:

Pr0,λ(r) =
Γ(λ/2)√

πr0Γ(λ/2 − 1/2)

(
r2

0
r2

0 + r2

) λ
2

. (37)

Looking for the appropriate form of the SDE we start from the general case of a multiplicative
equation in the Ito convention with Wiener process W:

dr = a(r)dt + b(r)dW. (38)

If the stationary distribution of SDE (38) is the q-Gaussian (37), then the coefficients of drift,
a(r), and diffusion, b(r), in the SDE are related as follows Gardiner (1986):

a(r) = −λ

2
r

r2
0 + r2

b(r)2 + b(r)
db(r)

dr
. (39)

From our previous experience modeling one-over-f noise and trading activity in financial mar-
kets Gontis & Kaulakys (2004); Kaulakys et al. (2005), building nonlinear stochastic differen-
tial equations exhibiting power law statistics Kaulakys et al. (2006); Kaulakys & Alaburda



Stochastic Control572

(2009), described here in previous sections, we know that processes with power spectrum
S( f ) ∼ 1/ f β can be obtained using the multiplicative term b(r) ∼ rη or even a slightly modi-
fied form (r2

0 + r2)
η
2 . Therefore, we choose the term b(r) as

b(r) = σ(r2
0 + r2)

η
2 (40)

and, consequently, by Eq. (39) we arrive at

a(r) = σ2
(

η − λ

2

)
(r2

0 + r2)η−1r. (41)

Having defined drift, Eq. (41), and diffusion, Eq. (40), terms one obtains this SDE:

dr = σ2
(

η − λ

2

)
(r2

0 + r2)η−1rdt + σ(r2
0 + r2)

η
2 dW. (42)

Note that in the simple case η = 1 Eq. (42) coincides with the model presented in the article
Queiros (2007) with

b(r) =

√
θ

P(r)
2
λ

, a(r) = − θ

r2
0

(
λ

2
− 1

)
r (43)

Further we will investigate higher values of η in order to cache long-range memory properties
of the absolute return in the financial markets. First of all, let us scale our variables

x =
r
r0

, ts = σ2r2(η−1)
0 t (44)

to reduce the number of parameters and to get simplified equations. Then SDE

dx =

(
η − λ

2

)
(1 + x2)η−1xdts + (1 + x2)

η
2 dWs (45)

describes a stochastic process with a stationary q-Gaussian distribution

Pλ(x) =
1√
π

Γ(λ/2)
Γ(λ/2 − 1/2)

(
1

1 + x2

) λ
2

(46)

and the power spectral density of the signal S( f )

S( f ) =
A
f β

, β = 1 +
λ − 3

2(η − 1)
(47)

A =
(λ − 1)Γ(β − 1/2)

2
√

π(η − 1) sin(πβ/2)

(
2 + λ − 2η

2π

)β−1
(48)

with 0.5 < β < 2, 4 − η < λ < 1 + 2η and η > 1. Eqs. (47-48) were first derived for the mul-
tiplicative point process in Gontis & Kaulakys (2004); Kaulakys et al. (2005) and generalized
for the nonlinear SDE (42) in Kaulakys et al. (2006); Kaulakys & Alaburda (2009). Although
Eq. (42) coincides with Eq. (15) in ref. Kaulakys & Alaburda (2009) only for high values of
the variable r � r0, these are the values responsible for the PSD. Note that the frequency f in
equation (47) is the scaled frequency matching the scaled time ts (44). The scaled equations
(44)-(48) define a stochastic model with two parameters λ and η responsible for the power

law behavior of the signal PDF and power spectrum. Numerical calculations with Eq. (45)
confirm analytical formulas (46-48) (see ref. Kaulakys & Alaburda (2009)).
We will need a more sophisticated version of the SDE to reproduce a stochastic process with a
fractured PSD of the absolute return, which is observable in financial markets. Having in mind
the statistics of the stochastic model (45) defined by Eqs. (46)-(48) and numerical modeling
with more sophisticated versions of the SDE (27),(29), we propose an equation combining two
powers of multiplicativity

dx =

(
η − λ

2
−

(
x

xmax

)2
)

(1 + x2)η−1

((1 + x2)
1
2 ε + 1)2

xdts +
(1 + x2)

η
2

(1 + x2)
1
2 ε + 1

dWs. (49)

In modified SDE (49) model parameter ε divides area of x diffusion into two different power
law regions to ensure the PSD of |x| with two power law exponents. A similar procedure has
been introduced in the model of trading activity Gontis et al. (2008), see previous sections.
This procedure provides an approach to the market with behavior dependent on the level
of activity and exhibiting two stages: calm and excited. Thus it is not surprising that Eq.
(49) models the stochastic return x with two power law statistics, i.e., the PDF and the PSD,
reproducing the empirical power law exponents of the trading return in the financial markets.
At the same time, via the term ( x

xmax
)2 we introduce the exponential diffusion restriction for

the high values of x as the markets in the excited stage operate on the limit of non-stationarity.
One can solve Eq. (49) in the same manner we did solve trading activity related SDE (29) and
(33). Thus we introduce the variable step of numerical integration

hk = κ2 ((x2
k + 1)

1
2 ε + 1)2

(x2
k + 1)η−1 ,

the differential equation (49) transforms into the set of difference equations

xk+1 = xk + κ2
(

η − λ

2
− (xεη)2

)
xk + κ(x2

k + 1)
1
2 εk (50)

tk+1 = tk + κ2 ((x2
k + 1)

1
2 ε + 1)2

(x2
k + 1)η−1 (51)

The continuous stochastic variable x does not include any time scale as the return defined in
a time window τ should. Knowing that the return is an additive variable and depends on the
number of transactions in a similar way to trading activity, we define the scaled return X in
the time period τ as the integral of the continuous stochastic variable X =

∫ t+τ
t x(ts)/τ dts.

Note that τ here is measured in scaled time units Eq. (44) though relation between model and
empirical time series scales can be established and is very useful then adjusting model and
empirical statistical properties.
It is worth recalling that integration of the signal in the time interval τ does not change the
behavior of the power spectrum for the frequencies f << 1

τ . This is just the case we are
interested in for the long-range memory analysis of financial variables and we can expect Eqs.
(47-48) to work for the stochastic variable X as well.
We have also previously analyzed the influence of signal integration on the PDF in previous
modeling of trading activity (see Gontis & Kaulakys (2004)). Integration of the nonlinear
stochastic signal increases the exponent of the power law tails in the area of the highest values
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Eq. (42) coincides with Eq. (15) in ref. Kaulakys & Alaburda (2009) only for high values of
the variable r � r0, these are the values responsible for the PSD. Note that the frequency f in
equation (47) is the scaled frequency matching the scaled time ts (44). The scaled equations
(44)-(48) define a stochastic model with two parameters λ and η responsible for the power

law behavior of the signal PDF and power spectrum. Numerical calculations with Eq. (45)
confirm analytical formulas (46-48) (see ref. Kaulakys & Alaburda (2009)).
We will need a more sophisticated version of the SDE to reproduce a stochastic process with a
fractured PSD of the absolute return, which is observable in financial markets. Having in mind
the statistics of the stochastic model (45) defined by Eqs. (46)-(48) and numerical modeling
with more sophisticated versions of the SDE (27),(29), we propose an equation combining two
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In modified SDE (49) model parameter ε divides area of x diffusion into two different power
law regions to ensure the PSD of |x| with two power law exponents. A similar procedure has
been introduced in the model of trading activity Gontis et al. (2008), see previous sections.
This procedure provides an approach to the market with behavior dependent on the level
of activity and exhibiting two stages: calm and excited. Thus it is not surprising that Eq.
(49) models the stochastic return x with two power law statistics, i.e., the PDF and the PSD,
reproducing the empirical power law exponents of the trading return in the financial markets.
At the same time, via the term ( x

xmax
)2 we introduce the exponential diffusion restriction for

the high values of x as the markets in the excited stage operate on the limit of non-stationarity.
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The continuous stochastic variable x does not include any time scale as the return defined in
a time window τ should. Knowing that the return is an additive variable and depends on the
number of transactions in a similar way to trading activity, we define the scaled return X in
the time period τ as the integral of the continuous stochastic variable X =

∫ t+τ
t x(ts)/τ dts.

Note that τ here is measured in scaled time units Eq. (44) though relation between model and
empirical time series scales can be established and is very useful then adjusting model and
empirical statistical properties.
It is worth recalling that integration of the signal in the time interval τ does not change the
behavior of the power spectrum for the frequencies f << 1

τ . This is just the case we are
interested in for the long-range memory analysis of financial variables and we can expect Eqs.
(47-48) to work for the stochastic variable X as well.
We have also previously analyzed the influence of signal integration on the PDF in previous
modeling of trading activity (see Gontis & Kaulakys (2004)). Integration of the nonlinear
stochastic signal increases the exponent of the power law tails in the area of the highest values
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Fig. 7. (a) The numerically calculated PDF of |X| = |
∫ t+τ

t x(t)/τ dts| from Eq. (51) (black
line), in comparison with the theoretical distribution 2P(x) Eq. (46) (gray line), and (b) the
numerically calculated PSD of |X|. Model parameters are set as follows: η = 5/2, λ = 3.6,
τ = 0.0001 and ε = 0.01.

of the integrated signal. This hides fractured behavior of the X PDF, which arises for x as a
consequence of the two powers in the multiplicative term of Eq. (49).
In Fig. 12 we demonstrate (a) the numerically calculated PDF of |X| in comparison with the
theoretical distribution 2P(x) Eq. (46) and (b) the numerically calculated power spectrum of
|X| with parameters appropriate for reproducing statistics for the absolute return in financial
markets.

8. The double stochastic model of return in financial market

Recently we proposed the double stochastic model of return in financial markets Gontis et al.
(2010) based on the nonlinear SDE (49). The main advantage of proposed model is its ability
to reproduce power spectral density of absolute return as well as long-term PDF of return. In
the model proposed we assume that the empirical return rt can be written as instantaneous
q-Gaussian fluctuations ξ with a slowly diffusing parameter r0 and constant λ = 5

rt = ξ{r0(t), λ}. (52)

q-Gaussian distribution of ξ defining the random instantaneous rt can be written as follows:

Pr0,λ(ξ) =
Γ( λ

2 )

r0
√

πΓ( λ
2 − 1

2 )

(
r2

0
r2

0 + ξ2

)λ/2

, (53)

with parameter r0(t) serving as a measure of instantaneous volatility of return fluctuations.
We will model stochastic r0(t) in the similar way as trading activity in it’s stochastic model. In
this case nonlinear SDE (49) will serve as modulating one for q-Gaussian return fluctuations.
The empirical evidence of this assumption is published in Gontis et al. (2010). The return, |r|,
we define as absolute difference of logarithms of asset prices, p, in two different time moments
separated by time interval τ:

r(t, τ) = |ln[p(t + τ)]− ln[p(t)]| . (54)

In empirical analysis we consider dimensionless returns normalized by its dispersion calcu-
lated in the whole length of realization. It is worth to notice that r(τ) is an additive variable,
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ber of trades per minute (black curve). Scales are adjusted (magnitude of return time series
multiplied by 105).

i.e., if τ = ∑
i

τi, then r(τ) = ∑
i

r(τi), or in the continuous limit the sum may be replaced by

integration. We do propose to model the measure of volatility r0 by the scaled continuous
stochastic variable x, having a meaning of average return per unit time interval. By the em-
pirical analyses of high frequency trading data on NYSE Gontis et al. (2010) we introduced
relation:

r0(t, τ) = 1 +
r̄0
τs

∣∣∣∣∣∣

ts+τs∫

ts

x(s)ds

∣∣∣∣∣∣
, (55)

where r̄0 is an empirical parameter and the average return per unit time interval x(ts) can be
modeled by the nonlinear SDE (49), written in a scaled dimensionless time ts = σ2

t t.
We have performed the empirical analyses (see Gontis et al. (2010)) of the tick by tick trades
of 24 stocks, ABT, ADM, BMY, C, CVX, DOW, FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY,
MMM, MO, MOT, MRK, SLE, PFE, T, WMT, XOM, traded on the NYSE for 27 months from
January, 2005, recorded in the Trades and Quotes database. We summed empirical tick by
tick returns into one-minute returns to adjust the continuous stochastic model presented. De-
tailed analysis of the empirical data from the NYSE provides evidence that long-range mem-
ory properties of the return strongly depend on fluctuations of trading activity. In Fig. 8 we
demonstrate strong correlation of the moving average of absolute returns per minute with the
moving average of trading activities (number of trades per minute). Here for the empirical
sequences of one-minute returns {rt}T

t=1 or trading activities {Nt}T
t=1 we calculate moving

averages MA defined as the centered means for a selected number of minutes n; for example,
MA(rt) is

MA(rt) =
1
n

t+n/2−1

∑
j=t−n/2

rj. (56)

The best correlation can be achieved when the moving averages are calculated in the period
from 60 to 100 minutes.
In order to account for the double stochastic nature of return fluctuations - a hidden slowly dif-
fusing long-range memory process and rapid fluctuations of the instantaneous price changes
- we decompose the empirical one-minute return series into two processes: the background
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Fig. 7. (a) The numerically calculated PDF of |X| = |
∫ t+τ

t x(t)/τ dts| from Eq. (51) (black
line), in comparison with the theoretical distribution 2P(x) Eq. (46) (gray line), and (b) the
numerically calculated PSD of |X|. Model parameters are set as follows: η = 5/2, λ = 3.6,
τ = 0.0001 and ε = 0.01.

of the integrated signal. This hides fractured behavior of the X PDF, which arises for x as a
consequence of the two powers in the multiplicative term of Eq. (49).
In Fig. 12 we demonstrate (a) the numerically calculated PDF of |X| in comparison with the
theoretical distribution 2P(x) Eq. (46) and (b) the numerically calculated power spectrum of
|X| with parameters appropriate for reproducing statistics for the absolute return in financial
markets.

8. The double stochastic model of return in financial market

Recently we proposed the double stochastic model of return in financial markets Gontis et al.
(2010) based on the nonlinear SDE (49). The main advantage of proposed model is its ability
to reproduce power spectral density of absolute return as well as long-term PDF of return. In
the model proposed we assume that the empirical return rt can be written as instantaneous
q-Gaussian fluctuations ξ with a slowly diffusing parameter r0 and constant λ = 5

rt = ξ{r0(t), λ}. (52)

q-Gaussian distribution of ξ defining the random instantaneous rt can be written as follows:

Pr0,λ(ξ) =
Γ( λ

2 )

r0
√

πΓ( λ
2 − 1

2 )

(
r2

0
r2

0 + ξ2

)λ/2

, (53)

with parameter r0(t) serving as a measure of instantaneous volatility of return fluctuations.
We will model stochastic r0(t) in the similar way as trading activity in it’s stochastic model. In
this case nonlinear SDE (49) will serve as modulating one for q-Gaussian return fluctuations.
The empirical evidence of this assumption is published in Gontis et al. (2010). The return, |r|,
we define as absolute difference of logarithms of asset prices, p, in two different time moments
separated by time interval τ:

r(t, τ) = |ln[p(t + τ)]− ln[p(t)]| . (54)

In empirical analysis we consider dimensionless returns normalized by its dispersion calcu-
lated in the whole length of realization. It is worth to notice that r(τ) is an additive variable,
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Fig. 8. An example of a moving average for 60 min of empirical absolute returns per minute
(gray curve) in comparison with the corresponding moving average of trading activity, num-
ber of trades per minute (black curve). Scales are adjusted (magnitude of return time series
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i.e., if τ = ∑
i

τi, then r(τ) = ∑
i

r(τi), or in the continuous limit the sum may be replaced by

integration. We do propose to model the measure of volatility r0 by the scaled continuous
stochastic variable x, having a meaning of average return per unit time interval. By the em-
pirical analyses of high frequency trading data on NYSE Gontis et al. (2010) we introduced
relation:

r0(t, τ) = 1 +
r̄0
τs

∣∣∣∣∣∣

ts+τs∫

ts

x(s)ds

∣∣∣∣∣∣
, (55)

where r̄0 is an empirical parameter and the average return per unit time interval x(ts) can be
modeled by the nonlinear SDE (49), written in a scaled dimensionless time ts = σ2

t t.
We have performed the empirical analyses (see Gontis et al. (2010)) of the tick by tick trades
of 24 stocks, ABT, ADM, BMY, C, CVX, DOW, FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY,
MMM, MO, MOT, MRK, SLE, PFE, T, WMT, XOM, traded on the NYSE for 27 months from
January, 2005, recorded in the Trades and Quotes database. We summed empirical tick by
tick returns into one-minute returns to adjust the continuous stochastic model presented. De-
tailed analysis of the empirical data from the NYSE provides evidence that long-range mem-
ory properties of the return strongly depend on fluctuations of trading activity. In Fig. 8 we
demonstrate strong correlation of the moving average of absolute returns per minute with the
moving average of trading activities (number of trades per minute). Here for the empirical
sequences of one-minute returns {rt}T

t=1 or trading activities {Nt}T
t=1 we calculate moving

averages MA defined as the centered means for a selected number of minutes n; for example,
MA(rt) is

MA(rt) =
1
n

t+n/2−1

∑
j=t−n/2

rj. (56)

The best correlation can be achieved when the moving averages are calculated in the period
from 60 to 100 minutes.
In order to account for the double stochastic nature of return fluctuations - a hidden slowly dif-
fusing long-range memory process and rapid fluctuations of the instantaneous price changes
- we decompose the empirical one-minute return series into two processes: the background
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fluctuations and the high amplitude rapid fluctuations dependent on the first one modulat-
ing. To perform this empirical decomposition already presented as background idea of the
model (52), we assume that the empirical return rt can be written as instantaneous q-Gaussian
fluctuations with a slowly diffusing parameter r0 dependent on the moving average of the
empirical return rt:

r = ξ{r0(MA(rt)), λ2}, (57)

where ξ{r0, λ2} is a q-Gaussian stochastic variable with the PDF defined by Eq. (53) (the pa-
rameter q is q = 1 + 2/λ2). In Eq. (57) the parameter r0 depends on the modulating moving
average of returns, MA(rt), and the empirically defined power law exponent λ2. From the em-
pirical time series of the one-minute returns rt one can draw histograms of r corresponding to
defined values of the moving average MA(rt). The q-Gaussian PDF is a good approximation
to those histograms and the adjusted set of r0 for selected values of MA(rt) gives an empirical
definition of the function

r0(MA(rt)) = 1 + 2 × |MA(rt)|. (58)

The q-Gaussians with λ2 = 5 and linear function r0(|MA(rt)|) (58) give a good approximation
of r fluctuations for all stocks and values of modulating MA(rt). The long-term PDF of moving
average MA(rt) can be approximated by a q-Gaussian with r̃0 = 0.2 and λ = 3.6. All these
empirically defined parameters form the background for the stochastic model of the return in
the financial market.
Consequently, we propose to model the long-range memory stochastic return MA(rt) by X =
r̄0
τs

∫ ts+τs
ts

x(s)/ ds, where x is a continuous stochastic variable defined by Eq. (49) and r̄0 =

r̃0 × 2 = 0.4. The remaining parameters ε, xmax and σ2
t can be adjusted for the best model fit to

the empirical data and have values ε = 0.017, σ2
t = 1/3× 10−6s−1 and τs = τ × σ2

t = 0.00002;
xmax = 1000.
The parameters of stochastic model were adjusted to the empirical tick by tick one minute
returns. An excellent agreement between empirical and model PDF and power spectrum was
achieved, see Fig 9 (a,b). Noticeable difference in theoretical and empirical PDFs for small
values of return r are related with the prevailing prices of trades expressed in integer values of
cents. We do not account for this discreteness in our continuous description. In the empirical
PSD one-day resonance - the largest spike with higher harmonics - is present. This seasonality
- an intraday activity pattern of the signal - is not included in the model either and this leads
to the explicable difference from observed power spectrum.

9. Scaled comparison of model with empirical data

Seeking to discover the universal nature of financial markets we consider that all these param-
eters are universal for all stocks traded on various exchanges. To prove this we analyze em-
pirical data from very different exchanges New York, one of the most developed with highly
liquid stocks, and Vilnius, emerging one with stocks traded rarely. The comparison of model
and empirical data scaling with increasing time window of return definition, τ, serves as very
significant test for proposed stochastic description of financial markets.
Provided that we use scaled dimensionless equations derived while making very general as-
sumptions, we expect that proposed model should work for various assets traded on different
financial markets as well as for various time scales τ. We analyze tick by tick trades of 4 stocks,
APG1L, PTR1L, SRS1L, UKB1L, traded on VSE for 50 months since May, 2005, trading data
was collected and provided for us by VSE. Stocks traded on VSE in comparison with NYSE
are less liquid - mean inter-trade time for analyzed stocks traded on VSE is 362 s, while for

stocks traded on NYSE mean inter-trade time equals 3.02 s. The difference in trading activity
exceeds 100 times. This great difference is related with comparatively small number of traders
and comparatively small companies participating in the emerging VSE market. Do these dif-
ferent markets have any statistical affinity is an essential question from the theoretical point
of market modeling.
First of all we start with returns for very small time scales τ = 60 s. For the VSE up to 95% of
one minute trading time intervals elapse without any trade or price change. One can exclude
these time intervals from the sequence calculating PDF of return. With such simple procedure
calculated PDF of VSE empirical return overlaps with PDF of NYSE empirical return (see Fig 9
(a)).
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Fig. 9. Comparison of empirical statistics of absolute returns traded on the NYSE (black
curves) and VSE (light gray curves) with model, defined by Eq. (49) and Eq. (55), statis-
tics (gray curves). Model parameters are as follows: λ = 5; σ2

t = 1/3 · 10−6s−1; λ0 = 3.6;
ε = 0.017; η = 2.5; r̄0 = 0.4; xmax = 1000. PDF of normalized absolute returns is given
on (a),(c),(e) and PSD on (b),(d),(f). (a) and (b) represents results with τ = 60s; (c) and (d)
τ = 600s; (e) and (f) τ = 1800s. Empirical data from NYSE is averaged over 24 stocks and
empirical data from VSE is averaged over 4 stocks.
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fluctuations and the high amplitude rapid fluctuations dependent on the first one modulat-
ing. To perform this empirical decomposition already presented as background idea of the
model (52), we assume that the empirical return rt can be written as instantaneous q-Gaussian
fluctuations with a slowly diffusing parameter r0 dependent on the moving average of the
empirical return rt:

r = ξ{r0(MA(rt)), λ2}, (57)

where ξ{r0, λ2} is a q-Gaussian stochastic variable with the PDF defined by Eq. (53) (the pa-
rameter q is q = 1 + 2/λ2). In Eq. (57) the parameter r0 depends on the modulating moving
average of returns, MA(rt), and the empirically defined power law exponent λ2. From the em-
pirical time series of the one-minute returns rt one can draw histograms of r corresponding to
defined values of the moving average MA(rt). The q-Gaussian PDF is a good approximation
to those histograms and the adjusted set of r0 for selected values of MA(rt) gives an empirical
definition of the function

r0(MA(rt)) = 1 + 2 × |MA(rt)|. (58)

The q-Gaussians with λ2 = 5 and linear function r0(|MA(rt)|) (58) give a good approximation
of r fluctuations for all stocks and values of modulating MA(rt). The long-term PDF of moving
average MA(rt) can be approximated by a q-Gaussian with r̃0 = 0.2 and λ = 3.6. All these
empirically defined parameters form the background for the stochastic model of the return in
the financial market.
Consequently, we propose to model the long-range memory stochastic return MA(rt) by X =
r̄0
τs

∫ ts+τs
ts

x(s)/ ds, where x is a continuous stochastic variable defined by Eq. (49) and r̄0 =

r̃0 × 2 = 0.4. The remaining parameters ε, xmax and σ2
t can be adjusted for the best model fit to

the empirical data and have values ε = 0.017, σ2
t = 1/3× 10−6s−1 and τs = τ × σ2

t = 0.00002;
xmax = 1000.
The parameters of stochastic model were adjusted to the empirical tick by tick one minute
returns. An excellent agreement between empirical and model PDF and power spectrum was
achieved, see Fig 9 (a,b). Noticeable difference in theoretical and empirical PDFs for small
values of return r are related with the prevailing prices of trades expressed in integer values of
cents. We do not account for this discreteness in our continuous description. In the empirical
PSD one-day resonance - the largest spike with higher harmonics - is present. This seasonality
- an intraday activity pattern of the signal - is not included in the model either and this leads
to the explicable difference from observed power spectrum.

9. Scaled comparison of model with empirical data

Seeking to discover the universal nature of financial markets we consider that all these param-
eters are universal for all stocks traded on various exchanges. To prove this we analyze em-
pirical data from very different exchanges New York, one of the most developed with highly
liquid stocks, and Vilnius, emerging one with stocks traded rarely. The comparison of model
and empirical data scaling with increasing time window of return definition, τ, serves as very
significant test for proposed stochastic description of financial markets.
Provided that we use scaled dimensionless equations derived while making very general as-
sumptions, we expect that proposed model should work for various assets traded on different
financial markets as well as for various time scales τ. We analyze tick by tick trades of 4 stocks,
APG1L, PTR1L, SRS1L, UKB1L, traded on VSE for 50 months since May, 2005, trading data
was collected and provided for us by VSE. Stocks traded on VSE in comparison with NYSE
are less liquid - mean inter-trade time for analyzed stocks traded on VSE is 362 s, while for

stocks traded on NYSE mean inter-trade time equals 3.02 s. The difference in trading activity
exceeds 100 times. This great difference is related with comparatively small number of traders
and comparatively small companies participating in the emerging VSE market. Do these dif-
ferent markets have any statistical affinity is an essential question from the theoretical point
of market modeling.
First of all we start with returns for very small time scales τ = 60 s. For the VSE up to 95% of
one minute trading time intervals elapse without any trade or price change. One can exclude
these time intervals from the sequence calculating PDF of return. With such simple procedure
calculated PDF of VSE empirical return overlaps with PDF of NYSE empirical return (see Fig 9
(a)).
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Fig. 9. Comparison of empirical statistics of absolute returns traded on the NYSE (black
curves) and VSE (light gray curves) with model, defined by Eq. (49) and Eq. (55), statis-
tics (gray curves). Model parameters are as follows: λ = 5; σ2

t = 1/3 · 10−6s−1; λ0 = 3.6;
ε = 0.017; η = 2.5; r̄0 = 0.4; xmax = 1000. PDF of normalized absolute returns is given
on (a),(c),(e) and PSD on (b),(d),(f). (a) and (b) represents results with τ = 60s; (c) and (d)
τ = 600s; (e) and (f) τ = 1800s. Empirical data from NYSE is averaged over 24 stocks and
empirical data from VSE is averaged over 4 stocks.



Stochastic Control578

One should use full time series of returns calculating the PSD. Nevertheless, despite low VSE
liquidity, PSD of VSE and NYSE absolute returns almost overlap. Difference is clearly seen
only for higher frequencies and smaller time windows, namely τ = 60 s, and is related directly
to the low VSE liquidity, which contributes to the white noise appearance. The different length
of trading sessions in financial markets causes different positions of resonant intraday activity
spikes. Thus one can conclude that even so marginal market as VSE retains essential statistical
features as developed market on NYSE. At the first glance the statistical similarity should be
even better for the higher values of return time scale τ.
Therefore further we investigate the behavior of returns on NYSE and VSE for increased val-
ues of τ = 600 s and τ = 1800 s with the specific interest to check whether proposed stochastic
model scales in the same way as empirical data does. Apparently, as we can see in Fig 9 (d)
and (f) PSDs of absolute returns on VSE and on NYSE overlap even better at larger time scale
(600 seconds and 1800 seconds). This serves as an additional argument for the very general
origin of long range memory properties observed in very different, liquidity-wise, markets.
The nonlinear SDE is an applicable model to cache up observed empirical properties. PDFs
of absolute return observed in both markets (see Fig 9 (c) and (e)) are practically identical,
though we still have to ignore zero returns of VSE to arrive to the same normalization of PDF.

10. Conclusions

In the last sections we introduced a double stochastic process driven by the nonlinear scaled
SDE ((49)) reproducing the main statistical properties of the absolute return, observed in
the financial markets. Seven parameters of the model enable us to adjust it to the sophisti-
cated power-law statistics of various stocks including long-range behavior. The scaled non-
dimensional form of equations gives an opportunity to deal with averaged statistics of various
stocks and compare behavior of different markets. All parameters introduced are recoverable
from the empirical data and are responsible for the specific statistical features of real markets.
Seeking to discover the universal nature of return statistics we have analysed and compared
extremely different markets in New York and Vilnius and adjust the model parameters to
match statistics of both markets. The most promising result of this research is discovered
increasing coincidence of the model with empirical data from the New York and Vilnius mar-
kets and between markets, when the time scale of return τ is growing. Further analyses of
empirical data and proposed model reasoning by agent behavior is ongoing.
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One should use full time series of returns calculating the PSD. Nevertheless, despite low VSE
liquidity, PSD of VSE and NYSE absolute returns almost overlap. Difference is clearly seen
only for higher frequencies and smaller time windows, namely τ = 60 s, and is related directly
to the low VSE liquidity, which contributes to the white noise appearance. The different length
of trading sessions in financial markets causes different positions of resonant intraday activity
spikes. Thus one can conclude that even so marginal market as VSE retains essential statistical
features as developed market on NYSE. At the first glance the statistical similarity should be
even better for the higher values of return time scale τ.
Therefore further we investigate the behavior of returns on NYSE and VSE for increased val-
ues of τ = 600 s and τ = 1800 s with the specific interest to check whether proposed stochastic
model scales in the same way as empirical data does. Apparently, as we can see in Fig 9 (d)
and (f) PSDs of absolute returns on VSE and on NYSE overlap even better at larger time scale
(600 seconds and 1800 seconds). This serves as an additional argument for the very general
origin of long range memory properties observed in very different, liquidity-wise, markets.
The nonlinear SDE is an applicable model to cache up observed empirical properties. PDFs
of absolute return observed in both markets (see Fig 9 (c) and (e)) are practically identical,
though we still have to ignore zero returns of VSE to arrive to the same normalization of PDF.

10. Conclusions

In the last sections we introduced a double stochastic process driven by the nonlinear scaled
SDE ((49)) reproducing the main statistical properties of the absolute return, observed in
the financial markets. Seven parameters of the model enable us to adjust it to the sophisti-
cated power-law statistics of various stocks including long-range behavior. The scaled non-
dimensional form of equations gives an opportunity to deal with averaged statistics of various
stocks and compare behavior of different markets. All parameters introduced are recoverable
from the empirical data and are responsible for the specific statistical features of real markets.
Seeking to discover the universal nature of return statistics we have analysed and compared
extremely different markets in New York and Vilnius and adjust the model parameters to
match statistics of both markets. The most promising result of this research is discovered
increasing coincidence of the model with empirical data from the New York and Vilnius mar-
kets and between markets, when the time scale of return τ is growing. Further analyses of
empirical data and proposed model reasoning by agent behavior is ongoing.
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Abstract

We consider the mean-variance hedging problem under partial information. The underlying
asset price process follows a continuous semimartingale, and strategies have to be constructed
when only part of the information in the market is available. We show that the initial mean-
variance hedging problem is equivalent to a new mean-variance hedging problem with an
additional correction term, which is formulated in terms of observable processes. We prove
that the value process of the reduced problem is a square trinomial with coefficients satisfying
a triangle system of backward stochastic differential equations and the filtered wealth process
of the optimal hedging strategy is characterized as a solution of a linear forward equation.
2000 Mathematics Subject Classification: 90A09, 60H30, 90C39.
Key words and phrases: Backward stochastic differential equation, semimartingale market
model, incomplete markets, mean-variance hedging, partial information.

1. Introduction

In the problem of derivative pricing and hedging it is usually assumed that the hedging strate-
gies have to be constructed by using all market information. However, in reality, investors
acting in a market have limited access to the information flow. For example, an investor may
observe just stock prices, but stock appreciation rates depend on some unobservable factors;
one may think that stock prices can be observed only at some time intervals or up to some
random moment before an expiration date, or an investor would like to price and hedge a
contingent claim whose payoff depends on an unobservable asset, and he observes the prices
of an asset correlated with the underlying asset. Besides, investors may not be able to use
all available information even if they have access to the full market flow. In all such cases,
investors are forced to make decisions based on only a part of the market information.
We study a mean-variance hedging problem under partial information when the asset price
process is a continuous semimartingale and the flow of observable events do not necessarily
contain all information on prices of the underlying asset.
We assume that the dynamics of the price process of the asset traded on the market is de-
scribed by a continuous semimartingale S = (St, t ∈ [0, T]) defined on a filtered probability
space (Ω,A, (At, t ∈ [0, T]), P), satisfying the usual conditions, where A = AT and T < ∞
is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset price
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process satisfies the structure condition; i.e., the process S admits the decomposition

St = S0 + Nt +
∫ t

0
λud〈N〉u, 〈λ · N〉T < ∞ a.s., (1.1)

where N is a continuous A-local martingale and λ is an A-predictable process.
Let G be a filtration smaller than A: Gt ⊆ At for every t ∈ [0, T].
The filtration G represents the information that the hedger has at his disposal; i.e., hedging
strategies have to be constructed using only information available in G.
Let H be a P-square integrable AT-measurable random variable, representing the payoff of a
contingent claim at time T.
We consider the mean-variance hedging problem

to minimize E[(Xx,π
T − H)2] over all π ∈ Π(G), (1.2)

where Π(G) is a class of G-predictable S-integrable processes. Here Xx,π
t = x +

∫ t
0 πudSu

is the wealth process starting from initial capital x, determined by the self-financing trading
strategy π ∈ Π(G).
In the case G = A of complete information, the mean-variance hedging problem was intro-
duced by Föllmer and Sondermann (Föllmer & Sondermann, 1986) in the case when S is a
martingale and then developed by several authors for a price process admitting a trend (see,
e.g., (Duffie & Richardson, 1991), (Hipp, 1993), (Schweizer, 1992), (Schweizer, 1994), (Schäl,
1994), (Gourieroux et al., 1998), (Heath et al., 2001)).
Asset pricing with partial information under various setups has been considered. The mean-
variance hedging problem under partial information was first studied by Di Masi, Platen, and
Runggaldier (Di Masi et al., 1995) when the stock price process is a martingale and the prices
are observed only at discrete time moments. For general filtrations and when the asset price
process is a martingale, this problem was solved by Schweizer (Schweizer, 1994) in terms of
G-predictable projections. Pham (Pham, 2001) considered the mean-variance hedging prob-
lem for a general semimartingale model, assuming that the observable filtration contains the
augmented filtration FS generated by the asset price process S

FS
t ⊆ Gt for every t ∈ [0, T]. (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration
G and suitable Kunita–Watanabe decomposition, the theory developed by Gourieroux, Lau-
rent, and Pham (Gourieroux et al., 1998) and Rheinländer and Schweizer (Rheinlander &
Schweizer, 1997) to the case of partial information was extended.
If G is not containing FS, then S is not a G-semimartingale and the problem is more involved.
Let us introduce an additional filtration F = (Ft, t ∈ [0, T]), which is an augmented filtration
generated by FS and G.
Then the price process S is a continuous F-semimartingale, and the canonical decomposition
of S with respect to the filtration F is of the form

St = S0 +
∫ t

0
λ̂F

ud〈M〉u + Mt, (1.4)

where λ̂F is the F-predictable projection of λ and

Mt = Nt +
∫ t

0
[λu − λ̂F

u ]d〈N〉u

is a continuous F-local martingale. Besides 〈M〉 = 〈N〉, and these brackets are FS-predictable.
Throughout the paper we shall make the following assumptions:
(A) 〈M〉 is G-predictable and d〈M〉tdP a.e. λ̂F = λ̂G; hence P-a.s. for each t

E(λt|FS
t− ∨ Gt) = E(λt|Gt);

(B) any G-martingale is an F-local martingale;
(C) the filtration G is continuous; i.e., all G-local martingales are continuous;
(D) there exists a martingale measure for S (on FT) that satisfies the reverse Hölder condition.
Remark. It is evident that if FS ⊆ G, then 〈M〉 is G-predictable. Besides, in this case G = F,
and conditions (A) and (B) are satisfied.
We shall use the notation Ŷt for the process of the G-projection of Y (note that under the present
conditions, for all processes we consider, the optional projection coincides with the predictable
projection, and therefore we use for them the same notation). Condition (A) implies that

Ŝt = E(St|Gt) = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t.

Let

Ht = E(H|Ft) = EH +
∫ t

0
hudMu + Lt and Ht = EH +

∫ t

0
hG

u dM̂u + LG
t

be the Galtchouk–Kunita–Watanabe (GKW) decompositions of Ht = E(H|Ft) with respect to
local martingales M and M̂, where h and hG are F-predictable processes and L and LG are
local martingales strongly orthogonal to M and M̂, respectively.
We show (Theorem 3.1) that the initial mean-variance hedging problem (1.2) is equivalent to
the problem to minimize the expression

E

[(
x +

∫ T

0
πudŜu − ĤT

)2
+

∫ T

0

(
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

)
d〈M〉u

]
(1.5)

over all π ∈ Π(G), where

h̃t = ĥG
t ρ2

t − ĥt and ρ2
t =

d〈M̂〉t
d〈M〉t

.

Thus, the problem (1.5), equivalent to (1.2), is formulated in terms of G-adapted processes.
One can say that (1.5) is the mean-variance hedging problem under complete information
with an additional correction term.
Let us introduce the value process of the problem (1.5):

VH(t, x)= ess inf
π∈Π(G)

E

[(
x +

∫ T

t
πudŜu−ĤT

)2
+
∫ T

t

[
π2

u

(
1 − ρ2

u

)
+2πuh̃u

]
d〈M〉u|Gt

]
. (1.6)

We show in Theorem 4.1 that the value function of the problem (1.5) admits a representation

VH(t, x) = Vt(0)− 2Vt(1)x + Vt(2)x2,
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where the coefficients Vt(0), Vt(1), and Vt(2) satisfy a triangle system of backward stochastic
differential equations (BSDEs). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

X̂∗
t = x −

∫ t

0

ρ2
u ϕu(2) + λ̂uVu(2)
1 − ρ2

u + ρ2
uVu(2)

X̂∗
udŜu +

∫ t

0

ρ2
u ϕu(1) + λ̂uVu(1) + h̃u

1 − ρ2
u + ρ2

uVu(2)
dŜu. (1.7)

Note that if FS ⊆ G, then

ρ = 1, h̃ = 0, M̂ = M, and Ŝ = S. (1.8)

In the case of complete information (G = A), in addition to (1.8) we have λ̂ = λ and M̂ = N,
and (1.7) gives equations for the optimal wealth process from (Mania & Tevzadze, 2003).
In section 5 we consider a diffusion market model, which consists of two assets S and η, where
St is a state of a process being controlled and ηt is the observation process. Suppose that St
and ηt are governed by

dSt = µtdt + σtdw0
t , dηt = atdt + btdwt,

where w0 and w are Brownian motions with correlation ρ and the coefficients µ, σ, a, and b
are F η-adapted. In this case At = Ft = FS,η

t , and the flow of observable events is Gt = F η
t .

As an application of Theorem 4.1 we also consider a diffusion market model with constant
coefficients and assume that an investor observes the price process S only up to a random
moment τ before the expiration date T. In this case we give an explicit solution of (1.2).

2. Main Definitions and Auxiliary Facts

Denote by Me(F) the set of equivalent martingale measures for S, i.e., the set of probability
measures Q equivalent to P such that S is a F-local martingale under Q.
Let

Me
2(F) = {Q ∈ Me(F) : EZ2

T(Q) < ∞},

where Zt(Q) is the density process (with respect to the filtration F) of Q relative to P. We
assume that Me

2(F) �= ∅.

Remark 2.1. Note that Me
2(A) �= ∅ implies that Me

2(F) �= ∅ (see Remark 2.1 from Pham
(Pham, 2001).
It follows from (1.4) and condition (A), that the density process Zt(Q) of any element Q of
Me(F) is expressed as an exponential martingale of the form

Et(−λ̂ · M + L),

where L is a F-local martingale strongly orthogonal to M and Et(X) is the Doleans–Dade
exponential of X.

If the local martingale Zmin
t = Et(−λ̂ · M) is a true martingale, dQmin/dP = Zmin

T defines the
minimal martingale measure for S.
Recall that a measure Q satisfies the reverse Hölder inequality R2(P) if there exists a constant
C such that

E

(
Z2

T(Q)

Z2
τ(Q)

|Fτ

)
≤ C, P-a.s.

for every F-stopping time τ.

Remark 2.2. If there exists a measure Q ∈ Me(F) that satisfies the reverse Hölder inequality
R2(P), then according to Theorem 3.4 of Kazamaki (Kazamaki, 1994) the martingale MQ =

−λ̂ · M + L belongs to the class BMO and hence −λ̂ · M also belongs to BMO, i.e.,

E
(∫ T

τ
λ̂2

ud〈M〉u|Fτ

)
≤ const (2.1)

for every stopping time τ. Therefore, it follows from Theorem 2.3 of (Kazamaki, 1994) that
Et(−λ̂ · M) is a true martingale. So, condition (D) implies that the minimal martingale mea-
sure exists (but Zmin is not necessarily square integrable).

Let us make some remarks on conditions (B) and (C).

Remark 2.3. Condition (B) is satisfied if and only if the σ-algebras FS
t ∨ Gt and GT are condi-

tionally independent given Gt for all t ∈ [0, T] (see Theorem 9.29 from Jacod (Jacod, 1979)).

Remark 2.4. Condition (C) is weaker than the assumption that the filtration F is continuous.
The continuity of the filtration F and condition (B) imply the continuity of the filtration G, but
the converse is not true in general. Note that filtrations F and FS can be discontinuous. Recall
that the continuity of a filtration means that all local martingales with respect to this filtration
are continuous.

By µK we denote the Dolean measure of an increasing process K. For all unexplained notations
concerning the martingale theory used below, we refer the reader to (Dellacherie & Meyer,
1980), (Liptser & Shiryaev, 1986), (Jacod, 1979).
Let Π(F) be the space of all F-predictable S-integrable processes π such that the stochastic
integral

(π · S)t =
∫ t

0
πudSu, t ∈ [0, T],

is in the S2 space of semimartingales, i.e.,

E
(∫ T

0
π2

s d〈M〉s

)
+ E

(∫ T

0
|πsλ̂s|d〈M〉s

)2
< ∞.

Denote by Π(G) the subspace of Π(F) of G-predictable strategies.

Remark 2.5. Since λ̂ · M ∈ BMO (see Remark 2.2), it follows from the proof of Theorem 2.5 of
Kazamaki (Kazamaki, 1994) that

E
(∫ T

0
|πuλ̂u|d〈M〉u

)2
= E〈|π| · M, |λ̂| · M〉2

T ≤ 2‖λ̂ · M‖BMOE
∫ T

0
π2d〈M〉u < ∞.

Therefore, under condition (D) the G-predictable (resp., F-predictable) strategy π belongs to
the class Π(G) (resp., Π(F)) if and only if E

∫ T
0 π2

s d〈M〉s < ∞.

Define J2
T(F) and J2

T(G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T(F) = {(π · S)T : π ∈ Π(F)}, J2

T(G) = {(π · S)T : π ∈ Π(G)}.

For convenience we give some assertions from (Delbaen et al., 1997), which establishes neces-
sary and sufficient conditions for the closedness of the space J2

T(F) in L2.
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where the coefficients Vt(0), Vt(1), and Vt(2) satisfy a triangle system of backward stochastic
differential equations (BSDEs). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

X̂∗
t = x −

∫ t

0

ρ2
u ϕu(2) + λ̂uVu(2)
1 − ρ2

u + ρ2
uVu(2)

X̂∗
udŜu +

∫ t

0

ρ2
u ϕu(1) + λ̂uVu(1) + h̃u

1 − ρ2
u + ρ2

uVu(2)
dŜu. (1.7)

Note that if FS ⊆ G, then

ρ = 1, h̃ = 0, M̂ = M, and Ŝ = S. (1.8)

In the case of complete information (G = A), in addition to (1.8) we have λ̂ = λ and M̂ = N,
and (1.7) gives equations for the optimal wealth process from (Mania & Tevzadze, 2003).
In section 5 we consider a diffusion market model, which consists of two assets S and η, where
St is a state of a process being controlled and ηt is the observation process. Suppose that St
and ηt are governed by

dSt = µtdt + σtdw0
t , dηt = atdt + btdwt,

where w0 and w are Brownian motions with correlation ρ and the coefficients µ, σ, a, and b
are F η-adapted. In this case At = Ft = FS,η

t , and the flow of observable events is Gt = F η
t .

As an application of Theorem 4.1 we also consider a diffusion market model with constant
coefficients and assume that an investor observes the price process S only up to a random
moment τ before the expiration date T. In this case we give an explicit solution of (1.2).

2. Main Definitions and Auxiliary Facts

Denote by Me(F) the set of equivalent martingale measures for S, i.e., the set of probability
measures Q equivalent to P such that S is a F-local martingale under Q.
Let

Me
2(F) = {Q ∈ Me(F) : EZ2

T(Q) < ∞},

where Zt(Q) is the density process (with respect to the filtration F) of Q relative to P. We
assume that Me

2(F) �= ∅.

Remark 2.1. Note that Me
2(A) �= ∅ implies that Me

2(F) �= ∅ (see Remark 2.1 from Pham
(Pham, 2001).
It follows from (1.4) and condition (A), that the density process Zt(Q) of any element Q of
Me(F) is expressed as an exponential martingale of the form

Et(−λ̂ · M + L),

where L is a F-local martingale strongly orthogonal to M and Et(X) is the Doleans–Dade
exponential of X.

If the local martingale Zmin
t = Et(−λ̂ · M) is a true martingale, dQmin/dP = Zmin

T defines the
minimal martingale measure for S.
Recall that a measure Q satisfies the reverse Hölder inequality R2(P) if there exists a constant
C such that

E

(
Z2

T(Q)

Z2
τ(Q)

|Fτ

)
≤ C, P-a.s.

for every F-stopping time τ.

Remark 2.2. If there exists a measure Q ∈ Me(F) that satisfies the reverse Hölder inequality
R2(P), then according to Theorem 3.4 of Kazamaki (Kazamaki, 1994) the martingale MQ =

−λ̂ · M + L belongs to the class BMO and hence −λ̂ · M also belongs to BMO, i.e.,

E
(∫ T

τ
λ̂2

ud〈M〉u|Fτ

)
≤ const (2.1)

for every stopping time τ. Therefore, it follows from Theorem 2.3 of (Kazamaki, 1994) that
Et(−λ̂ · M) is a true martingale. So, condition (D) implies that the minimal martingale mea-
sure exists (but Zmin is not necessarily square integrable).

Let us make some remarks on conditions (B) and (C).

Remark 2.3. Condition (B) is satisfied if and only if the σ-algebras FS
t ∨ Gt and GT are condi-

tionally independent given Gt for all t ∈ [0, T] (see Theorem 9.29 from Jacod (Jacod, 1979)).

Remark 2.4. Condition (C) is weaker than the assumption that the filtration F is continuous.
The continuity of the filtration F and condition (B) imply the continuity of the filtration G, but
the converse is not true in general. Note that filtrations F and FS can be discontinuous. Recall
that the continuity of a filtration means that all local martingales with respect to this filtration
are continuous.

By µK we denote the Dolean measure of an increasing process K. For all unexplained notations
concerning the martingale theory used below, we refer the reader to (Dellacherie & Meyer,
1980), (Liptser & Shiryaev, 1986), (Jacod, 1979).
Let Π(F) be the space of all F-predictable S-integrable processes π such that the stochastic
integral

(π · S)t =
∫ t

0
πudSu, t ∈ [0, T],

is in the S2 space of semimartingales, i.e.,

E
(∫ T

0
π2

s d〈M〉s

)
+ E

(∫ T

0
|πsλ̂s|d〈M〉s

)2
< ∞.

Denote by Π(G) the subspace of Π(F) of G-predictable strategies.

Remark 2.5. Since λ̂ · M ∈ BMO (see Remark 2.2), it follows from the proof of Theorem 2.5 of
Kazamaki (Kazamaki, 1994) that

E
(∫ T

0
|πuλ̂u|d〈M〉u

)2
= E〈|π| · M, |λ̂| · M〉2

T ≤ 2‖λ̂ · M‖BMOE
∫ T

0
π2d〈M〉u < ∞.

Therefore, under condition (D) the G-predictable (resp., F-predictable) strategy π belongs to
the class Π(G) (resp., Π(F)) if and only if E

∫ T
0 π2

s d〈M〉s < ∞.

Define J2
T(F) and J2

T(G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T(F) = {(π · S)T : π ∈ Π(F)}, J2

T(G) = {(π · S)T : π ∈ Π(G)}.

For convenience we give some assertions from (Delbaen et al., 1997), which establishes neces-
sary and sufficient conditions for the closedness of the space J2

T(F) in L2.
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Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions are equivalent:

(1) There is a martingale measure Q ∈ Me(F), and J2
T(F) is closed in L2.

(2) There is a martingale measure Q ∈ Me(F) that satisfies the reverse Hölder condition R2(P).

(3) There is a constant C such that for all π ∈ Π(F) we have

‖ sup
t≤T

(π · S)t‖L2(P) ≤ C‖(π · S)T‖L2(P).

(4) There is a constant c such that for every stopping time τ, every A ∈ Fτ , and every π ∈ Π(F),
with π = π I]τ,T], we have

‖IA − (π · S)T‖L2(P) ≥ cP(A)1/2.

Note that assertion (4) implies that for every stopping time τ and for every π ∈ Π(G) we have

E

((
1 +

∫ T

τ
πudSu

)2
/

Fτ

)
≥ c. (2.2)

Now we recall some known assertions from the filtering theory. The following proposition
can be proved similarly to (Liptser & Shiryaev, 1986)( the detailed proof one can see in (Mania
et al., 2009)).

Proposition 2.2. If conditions (A), (B), and (C) are satisfied, then for any continuous F-local martin-
gale M, with M0 = 0, and any G-local martingale mG

M̂t = E(Mt|Gt) =
∫ t

0

̂d〈M, mG〉u

d〈mG〉u
dmG

u + LG
t , (2.3)

where LG is a local martingale orthogonal to mG.

It follows from this proposition that for any G-predictable, M-integrable process π and any
G-martingale mG

〈 ̂(π · M), mG〉t =
∫ t

0
πu

̂d〈M, mG〉u

d〈mG〉u
d〈mG〉u =

∫ t

0
πud〈M̂, mG〉u = 〈π · M̂, mG〉t.

Hence, for any G-predictable, M-integrable process π

̂(π · M)t = E
(∫ t

0
πsdMs|Gt

)
=

∫ t

0
πsdM̂s. (2.4)

Since π, λ, and 〈M〉 are G-predictable, from (2.4) we have

̂(π · S)t = E
(∫ t

0
πudSu|Gt

)
=

∫ t

0
πudŜu, (2.5)

where

Ŝt = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t.

3. Separation Principle: The Optimality Principle

Let us introduce the value function of the problem (1.2) defined as

UH(t, x) = ess inf
π∈Π(G)

E

((
x +

∫ T

t
πudSu − H

)2
|Gt

)
. (3.1)

By the GKW decomposition

Ht = E(H|Ft) = EH +
∫ t

0
hudMu + Lt (3.2)

for a F-predictable, M-integrable process h and a local martingale L strongly orthogonal to
M. We shall use also the GKW decompositions of Ht = E(H|Ft) with respect to the local
martingale M̂

Ht = EH +
∫ t

0
hG

u dM̂u + LG
t , (3.3)

where hG is a F-predictable process and LG is a F-local martingale strongly orthogonal to M̂.
It follows from Proposition 2.2 (applied for mG = M̂) and Lemma A.1 that

〈E(H|G.), M̂〉t =
∫ t

0
ĥG

u ρ2
ud〈M〉u. (3.4)

We shall use the notation
h̃t = ĥG

t ρ2
t − ĥt. (3.5)

Note that h̃ belongs to the class Π(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean-variance
hedging problem (1.2), to minimize the expression

E

[(
x +

∫ T

0
πudŜu − ĤT

)2
+

∫ T

0

(
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

)
d〈M〉u

]
(3.6)

over all π ∈ Π(G). Recall that Ŝt = E(St|Gt) = S0 +
∫ t

0 λ̂ud〈M〉u + M̂t.

Theorem 3.1. Let conditions (A), (B), and (C) be satisfied. Then the initial mean-variance hedging
problem (1.2) is equivalent to the problem (3.6). In particular, for any π ∈ Π(G) and t ∈ [0, T]

E

[(
x +

∫ T

t
πudSu − H

)2
|Gt

]
= E

[(
H − ĤT

)2
|Gt

]

+ E

[(
x +

∫ T

t
πudŜu − ĤT

)2
+

∫ T

t

(
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

)
d〈M〉u|Gt

]
. (3.7)

Proof. We have

E

[(
x +

∫ T

t
πudSu − H

)2
|Gt

]
= E

[(
x +

∫ T

t
πudŜu − H +

∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]
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Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions are equivalent:

(1) There is a martingale measure Q ∈ Me(F), and J2
T(F) is closed in L2.

(2) There is a martingale measure Q ∈ Me(F) that satisfies the reverse Hölder condition R2(P).

(3) There is a constant C such that for all π ∈ Π(F) we have

‖ sup
t≤T

(π · S)t‖L2(P) ≤ C‖(π · S)T‖L2(P).

(4) There is a constant c such that for every stopping time τ, every A ∈ Fτ , and every π ∈ Π(F),
with π = π I]τ,T], we have

‖IA − (π · S)T‖L2(P) ≥ cP(A)1/2.

Note that assertion (4) implies that for every stopping time τ and for every π ∈ Π(G) we have

E

((
1 +

∫ T

τ
πudSu

)2
/

Fτ

)
≥ c. (2.2)

Now we recall some known assertions from the filtering theory. The following proposition
can be proved similarly to (Liptser & Shiryaev, 1986)( the detailed proof one can see in (Mania
et al., 2009)).

Proposition 2.2. If conditions (A), (B), and (C) are satisfied, then for any continuous F-local martin-
gale M, with M0 = 0, and any G-local martingale mG

M̂t = E(Mt|Gt) =
∫ t

0

̂d〈M, mG〉u

d〈mG〉u
dmG

u + LG
t , (2.3)

where LG is a local martingale orthogonal to mG.

It follows from this proposition that for any G-predictable, M-integrable process π and any
G-martingale mG

〈 ̂(π · M), mG〉t =
∫ t

0
πu

̂d〈M, mG〉u

d〈mG〉u
d〈mG〉u =

∫ t

0
πud〈M̂, mG〉u = 〈π · M̂, mG〉t.

Hence, for any G-predictable, M-integrable process π

̂(π · M)t = E
(∫ t

0
πsdMs|Gt

)
=

∫ t

0
πsdM̂s. (2.4)

Since π, λ, and 〈M〉 are G-predictable, from (2.4) we have

̂(π · S)t = E
(∫ t

0
πudSu|Gt

)
=

∫ t

0
πudŜu, (2.5)

where

Ŝt = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t.

3. Separation Principle: The Optimality Principle

Let us introduce the value function of the problem (1.2) defined as

UH(t, x) = ess inf
π∈Π(G)

E

((
x +

∫ T

t
πudSu − H

)2
|Gt

)
. (3.1)

By the GKW decomposition

Ht = E(H|Ft) = EH +
∫ t

0
hudMu + Lt (3.2)

for a F-predictable, M-integrable process h and a local martingale L strongly orthogonal to
M. We shall use also the GKW decompositions of Ht = E(H|Ft) with respect to the local
martingale M̂

Ht = EH +
∫ t

0
hG

u dM̂u + LG
t , (3.3)

where hG is a F-predictable process and LG is a F-local martingale strongly orthogonal to M̂.
It follows from Proposition 2.2 (applied for mG = M̂) and Lemma A.1 that

〈E(H|G.), M̂〉t =
∫ t

0
ĥG

u ρ2
ud〈M〉u. (3.4)

We shall use the notation
h̃t = ĥG

t ρ2
t − ĥt. (3.5)

Note that h̃ belongs to the class Π(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean-variance
hedging problem (1.2), to minimize the expression

E

[(
x +

∫ T

0
πudŜu − ĤT

)2
+

∫ T

0

(
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

)
d〈M〉u

]
(3.6)

over all π ∈ Π(G). Recall that Ŝt = E(St|Gt) = S0 +
∫ t

0 λ̂ud〈M〉u + M̂t.

Theorem 3.1. Let conditions (A), (B), and (C) be satisfied. Then the initial mean-variance hedging
problem (1.2) is equivalent to the problem (3.6). In particular, for any π ∈ Π(G) and t ∈ [0, T]

E

[(
x +

∫ T

t
πudSu − H

)2
|Gt

]
= E

[(
H − ĤT

)2
|Gt

]

+ E

[(
x +

∫ T

t
πudŜu − ĤT

)2
+

∫ T

t

(
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

)
d〈M〉u|Gt

]
. (3.7)

Proof. We have

E

[(
x +

∫ T

t
πudSu − H

)2
|Gt

]
= E

[(
x +

∫ T

t
πudŜu − H +

∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]
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= E

[(
x +

∫ T

t
πudŜu − H

)2
|Gt

]
+ 2E

[(
x +

∫ T

t
πudŜu − H

)(∫ T

t
πud

(
Mu − M̂u

))
|Gt

]

+ E

[(∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]
= I1 + 2I2 + I3. (3.8)

It is evident that

I1 = E

[(
x +

∫ T

t
πudŜu − ĤT

)2
|Gt

]
+ E

[(
H − ĤT

)2
|Gt

]
. (3.9)

Since π, λ̂, and 〈M̂〉 are GT-measurable and the σ-algebras FS
t ∨ Gt and GT are conditionally

independent given Gt (see Remark 2.3), it follows from (2.4) that

E
[∫ T

t
πuλ̂ud〈M〉u

∫ T

t
πud

(
Mu − M̂u

)
|Gt

]

= E
[∫ T

t
πuλ̂ud〈M〉u

∫ T

0
πud

(
Mu − M̂u

)
|Gt

]

− E
[∫ T

t
πuλ̂ud〈M〉u

∫ t

0
πud

(
Mu − M̂u

)
|Gt

]

= E
[∫ T

t
πuλ̂ud〈M〉uE

(∫ T

0
πud

(
Mu − M̂u

)
|GT

)
|Gt

]

− E
[∫ T

t
πuλ̂ud〈M〉u|Gt

]
E
[∫ t

0
πud

(
Mu − M̂u

)
|Gt

]
= 0. (3.10)

On the other hand, by using decomposition (3.2), equality (3.4), properties of square charac-
teristics of martingales, and the projection theorem, we obtain

E
[

H
∫ T

t
πud

(
Mu − M̂u

)
|Gt

]
= E

[
H

∫ T

t
πudMu|Gt

]
− E

[
ĤT

∫ T

t
πudM̂u|Gt

]

= E
[∫ T

t
πud〈M, E(H|F·)〉u|Gt

]
− E

[∫ T

t
πud〈Ĥ, M̂〉u|Gt

]

= E
[∫ T

t
πuhud〈M〉u|Gt

]
− E

[∫ T

t
πuĥG

u ρ2
ud〈M〉u|Gt

]

= E
[∫ T

t
πu

(
ĥu − ĥG

u ρ2
u

)
d〈M〉u|Gt

]
= −E

[∫ T

t
πuh̃ud〈M〉u|Gt

]
. (3.11)

Finally, it is easy to verify that

2E
[∫ T

t
πu M̂u

∫ T

t
πud

(
Mu − M̂u

)
|Gt

]
+ E

[(∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]

= E
[(∫ T

t
π2

ud〈M〉u −
∫ T

t
π2

ud〈M̂〉u

)
|Gt

]
= E

[∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (3.12)

Therefore (3.8), (3.9), (3.10), (3.11), and (3.12) imply the validity of equality (3.7). �

Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6) are equiv-
alent. Therefore it is sufficient to solve the problem (3.6), which is formulated in terms of
G-adapted processes. One can say that (3.6) is a mean-variance hedging problem under com-
plete information with a correction term and can be solved by using methods for complete
information.
Let us introduce the value process of the problem (3.6)

VH(t, x)= ess inf
π∈Π(G)

E

[(
x+

∫ T

t
πudŜu−ĤT

)2
+
∫ T

t

[
π2

u

(
1 − ρ2

u

)
+2πuh̃u

]
d〈M〉u|Gt

]
. (3.13)

It follows from Theorem 3.1 that

UH(t, x) = VH(t, x) + E
[
(H − ĤT)

2|Gt
]
. (3.14)

The optimality principle takes in this case the following form.

Proposition 3.1 (optimality principle). Let conditions (A), (B) and (C) be satisfied. Then

(a) for all x ∈ R, π ∈ Π(G), and s ∈ [0, T] the process

VH
(

t, x +
∫ t

s
πudŜu

)
+

∫ t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u)

]
d〈M〉u

is a submartingale on [s, T], admitting an right continuous with left limits (RCLL) modification.

(b) π∗ is optimal if and only if the process

VH
(

t, x +
∫ t

s
π∗

udŜu

)
+

∫ t

s

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale.

This assertion can be proved in a standard manner (see, e.g., (El Karoui & Quenez, 1995),
(Kramkov, 1996)). The proof more adapted to this case one can see in (Mania & Tevzadze,
2003).
Let

V(t, x) = ess inf
π∈Π(G)

E

[(
x +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]

and

Vt(2) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
.

It is evident that V(t, x) (resp., Vt(2)) is the value process of the optimization problem (3.6) in
the case H = 0 (resp., H = 0 and x = 1), i.e.,

V(t, x) = V0(t, x) and Vt(2) = V0(t, 1).

Since Π(G) is a cone, we have

V(t, x) = x2 ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πu

x
dŜu

)2
+

∫ T

t

(πu

x

)2 (
1 − ρ2

u

)
d〈M〉u|Gt

]
= x2Vt(2).

(3.15)
Therefore from Proposition 3.1 and equality (3.15) we have the following.
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= E

[(
x +

∫ T

t
πudŜu − H

)2
|Gt

]
+ 2E

[(
x +

∫ T

t
πudŜu − H

)(∫ T

t
πud

(
Mu − M̂u

))
|Gt

]

+ E

[(∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]
= I1 + 2I2 + I3. (3.8)

It is evident that

I1 = E

[(
x +

∫ T

t
πudŜu − ĤT

)2
|Gt

]
+ E

[(
H − ĤT

)2
|Gt

]
. (3.9)

Since π, λ̂, and 〈M̂〉 are GT-measurable and the σ-algebras FS
t ∨ Gt and GT are conditionally

independent given Gt (see Remark 2.3), it follows from (2.4) that

E
[∫ T

t
πuλ̂ud〈M〉u

∫ T

t
πud

(
Mu − M̂u

)
|Gt

]

= E
[∫ T

t
πuλ̂ud〈M〉u

∫ T

0
πud

(
Mu − M̂u

)
|Gt

]

− E
[∫ T

t
πuλ̂ud〈M〉u

∫ t

0
πud

(
Mu − M̂u

)
|Gt

]

= E
[∫ T

t
πuλ̂ud〈M〉uE

(∫ T

0
πud

(
Mu − M̂u

)
|GT

)
|Gt

]

− E
[∫ T

t
πuλ̂ud〈M〉u|Gt

]
E
[∫ t

0
πud

(
Mu − M̂u

)
|Gt

]
= 0. (3.10)

On the other hand, by using decomposition (3.2), equality (3.4), properties of square charac-
teristics of martingales, and the projection theorem, we obtain

E
[

H
∫ T

t
πud

(
Mu − M̂u

)
|Gt

]
= E

[
H

∫ T

t
πudMu|Gt

]
− E

[
ĤT

∫ T

t
πudM̂u|Gt

]

= E
[∫ T

t
πud〈M, E(H|F·)〉u|Gt

]
− E

[∫ T

t
πud〈Ĥ, M̂〉u|Gt

]

= E
[∫ T

t
πuhud〈M〉u|Gt

]
− E

[∫ T

t
πuĥG

u ρ2
ud〈M〉u|Gt

]

= E
[∫ T

t
πu

(
ĥu − ĥG

u ρ2
u

)
d〈M〉u|Gt

]
= −E

[∫ T

t
πuh̃ud〈M〉u|Gt

]
. (3.11)

Finally, it is easy to verify that

2E
[∫ T

t
πu M̂u

∫ T

t
πud

(
Mu − M̂u

)
|Gt

]
+ E

[(∫ T

t
πud

(
Mu − M̂u

))2
|Gt

]

= E
[(∫ T

t
π2

ud〈M〉u −
∫ T

t
π2

ud〈M̂〉u

)
|Gt

]
= E

[∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (3.12)

Therefore (3.8), (3.9), (3.10), (3.11), and (3.12) imply the validity of equality (3.7). �

Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6) are equiv-
alent. Therefore it is sufficient to solve the problem (3.6), which is formulated in terms of
G-adapted processes. One can say that (3.6) is a mean-variance hedging problem under com-
plete information with a correction term and can be solved by using methods for complete
information.
Let us introduce the value process of the problem (3.6)

VH(t, x)= ess inf
π∈Π(G)

E

[(
x+

∫ T

t
πudŜu−ĤT

)2
+
∫ T

t

[
π2

u

(
1 − ρ2

u

)
+2πuh̃u

]
d〈M〉u|Gt

]
. (3.13)

It follows from Theorem 3.1 that

UH(t, x) = VH(t, x) + E
[
(H − ĤT)

2|Gt
]
. (3.14)

The optimality principle takes in this case the following form.

Proposition 3.1 (optimality principle). Let conditions (A), (B) and (C) be satisfied. Then

(a) for all x ∈ R, π ∈ Π(G), and s ∈ [0, T] the process

VH
(

t, x +
∫ t

s
πudŜu

)
+

∫ t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u)

]
d〈M〉u

is a submartingale on [s, T], admitting an right continuous with left limits (RCLL) modification.

(b) π∗ is optimal if and only if the process

VH
(

t, x +
∫ t

s
π∗

udŜu

)
+

∫ t

s

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale.

This assertion can be proved in a standard manner (see, e.g., (El Karoui & Quenez, 1995),
(Kramkov, 1996)). The proof more adapted to this case one can see in (Mania & Tevzadze,
2003).
Let

V(t, x) = ess inf
π∈Π(G)

E

[(
x +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]

and

Vt(2) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
.

It is evident that V(t, x) (resp., Vt(2)) is the value process of the optimization problem (3.6) in
the case H = 0 (resp., H = 0 and x = 1), i.e.,

V(t, x) = V0(t, x) and Vt(2) = V0(t, 1).

Since Π(G) is a cone, we have

V(t, x) = x2 ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πu

x
dŜu

)2
+

∫ T

t

(πu

x

)2 (
1 − ρ2

u

)
d〈M〉u|Gt

]
= x2Vt(2).

(3.15)
Therefore from Proposition 3.1 and equality (3.15) we have the following.



Stochastic Control590

Corollary 3.1. (a) The process

Vt(2)
(

1 +
∫ t

s
πudŜu

)2
+

∫ t

s
(πu)

2(1 − ρ2
u)d〈M〉u,

t ≥ s, is a submartingale for all π ∈ Π(G) and s ∈ [0, T].
(b) π∗ is optimal if and only if

Vt(2)
(

1 +
∫ t

s
π∗

udŜu

)2
+

∫ t

s
(π∗

u)
2(1 − ρ2

u)d〈M〉u,

t ≥ s, is a martingale.

Note that in the case H = 0 from Theorem 3.1 we have

E

[(
1 +

∫ T

t
πudSu

)2
|Gt

]
= E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
(3.16)

and, hence,
Vt(2) = U0(t, 1). (3.17)

Lemma 3.1. Let conditions (A)–(D) be satisfied. Then there is a constant 1 ≥ c > 0 such that
Vt(2) ≥ c for all t ∈ [0, T] a.s. and

1 − ρ2
t + ρ2

t Vt(2) ≥ c µ〈M〉a.e. (3.18)

Proof. Let

VF
t (2) = ess inf

π∈Π(F)
E

[(
1 +

∫ T

t
πudSu

)2
|Ft

]
.

It follows from assertion (4) of Proposition 2.1 that there is a constant c > 0 such that VF
t (2) ≥ c

for all t ∈ [0, T] a.s. Note that c ≤ 1 since VF ≤ 1. Then by (3.17)

Vt(2) = U0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudSu

)2
|Gt

]

= ess inf
π∈Π(G)

E

[
E

((
1 +

∫ T

t
πudSu

)2
|Ft

)
|Gt

]
≥ E(VF

t (2)|Gt) ≥ c.

Therefore, since ρ2
t ≤ 1 by Lemma A.1,

1 − ρ2
t + ρ2

t Vt(2) ≥ 1 − ρ2
t + ρ2

t c ≥ inf
r∈[0,1]

(1 − r + rc) = c.

4. BSDEs for the Value Process

Let us consider the semimartingale backward equation

Yt = Y0 +
∫ t

0
f (u, Yu, ψu)d〈m〉u +

∫ t

0
ψudmu + Lt (4.1)

with the boundary condition
YT = η, (4.2)

where η is an integrable GT-measurable random variable, f : Ω × [0, T] × R2 → R is P ×
B(R2) measurable, and m is a local martingale. A solution of (4.1)–(4.2) is a triple (Y, ψ, L),
where Y is a special semimartingale, ψ is a predictable m-integrable process, and L a local
martingale strongly orthogonal to m. Sometimes we call Y alone the solution of (4.1)–(4.2),
keeping in mind that ψ · m + L is the martingale part of Y.
Backward stochastic differential equations have been introduced in (Bismut, 1973) for the lin-
ear case as the equations for the adjoint process in the stochastic maximum principle. The
semimartingale backward equation, as a stochastic version of the Bellman equation in an op-
timal control problem, was first derived in (Chitashvili, 1983). The BSDE with more general
nonlinear generators was introduced in (Pardoux & Peng, 1990) for the case of Brownian fil-
tration, where the existence and uniqueness of a solution of BSDEs with generators satisfying
the global Lifschitz condition was established. These results were generalized for generators
with quadratic growth in (Kobylanski, 2000), (Lepeltier & San Martin, 1998) for BSDEs driven
by a Brownian motion and in (Morlais, 2009), (Tevzadze, 2008) for BSDEs driven by martin-
gales. But conditions imposed in these papers are too restrictive for our needs. We prove here
the existence and uniqueness of a solution by directly showing that the unique solution of the
BSDE that we consider is the value of the problem.
In this section we characterize optimal strategies in terms of solutions of suitable semimartin-
gale backward equations.

Theorem 4.1. Let H be a square integrable FT-measurable random variable, and let conditions (A),
(B), (C), and (D) be satisfied. Then the value function of the problem (3.6) admits a representation

VH(t, x) = Vt(0)− 2Vt(1)x + Vt(2)x2, (4.3)

where the processes Vt(0), Vt(1), and Vt(2) satisfy the following system of backward equations:

Yt(2) = Y0(2) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s +

∫ t

0
ψs(2)dM̂s + Lt(2), YT(2) = 1, (4.4)

Yt(1) = Y0(1) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)(

ψs(1)ρ2
s + λ̂sYs(1)− h̃s

)

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(1)dM̂s + Lt(1), YT(1) = E(H|GT), (4.5)

Yt(0) = Y0(0) +
∫ t

0

(
ψs(1)ρ2

s + λ̂sYs(1)− h̃s
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(0)dM̂s + Lt(0), YT(0) = E2(H|GT), (4.6)

where L(2), L(1), and L(0) are G-local martingales orthogonal to M̂.
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Corollary 3.1. (a) The process

Vt(2)
(

1 +
∫ t

s
πudŜu

)2
+

∫ t

s
(πu)

2(1 − ρ2
u)d〈M〉u,

t ≥ s, is a submartingale for all π ∈ Π(G) and s ∈ [0, T].
(b) π∗ is optimal if and only if

Vt(2)
(

1 +
∫ t

s
π∗

udŜu

)2
+

∫ t

s
(π∗

u)
2(1 − ρ2

u)d〈M〉u,

t ≥ s, is a martingale.

Note that in the case H = 0 from Theorem 3.1 we have

E

[(
1 +

∫ T

t
πudSu

)2
|Gt

]
= E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
(3.16)

and, hence,
Vt(2) = U0(t, 1). (3.17)

Lemma 3.1. Let conditions (A)–(D) be satisfied. Then there is a constant 1 ≥ c > 0 such that
Vt(2) ≥ c for all t ∈ [0, T] a.s. and

1 − ρ2
t + ρ2

t Vt(2) ≥ c µ〈M〉a.e. (3.18)

Proof. Let

VF
t (2) = ess inf

π∈Π(F)
E

[(
1 +

∫ T

t
πudSu

)2
|Ft

]
.

It follows from assertion (4) of Proposition 2.1 that there is a constant c > 0 such that VF
t (2) ≥ c

for all t ∈ [0, T] a.s. Note that c ≤ 1 since VF ≤ 1. Then by (3.17)

Vt(2) = U0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudSu

)2
|Gt

]

= ess inf
π∈Π(G)

E

[
E

((
1 +

∫ T

t
πudSu

)2
|Ft

)
|Gt

]
≥ E(VF

t (2)|Gt) ≥ c.

Therefore, since ρ2
t ≤ 1 by Lemma A.1,

1 − ρ2
t + ρ2

t Vt(2) ≥ 1 − ρ2
t + ρ2

t c ≥ inf
r∈[0,1]

(1 − r + rc) = c.

4. BSDEs for the Value Process

Let us consider the semimartingale backward equation

Yt = Y0 +
∫ t

0
f (u, Yu, ψu)d〈m〉u +

∫ t

0
ψudmu + Lt (4.1)

with the boundary condition
YT = η, (4.2)

where η is an integrable GT-measurable random variable, f : Ω × [0, T] × R2 → R is P ×
B(R2) measurable, and m is a local martingale. A solution of (4.1)–(4.2) is a triple (Y, ψ, L),
where Y is a special semimartingale, ψ is a predictable m-integrable process, and L a local
martingale strongly orthogonal to m. Sometimes we call Y alone the solution of (4.1)–(4.2),
keeping in mind that ψ · m + L is the martingale part of Y.
Backward stochastic differential equations have been introduced in (Bismut, 1973) for the lin-
ear case as the equations for the adjoint process in the stochastic maximum principle. The
semimartingale backward equation, as a stochastic version of the Bellman equation in an op-
timal control problem, was first derived in (Chitashvili, 1983). The BSDE with more general
nonlinear generators was introduced in (Pardoux & Peng, 1990) for the case of Brownian fil-
tration, where the existence and uniqueness of a solution of BSDEs with generators satisfying
the global Lifschitz condition was established. These results were generalized for generators
with quadratic growth in (Kobylanski, 2000), (Lepeltier & San Martin, 1998) for BSDEs driven
by a Brownian motion and in (Morlais, 2009), (Tevzadze, 2008) for BSDEs driven by martin-
gales. But conditions imposed in these papers are too restrictive for our needs. We prove here
the existence and uniqueness of a solution by directly showing that the unique solution of the
BSDE that we consider is the value of the problem.
In this section we characterize optimal strategies in terms of solutions of suitable semimartin-
gale backward equations.

Theorem 4.1. Let H be a square integrable FT-measurable random variable, and let conditions (A),
(B), (C), and (D) be satisfied. Then the value function of the problem (3.6) admits a representation

VH(t, x) = Vt(0)− 2Vt(1)x + Vt(2)x2, (4.3)

where the processes Vt(0), Vt(1), and Vt(2) satisfy the following system of backward equations:

Yt(2) = Y0(2) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s +

∫ t

0
ψs(2)dM̂s + Lt(2), YT(2) = 1, (4.4)

Yt(1) = Y0(1) +
∫ t

0

(
ψs(2)ρ2

s + λ̂sYs(2)
)(

ψs(1)ρ2
s + λ̂sYs(1)− h̃s

)

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(1)dM̂s + Lt(1), YT(1) = E(H|GT), (4.5)

Yt(0) = Y0(0) +
∫ t

0

(
ψs(1)ρ2

s + λ̂sYs(1)− h̃s
)2

1 − ρ2
s + ρ2

s Ys(2)
d〈M〉s

+
∫ t

0
ψs(0)dM̂s + Lt(0), YT(0) = E2(H|GT), (4.6)

where L(2), L(1), and L(0) are G-local martingales orthogonal to M̂.
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Besides, the optimal filtered wealth process X̂x,π∗

t = x +
∫ t

0 π∗
udŜu is a solution of the linear equation

X̂∗
t = x −

∫ t

0

ρ2
uψu(2) + λ̂uYu(2)
1 − ρ2

u + ρ2
uYu(2)

X̂∗
udŜu +

∫ t

0

ψu(1)ρ2
u + λ̂uYu(1)− h̃u

1 − ρ2
u + ρ2

uYu(2)
dŜu. (4.7)

Proof. Similarly to the case of complete information one can show that the optimal strategy
exists and that VH(t, x) is a square trinomial of the form (4.3) (see, e.g., (Mania & Tevzadze,
2003)). More precisely the space of stochastic integrals

J2
t,T(G) =

{∫ T

t
πudSu : π ∈ Π(G)

}

is closed by Proposition 2.1, since 〈M〉 is G-predictable. Hence there exists optimal strategy
π∗(t, x) ∈ Π(G) and UH(t, x) = E[|H − x −

∫ T
t π∗

u(t, x)dSu|2|Gt]. Since
∫ T

t π∗
u(t, x)dSu co-

incides with the orthogonal projection of H − x ∈ L2 on the closed subspace of stochastic
integrals, then the optimal strategy is linear with respect to x, i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t).
This implies that the value function UH(t, x) is a square trinomial. It follows from the equality
(3.14) that VH(t, x) is also a square trinomial, and it admits the representation (4.3).
Let us show that Vt(0), Vt(1), and Vt(2) satisfy the system (4.4)–(4.6). It is evident that

Vt(0)=VH(t, 0)= ess inf
π∈Π(G)

E

[(∫ T

t
πudŜu−ĤT

)2
+
∫ T

t
[π2

u

(
1−ρ2

u

)
+2πuh̃u]d〈M〉u|Gt

]
(4.8)

and

Vt(2) = V0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (4.9)

Therefore, it follows from the optimality principle (taking π = 0) that Vt(0) and Vt(2) are
RCLL G-submartingales and

Vt(2) ≤ E(VT(2)|Gt) ≤ 1, Vt(0) ≤ E(E2(H|GT)|Gt) ≤ E(H2|Gt).

Since
Vt(1) =

1
2
(Vt(0) + Vt(2)− VH(t, 1)), (4.10)

the process Vt(1) is also a special semimartingale, and since Vt(0) − 2Vt(1)x + Vt(2)x2 =
VH(t, x) ≥ 0 for all x ∈ R, we have V2

t (1) ≤ Vt(0)Vt(2); hence

V2
t (1) ≤ E

(
H2|Gt

)
.

Expressions (4.8), (4.9), and (3.13) imply that VT(0) = E2(H|GT), VT(2) = 1, and VH(T, x) =
(x − E(H|GT))

2. Therefore from (4.10) we have VT(1) = E(H|GT), and V(0), V(1), and V(2)
satisfy the boundary conditions.
Thus, the coefficients Vt(i), i = 0, 1, 2, are special semimartingales, and they admit the decom-
position

Vt(i) = V0(i) + At(i) +
∫ t

0
ϕs(i)dM̂s + mt(i), i = 0, 1, 2, (4.11)

where m(0), m(1), and m(2) are G-local martingales strongly orthogonal to M̂ and A(0), A(1),
and A(2) are G-predictable processes of finite variation.
There exists an increasing continuous G-predictable process K such that

〈M〉t =
∫ t

0
νudKu, At(i) =

∫ t

0
au(i)dKu, i = 0, 1, 2,

where ν and a(i), i = 0, 1, 2, are G-predictable processes.
Let X̂x,π

s,t ≡ x +
∫ t

s πudŜu and

Yx,π
s,t ≡ VH

(
t, X̂x,π

s,t

)
+

∫ t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

]
d〈M〉u.

Then by using (4.3), (4.11), and the Itô formula for any t ≥ s we have

(
X̂x,π

s,t

)2
= x +

∫ t

s

[
2πuλ̂uX̂x,π

s,u + π2
uρ2

u

]
d〈M〉u + 2

∫ t

s
πuX̂x,π

s,u dM̂u (4.12)

and

Yx,π
s,t − VH(s, x) =

∫ t

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu

+
∫ t

s

[
π2

u

(
1 − ρ2

u + ρ2
uVu−(2)

)
+ 2πuX̂x,π

s,u

(
λ̂uVu−(2) + ϕu(2)ρ2

u

)

− 2πu

(
Vu−(1)λ̂u + ϕu(1)ρ2

u − h̃u

) ]
νudKu + mt − ms, (4.13)

where m is a local martingale.
Let

G(π, x) = G(ω, u, π, x) = π2
(

1 − ρ2
u + ρ2

uVu−(2)
)
+ 2πx

(
λ̂uVu−(2) + ϕu(2)ρ2

u

)

− 2π(Vu−(1)λ̂u + ϕu(1)ρ2
u − h̃u).

It follows from the optimality principle that for each π ∈ Π(G) the process
∫ t

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu +
∫ t

s
G
(

πu, X̂x,π
s,u

)
νudKu (4.14)

is increasing for any s on s ≤ t ≤ T, and for the optimal strategy π∗ we have the equality
∫ t

s

[(
X̂x,π∗

s,u

)2
au(2)− 2X̂x,π∗

s,u au(1) + au(0)
]

dKu = −
∫ t

s
G
(

π∗
u, X̂x,π∗

s,u

)
νudKu. (4.15)

Since νudKu = d〈M〉u is continuous, without loss of generality one can assume that the pro-
cess K is continuous (see (Mania & Tevzadze, 2003) for details). Therefore, by taking in (4.14)
τs(ε) = inf{t ≥ s : Kt − Ks ≥ ε} instead of t, we have that for any ε > 0 and s ≥ 0

1
ε

∫ τs(ε)

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu ≥ −1
ε

∫ τs(ε)

s
G
(

πu, X̂x,π
s,u

)
νudKu. (4.16)

By passing to the limit in (4.16) as ε → 0, from Proposition B of (Mania & Tevzadze, 2003) we
obtain

x2au(2)− 2xau(1) + au(0) ≥ −G(πu, x)νu, µK-a.e.,
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Besides, the optimal filtered wealth process X̂x,π∗

t = x +
∫ t

0 π∗
udŜu is a solution of the linear equation

X̂∗
t = x −

∫ t

0

ρ2
uψu(2) + λ̂uYu(2)
1 − ρ2

u + ρ2
uYu(2)

X̂∗
udŜu +

∫ t

0

ψu(1)ρ2
u + λ̂uYu(1)− h̃u

1 − ρ2
u + ρ2

uYu(2)
dŜu. (4.7)

Proof. Similarly to the case of complete information one can show that the optimal strategy
exists and that VH(t, x) is a square trinomial of the form (4.3) (see, e.g., (Mania & Tevzadze,
2003)). More precisely the space of stochastic integrals

J2
t,T(G) =

{∫ T

t
πudSu : π ∈ Π(G)

}

is closed by Proposition 2.1, since 〈M〉 is G-predictable. Hence there exists optimal strategy
π∗(t, x) ∈ Π(G) and UH(t, x) = E[|H − x −

∫ T
t π∗

u(t, x)dSu|2|Gt]. Since
∫ T

t π∗
u(t, x)dSu co-

incides with the orthogonal projection of H − x ∈ L2 on the closed subspace of stochastic
integrals, then the optimal strategy is linear with respect to x, i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t).
This implies that the value function UH(t, x) is a square trinomial. It follows from the equality
(3.14) that VH(t, x) is also a square trinomial, and it admits the representation (4.3).
Let us show that Vt(0), Vt(1), and Vt(2) satisfy the system (4.4)–(4.6). It is evident that

Vt(0)=VH(t, 0)= ess inf
π∈Π(G)

E

[(∫ T

t
πudŜu−ĤT

)2
+
∫ T

t
[π2

u

(
1−ρ2

u

)
+2πuh̃u]d〈M〉u|Gt

]
(4.8)

and

Vt(2) = V0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t
πudŜu

)2
+

∫ T

t
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gt

]
. (4.9)

Therefore, it follows from the optimality principle (taking π = 0) that Vt(0) and Vt(2) are
RCLL G-submartingales and

Vt(2) ≤ E(VT(2)|Gt) ≤ 1, Vt(0) ≤ E(E2(H|GT)|Gt) ≤ E(H2|Gt).

Since
Vt(1) =

1
2
(Vt(0) + Vt(2)− VH(t, 1)), (4.10)

the process Vt(1) is also a special semimartingale, and since Vt(0) − 2Vt(1)x + Vt(2)x2 =
VH(t, x) ≥ 0 for all x ∈ R, we have V2

t (1) ≤ Vt(0)Vt(2); hence

V2
t (1) ≤ E

(
H2|Gt

)
.

Expressions (4.8), (4.9), and (3.13) imply that VT(0) = E2(H|GT), VT(2) = 1, and VH(T, x) =
(x − E(H|GT))

2. Therefore from (4.10) we have VT(1) = E(H|GT), and V(0), V(1), and V(2)
satisfy the boundary conditions.
Thus, the coefficients Vt(i), i = 0, 1, 2, are special semimartingales, and they admit the decom-
position

Vt(i) = V0(i) + At(i) +
∫ t

0
ϕs(i)dM̂s + mt(i), i = 0, 1, 2, (4.11)

where m(0), m(1), and m(2) are G-local martingales strongly orthogonal to M̂ and A(0), A(1),
and A(2) are G-predictable processes of finite variation.
There exists an increasing continuous G-predictable process K such that

〈M〉t =
∫ t

0
νudKu, At(i) =

∫ t

0
au(i)dKu, i = 0, 1, 2,

where ν and a(i), i = 0, 1, 2, are G-predictable processes.
Let X̂x,π

s,t ≡ x +
∫ t

s πudŜu and

Yx,π
s,t ≡ VH

(
t, X̂x,π

s,t

)
+

∫ t

s

[
π2

u

(
1 − ρ2

u

)
+ 2πuh̃u

]
d〈M〉u.

Then by using (4.3), (4.11), and the Itô formula for any t ≥ s we have

(
X̂x,π

s,t

)2
= x +

∫ t

s

[
2πuλ̂uX̂x,π

s,u + π2
uρ2

u

]
d〈M〉u + 2

∫ t

s
πuX̂x,π

s,u dM̂u (4.12)

and

Yx,π
s,t − VH(s, x) =

∫ t

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu

+
∫ t

s

[
π2

u

(
1 − ρ2

u + ρ2
uVu−(2)

)
+ 2πuX̂x,π

s,u

(
λ̂uVu−(2) + ϕu(2)ρ2

u

)

− 2πu

(
Vu−(1)λ̂u + ϕu(1)ρ2

u − h̃u

) ]
νudKu + mt − ms, (4.13)

where m is a local martingale.
Let

G(π, x) = G(ω, u, π, x) = π2
(

1 − ρ2
u + ρ2

uVu−(2)
)
+ 2πx

(
λ̂uVu−(2) + ϕu(2)ρ2

u

)

− 2π(Vu−(1)λ̂u + ϕu(1)ρ2
u − h̃u).

It follows from the optimality principle that for each π ∈ Π(G) the process
∫ t

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu +
∫ t

s
G
(

πu, X̂x,π
s,u

)
νudKu (4.14)

is increasing for any s on s ≤ t ≤ T, and for the optimal strategy π∗ we have the equality
∫ t

s

[(
X̂x,π∗

s,u

)2
au(2)− 2X̂x,π∗

s,u au(1) + au(0)
]

dKu = −
∫ t

s
G
(

π∗
u, X̂x,π∗

s,u

)
νudKu. (4.15)

Since νudKu = d〈M〉u is continuous, without loss of generality one can assume that the pro-
cess K is continuous (see (Mania & Tevzadze, 2003) for details). Therefore, by taking in (4.14)
τs(ε) = inf{t ≥ s : Kt − Ks ≥ ε} instead of t, we have that for any ε > 0 and s ≥ 0

1
ε

∫ τs(ε)

s

[(
X̂x,π

s,u

)2
au(2)− 2X̂x,π

s,u au(1) + au(0)
]

dKu ≥ −1
ε

∫ τs(ε)

s
G
(

πu, X̂x,π
s,u

)
νudKu. (4.16)

By passing to the limit in (4.16) as ε → 0, from Proposition B of (Mania & Tevzadze, 2003) we
obtain

x2au(2)− 2xau(1) + au(0) ≥ −G(πu, x)νu, µK-a.e.,
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for all π ∈ Π(G). Similarly from (4.15) we have that µK-a.e.

x2au(2)− 2xau(1) + au(0) = −G(π∗
u, x)νu

and hence
x2au(2)− 2xau(1) + au(0) = −νu ess inf

π∈Π(G)
G(πu, x). (4.17)

The infimum in (4.17) is attained for the strategy

π̂t =
Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ2
t )

1 − ρ2
t + ρ2

t Vt(2)
. (4.18)

From here we can conclude that

ess inf
π∈Π(G)

G(πt, x) ≥ G(π̂t, x) = −

(
Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x
(

Vt(2)λ̂t + ϕt(2)ρ2
t

))2

1 − ρ2
t + ρ2

t Vt(2)
. (4.19)

Let πn
t = I[0,τn [(t)π̂t, where τn = inf{t : |Vt(1)| ≥ n}.

It follows from Lemmas A.2, 3.1, and A.3 that πn ∈ Π(G) for every n ≥ 1 and hence

ess inf
π∈Π(G)

G(πt, x) ≤ G(πn
t , x)

for all n ≥ 1. Therefore

ess inf
π∈Π(G)

G(πt, x) ≤ lim
n→∞

G(πn
t , x) = G(π̂t, x). (4.20)

Thus (4.17), (4.19), and (4.20) imply that

x2at(2)− 2xat(1) + at(0)

= νt
(Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ2
t ))

2

1 − ρ2
t + ρ2

t Vt(2)
, µK-a.e., (4.21)

and by equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain

At(2) =
∫ t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.22)

At(1) =
∫ t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
) (

ϕs(1)ρ2
s + λ̂sVs(1)− h̃s

)

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.23)

At(0) =
∫ t

0

(
ϕs(1)ρ2

s + λ̂sVs(1)− h̃s

)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.24)

which, together with (4.11), implies that the triples (V(i), ϕ(i), m(i)), i = 0, 1, 2, satisfy the
system (4.4)–(4.6).

Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and (4.24)
imply that the strategy π̂ defined by (4.18) belongs to the class Π(G).
Let us show now that if the strategy π∗ ∈ Π(G) is optimal, then the corresponding filtered
wealth process X̂π∗

t = x +
∫ t

0 π∗
udŜu is a solution of (4.7).

By the optimality principle the process

Yπ∗
t = VH

(
t, X̂π∗

t

)
+

∫ t

0

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale. By using the Itô formula we have

Yπ∗
t =

∫ t

0

(
X̂π∗

u

)2
dAu(2)− 2

∫ t

0
X̂π∗

u dAu(1) + At(0) +
∫ t

0
G
(

π∗
u, X̂π∗

u

)
d〈M〉u + Nt,

where N is a martingale. Therefore by applying equalities (4.22), (4.23), and (4.24) we obtain

Yπ∗
t =

∫ t

0

(
π∗

u − Vu(1)λ̂u + ϕu(1)ρ2
u − h̃u

1 − ρ2
u + ρ2

uVu(2)

+ X̂π∗
u

Vu(2)λ̂u + ϕu(2)ρ2
u

1 − ρ2
u + ρ2

uVu(2)

)2 (
1 − ρ2

u + ρ2
uVu(2)

)
d〈M〉u + Nt,

which implies that µ〈M〉-a.e.

π∗
u =

Vu(1)λ̂u + ϕu(1)ρ2
u − h̃u

1 − ρ2
u + ρ2

uVu(2)
− X̂π∗

u

(
Vu(2)λ̂u + ϕu(2)ρ2

u

)

1 − ρ2
u + ρ2

uVu(2)
.

By integrating both parts of this equality with respect to dŜ (and adding then x to the both
parts), we obtain that X̂π∗

satisfies (4.7). �

The uniqueness of the system (4.4)–(4.6) we shall prove under following condition (D∗),
stronger than condition (D).
Assume that

(D∗)
∫ T

0

λ̂2
u

ρ2
u

d〈M〉u ≤ C.

Since ρ2 ≤ 1 (Lemma A.1), it follows from (D∗) that the mean-variance tradeoff of S is
bounded, i.e., ∫ T

0
λ̂2

ud〈M〉u ≤ C,

which implies (see, e.g., Kazamaki (Kazamaki, 1994)) that the minimal martingale measure for
S exists and satisfies the reverse Hölder condition R2(P). So, condition (D∗) implies condition
(D). Besides, it follows from condition (D∗) that the minimal martingale measure Q̂min for Ŝ

dQ̂min = ET

(
− λ̂

ρ2 · M̂

)
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for all π ∈ Π(G). Similarly from (4.15) we have that µK-a.e.

x2au(2)− 2xau(1) + au(0) = −G(π∗
u, x)νu

and hence
x2au(2)− 2xau(1) + au(0) = −νu ess inf

π∈Π(G)
G(πu, x). (4.17)

The infimum in (4.17) is attained for the strategy

π̂t =
Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ2
t )

1 − ρ2
t + ρ2

t Vt(2)
. (4.18)

From here we can conclude that

ess inf
π∈Π(G)

G(πt, x) ≥ G(π̂t, x) = −

(
Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x
(

Vt(2)λ̂t + ϕt(2)ρ2
t

))2

1 − ρ2
t + ρ2

t Vt(2)
. (4.19)

Let πn
t = I[0,τn [(t)π̂t, where τn = inf{t : |Vt(1)| ≥ n}.

It follows from Lemmas A.2, 3.1, and A.3 that πn ∈ Π(G) for every n ≥ 1 and hence

ess inf
π∈Π(G)

G(πt, x) ≤ G(πn
t , x)

for all n ≥ 1. Therefore

ess inf
π∈Π(G)

G(πt, x) ≤ lim
n→∞

G(πn
t , x) = G(π̂t, x). (4.20)

Thus (4.17), (4.19), and (4.20) imply that

x2at(2)− 2xat(1) + at(0)

= νt
(Vt(1)λ̂t + ϕt(1)ρ2

t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ2
t ))

2

1 − ρ2
t + ρ2

t Vt(2)
, µK-a.e., (4.21)

and by equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain

At(2) =
∫ t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.22)

At(1) =
∫ t

0

(
ϕs(2)ρ2

s + λ̂sVs(2)
) (

ϕs(1)ρ2
s + λ̂sVs(1)− h̃s

)

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.23)

At(0) =
∫ t

0

(
ϕs(1)ρ2

s + λ̂sVs(1)− h̃s

)2

1 − ρ2
s + ρ2

s Vs(2)
d〈M〉s , (4.24)

which, together with (4.11), implies that the triples (V(i), ϕ(i), m(i)), i = 0, 1, 2, satisfy the
system (4.4)–(4.6).

Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and (4.24)
imply that the strategy π̂ defined by (4.18) belongs to the class Π(G).
Let us show now that if the strategy π∗ ∈ Π(G) is optimal, then the corresponding filtered
wealth process X̂π∗

t = x +
∫ t

0 π∗
udŜu is a solution of (4.7).

By the optimality principle the process

Yπ∗
t = VH

(
t, X̂π∗

t

)
+

∫ t

0

[
(π∗

u)
2
(

1 − ρ2
u

)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale. By using the Itô formula we have

Yπ∗
t =

∫ t

0

(
X̂π∗

u

)2
dAu(2)− 2

∫ t

0
X̂π∗

u dAu(1) + At(0) +
∫ t

0
G
(

π∗
u, X̂π∗

u

)
d〈M〉u + Nt,

where N is a martingale. Therefore by applying equalities (4.22), (4.23), and (4.24) we obtain

Yπ∗
t =

∫ t

0

(
π∗

u − Vu(1)λ̂u + ϕu(1)ρ2
u − h̃u

1 − ρ2
u + ρ2

uVu(2)

+ X̂π∗
u

Vu(2)λ̂u + ϕu(2)ρ2
u

1 − ρ2
u + ρ2

uVu(2)

)2 (
1 − ρ2

u + ρ2
uVu(2)

)
d〈M〉u + Nt,

which implies that µ〈M〉-a.e.

π∗
u =

Vu(1)λ̂u + ϕu(1)ρ2
u − h̃u

1 − ρ2
u + ρ2

uVu(2)
− X̂π∗

u

(
Vu(2)λ̂u + ϕu(2)ρ2

u

)

1 − ρ2
u + ρ2

uVu(2)
.

By integrating both parts of this equality with respect to dŜ (and adding then x to the both
parts), we obtain that X̂π∗

satisfies (4.7). �

The uniqueness of the system (4.4)–(4.6) we shall prove under following condition (D∗),
stronger than condition (D).
Assume that

(D∗)
∫ T

0

λ̂2
u

ρ2
u

d〈M〉u ≤ C.

Since ρ2 ≤ 1 (Lemma A.1), it follows from (D∗) that the mean-variance tradeoff of S is
bounded, i.e., ∫ T

0
λ̂2

ud〈M〉u ≤ C,

which implies (see, e.g., Kazamaki (Kazamaki, 1994)) that the minimal martingale measure for
S exists and satisfies the reverse Hölder condition R2(P). So, condition (D∗) implies condition
(D). Besides, it follows from condition (D∗) that the minimal martingale measure Q̂min for Ŝ

dQ̂min = ET

(
− λ̂

ρ2 · M̂

)



Stochastic Control596

also exists and satisfies the reverse Hölder condition. Indeed, condition (D∗) implies that

Et(−2 λ̂
ρ2 · M̂) is a G-martingale and hence

E

(
E2

tT

(
− λ̂

ρ2 · M̂

)
|Gt

)
= E

(
EtT

(
−2

λ̂

ρ2 · M̂

)
e
∫ T

t
λ̂2

u
ρ2

u
d〈M〉u Gt

)
≤ eC.

Recall that the process Z belongs to the class D if the family of random variables Zτ I(τ≤T) for
all stopping times τ is uniformly integrable.

Theorem 4.2. Let conditions (A), (B), (C), and (D∗) be satisfied. If a triple (Y(0), Y(1), Y(2)), where
Y(0) ∈ D, Y2(1) ∈ D, and c ≤ Y(2) ≤ C for some constants 0 < c < C, is a solution of the system
(4.4)–(4.6), then such a solution is unique and coincides with the triple (V(0), V(1), V(2)).

Proof. Let Y(2) be a bounded strictly positive solution of (4.4), and let

∫ t

0
ψu(2)dM̂u + Lt(2)

be the martingale part of Y(2).
Since Y(2) solves (4.4), it follows from the Itô formula that for any π ∈ Π(G) the process

Yπ
t = Yt(2)

(
1 +

∫ t

s
πudŜu

)2
+

∫ t

s
π2

u

(
1 − ρ2

u

)
d〈M〉u, (4.25)

t ≥ s, is a local submartingale.
Since π ∈ Π(G), from Lemma A.1 and the Doob inequality we have

E sup
t≤T

(
1 +

∫ t

0
πudŜ

)2

≤ const
(

1 + E
∫ T

0
π2

uρ2
ud〈M〉u

)
+ E

(∫ T

0
|πuλ̂u|d〈M〉u

)2
< ∞. (4.26)

Therefore, by taking in mind that Y(2) is bounded and π ∈ Π(G) we obtain

E
(

sup
s≤u≤T

Yπ
u
)2

< ∞,

which implies that Yπ ∈ D. Thus Yπ is a submartingale (as a local submartingale from the
class D), and by the boundary condition YT(2) = 1 we obtain

Ys(2) ≤ E

((
1 +

∫ T

s
πudŜu

)2
+

∫ T

s
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)

for all π ∈ Π(G) and hence
Yt(2) ≤ Vt(2). (4.27)

Let

π̃t = − λ̂tYt(2) + ψt(2)ρ2
t

1 − ρ2
t + ρ2

t Yt(2)
Et

(
− λ̂Y(2) + ψ(2)ρ2

1 − ρ2 + ρ2Y(2)
· Ŝ

)
.

Since 1 +
∫ t

0 π̃udŜu = Et(− λ̂Y(2)+ψ(2)ρ2

1−ρ2+ρ2Y(2) · Ŝ), it follows from (4.4) and the Itô formula that

the process Yπ̃ defined by (4.25) is a positive local martingale and hence a supermartingale.
Therefore

Ys(2) ≥ E

((
1 +

∫ T

s
π̃udŜu

)2
+

∫ T

s
π̃2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)
. (4.28)

Let us show that π̃ belongs to the class Π(G).
From (4.28) and (4.27) we have for every s ∈ [0, T]

E

((
1 +

∫ T

s
π̃udŜu

)2
+

∫ T

s
π̃2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)
≤ Ys(2) ≤ Vs(2) ≤ 1 (4.29)

and hence

E
(

1 +
∫ T

0
π̃udŜu

)2
≤ 1, (4.30)

E
∫ T

0
π̃2

u

(
1 − ρ2

u

)
d〈M〉u ≤ 1. (4.31)

By (D∗) the minimal martingale measure Q̂min for Ŝ satisfies the reverse Hölder condition, and
hence all conditions of Proposition 2.1 are satisfied. Therefore the norm

E
(∫ T

0
π̃2

s ρ2
s d〈M〉s

)
+ E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2

is estimated by E
(
1 +

∫ T
0 π̃udŜu)2 and hence

E
∫ T

0
π̃2

uρ2
ud〈M〉u < ∞, E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2
< ∞.

It follows from (4.31) and the latter inequality that π̃ ∈ Π(G), and from (4.28) we obtain

Yt(2) ≥ Vt(2),

which together with (4.27) gives the equality Yt(2) = Vt(2).
Thus V(2) is a unique bounded strictly positive solution of (4.4). Besides,

∫ t

0
ψu(2)dM̂u =

∫ t

0
ϕu(2)dM̂u, Lt(2) = mt(2) (4.32)

for all t, P-a.s.
Let Y(1) be a solution of (4.5) such that Y2(1) ∈ D. By the Itô formula the process

Rt = Yt(1)Et

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ t

0
Eu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u (4.33)

is a local martingale. Let us show that Rt is a martingale.
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also exists and satisfies the reverse Hölder condition. Indeed, condition (D∗) implies that

Et(−2 λ̂
ρ2 · M̂) is a G-martingale and hence

E

(
E2

tT

(
− λ̂

ρ2 · M̂

)
|Gt

)
= E

(
EtT

(
−2

λ̂

ρ2 · M̂

)
e
∫ T

t
λ̂2

u
ρ2

u
d〈M〉u Gt

)
≤ eC.

Recall that the process Z belongs to the class D if the family of random variables Zτ I(τ≤T) for
all stopping times τ is uniformly integrable.

Theorem 4.2. Let conditions (A), (B), (C), and (D∗) be satisfied. If a triple (Y(0), Y(1), Y(2)), where
Y(0) ∈ D, Y2(1) ∈ D, and c ≤ Y(2) ≤ C for some constants 0 < c < C, is a solution of the system
(4.4)–(4.6), then such a solution is unique and coincides with the triple (V(0), V(1), V(2)).

Proof. Let Y(2) be a bounded strictly positive solution of (4.4), and let

∫ t

0
ψu(2)dM̂u + Lt(2)

be the martingale part of Y(2).
Since Y(2) solves (4.4), it follows from the Itô formula that for any π ∈ Π(G) the process

Yπ
t = Yt(2)

(
1 +

∫ t

s
πudŜu

)2
+

∫ t

s
π2

u

(
1 − ρ2

u

)
d〈M〉u, (4.25)

t ≥ s, is a local submartingale.
Since π ∈ Π(G), from Lemma A.1 and the Doob inequality we have

E sup
t≤T

(
1 +

∫ t

0
πudŜ

)2

≤ const
(

1 + E
∫ T

0
π2

uρ2
ud〈M〉u

)
+ E

(∫ T

0
|πuλ̂u|d〈M〉u

)2
< ∞. (4.26)

Therefore, by taking in mind that Y(2) is bounded and π ∈ Π(G) we obtain

E
(

sup
s≤u≤T

Yπ
u
)2

< ∞,

which implies that Yπ ∈ D. Thus Yπ is a submartingale (as a local submartingale from the
class D), and by the boundary condition YT(2) = 1 we obtain

Ys(2) ≤ E

((
1 +

∫ T

s
πudŜu

)2
+

∫ T

s
π2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)

for all π ∈ Π(G) and hence
Yt(2) ≤ Vt(2). (4.27)

Let

π̃t = − λ̂tYt(2) + ψt(2)ρ2
t

1 − ρ2
t + ρ2

t Yt(2)
Et

(
− λ̂Y(2) + ψ(2)ρ2

1 − ρ2 + ρ2Y(2)
· Ŝ

)
.

Since 1 +
∫ t

0 π̃udŜu = Et(− λ̂Y(2)+ψ(2)ρ2

1−ρ2+ρ2Y(2) · Ŝ), it follows from (4.4) and the Itô formula that

the process Yπ̃ defined by (4.25) is a positive local martingale and hence a supermartingale.
Therefore

Ys(2) ≥ E

((
1 +

∫ T

s
π̃udŜu

)2
+

∫ T

s
π̃2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)
. (4.28)

Let us show that π̃ belongs to the class Π(G).
From (4.28) and (4.27) we have for every s ∈ [0, T]

E

((
1 +

∫ T

s
π̃udŜu

)2
+

∫ T

s
π̃2

u

(
1 − ρ2

u

)
d〈M〉u|Gs

)
≤ Ys(2) ≤ Vs(2) ≤ 1 (4.29)

and hence

E
(

1 +
∫ T

0
π̃udŜu

)2
≤ 1, (4.30)

E
∫ T

0
π̃2

u

(
1 − ρ2

u

)
d〈M〉u ≤ 1. (4.31)

By (D∗) the minimal martingale measure Q̂min for Ŝ satisfies the reverse Hölder condition, and
hence all conditions of Proposition 2.1 are satisfied. Therefore the norm

E
(∫ T

0
π̃2

s ρ2
s d〈M〉s

)
+ E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2

is estimated by E
(
1 +

∫ T
0 π̃udŜu)2 and hence

E
∫ T

0
π̃2

uρ2
ud〈M〉u < ∞, E

(∫ T

0
|π̃sλ̂s|d〈M〉s

)2
< ∞.

It follows from (4.31) and the latter inequality that π̃ ∈ Π(G), and from (4.28) we obtain

Yt(2) ≥ Vt(2),

which together with (4.27) gives the equality Yt(2) = Vt(2).
Thus V(2) is a unique bounded strictly positive solution of (4.4). Besides,

∫ t

0
ψu(2)dM̂u =

∫ t

0
ϕu(2)dM̂u, Lt(2) = mt(2) (4.32)

for all t, P-a.s.
Let Y(1) be a solution of (4.5) such that Y2(1) ∈ D. By the Itô formula the process

Rt = Yt(1)Et

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ t

0
Eu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u (4.33)

is a local martingale. Let us show that Rt is a martingale.
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As was already shown, the strategy

π̃u =
ψu(2)ρ2

u + λ̂uYu(2)
1 − ρ2 + ρ2Yu(2)

Eu

(
−ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)

belongs to the class Π(G).
Therefore (see (4.26)),

E sup
t≤T

E2
t

(
−ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)
= E sup

t≤T

(
1 +

∫ t

0
π̃udŜ

)2
< ∞, (4.34)

and hence

Yt(1)Et

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
∈ D.

On the other hand, the second term of (4.33) is the process of integrable variation, since π̃ ∈
Π(G) and h̃ ∈ Π(G) (see Lemma A.2) imply that

E
∫ T

0

∣∣∣∣∣Eu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)

∣∣∣∣∣ d〈M〉u

= E
∫ T

0
|π̃uh̃u|d〈M〉u ≤ E1/2

∫ T

0
π̃2

ud〈M〉uE1/2
∫ T

0
h̃2

ud〈M〉u < ∞.

Therefore, the process Rt belongs to the class D, and hence it is a true martingale. By using
the martingale property and the boundary condition we obtain

Yt(1) = E

(
ĤTEtT

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u|Gt

)
. (4.35)

Thus, any solution of (4.5) is expressed explicitly in terms of (V(2), ϕ(2)) in the form (4.35).
Hence the solution of (4.5) is unique, and it coincides with Vt(1).
It is evident that the solution of (4.6) is also unique. �

Remark 4.1. In the case FS ⊆ G we have ρt = 1, h̃t = 0, and Ŝt = St, and (4.7) takes the form

X̂∗
t = x −

∫ t

0

ψu(2) + λ̂uYu(2)
Yu(2)

X̂∗
udSu +

∫ t

0

ψu(1) + λ̂uYu(1)
Yu(2)

dSu.

Corollary 4.1. In addition to conditions (A)–(C) assume that ρ is a constant and the mean-variance
tradeoff 〈λ̂ · M〉T is deterministic. Then the solution of (4.4) is the triple (Y(2), ψ(2), L(2)), with
ψ(2) = 0, L(2) = 0, and

Yt(2) = Vt(2) = ν
(

ρ, 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t

)
, (4.36)

where ν(ρ, α) is the root of the equation

1 − ρ2

x
− ρ2 ln x = α. (4.37)

Besides,

Yt(1) = E

(
HEtT

(
− λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
− λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
λuVu(2)h̃u

1 − ρ2 + ρ2Vu(2)
d〈M〉u|Gt

)
(4.38)

uniquely solves (4.5), and the optimal filtered wealth process satisfies the linear equation

X̂∗
t = x −

∫ t

0

λ̂uVu(2)
1 − ρ2 + ρ2Vu(2)

X̂∗
udŜu +

∫ t

0

ϕu(1)ρ2 + λ̂uVu(1)− h̃u

1 − ρ2 + ρ2Vu(2)
dŜu. (4.39)

Proof. The function f (x) =
1−ρ2

x − ρ2 ln x is differentiable and strictly decreasing on ]0, ∞[
and takes all values from ]− ∞,+∞[. So (4.37) admits a unique solution for all α. Besides, the
inverse function α(x) is differentiable. Therefore Yt(2) is a process of finite variation, and it is
adapted since 〈λ̂ · M〉T is deterministic.
By definition of Yt(2) we have that for all t ∈ [0, T]

1 − ρ2

Yt(2)
− ρ2 ln Yt(2) = 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t.

It is evident that for α = 1 − ρ2 the solution of (4.37) is equal to 1, and it follows from (4.36)
that Y(2) satisfies the boundary condition YT(2) = 1. Therefore

1 − ρ2

Yt(2)
− ρ2 ln Yt(2)−

(
1 − ρ2

)
= −

(
1 − ρ2

) ∫ T

t
d

1
Yu(2)

+ ρ2
∫ T

t
d ln Yu(2)

=
∫ T

t

(
1 − ρ2

Y2
u (2)

+
ρ2

Yu(2)

)
dYu(2)

and ∫ T

t

1 − ρ2 + ρ2Yu(2)
Y2

u (2)
dYu(2) = 〈λ̂ · M〉T − 〈λ̂ · M〉t

for all t ∈ [0, T]. Hence
∫ t

0

1 − ρ2 + ρ2Yu(2)
Y2

u (2)
dYu(2) = 〈λ̂ · M〉t,

and, by integrating both parts of this equality with respect to Y(2)/(1 − ρ2 + ρ2Y(2)), we
obtain that Y(2) satisfies

Yt(2) = Y0(2) +
∫ t

0

Y2
u (2)λ̂2

u
1 − ρ2 + ρ2Yu(2)

d〈M〉u, (4.40)

which implies that the triple (Y(2), ψ(2) = 0, L(2) = 0) satisfies (4.4) and Y(2) = V(2) by
Theorem 4.2. Equations (4.38) and (4.39) follow from (4.35) and (4.7), respectively, by taking
ϕ(2) = 0. �
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As was already shown, the strategy

π̃u =
ψu(2)ρ2

u + λ̂uYu(2)
1 − ρ2 + ρ2Yu(2)

Eu

(
−ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)

belongs to the class Π(G).
Therefore (see (4.26)),

E sup
t≤T

E2
t

(
−ψ(2)ρ2 + λ̂Y(2)

1 − ρ2 + ρ2Y(2)
· Ŝ

)
= E sup

t≤T

(
1 +

∫ t

0
π̃udŜ

)2
< ∞, (4.34)

and hence

Yt(1)Et

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
∈ D.

On the other hand, the second term of (4.33) is the process of integrable variation, since π̃ ∈
Π(G) and h̃ ∈ Π(G) (see Lemma A.2) imply that

E
∫ T

0

∣∣∣∣∣Eu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)

∣∣∣∣∣ d〈M〉u

= E
∫ T

0
|π̃uh̃u|d〈M〉u ≤ E1/2

∫ T

0
π̃2

ud〈M〉uE1/2
∫ T

0
h̃2

ud〈M〉u < ∞.

Therefore, the process Rt belongs to the class D, and hence it is a true martingale. By using
the martingale property and the boundary condition we obtain

Yt(1) = E

(
ĤTEtT

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
− ϕ(2)ρ2 + λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
(ϕu(2)ρ2

u + λ̂uVu(2))h̃u

1 − ρ2
u + ρ2

uVu(2)
d〈M〉u|Gt

)
. (4.35)

Thus, any solution of (4.5) is expressed explicitly in terms of (V(2), ϕ(2)) in the form (4.35).
Hence the solution of (4.5) is unique, and it coincides with Vt(1).
It is evident that the solution of (4.6) is also unique. �

Remark 4.1. In the case FS ⊆ G we have ρt = 1, h̃t = 0, and Ŝt = St, and (4.7) takes the form

X̂∗
t = x −

∫ t

0

ψu(2) + λ̂uYu(2)
Yu(2)

X̂∗
udSu +

∫ t

0

ψu(1) + λ̂uYu(1)
Yu(2)

dSu.

Corollary 4.1. In addition to conditions (A)–(C) assume that ρ is a constant and the mean-variance
tradeoff 〈λ̂ · M〉T is deterministic. Then the solution of (4.4) is the triple (Y(2), ψ(2), L(2)), with
ψ(2) = 0, L(2) = 0, and

Yt(2) = Vt(2) = ν
(

ρ, 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t

)
, (4.36)

where ν(ρ, α) is the root of the equation

1 − ρ2

x
− ρ2 ln x = α. (4.37)

Besides,

Yt(1) = E

(
HEtT

(
− λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)

+
∫ T

t
Etu

(
− λ̂V(2)

1 − ρ2 + ρ2V(2)
· Ŝ

)
λuVu(2)h̃u

1 − ρ2 + ρ2Vu(2)
d〈M〉u|Gt

)
(4.38)

uniquely solves (4.5), and the optimal filtered wealth process satisfies the linear equation

X̂∗
t = x −

∫ t

0

λ̂uVu(2)
1 − ρ2 + ρ2Vu(2)

X̂∗
udŜu +

∫ t

0

ϕu(1)ρ2 + λ̂uVu(1)− h̃u

1 − ρ2 + ρ2Vu(2)
dŜu. (4.39)

Proof. The function f (x) =
1−ρ2

x − ρ2 ln x is differentiable and strictly decreasing on ]0, ∞[
and takes all values from ]− ∞,+∞[. So (4.37) admits a unique solution for all α. Besides, the
inverse function α(x) is differentiable. Therefore Yt(2) is a process of finite variation, and it is
adapted since 〈λ̂ · M〉T is deterministic.
By definition of Yt(2) we have that for all t ∈ [0, T]

1 − ρ2

Yt(2)
− ρ2 ln Yt(2) = 1 − ρ2 + 〈λ̂ · M〉T − 〈λ̂ · M〉t.

It is evident that for α = 1 − ρ2 the solution of (4.37) is equal to 1, and it follows from (4.36)
that Y(2) satisfies the boundary condition YT(2) = 1. Therefore

1 − ρ2

Yt(2)
− ρ2 ln Yt(2)−

(
1 − ρ2

)
= −

(
1 − ρ2

) ∫ T

t
d

1
Yu(2)

+ ρ2
∫ T

t
d ln Yu(2)

=
∫ T

t

(
1 − ρ2

Y2
u (2)

+
ρ2

Yu(2)

)
dYu(2)

and ∫ T

t

1 − ρ2 + ρ2Yu(2)
Y2

u (2)
dYu(2) = 〈λ̂ · M〉T − 〈λ̂ · M〉t

for all t ∈ [0, T]. Hence
∫ t

0

1 − ρ2 + ρ2Yu(2)
Y2

u (2)
dYu(2) = 〈λ̂ · M〉t,

and, by integrating both parts of this equality with respect to Y(2)/(1 − ρ2 + ρ2Y(2)), we
obtain that Y(2) satisfies

Yt(2) = Y0(2) +
∫ t

0

Y2
u (2)λ̂2

u
1 − ρ2 + ρ2Yu(2)

d〈M〉u, (4.40)

which implies that the triple (Y(2), ψ(2) = 0, L(2) = 0) satisfies (4.4) and Y(2) = V(2) by
Theorem 4.2. Equations (4.38) and (4.39) follow from (4.35) and (4.7), respectively, by taking
ϕ(2) = 0. �
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Remark 4.2. In case FS ⊆ G we have M̂ = M and ρ = 1. Therefore (4.40) is linear and
Yt(2) = e〈λ̂·M〉t−〈λ̂·M〉T . In the case A = G of complete information, Yt(2) = e〈λ·N〉t−〈λ·N〉T .

5. Diffusion Market Model

Example 1. Let us consider the financial market model

dS̃t = S̃tµt(η)dt + S̃tσt(η)dw0
t ,

dηt = at(η)dt + bt(η)dwt,

subjected to initial conditions. Here w0 and w are correlated Brownian motions with
Edw0

t dwt = ρdt, ρ ∈ (−1, 1).

Let us write
wt = ρw0

t +
√

1 − ρ2w1
t ,

where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√

1 − ρ2w0 +
ρw1 is a Brownian motion independent of w, and one can express Brownian motions w0 and
w1 in terms of w and w⊥ as

w0
t = ρwt −

√
1 − ρ2w⊥

t , w1
t =

√
1 − ρ2wt + ρw⊥

t . (5.1)

Suppose that b2 > 0, σ2 > 0, and coefficients µ, σ, a, and b are such that FS,η
t = Fw0,w

t and
Fη

t =Fw
t .

We assume that an agent would like to hedge a contingent claim H (which can be a function
of ST and ηT) using only observations based on the process η. So the stochastic basis will be
(Ω,F , Ft, P), where Ft is the natural filtration of (w0, w) and the flow of observable events is
Gt = Fw

t .
Also denote dSt = µtdt + σtdw0

t , so that dS̃t = S̃tdSt and S is the return of the stock.
Let π̃t be the number of shares of the stock at time t. Then πt = π̃tS̃t represents an amount
of money invested in the stock at the time t ∈ [0, T]. We consider the mean-variance hedging
problem

to minimize E

[(
x +

∫ T

0
π̃tdS̃t − H

)2
]

over all π̃ for which π̃S̃ ∈ Π(G), (5.2)

which is equivalent to studying the mean-variance hedging problem

to minimize E

[(
x +

∫ T

0
πtdSt − H

)2
]

over all π ∈ Π(G).

Remark 5.1. Since S is not G-adapted, π̃t and π̃tS̃t cannot be simultaneously G-predictable
and the problem

to minimize E

[(
x +

∫ T

0
π̃tdS̃t − H

)2
]

over all π̃ ∈ Π(G)

is not equivalent to the problem (5.2). In this setting, condition (A) is not satisfied, and it needs
separate consideration.

By comparing with (1.1) we get that in this case

Mt =
∫ t

0
σsdw0

s , 〈M〉t =
∫ t

0
σ2

s ds, λt =
µt

σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1
and condition

(B) is satisfied. Therefore by Proposition 2.2

M̂t = ρ
∫ t

0
σsdws.

By the integral representation theorem the GKW decompositions (3.2) and (3.3) take the fol-
lowing forms:

cH = EH, Ht = cH +
∫ t

0
hsσsdw0

s +
∫ t

0
h1

s dw1
s , (5.3)

Ht = cH + ρ
∫ t

0
hG

s σsdws +
∫ t

0
h⊥s dw⊥

s . (5.4)

By putting expressions (5.1) for w0 and w1 in (5.3) and equalizing integrands of (5.3) and (5.4),
we obtain

ht = ρ2hG
t −

√
1 − ρ2 h⊥t

σt
and hence

ĥt = ρ2ĥG
t −

√
1 − ρ2 ĥ⊥t

σt
.

Therefore by the definition of h̃

h̃t = ρ2ĥG
t − ĥt =

√
1 − ρ2 ĥ⊥t

σt
. (5.5)

By using notations

Zs(0) = ρσs ϕs(0), Zs(1) = ρσs ϕs(1), Zs(2) = ρσs ϕs(2), θs =
µs

σs
,

we obtain the following corollary of Theorem 4.1.

Corollary 5.1. Let H be a square integrable FT-measurable random variable. Then the processes
Vt(0), Vt(1), and Vt(2) from (4.3) satisfy the following system of backward equations:

Vt(2) = V0(2) +
∫ t

0

(ρZs(2) + θsVs(2))
2

1 − ρ2 + ρ2Vs(2)
ds +

∫ t

0
Zs(2)dws, VT(2) = 1, (5.6)

Vt(1) = V0(1) +
∫ t

0

(ρZs(2) + θsVs(2))
(

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s
)

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(1)dws, VT(1) = E(H|GT), (5.7)

Vt(0) = V0(0) +
∫ t

0

(
ρZs(1) + θsVs(1)−

√
1 − ρ2 ĥ⊥s

)2

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(0)dws, VT(0) = E2(H|GT). (5.8)
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Remark 4.2. In case FS ⊆ G we have M̂ = M and ρ = 1. Therefore (4.40) is linear and
Yt(2) = e〈λ̂·M〉t−〈λ̂·M〉T . In the case A = G of complete information, Yt(2) = e〈λ·N〉t−〈λ·N〉T .

5. Diffusion Market Model

Example 1. Let us consider the financial market model

dS̃t = S̃tµt(η)dt + S̃tσt(η)dw0
t ,

dηt = at(η)dt + bt(η)dwt,

subjected to initial conditions. Here w0 and w are correlated Brownian motions with
Edw0

t dwt = ρdt, ρ ∈ (−1, 1).

Let us write
wt = ρw0

t +
√

1 − ρ2w1
t ,

where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√

1 − ρ2w0 +
ρw1 is a Brownian motion independent of w, and one can express Brownian motions w0 and
w1 in terms of w and w⊥ as

w0
t = ρwt −

√
1 − ρ2w⊥

t , w1
t =

√
1 − ρ2wt + ρw⊥

t . (5.1)

Suppose that b2 > 0, σ2 > 0, and coefficients µ, σ, a, and b are such that FS,η
t = Fw0,w

t and
Fη

t =Fw
t .

We assume that an agent would like to hedge a contingent claim H (which can be a function
of ST and ηT) using only observations based on the process η. So the stochastic basis will be
(Ω,F , Ft, P), where Ft is the natural filtration of (w0, w) and the flow of observable events is
Gt = Fw

t .
Also denote dSt = µtdt + σtdw0

t , so that dS̃t = S̃tdSt and S is the return of the stock.
Let π̃t be the number of shares of the stock at time t. Then πt = π̃tS̃t represents an amount
of money invested in the stock at the time t ∈ [0, T]. We consider the mean-variance hedging
problem

to minimize E

[(
x +

∫ T

0
π̃tdS̃t − H

)2
]

over all π̃ for which π̃S̃ ∈ Π(G), (5.2)

which is equivalent to studying the mean-variance hedging problem

to minimize E

[(
x +

∫ T

0
πtdSt − H

)2
]

over all π ∈ Π(G).

Remark 5.1. Since S is not G-adapted, π̃t and π̃tS̃t cannot be simultaneously G-predictable
and the problem

to minimize E

[(
x +

∫ T

0
π̃tdS̃t − H

)2
]

over all π̃ ∈ Π(G)

is not equivalent to the problem (5.2). In this setting, condition (A) is not satisfied, and it needs
separate consideration.

By comparing with (1.1) we get that in this case

Mt =
∫ t

0
σsdw0

s , 〈M〉t =
∫ t

0
σ2

s ds, λt =
µt

σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1
and condition

(B) is satisfied. Therefore by Proposition 2.2

M̂t = ρ
∫ t

0
σsdws.

By the integral representation theorem the GKW decompositions (3.2) and (3.3) take the fol-
lowing forms:

cH = EH, Ht = cH +
∫ t

0
hsσsdw0

s +
∫ t

0
h1

s dw1
s , (5.3)

Ht = cH + ρ
∫ t

0
hG

s σsdws +
∫ t

0
h⊥s dw⊥

s . (5.4)

By putting expressions (5.1) for w0 and w1 in (5.3) and equalizing integrands of (5.3) and (5.4),
we obtain

ht = ρ2hG
t −

√
1 − ρ2 h⊥t

σt
and hence

ĥt = ρ2ĥG
t −

√
1 − ρ2 ĥ⊥t

σt
.

Therefore by the definition of h̃

h̃t = ρ2ĥG
t − ĥt =

√
1 − ρ2 ĥ⊥t

σt
. (5.5)

By using notations

Zs(0) = ρσs ϕs(0), Zs(1) = ρσs ϕs(1), Zs(2) = ρσs ϕs(2), θs =
µs

σs
,

we obtain the following corollary of Theorem 4.1.

Corollary 5.1. Let H be a square integrable FT-measurable random variable. Then the processes
Vt(0), Vt(1), and Vt(2) from (4.3) satisfy the following system of backward equations:

Vt(2) = V0(2) +
∫ t

0

(ρZs(2) + θsVs(2))
2

1 − ρ2 + ρ2Vs(2)
ds +

∫ t

0
Zs(2)dws, VT(2) = 1, (5.6)

Vt(1) = V0(1) +
∫ t

0

(ρZs(2) + θsVs(2))
(

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s
)

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(1)dws, VT(1) = E(H|GT), (5.7)

Vt(0) = V0(0) +
∫ t

0

(
ρZs(1) + θsVs(1)−

√
1 − ρ2 ĥ⊥s

)2

1 − ρ2 + ρ2Vs(2)
ds

+
∫ t

0
Zs(0)dws, VT(0) = E2(H|GT). (5.8)
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Besides, the optimal wealth process X̂∗ satisfies the linear equation

X̂∗
t = x −

∫ t

0

ρZs(2) + θsVs(2)
1 − ρ2 + ρ2Vs(2)

X̂∗
s (θsds + ρdws)

+
∫ t

0

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s
1 − ρ2 + ρ2Vs(2)

(θsds + ρdws). (5.9)

Suppose now that θt and σt are deterministic. Then the solution of (5.6) is the pair
(Vt(2), Zt(2)), where Z(2) = 0 and V(2) satisfies the ordinary differential equation

dVt(2)
dt

=
θ2

t V2
t (2)

1 − ρ2 + ρ2Vt(2)
, VT(2) = 1. (5.10)

By solving this equation we obtain

Vt(2) = ν

(
ρ, 1 − ρ2 +

∫ T

t
θ2

s ds
)
≡ ν

θ,ρ
t , (5.11)

where ν(ρ, α) is the solution of (4.37). From (5.10) it follows that

(
ln ν

θ,ρ
t

)′
=

θ2
t ν

θ,ρ
t

1 − ρ2 + ρ2ν
θ,ρ
t

and ln
ν

θ,ρ
s

ν
θ,ρ
t

=
∫ s

t

θ2
r ν

θ,ρ
r dr

1 − ρ2 + ρ2ν
θ,ρ
r

. (5.12)

If we solve the linear BSDE (5.7) and use (5.12), we obtain

Vt(1) = E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
,

∫ T

t

θsν
θ,ρ
s σs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
ds

= ν
θ,ρ
t E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]
ds.

By using the Girsanov theorem we finally get

Vt(1) = ν
θ,ρ
t E

[
ĤT

(
ρ
∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

) ∣∣Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s

(
ρ
∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

) ∣∣Gt

]
ds. (5.13)

Besides, the optimal strategy is of the form

π∗
t = − θtVt(2)

(1 − ρ2 + ρ2Vt(2))σt
X̂∗

t +
ρZt(1) + θtVt(1)−

√
1 − ρ2 ĥ⊥t

(1 − ρ2 + ρ2Vt(2))σt
.

If in addition µ and σ are constants and the contingent claim is of the form H = H(ST , ηT),
then one can give an explicit expressions also for h̃, ĥ⊥, Ĥ, and Z(1).

Example 2. In Frey and Runggaldier (Frey & Runggaldier, 1999) the incomplete-information
situation arises, assuming that the hedger is unable to monitor the asset continuously but
is confined to observations at discrete random points in time τ1, τ2, . . . , τn. Perhaps it is
more natural to assume that the hedger has access to price information on full intervals
[σ1, τ1], [σ2, τ2], . . . , [σn, τn]. For the models with nonzero drifts, even the case n = 1 is non-
trivial. Here we consider this case in detail.

Let us consider the financial market model

dS̃t = µS̃tdt + σS̃tdWt, S0 = S,

where W is a standard Brownian motion and the coefficients µ and σ are constants. Assume
that an investor observes only the returns St − S0 =

∫ t
0

1
S̃u

dS̃u of the stock prices up to a

random moment τ before the expiration date T. Let At = FS
t , and let τ be a stopping time

with respect to FS. Then the filtration Gt of observable events is equal to the filtration FS
t∧τ .

Consider the mean-variance hedging problem

to minimize E

[(
x +

∫ T

0
πtdSt − H

)2
]

over all π ∈ Π(G),

where πt is a dollar amount invested in the stock at time t.
By comparing with (1.1) we get that in this case

Nt = Mt = σWt, 〈M〉t = σ2t, λt =
µ

σ2 .

Let θ =
µ
σ . The measure Q defined by dQ = ET(θW)dP is a unique martingale measure for

S, and it is evident that Q satisfies the reverse Hölder condition. It is also evident that any
G-martingale is FS-martingale and that conditions (A)–(C) are satisfied. Besides,

E(Wt|Gt) = Wt∧τ , Ŝt = µt + σWt∧τ and ρt = I{t≤τ}. (5.14)

By the integral representation theorem

E
(

H|FS
t

)
= EH +

∫ t

0
huσdWu (5.15)

for F-predictable W-integrable process h. On the other hand, by the GKW decomposition with
respect to the martingale Wτ = (Wt∧τ , t ∈ [0, T]),

E
(

H|FS
t

)
= EH +

∫ t

0
hG

u σdWτ
u + LG

t (5.16)

for FS-predictable process hG and FS martingale LG strongly orthogonal to Wτ . Therefore, by
equalizing the right-hand sides of (5.15) and (5.16) and taking the mutual characteristics of
both parts with Wτ , we obtain

∫ t∧τ
0 (hG

u ρ2
u − hu)du = 0 and hence

∫ t

0
h̃udu =

∫ t

0

(
ĥG

u I(u≤τ) − ĥu

)
du = −

∫ t

0
I(u>τ)E

(
hu|FS

τ

)
du. (5.17)
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Besides, the optimal wealth process X̂∗ satisfies the linear equation

X̂∗
t = x −

∫ t

0

ρZs(2) + θsVs(2)
1 − ρ2 + ρ2Vs(2)

X̂∗
s (θsds + ρdws)

+
∫ t

0

ρZs(1) + θsVs(1)−
√

1 − ρ2 ĥ⊥s
1 − ρ2 + ρ2Vs(2)

(θsds + ρdws). (5.9)

Suppose now that θt and σt are deterministic. Then the solution of (5.6) is the pair
(Vt(2), Zt(2)), where Z(2) = 0 and V(2) satisfies the ordinary differential equation

dVt(2)
dt

=
θ2

t V2
t (2)

1 − ρ2 + ρ2Vt(2)
, VT(2) = 1. (5.10)

By solving this equation we obtain

Vt(2) = ν

(
ρ, 1 − ρ2 +

∫ T

t
θ2

s ds
)
≡ ν

θ,ρ
t , (5.11)

where ν(ρ, α) is the solution of (4.37). From (5.10) it follows that

(
ln ν

θ,ρ
t

)′
=

θ2
t ν

θ,ρ
t

1 − ρ2 + ρ2ν
θ,ρ
t

and ln
ν

θ,ρ
s

ν
θ,ρ
t

=
∫ s

t

θ2
r ν

θ,ρ
r dr

1 − ρ2 + ρ2ν
θ,ρ
r

. (5.12)

If we solve the linear BSDE (5.7) and use (5.12), we obtain

Vt(1) = E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
,

∫ T

t

θsν
θ,ρ
s σs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

(θrdr + ρdwr)

)
|Gt

]
ds

= ν
θ,ρ
t E

[
ĤT(w)EtT

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s(w)Ets

(
−

∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

ρdwr

)
|Gt

]
ds.

By using the Girsanov theorem we finally get

Vt(1) = ν
θ,ρ
t E

[
ĤT

(
ρ
∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

) ∣∣Gt

]

+ ν
θ,ρ
t

∫ T

t

µs

1 − ρ2 + ρ2ν
θ,ρ
s

E

[
h̃s

(
ρ
∫ ·

0

θrν
θ,ρ
r

1 − ρ2 + ρ2ν
θ,ρ
r

dr + w

) ∣∣Gt

]
ds. (5.13)

Besides, the optimal strategy is of the form

π∗
t = − θtVt(2)

(1 − ρ2 + ρ2Vt(2))σt
X̂∗

t +
ρZt(1) + θtVt(1)−

√
1 − ρ2 ĥ⊥t

(1 − ρ2 + ρ2Vt(2))σt
.

If in addition µ and σ are constants and the contingent claim is of the form H = H(ST , ηT),
then one can give an explicit expressions also for h̃, ĥ⊥, Ĥ, and Z(1).

Example 2. In Frey and Runggaldier (Frey & Runggaldier, 1999) the incomplete-information
situation arises, assuming that the hedger is unable to monitor the asset continuously but
is confined to observations at discrete random points in time τ1, τ2, . . . , τn. Perhaps it is
more natural to assume that the hedger has access to price information on full intervals
[σ1, τ1], [σ2, τ2], . . . , [σn, τn]. For the models with nonzero drifts, even the case n = 1 is non-
trivial. Here we consider this case in detail.

Let us consider the financial market model

dS̃t = µS̃tdt + σS̃tdWt, S0 = S,

where W is a standard Brownian motion and the coefficients µ and σ are constants. Assume
that an investor observes only the returns St − S0 =

∫ t
0

1
S̃u

dS̃u of the stock prices up to a

random moment τ before the expiration date T. Let At = FS
t , and let τ be a stopping time

with respect to FS. Then the filtration Gt of observable events is equal to the filtration FS
t∧τ .

Consider the mean-variance hedging problem

to minimize E

[(
x +

∫ T

0
πtdSt − H

)2
]

over all π ∈ Π(G),

where πt is a dollar amount invested in the stock at time t.
By comparing with (1.1) we get that in this case

Nt = Mt = σWt, 〈M〉t = σ2t, λt =
µ

σ2 .

Let θ =
µ
σ . The measure Q defined by dQ = ET(θW)dP is a unique martingale measure for

S, and it is evident that Q satisfies the reverse Hölder condition. It is also evident that any
G-martingale is FS-martingale and that conditions (A)–(C) are satisfied. Besides,

E(Wt|Gt) = Wt∧τ , Ŝt = µt + σWt∧τ and ρt = I{t≤τ}. (5.14)

By the integral representation theorem

E
(

H|FS
t

)
= EH +

∫ t

0
huσdWu (5.15)

for F-predictable W-integrable process h. On the other hand, by the GKW decomposition with
respect to the martingale Wτ = (Wt∧τ , t ∈ [0, T]),

E
(

H|FS
t

)
= EH +

∫ t

0
hG

u σdWτ
u + LG

t (5.16)

for FS-predictable process hG and FS martingale LG strongly orthogonal to Wτ . Therefore, by
equalizing the right-hand sides of (5.15) and (5.16) and taking the mutual characteristics of
both parts with Wτ , we obtain

∫ t∧τ
0 (hG

u ρ2
u − hu)du = 0 and hence

∫ t

0
h̃udu =

∫ t

0

(
ĥG

u I(u≤τ) − ĥu

)
du = −

∫ t

0
I(u>τ)E

(
hu|FS

τ

)
du. (5.17)
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Therefore, by using notations

Zs(0) = ρσϕs(0), Zs(1) = ρσϕs(1), Zs(2) = ρσϕs(2),

it follows from Theorem 4.1 that the processes (Vt(2), Zt(2)) and (Vt(1), Zt(1)) satisfy the
following system of backward equations:

Vt(2) = V0(2) +
∫ t∧τ

0

(
Zs(2) + θVs(2)

)2

Vs(2)
ds

+
∫ t

t∧τ
θ2V2

s (2)ds +
∫ t∧τ

0
Zs(2)dWs, VT(2) = 1, (5.18)

Vt(1) = V0(1) +
∫ t∧τ

0

(
Zs(2) + θVs(2)

)(
Zs(1) + θVs(1)

)

Vs(2)
ds

+
∫ t

t∧τ
θVs(2)

(
θVs(1) + E

(
hs|FS

τ

))
ds +

∫ t∧τ

0
Zs(1)dWs, VT(1) = E(H|GT). (5.19)

Equation (5.18) admits in this case an explicit solution. To obtain the solution one should solve
first the equation

Ut = U0 +
∫ t

0
θ2U2

s ds, UT = 1, (5.20)

in the time interval [τ, T] and then the BSDE

Vt(2) = V0(2) +
∫ t

0

(
Zs(2) + θVs(2)

)2

Vs(2)
ds +

∫ t

0
Zs(2)dWs (5.21)

in the interval [0, τ], with the boundary condition Vτ(2) = Uτ . The solution of (5.20) is

Ut =
1

1 + θ2(T − t)
,

and the solution of (5.21) is expressed as

Vt(2) =
1

E
(
(1 + θ2(T − τ))E2

t,τ(−θW)|FS
t
)

(this can be verified by applying the Itô formula for the process V−1
t (2)E2

t (−θW) and by using
the fact that this process is a martingale). Therefore

Vt(2) =




1
1 + θ2(T − t)

if t ≥ τ,

1
E
(
(1 + θ2(T − τ))E2

t,τ(−θW)|FS
t
) if t ≤ τ.

(5.22)

According to (4.37), taking in mind (5.14), (5.17), and the fact that e−
∫ T

t θ2Vu(2)du = 1
1+θ2(T−t)

on the set t ≥ τ, the solution of (5.19) is equal to

Vt(1) = E
(

H
1 + θ2(T − t)

+
∫ T

t

θVu(2)hudu
1 + θ2(T − u)

|FS
τ

)
I(t>τ)

+ E
(
Et,τ

(
− ϕ(2) + λV(2)

V(2)
· S

)(
H

1 + θ2(T − τ)
+

∫ T

τ

θVu(2)hudu
1 + θ2(T − u)

)
|FS

t

)
I(t≤τ). (5.23)

By Theorem 4.1 the optimal filtered wealth process is a solution of a linear SDE, which takes
in this case the following form:

X̂∗
t = x −

∫ t∧τ

0

ϕu(2) + θVu(2)
Vu(2)

X̂∗
u(θdu + dWu)−

∫ t

t∧τ
θ2Vu(2)X̂∗

udu

+
∫ t∧τ

0

ϕu(1) + θVu(1)
Vu(2)

(θdu + dWu) +
∫ t

t∧τ

(
θ2Vu(1) + µE

(
hu|FS

τ

))
du. (5.24)

The optimal strategy is equal to

π∗
t =

[
− ϕt(2) + θVt(2)

Vt(2)
I(t≤τ) − θ2Vt(2)I(t>τ)

]
X̂∗

t

+
ϕt(1) + θVt(1)

Vt(2)
I(t≤τ) +

(
θ2Vt(1) + µE

(
ht|FS

τ

))
I(t>τ), (5.25)

where X̂∗
t is a solution of the linear equation (5.24), V(2) and V(1) are given by (5.22) and

(5.23), and ϕ(2) and ϕ(1) are integrands of their martingale parts, respectively. In particular
the optimal strategy in time interval [τ, T] (i.e., after interrupting observations) is of the form
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For instance, if τ is deterministic, then Vt(2) is also deterministic:
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e−θ2(τ−t) if t ≤ τ,

and ϕ(2) = 0.
Note that it is not optimal to do nothing after interrupting observations, and in order to act
optimally one should change the strategy deterministically as it is given by (5.26).
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which implies that 〈M̂〉 is absolutely continuous w.r.t. 〈M〉, i.e.,

〈M̂〉t =
∫ t

0
ρ2

s d〈M〉s

for a G-predictable process ρ. �

Moreover (A.1) implies that the process 〈M〉–〈M̂〉 is increasing and hence ρ2 ≤ 1 µ〈M〉 a.e.

Lemma A.2. Let H ∈ L2(P, FT), and let conditions (A)–(C) be satisfied. Then

E
∫ T

0
h̃2

ud〈M〉u < ∞.

Proof. It is evident that

E
∫ T

0
(hG

u )
2d〈M̂〉u < ∞, E

∫ T

0
h2

ud〈M〉u < ∞.

Therefore, by the definition of h̃ and Lemma A.1,

E
∫ T

0
h̃2

ud〈M〉u ≤ 2E
∫ T

0
ĥ2

ud〈M〉u + 2E
∫ T

0

(
ĥG

u

)2
ρ4

ud〈M〉u

≤ 2E
∫ T

0
h2

ud〈M〉u + 2E
∫ T

0

(
hG

u

)2
ρ2

ud〈M̂〉u < ∞.

Thus h̃ ∈ Π(G) by Remark 2.5. �

Lemma A.3. (a) Let Y = (Yt, t ∈ [0, T]) be a bounded positive submartingale with the canonical
decomposition

Yt = Y0 + Bt + mt,

where B is a predictable increasing process and m is a martingale. Then m ∈ BMO.
(b) In particular the martingale part of V(2) belongs to BMO. If H is bounded, then martingale parts
of V(0) and V(1) also belong to the class BMO, i.e., for i = 0, 1, 2,

E
(∫ T

τ
ϕ2

u(i)ρ
2
ud〈M〉u|Gτ

)
+ E (〈m(i)〉T − 〈m(i)〉τ |Gτ) ≤ C (A.2)

for every stopping time τ.

Proof. By applying the Itô formula for Y2
T − Y2

τ we have

〈m〉T − 〈m〉τ + 2
∫ T

τ
YudBu + 2

∫ T

τ
Yudmu = Y2

T − Y2
τ ≤ const (A.3)

Since Y is positive and B is an increasing process, by taking conditional expectations in (A.3)
we obtain

E(〈m〉T − 〈m〉τ |Fτ) ≤ const

for any stopping time τ, and hence m ∈ BMO.
(A.2) follows from assertion (a) applied for positive submartingales V(0), V(2), and V(0) +
V(2)− 2V(1). For the case i = 1 one should take into account also the inequality

〈m(1)〉t ≤ const(〈m(0) + m(2)− 2m(1)〉t + 〈m(0)〉t + 〈m(2)〉t).
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1. Short introduction 

The main idea of this chapter is that it offers an original scientific discussion with a 
conclusion concerning the relevance of pertinence and information needs of different 
subjects on markets (as potential traders on various financial markets, stock markets, bond 
markets, commodity markets, and currency markets, etc.) and the significance of 
appropriate operative (tactical or strategic) stochastic control approaches.  
The organisation of this chapter is very simple. After a short review of sources used and an 
overview of completed research, chapter parts with some definitions on the main subjects 
and research areas follow. Following the above stated, there are chapter sections with 
relatively short research examples of appropriate operative, tactical and strategic stochastic 
control approaches. All three approaches fits to adequate pertinence and information needs 
of different subjects on markets (the operative trading concept example, the tactical concept 
example as a quantitative approach to tactical asset allocation, and strategic concept 
examples as technical analysis in financial markets or strategic anti-money laundering 
analysis). The conclusion to this research is contained in the final chapter segment, before 
the cited references. In conclusion, this paper proposes quantitative and qualitative models 
for the right perception of adequate pertinence and information needs of different subjects 
on markets and the significance of appropriate operative (tactical or strategic) stochastic 
control approaches and expected results. 

 
2. Important concepts 

What was the problem? Even pioneers of information science and older authors (Perry et al., 
1956; Perry & Kent, 1958; Taube, 1958; Schultz & Luhn, 1968; Mooers, 1976), which are 
researching problems considering the data, information or knowledge and document 
collection and retrieving processes in relation to data, information or knowledge processing, 
determined at the same time that the main focus should be placed on “real information 
needs”. So, in defined period of time and for all different subjects on markets (as potential 
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traders on various financial markets, stock markets, bond markets, commodity markets, and 
currency markets, etc.) we may improve and adjust the activities related to data, information 
or knowledge collection and retrieving, in order to achieve accurate and useful data, 
information or knowledge appropriate to operative (tactical or strategic) stochastic control 
approaches to financial and other markets documentation and results. First, here is only 
short insight in some definitions of the main terms and subjects of researching area 
(stochastic, stochastic control, probabilistic and stochastic approaches, modern control and 
conventional control theory, cybernetics and informatics, pertinence and information needs, 
subjects on stock, bond, commodity, and currency markets, etc.).  
Usually any kind of deterministic or essentially probabilistic time development, in relation 
to data or information and knowledge processing, which is analyzable in terms of 
probability, deserves the name of stochastic process. In mathematics, especially in 
probability theory, the field of stochastic processes has been a major area of research, and 
stochastic matrix is a matrix that has non-negative real entries that sum to one in each row. 
Stochastic always means random, and where a stochastic process is one whose behavior is 
non-deterministic in mathematical sense, in that a system's subsequent state is determined 
both by the process's predictable actions and by a random element. Also, it is well known 
from literature (Ĺström, 1970; Bertsekas & Shreve, 1996; Bertsekas, 2005; Bertsekas, 2007; 
Bertsekas & Tsitsiklis, 2008) that stochastic control is only a subfield of control theory which 
mainly addresses the design of a control methodology to deal with the probability of 
uncertainty in the data. In a stochastic control problem, the designer usually assumes that 
random noise and disturbances exist in both subsystems parts (in the model and in the 
controller), and the control design always must take into account these random deviations. 
Also, stochastic control aims to predict and to minimize the effects of these random 
deviations, by optimizing the design of the controller. Applications of stochastic control 
solutions are very different, like usage of stochastic control in: artificial intelligence, natural 
sciences (biology, physics, medicine, creativity, and geomorphology), music, social sciences, 
teaching and learning, language and linguistics, colour reproduction, mathematical theory 
and practice, business, manufacturing, finance, insurance, etc. For this research, interesting 
examples are: usage of stochastic control in insurance (Schmidli, 2008), and usage 
continuous-time stochastic control and optimization with financial applications (Pham, 
2009), or usage stochastic optimal control for researching international finance and debt 
crises (Stein, 2006), etc. The financial markets use stochastic models to represent the 
seemingly random behaviour of assets such as stocks, commodities and interest rates, but 
usually these models are then used by quantitative analysts to value options on stock prices, 
bond prices, and on interest rates, as it can be seen in Markov models examples and many 
models examples which exist in the heart of the insurance industry (Schmidli, 2008). 
When considering the “real informational needs” in context of relatively limited or different 
acting time and various interests of different subjects on financial and other markets and 
their appropriate operative (tactical or strategic) stochastic control approaches, the following 
facts should be noted:  

 An informational request is different from an information necessity.  
 It is the relevance of the process which connects documents to the informational 

request.  
 It is the pertinence of the process which connects the documents to the 

informational need.  

 

In today’s turbulent market environment we have different subjects on markets (as potential 
traders on various markets) with similar or different interests and with relatively limited or 
even different acting time. Consequently, in order to achieve accurate and useful data, 
information or knowledge, we have to improve and adjust not only the activities related to 
retrieving and collecting of data (information or knowledge), but also the tools, techniques 
and methods appropriate to operative (tactical or strategic) stochastic control approaches to 
deal with all kind of data, information, knowledge (or documentation) about financial and 
other markets. Of course, one should always have a clear perception of the documents 
search algorithm tools which are used in any of research and learning processes, and of 
possible results of the documents (Data, Information and Knowledge, in short “D,I,K”) 
search. The results of the search can always be (Fig. 1.): relevant and pertinent, relevant and 
non-pertinent and pertinent and irrelevant. Always, the goal is to have relevant and 
pertinent results, which can be achieved exclusively by knowing the "real information 
needs" of the persons (or financial subject). Also, when considering the relevance (Table 1.) 
of the derived documents (D,I,K): all the derived documents are not always relevant, in 
other words, all the relevant documents are often not found! 
 

            Financial D,I,K necessity 
        Pertinence 
 

Information query 
 
 
 

         Analysis 
 
        Relevance 

        Browsing 
 
 
Result of browsing (retrieved adapted from documentation) 
 

Fig. 1. Algorithm of research of financial documentation (D,I,K), adapted from (Tuđman et 
al., 1993) 
 

Financial 
D,I,K Relevant Irrelevant 

Found Rf If Rf + If 

Not found Rnf Inf Rnf + Inf 

 Rf + Rnf 
 

If + Inf 
 

Table 1. The relevance of financial documentation (D,I,K), adapted from (Tuđman et al., 1993) 
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Relevance can be expressed in percentages (%) through the following terms: exactness or 
precision, and response or recall. It can also be expressed in the form of the following ratios 
(Table 2) and equations (1), (2): 
 

Exactness (or precision) = the number of found relevant financial documents (D,I,K) / the 
number of found financial documents (D,I,K) x 100% 
Recall (or response) = the number of found relevant financial documents (D,I,K) / the 
number of relevant financial documents (D,I,K) in the system x 100%  

 

Table 2. Ratios for exactness or precision, and response or recall 
 

E = Rf / Nf x 100% (1) 
 
where E is exactness (or precision); Rf is the number of found relevant financial documents 
(D,I,K); Nf is the number of found financial documents (D,I,K), and 
 

R = Rf / Rs x 100% (2) 
 
where R is recall (or response); Rf is the number of found relevant financial documents 
(D,I,K); Rs is the number of relevant financial documents (D,I,K) in the system. 
Following the above stated, there are chapter sections following with short research 
examples of appropriate operative, tactical and strategic stochastic control approaches. 

 
3. Operative, tactical and strategic research examples of appropriate 
stochastic control approaches to various markets 

3.1 Example of appropriate operative stochastic control approach 
In this chapter we give an operative research example as a relatively original and new 
stochastic control approach to day trading, and through this approach trader eliminate some 
of the risks of day trading through market specialization. When we have different subjects 
on markets, as potential traders on various markets, with similar or different interests, with 
relatively limited or even different acting time, market specialization help us to improve and 
adjust not only the activities related to retrieving and collecting data, information or 
knowledge in turbulent market environment, in order to achieve accurate and useful data, 
information or knowledge, but also the tools, techniques and methods which are 
appropriate to operative (tactical or strategic) stochastic control approaches (dealing with 
relevant data, information, knowledge, or documentation about financial and other 
markets). The goal of this approach to day trading is to have maximum relevant and 
pertinent results, which can be achieved exclusively by knowing the "real information 
needs" of the persons (or financial subject) which we know as day traders. When 
considering the relevance of the derived financial indicators and documents (D,I,K) 
referenced to day trading we have to know that all the derived documents are not always 
relevant, and all the relevant documents are often not found. Market specialization and 
usage of appropriate stochastic control approach, tools and techniques are necessity. 
First question is: what we know about different subjects on markets, as potential traders on 
various markets, with similar or different interests and with relatively limited or even 

 

different acting time needed for proposed market specialization? The operative concept is 
that the trader on a specific financial market should specialize him/herself in just one (blue-
chip) stock and use existing day trading techniques (trend following, playing news, range 
trading, scalping, technical analysis, covering spreads…) to make money. Although there is 
no comprehensive empirical evidence available to answer the question whether individual 
day-traders gain profits, there is a number of studies (Barber et al., 2005) that point out that 
only a few are able to consistently earn profits sufficient to cover transaction costs and thus 
make money. Also, after the US market earned strong returns in 2003, day trading made a 
comeback and once again became a popular trading method among traders. As an operative 
concept, the day trading concept of buying and selling stocks on margin alone suggests that 
it is more risky than the usual “going long” way of making profit. The name, day trading, 
refers to a practice of buying (selling short) and selling (buying to cover) stocks during the 
day in such manner, that at the end of the day there has been no net change in position; a 
complete round – trip trade has been made. A primary motivation of this style of trading is 
to avoid the risks of radical changes in prices that may occur if a stock is held overnight that 
could lead to large losses. Traders performing such round – trip trades are called day 
traders. The U.S. Securities and Exchange Commission adopted a new term in the year 2000, 
“pattern day trader”, referring to a customer who places four or more round-trip orders 
over a five-day period, provided the number of trades is more than six percent in the 
account for the five day period. On February 27, 2001, the Securities and Exchange 
Commission (SEC) approved amendments to National Association of Securities Dealers, Inc. 
(NASD®) Rule 2520 relating to margin requirements for day traders. Under the approved 
amendments, a pattern day trader would be required to maintain a minimum equity of 
$25,000 at all times. If the account falls below the $25,000 requirement, the pattern day trader 
would not be permitted to day trade until the account is restored.  
Second question is: what we know about common techniques and methods used by day 
traders which represent significant part of different subjects on markets, with similar or 
different interests, with relatively limited or even different acting time needed for proposed 
market specialization? There are minimally four common techniques used by day traders: 
trend following, playing news, range trading and scalping. Playing news and trend 
following are two techniques that are primarily in the realm of a day trader. When a trader 
is following a trend, he assumes that the stock which had been rising will continue to rise, 
and vice versa. One could say he is actually following the stocks “momentum”. When a 
trader is playing news, his basic strategy is to buy a stock which has just announced good 
news, or sell short a stock which has announced bad news. After its boom during the 
dotcom frenzy of the late 1990s and the loss in popularity after the Internet bubble burst, 
day trading is making a comeback. After three years of strong stock market performance, a 
constantly increasing number of investors use day trading techniques to make profit.  
In 2006, a search on the Social Science Service Network reports 395 articles on day trading, 
with over 40% published in the last 3 years. Similar searches on the most popular online 
bookstore, Amazon result in more than 400 popular books on day trading. In 2006, 
according to (Alexa Traffic Rankings, 2006), Amazon was the 15th most popular site and the 
highest ranked online bookstore on the Top 500 site ranking list. Today, according to (Alexa 
Traffic Rankings, 2010), Amazon site is the global leader with similar popularity and the 
highest ranked online bookstore on the Top 500 site ranking list. In 2006, many of the 
popular news agencies and papers report a surge in day trading popularity while some are 
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also reporting its negative sides. Associated Press reported a centrepiece “In Japan, day 
trading surges in popularity” on May 10, 2006 (Associated Press, 2006). The Sunday Times 
published an article “High-risk day trading makes a comeback” on February 26, 2006 (The 
Sunday Times, 2006). Searching the most popular World Wide Web searching engine, 
Google, for the term “day trading” results in over 120,000,000 links. In fact, Google was the 
most popular search engine according to the last Nielsen NetRatings search engine ratings 
that were published in November of 2005 (Nielsen NetRatings, 2005). 
 

 

 

 
 

 

Fig. 2. Examples of the web reports on day trading 
 
After U.S. Federal Trade Commission warning in 2000, the first one of those links redirects a 
user’s browser to a warning about risks involved in day trading published on the homepage 
of the U.S. Securities and Exchange Commission. 

 

 
Fig. 3. U.S. Federal Trade Commission warning on day trading 
 

 
Fig. 4. U.S. Securities and Exchange Commission warning on day trading 
 
New question is: what is the day trading controversy? The day trading controversy is 
mainly fuelled by its main con, it is risky. The constant usage of margin (borrowed funds) is 
the strong and the weak point of day trading, because the usage of margin amplifies gains 
and losses such that substantial losses (and gains) may occur in a short period of time. 
Because day trading implies a minimum of two trades per business day (buying means 
selling short, and selling means buying to cover), a part of the day trader’s funds are used to 
pay commissions (the broker's basic fee for purchasing or selling securities as an agent). The 
higher the number of trades per day is, the bigger the part of day trader’s funds is used to 
pay commissions. Day trading also often requires live quotes which are costly, and therefore 
also have an impact on the funds of a day trader. For every one of these (main) cons, day 
trading is, as it was already mentioned, considered risky. An integral part in the day trading 
controversy is the day trader himself. Claims of easy and fast profits from day trading have 
attracted a significant number of non experienced and “casual” traders into day trading that 
do not fully understand the risks they are taking. With its latest comeback, day trading has 
become a business to people other than traders. Numerous websites offer tips and advices 
while online bookstores offer books on day trading strategies. With all that in mind, one 
could wonder do day traders make money. Although that question cannot be answered 
with certainty, a few existing studies do not paint a pretty picture. A comprehensive 
analysis of the profitability of all day trading activity in Taiwan over a five year period 
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(Barber et al., 2005) has shown that in a typical six month period, more than eight out of ten 
day traders lose money. 
 

 
Fig. 5. U.S. Securities and Exchange Commission warning on day trading info 
 
Another question is: what is the main concept of specialized day trading? According to 
(Simovic & Simovic, 2006), the main goal of specialized day trading is to offer a new 
approach and technique (or method) to day trading, an approach that would dampen or 
eliminate some of the negative sides of “regular” day trading. The concept is simple. Instead 
of using the usual day trading techniques on various types of stocks, the trader should 
specialize himself in using the same, already mentioned techniques, but with just one (blue 
chip) stock. A blue chip stock is the stock of a well-established company having stable 
earnings and no extensive liabilities. 
And important question is: what is the main concept of proposed specialization? The main 
reason why specialization is proposed as new stochastic approach is in the fact that trading 
with different stocks on a daily basis brings a certain element of uncertainty since the day 
trader often does not have the time to thoroughly “check up” on a stock he is trading with. 
Focusing on just one stock eliminates the element of uncertainty and gives the day trader the 
opportunity, to through time better learn about its “behaviour” and how the selected stock 
reacts to certain events like splits, earning announcements, general (good or bad) news etc. 
Also, when considering the relevance of the derived documents (D,I,K) needed for day 
trading, because all the derived documents are not always relevant, and all the relevant 
documents are often not found, with blue chip stock (which is the stock of a well-established 
company having stable earnings and no extensive liabilities) stochastically we have lower 
level of problem. Suppose that our exactness or precision is not higher (E), because we have 
the same number of found relevant financial documents (Rf) or D,I,K, in relation to the same 
number of found financial documents (Nf) or D,I,K. But recall or response (R) have to be 
significantly better (or higher), because it represents ratio between the same Rf and now 
very small (or lower) Rs (where Rs is the number of relevant financial documents or D,I,K 
in our day trading sub-system). Consequently, better pertinence and relevance can be 
achieved through constant monitoring with same and better tools and techniques, also. A 
trader could gain knowledge on how the stock reacts on markets ups and downs, better 
insight on the meaning of afterhours trading activity or the manner how the company 
releases announcements (according to (DellaVigna & Pollet, 2005), “do worse 
announcements get announced on Friday to dampen the short-term response of the trader 
and thus the market?”),  etc. 
 

 

 
Fig. 6. NASDAQ (National Association of Securities Dealers Automated Quotations) 
Composite quote data from 1997 to 2006 
 
Because a blue chip stock is the stock of a well-established company having stable earnings 
and no extensive liabilities the focus was put on blue chip stocks, and consequently they 
offer stability, which of course translates into low risk. With day trading blue chip stocks 
one cannot expect great profit in a single day, but the trade-off is that one cannot expect 
great loss also. For further stochastic analysis of “behaviour” of the blue chip stocks, we’ve 
taken Microsoft as an example. The analysis was based on 3 years (756 working days) of 
daily data, which were obtained on Nasdaq’s website (Nasdaq, 2003), from 07/18/2003 till 
07/18/2006. That particular period of time was chosen for our analysis because it consists of 
newest daily quotes from the last MSFT (Symbol that represents a Microsoft stock) stock 
split (02/18/2003).  
The data is consisted of the opening price (oi), closing price (ci), daily low (li) and the daily 
high (hi). Using the following equations we’ve calculated the values (percentage) of the daily 
spreads (Si) between the opening and the closing price. This was done in order to calculate 
the average spread (Sav) between the two already mentioned values which will help us 
illustrate the potential of this kind of day trading. 
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The average spread between the opening and the closing price (Sav) for a Microsoft stock in 
that period of time was 0.706059344 % which is a very good indicator of its stability.  
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(Barber et al., 2005) has shown that in a typical six month period, more than eight out of ten 
day traders lose money. 
 

 
Fig. 5. U.S. Securities and Exchange Commission warning on day trading info 
 
Another question is: what is the main concept of specialized day trading? According to 
(Simovic & Simovic, 2006), the main goal of specialized day trading is to offer a new 
approach and technique (or method) to day trading, an approach that would dampen or 
eliminate some of the negative sides of “regular” day trading. The concept is simple. Instead 
of using the usual day trading techniques on various types of stocks, the trader should 
specialize himself in using the same, already mentioned techniques, but with just one (blue 
chip) stock. A blue chip stock is the stock of a well-established company having stable 
earnings and no extensive liabilities. 
And important question is: what is the main concept of proposed specialization? The main 
reason why specialization is proposed as new stochastic approach is in the fact that trading 
with different stocks on a daily basis brings a certain element of uncertainty since the day 
trader often does not have the time to thoroughly “check up” on a stock he is trading with. 
Focusing on just one stock eliminates the element of uncertainty and gives the day trader the 
opportunity, to through time better learn about its “behaviour” and how the selected stock 
reacts to certain events like splits, earning announcements, general (good or bad) news etc. 
Also, when considering the relevance of the derived documents (D,I,K) needed for day 
trading, because all the derived documents are not always relevant, and all the relevant 
documents are often not found, with blue chip stock (which is the stock of a well-established 
company having stable earnings and no extensive liabilities) stochastically we have lower 
level of problem. Suppose that our exactness or precision is not higher (E), because we have 
the same number of found relevant financial documents (Rf) or D,I,K, in relation to the same 
number of found financial documents (Nf) or D,I,K. But recall or response (R) have to be 
significantly better (or higher), because it represents ratio between the same Rf and now 
very small (or lower) Rs (where Rs is the number of relevant financial documents or D,I,K 
in our day trading sub-system). Consequently, better pertinence and relevance can be 
achieved through constant monitoring with same and better tools and techniques, also. A 
trader could gain knowledge on how the stock reacts on markets ups and downs, better 
insight on the meaning of afterhours trading activity or the manner how the company 
releases announcements (according to (DellaVigna & Pollet, 2005), “do worse 
announcements get announced on Friday to dampen the short-term response of the trader 
and thus the market?”),  etc. 
 

 

 
Fig. 6. NASDAQ (National Association of Securities Dealers Automated Quotations) 
Composite quote data from 1997 to 2006 
 
Because a blue chip stock is the stock of a well-established company having stable earnings 
and no extensive liabilities the focus was put on blue chip stocks, and consequently they 
offer stability, which of course translates into low risk. With day trading blue chip stocks 
one cannot expect great profit in a single day, but the trade-off is that one cannot expect 
great loss also. For further stochastic analysis of “behaviour” of the blue chip stocks, we’ve 
taken Microsoft as an example. The analysis was based on 3 years (756 working days) of 
daily data, which were obtained on Nasdaq’s website (Nasdaq, 2003), from 07/18/2003 till 
07/18/2006. That particular period of time was chosen for our analysis because it consists of 
newest daily quotes from the last MSFT (Symbol that represents a Microsoft stock) stock 
split (02/18/2003).  
The data is consisted of the opening price (oi), closing price (ci), daily low (li) and the daily 
high (hi). Using the following equations we’ve calculated the values (percentage) of the daily 
spreads (Si) between the opening and the closing price. This was done in order to calculate 
the average spread (Sav) between the two already mentioned values which will help us 
illustrate the potential of this kind of day trading. 
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The average spread between the opening and the closing price (Sav) for a Microsoft stock in 
that period of time was 0.706059344 % which is a very good indicator of its stability.  
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Fig. 7. A graph showing the spread between the opening and the closing price 
 

Title: Low High spread %

0

1

2

3

4

5

6

7

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751

working days

sp
re

ad
 [%

]

daily spread average spread  
Fig. 8. A graph showing the spread between the daily low and the daily high 
 
Using the exact equations we’ve also calculated the values (percentage) of the daily spreads 
(Qi) between the daily low and the daily high. This was done in order to calculate the 
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average spread (Qav) between those two values so that we can illustrate the full (but 
unreachable) potential of this kind of day trading. 
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The average spread between the daily low and the daily high (Qav) for a Microsoft stock in 
that period of time was 1.57655549 %. 
To show the potential profit for this way of day trading we are going to use the following 
functions with the already calculated average daily spreads. These functions represent the 
total return (via percentage) in 30 working days of which a certain number () had a 
“positive” (and the rest “negative”) trading outcome. 
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Fig. 9. A graph showing the spread between the daily low and the daily high without the 
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The average spread between the daily low and the daily high (Qav) for a Microsoft stock in 
that period of time was 1.57655549 %. 
To show the potential profit for this way of day trading we are going to use the following 
functions with the already calculated average daily spreads. These functions represent the 
total return (via percentage) in 30 working days of which a certain number () had a 
“positive” (and the rest “negative”) trading outcome. 
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With the usage of margin (M), gains and losses are amplified. 
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As Wall Street Gordon Gekko says that “information is the most important commodity 
when trading” (Kuepper, 2010), through specialized day trading example, we’ve tried to 
offers a new approach to day trading information and with it eliminate some of the 
operative risks of day trading, and to show how important is concept of pertinence and 
relevance. This operative example tried to explain the reasons behind the concept of 
specialization model in trading in just one (blue chip) stock with the usage of existing day 
trading techniques and show that the usage of such concept has potential and can be 
profitable. With some new stochastic control or optimization approaches we can operatively 
reduce a level of noise from irrelevant D, I, K, about market, in both of our day trading 
subsystem parts (model and controller). In our stochastic control solution, the designer have 
to assume that random noise and disturbances exist in both subsystems parts (in the model 
and in the controller), and consequently the control design always must take into account 
these random deviations. This is for further researching. 
 

 

3.2 Examples of appropriate tactical and strategic stochastic control approaches 
In this chapter we give two very short research examples (from practice and relevant 
literature) of appropriate tactical and strategic stochastic control approaches. The tactical 
model conceptually represents one example of a quantitative approach to tactical asset 
allocation (Faber, 2009). In tactical example from relevant literature (Faber, 2009) one can see 
how to create a simple-to-follow model example as a tactical method for managing risk in a 
single asset class and, by extension, a portfolio of assets. From the available sources, one can 
conclude that a non-discretionary trend following model acts as a risk-reduction tactical 
technique with no adverse impact on return. Here we only try to give adequate references 
(with original comments and models) that utilizing a monthly system and where an investor 
would have been able to (avoid massive losses) increase risk adjusted returns and sidestep 
many of the protracted bear markets in various asset classes. Similar to operative example 
about day trading this tactical example represent reference model how to analyse and 
research methods that are used in tactical or even strategic stochastic control approach. 
There are various technical analysis tools available to tactical level investors, and in defined 
period of tactical time, for different subjects on markets (as potential tactical traders on 
various financial markets, stock markets, bond markets, commodity markets, and currency 
markets, etc.) which may improve and adjust the tactical activities related to collection and 
retrieving D,I,K, in order to achieve accurate and useful D,I,K, appropriate to tactical (or 
even strategic) stochastic control approaches to financial and other markets. Mainly the 
tactical methods used to analyze and predict the performance of a company's stock fall into 
two broad categories: fundamental and technical analysis. Those who use technical analysis 
(various tactical level investors, etc.) look for peaks, bottoms, trends, patterns and other 
factors affecting a stocks, bonds, “forex”, futures, options, indexes, currencies and 
commodities price movement and then make “buy or sell” decisions based on those factors. 
It is important to notice that this is a tactical level technique many people and companies 
attempt, but few are truly successful at it. Also, the world of technical analysis is huge 
because there are literally hundreds of different patterns and indicators that investors and 
traders claim to have success with. 
The main purpose of this tactical example from (Faber, 2009) was to create a simple-to-
follow method for managing risk in a single asset class and, by extension, a portfolio of 
assets. A non-discretionary and trend following model here acts as a risk-reduction tactical 
technique with no adverse impact on return. Also, notice that when tested on various 
markets, risk-adjusted returns were almost universally improved, what is tactically and 
strategically very important. In this example (Faber, 2009) one can see that utilizing a 
monthly system since 1973, an tactical investor would have been able to increase risk 
adjusted returns by diversifying portfolio assets and employing a market-timing solution. In 
addition, the investor would have also been able to sidestep many of the protracted bear 
markets in various asset classes, and with tactically avoiding these massive losses would 
have resulted in equity-like returns with bond-like volatility and drawdown. 
In this chapter we give a short strategic concept example, because we use specific technical 
analysis in financial markets as an original strategic concept (with original comments and 
models) and which can be used for strategic anti-money laundering analysis as another 
original strategic concept (with original comments and models). What is Technical Analysis 
(TA)? TA is a tactical and specific strategic method of evaluating the markets value by 
analyzing statistics generated by market activity, past prices and volume. TA does not 
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As Wall Street Gordon Gekko says that “information is the most important commodity 
when trading” (Kuepper, 2010), through specialized day trading example, we’ve tried to 
offers a new approach to day trading information and with it eliminate some of the 
operative risks of day trading, and to show how important is concept of pertinence and 
relevance. This operative example tried to explain the reasons behind the concept of 
specialization model in trading in just one (blue chip) stock with the usage of existing day 
trading techniques and show that the usage of such concept has potential and can be 
profitable. With some new stochastic control or optimization approaches we can operatively 
reduce a level of noise from irrelevant D, I, K, about market, in both of our day trading 
subsystem parts (model and controller). In our stochastic control solution, the designer have 
to assume that random noise and disturbances exist in both subsystems parts (in the model 
and in the controller), and consequently the control design always must take into account 
these random deviations. This is for further researching. 
 

 

3.2 Examples of appropriate tactical and strategic stochastic control approaches 
In this chapter we give two very short research examples (from practice and relevant 
literature) of appropriate tactical and strategic stochastic control approaches. The tactical 
model conceptually represents one example of a quantitative approach to tactical asset 
allocation (Faber, 2009). In tactical example from relevant literature (Faber, 2009) one can see 
how to create a simple-to-follow model example as a tactical method for managing risk in a 
single asset class and, by extension, a portfolio of assets. From the available sources, one can 
conclude that a non-discretionary trend following model acts as a risk-reduction tactical 
technique with no adverse impact on return. Here we only try to give adequate references 
(with original comments and models) that utilizing a monthly system and where an investor 
would have been able to (avoid massive losses) increase risk adjusted returns and sidestep 
many of the protracted bear markets in various asset classes. Similar to operative example 
about day trading this tactical example represent reference model how to analyse and 
research methods that are used in tactical or even strategic stochastic control approach. 
There are various technical analysis tools available to tactical level investors, and in defined 
period of tactical time, for different subjects on markets (as potential tactical traders on 
various financial markets, stock markets, bond markets, commodity markets, and currency 
markets, etc.) which may improve and adjust the tactical activities related to collection and 
retrieving D,I,K, in order to achieve accurate and useful D,I,K, appropriate to tactical (or 
even strategic) stochastic control approaches to financial and other markets. Mainly the 
tactical methods used to analyze and predict the performance of a company's stock fall into 
two broad categories: fundamental and technical analysis. Those who use technical analysis 
(various tactical level investors, etc.) look for peaks, bottoms, trends, patterns and other 
factors affecting a stocks, bonds, “forex”, futures, options, indexes, currencies and 
commodities price movement and then make “buy or sell” decisions based on those factors. 
It is important to notice that this is a tactical level technique many people and companies 
attempt, but few are truly successful at it. Also, the world of technical analysis is huge 
because there are literally hundreds of different patterns and indicators that investors and 
traders claim to have success with. 
The main purpose of this tactical example from (Faber, 2009) was to create a simple-to-
follow method for managing risk in a single asset class and, by extension, a portfolio of 
assets. A non-discretionary and trend following model here acts as a risk-reduction tactical 
technique with no adverse impact on return. Also, notice that when tested on various 
markets, risk-adjusted returns were almost universally improved, what is tactically and 
strategically very important. In this example (Faber, 2009) one can see that utilizing a 
monthly system since 1973, an tactical investor would have been able to increase risk 
adjusted returns by diversifying portfolio assets and employing a market-timing solution. In 
addition, the investor would have also been able to sidestep many of the protracted bear 
markets in various asset classes, and with tactically avoiding these massive losses would 
have resulted in equity-like returns with bond-like volatility and drawdown. 
In this chapter we give a short strategic concept example, because we use specific technical 
analysis in financial markets as an original strategic concept (with original comments and 
models) and which can be used for strategic anti-money laundering analysis as another 
original strategic concept (with original comments and models). What is Technical Analysis 
(TA)? TA is a tactical and specific strategic method of evaluating the markets value by 
analyzing statistics generated by market activity, past prices and volume. TA does not 
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attempt to measure a vehicle's intrinsic value; instead they look at charts for patterns and 
indicators that will determine future performance. TA has become increasingly popular over 
the past several years, only when people “believe” that the historical performance is a 
strong indication of future performance. The use of past performance should come as no 
surprise, because people (and other market subject) using fundamental analysis have always 
looked at the past performance of companies by comparing fiscal data from previous 
quarters and years to determine future growth. The difference lies in the technical analyst's 
belief that securities move according to very predictable trends and patterns, and that these 
trends continue until something happens to change the trend, or until this change occurs, 
price levels are predictable. There are many instances of various investors successfully 
trading a security using only their past knowledge of the security's chart, without even 
understanding what the company really does. Although TA is a terrific analytical tool, most 
of market subjects agree it is much more effective when used in combination with proper 
money management tools. TA or formula traders on market use mathematical formulae to 
decide when a stock is going to rise or fall, and most traders use technical indicators; 
although more experienced traders tend to use fewer of them. Some old traders on market 
do not even use charts, but buy and sell just from so called approach "reading the tape", that 
is in fact procedure: watching the bid, then ask and trade with volume numbers from a 
trading screen. How to “cover spreads” in tactical approach practice? Playing the spread 
involves buying at the bid price and selling at the ask price, where the numerical difference 
between these two prices is known as the spread. This procedure allows for profit even 
when the bid and ask don't move at all, and consequently what the bigger the spread, the 
more inefficient the market for that particular stock, and the more potential for profit. As 
opposed to trade commissions, this spread is the mechanism that some large Wall Street 
firms use to make most of their money since the advent of online discount brokerages.  
How to make categorization of tactical and strategic investors and companies by specific 
trading market? According (Faber, 2009), about 75% of all trades are to the upside - that is, 
the trader buys an issue hoping its price will rise - because of the stock market's historical 
tendency to rise and because there are no technical limitations on it. Also, about 25% of 
equity trades, however, are short sales. The trader borrows stock from his broker and sells 
the borrowed stock, hoping that the price will fall and he will be able to purchase the shares 
at a lower price. There are several technical problems with short sales: the broker may not 
have shares to lend in a specific issue, some short sales can only be made if the stock price or 
bid has just risen (known as an "uptick"), and the broker can call for return of its shares at 
any time. When the typical online investor places a market order to buy a stock, his broker 
submits this order to a market maker (MM), who then fulfills the order at the ask price. Then 
ask price is the price the MM is asking for the stock, and when the typical online investor 
places a market order to sell a stock, the broker submits the order to a MM and sells at the 
bid price, i.e. what the MM is bidding for the stock. Due to the liquidity of the modern 
market, orders are constantly flowing, and usually a MM will buy a stock just to turn 
around and sell it to a particular broker. Among all other things one of the main purposes of 
the MM is to maintain liquidity in the market. How to make categorization of companies by 
market cap? First, we have to know that market capitalization, often abbreviated to market 
cap, is a business term that refers to the aggregate value of a firm's outstanding common 
shares. Market capitalization reflects the total value of a firm's equity currently available on 
the market, and this measure differs from equity value to the extent that a firm has 

 

outstanding stock options or other securities convertible to common shares. The size and 
growth of a firm's market cap is often one of the critical measurements of a public 
company's success or failure. Market cap may increase or decrease for reasons unrelated to 
performance such as acquisitions, divestitures and stock repurchases, and it is calculated by 
multiplying the number of outstanding common shares of the firm and the current price of 
those shares. The term capitalization is sometimes used as a synonym of market cap. It 
denotes the total amount of funds used to finance a firm's balance sheet and is calculated as 
market capitalization plus debt, as book or market value, plus preferred stock. The total 
market cap of all the companies listed on the New York Stock Exchange is greater than the 
amount of money in the United States. While there are no strong definitions for market cap 
categorizations, a few terms are frequently used to group companies by capitalization. In the 
U.S., companies and stocks are often categorized by the following approximate market cap 
values: micro-cap - market cap under US$100 million; small-cap - market cap below US$1 
billion; mid-cap - market cap between US$1 billion and US$5 billion; and large-cap - market 
cap exceeds US$5 billion. The small-cap definition is far more controversial than those for 
the mid-cap and large-cap classes. Typical values for the ranges are enumerated and “blue 
chip” is sometimes used as a synonym for large-cap, while some investors consider any 
micro-cap or nano-cap issue to be a penny stock, regardless of share price. Examples of 
share valuation compared to market cap or price, and share ownership, from (Yahoo!® 
Finance, 2010), and according to: valuation measures and share statistics. 
Here is our strategic example. This part is short explanation of the main Operations 
Research (OR) concepts and results, which are accomplished during the soft computing 
process (based on fuzzy logic) of the analytical entropy of the modern financial analytical 
function, what is also a solid base for future simulation modelling works. Here are some 
remarks about: “soft computing” and “fuzzy logic”. The conventional approaches for 
predicting and understanding the entropy of the modern financial analytical function and 
the behaviour of various financial markets that are based on well-known analytical 
techniques can prove to be inadequate. Sometimes, even at the initial stages of establishing 
an appropriate mathematical model, the computational environment used in such an 
analytical approach is often too categorical and inflexible in order to cope with the financial 
intricacy and the complexity of the real world financial systems (like Croatian financial 
systems and internal financial market are, or can be). The mathematical model of modern 
financial analytical function is not only based on so called “hard computing” methods 
(binary logic, crisp systems, numerical analysis, probability theory, differential equations, 
functional analysis, mathematical programming, approximation theory and crisp software), 
because the fact that Croatian internal financial market usually has not the attributes of 
quantitative, precision, formality and categorisation. All mentioned before clearly turns out 
that in dealing with such systems we have to face with a very high degree of uncertainty 
and to tolerate very big degree of imprecision. Idea is to exploit a formalisation of the 
human ability to make rational decision in an uncertain and imprecise environment, also to 
exploit the soft computing tolerance for imprecision and uncertainty, and to achieve an 
acceptable model solution at a low cost and tractability. The principle of soft computing, 
given by Prof. Lotfi A. Zadeh (Zadeh, 1996) is: “Exploit the tolerance for imprecision, 
uncertainty and partial truth to achieve tractability, robustness, low solution cost and better 
rapport with reality.” Soft computing has the attributes of qualitative, dispositional, 
approximation, and it is oriented towards the analysis based on fuzzy logic, artificial neural 
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attempt to measure a vehicle's intrinsic value; instead they look at charts for patterns and 
indicators that will determine future performance. TA has become increasingly popular over 
the past several years, only when people “believe” that the historical performance is a 
strong indication of future performance. The use of past performance should come as no 
surprise, because people (and other market subject) using fundamental analysis have always 
looked at the past performance of companies by comparing fiscal data from previous 
quarters and years to determine future growth. The difference lies in the technical analyst's 
belief that securities move according to very predictable trends and patterns, and that these 
trends continue until something happens to change the trend, or until this change occurs, 
price levels are predictable. There are many instances of various investors successfully 
trading a security using only their past knowledge of the security's chart, without even 
understanding what the company really does. Although TA is a terrific analytical tool, most 
of market subjects agree it is much more effective when used in combination with proper 
money management tools. TA or formula traders on market use mathematical formulae to 
decide when a stock is going to rise or fall, and most traders use technical indicators; 
although more experienced traders tend to use fewer of them. Some old traders on market 
do not even use charts, but buy and sell just from so called approach "reading the tape", that 
is in fact procedure: watching the bid, then ask and trade with volume numbers from a 
trading screen. How to “cover spreads” in tactical approach practice? Playing the spread 
involves buying at the bid price and selling at the ask price, where the numerical difference 
between these two prices is known as the spread. This procedure allows for profit even 
when the bid and ask don't move at all, and consequently what the bigger the spread, the 
more inefficient the market for that particular stock, and the more potential for profit. As 
opposed to trade commissions, this spread is the mechanism that some large Wall Street 
firms use to make most of their money since the advent of online discount brokerages.  
How to make categorization of tactical and strategic investors and companies by specific 
trading market? According (Faber, 2009), about 75% of all trades are to the upside - that is, 
the trader buys an issue hoping its price will rise - because of the stock market's historical 
tendency to rise and because there are no technical limitations on it. Also, about 25% of 
equity trades, however, are short sales. The trader borrows stock from his broker and sells 
the borrowed stock, hoping that the price will fall and he will be able to purchase the shares 
at a lower price. There are several technical problems with short sales: the broker may not 
have shares to lend in a specific issue, some short sales can only be made if the stock price or 
bid has just risen (known as an "uptick"), and the broker can call for return of its shares at 
any time. When the typical online investor places a market order to buy a stock, his broker 
submits this order to a market maker (MM), who then fulfills the order at the ask price. Then 
ask price is the price the MM is asking for the stock, and when the typical online investor 
places a market order to sell a stock, the broker submits the order to a MM and sells at the 
bid price, i.e. what the MM is bidding for the stock. Due to the liquidity of the modern 
market, orders are constantly flowing, and usually a MM will buy a stock just to turn 
around and sell it to a particular broker. Among all other things one of the main purposes of 
the MM is to maintain liquidity in the market. How to make categorization of companies by 
market cap? First, we have to know that market capitalization, often abbreviated to market 
cap, is a business term that refers to the aggregate value of a firm's outstanding common 
shares. Market capitalization reflects the total value of a firm's equity currently available on 
the market, and this measure differs from equity value to the extent that a firm has 

 

outstanding stock options or other securities convertible to common shares. The size and 
growth of a firm's market cap is often one of the critical measurements of a public 
company's success or failure. Market cap may increase or decrease for reasons unrelated to 
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an appropriate mathematical model, the computational environment used in such an 
analytical approach is often too categorical and inflexible in order to cope with the financial 
intricacy and the complexity of the real world financial systems (like Croatian financial 
systems and internal financial market are, or can be). The mathematical model of modern 
financial analytical function is not only based on so called “hard computing” methods 
(binary logic, crisp systems, numerical analysis, probability theory, differential equations, 
functional analysis, mathematical programming, approximation theory and crisp software), 
because the fact that Croatian internal financial market usually has not the attributes of 
quantitative, precision, formality and categorisation. All mentioned before clearly turns out 
that in dealing with such systems we have to face with a very high degree of uncertainty 
and to tolerate very big degree of imprecision. Idea is to exploit a formalisation of the 
human ability to make rational decision in an uncertain and imprecise environment, also to 
exploit the soft computing tolerance for imprecision and uncertainty, and to achieve an 
acceptable model solution at a low cost and tractability. The principle of soft computing, 
given by Prof. Lotfi A. Zadeh (Zadeh, 1996) is: “Exploit the tolerance for imprecision, 
uncertainty and partial truth to achieve tractability, robustness, low solution cost and better 
rapport with reality.” Soft computing has the attributes of qualitative, dispositional, 
approximation, and it is oriented towards the analysis based on fuzzy logic, artificial neural 
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networks and probabilistic reasoning, including genetic algorithms, chaos theory and parts 
of machine learning. Fuzzy logic is mainly concerned with imprecision and approximate 
reasoning, neural-computing mainly with learning and curve fitting, genetic-computing 
with searching and optimisation, and probabilistic reasoning mainly with uncertainty and 
propagation of belief. The main constituents of soft computing are complementary rather 
than competitive elements, and usually it can be more effective to use them in a synergetic 
combination manner (rather than exclusively). A fusion of all three constituents of soft 
computing is not very common. 
When we think about Business Intelligence (BI) in the context of the entropy of the modern 
financial analytical function it is very important to understand what BI is. BI is process of 
collecting various business data (financial and other data) and transforming it to BI 
information that is used to provide better decisions, which improve the organisation 
performance. For collecting and managing corporate financial and other data many 
corporate and financial organizations (governmental or not) have more than one operational 
system. BI (with data warehousing) system is enabling technology that provides some 
governmental and financial organizations with end-to-end solutions for managing, 
organizing and exploiting financial and other data throughout the enterprise. This enabling 
technology provides tools to bring all the pieces of financial business information together in 
a single organized data repository that is driven by common set of financial and other 
business definitions. BI systems are used for exploration, analysis and reporting of trends 
found in the transactional data. They are designed to process inquiries and are vital to 
creating strategic competitive advantages that can affect an organizations’ short-term and 
long-term financial profitability. There is an urgent need to collate (financial and other) data 
and provide financial decision-makers with the facility of additional financial reports, 
facility to explore and analyse data, in different dimensions and arriving at financial and 
other decisions, strategic to the governmental and financial organization. During the whole 
BI process, modern financial analytical function is mainly concerned with process of 
discovering financial knowledge. Maybe it can be the most significant part for the whole BI 
process. The financial analytical function of the BI was prepared for investigations of 
various financial events, financial markets, subjects or entities, and for financial business 
operations controls methods, etc. An application of this model usually increases the 
investigation group effectiveness, efficiency, and quality of the operational and strategic 
financial market investigative operations that are in usage during the whole financial 
knowledge discovery process. During the strategic BI processes financial “knowledge 
workers” are usually in situation that they have to work with: data marts (for small areas of 
financial data analysis) or with data warehouses (for larger areas of financial data analysis). 
Data marts and data warehouses are data collections produced during the analytical mixing 
of internal and external financial and other data. The analytical mixing is result of logic 
process that is prepared with detailed or aggregated view on mixing data. Result is data 
warehouses with synthetic financial view (detailed and aggregated). Synthetic financial 
view is producing with processes like the strategic BI visualisation & data drilling up and 
down through the specific time, financial value, financial service, financial product, financial 
market or combined dimension. 
The basic components of the financial BI solution are: multidimensional (financial and other) 
data store, data extraction tool and front end tool for analysis. In general, an application of 
modern financial knowledge discovery model may be accomplished through finalisation of 

 

few financial data mining tasks, which can be classified into two categories: descriptive 
financial data mining (describes the data set in a concise and summary manner and presents 
interesting general properties of the financial data), and predictive financial data mining 
(constructs one or a set of financial & other models, performs inference on the available set 
of financial & other interesting data, and attempts to predict the behaviour of new financial 
& other interesting data sets). The fast computerisation of the Croatian financial sector and 
various impacts of data mining should not be under-estimated with usage of the modern 
financial analytical function. 
 

 
 

Fig. 11. The BI financial knowledge discovery model 
 
Financial knowledge discovery model is a tool for translating the bits of various (mainly 
financial) data resources and observations into an understandable pattern of data behaviour 
(Fig. 11). With application of the financial knowledge discovery model and intelligent 
software tools in the informational and financial aspects of the BI one can radically change 
quality of the whole BI process. When a large amount of financial business interrelated data 
are effectively analysed from different perspectives BI (with data warehousing) system is 
enabling technology that provides organizations with end-to-end solutions for managing, 
organizing and exploiting financial and other data. Without BI (& data warehousing) 
technology this can also pose threats to the goal of protecting data security and guarding 
against the invasion of financial privacy (throughout the whole enterprise). This enabling 
technology (BI with data warehousing) provides tools to bring all the pieces of financial 
business information together in a single security organized data repository that is driven by 
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common set of financial and other business definitions, which are used for exploration, 
analysis and reporting of trends found in the transactional data. In the final BI analysis, 
financial network construction model with financial knowledge discovery concept provides 
a framework to look at interactions and transactions as a function of both permanent and 
temporary relations. In an application of profound financial knowledge discovery model 
dealing with semantic heterogeneity is necessity and only schema level analysis is not 
sufficient to solve the problem. Because of that the data level analysis with analysis of 
database (data warehouse) contents in co-operative BI information systems was widely 
introduced and successfully used. In co-operative BI information systems “On Line 
Analytical Processing” (OLAM) method/technique is in fact dealing with a multiple-layer 
database (MLDB) or multidimensional database (MDDB) model and co-operative 
heterogeneous databases. OLAM deals with generalisation-based financial data mining 
techniques. For example (Fig. 12), “DBMiner” is a cutting-edge intelligent data mining and 
data warehousing system and have OLAP and OLAM capabilities (Han, 1999). 
 

 
Fig. 12. “DBMiner” software architecture, as integrated OLAM & OLAP architecture (Han, 
1999) 
 
Also, BI visualisation techniques (of the modern financial analytical function) are examples 
that financial data mining is discovery-driven and that financial pattern is automatically 
extracted from data, what requires substantial search efforts. Prof. Lotfi A. Zadeh founded 
the soft computing based on fuzzy logic in 1965, with the well-known “theory of fuzzy sets”. 
A fuzzy decision is a special type of fuzzy sets. The decision in a fuzzy environment 
(depending on the context) can be viewed as the intersection of fuzzy constraints and fuzzy 
objective function(s), where the fuzzy objective function is characterised by its membership 
function, and represents constraints. By analogy to no fuzzy environments (where the 
decision is the selection of activities that simultaneously satisfy objective function(s) and 
constraints), the decision in a fuzzy environment is defined as the optimal selection of 

 

activities that simultaneously satisfy fuzzy objective function and fuzzy constraints. 
According to (Simovic et al., 1998), assumptions are that the constraints are no interactive, 
the logical and corresponds to the intersection. By analogy to crisp (no fuzzy) environments 
and to crisp decision logic, in fuzzy environments we have slightly different decision logic 
(usually called “fuzzy decision logic”). A linguistic variable x is a variable whose values are 
words or sentences in natural or artificial language. For example, if intelligence is 
interpreted as a linguistic variable, then its term set T(X), as the set of its linguistic values, 
might be:  
T(intelligence) = disinformation + very low information + low information +  
unknown (or entropy) + high information + very high information + ….    , 
where each of the terms in T(intelligence) is a label of fuzzy subset of a universe of 
discourse, say U = xmin, xmax, or because of practical reasons usually U = 0, xmax  R. 
With a linguistic variable are associated two rules: syntactic rule (which defines the well 
formed sentences in T(X)) and semantic rule (by which the meaning of the terms in T(X) 
may be determined). 

 
7. Conclusion 

In the chapter where we present the conclusion of our research, we also introduce an adequate 
algorithm (in the form of a graphic and mathematical representation) for the appropriate 
perception of pertinence and information needs of different subjects on markets. We announce 
main trends and a great significance of appropriate operative (tactical or strategic) stochastic 
control (as specific quantitative and qualitative models) approaches in correlation to expected 
results. Finally, we promote new research areas and suggest future research directions. 
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1. Introduction 

Exploitation of renewable resources is a task on a global scale inasmuch ecosystems are 
permanently destroyed by large-scale industrialization and unlimited human population 
growth. These have made already quit an impact on environment causing climatic 
destabilization. Thus, prediction of sustainable economic development has to take into 
account the bioeconomic  principles. Although the task is not a new one there is a room for 
further investigations. It can be explained in the following manner. 
 

It is known that biological systems react on the changes of existence conditions, 
environment actions and own states. Some of these systems are often utilized in forestry or 
fishery and therefore human control factor plays a very important role. In order to keep the 
completeness under uncertain environmental variability and internal transformations the 
considered biological systems must be in some dynamic equilibrium, which is defined by 
maximum sustainable yield approach, as a guarantee of the entire system existence. This 
idea requires removable resource management solved in some optimal sense. 
 

Before the formulation of optimal control problem it is reasonable to notice that despite its 
popularity maximum sustainable yield (MSY) approach has some obstacles (Clark, 1989). 
Firstly, it is very sensitive to small errors in population data. Secondly, it does not take into 
account most of economic aspects of resource exploitation and, at last, it can be hardly used 
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in "species in interaction" cases. It is clear that the problem solution is strongly connected 
with a task of appropriate mathematical model selection (Jerry & Raissi, 2005; McDonald et 
al., 2002). 
 

Initially bioeconomic models contained two main components: one defined dynamics of 
biological system and second characterized the economic policy of selected system 
exploitation (Clark, 1989). To make them more realistic different types of uncertainties have 
been incorporated. It was shown that three sources of uncertainty play an important role in 
fisheries management: variability in fish dynamics, inaccurate stock size estimates, and 
inaccurate implementation of harvest quotas, but there is not a unique way of how to 
include noises in models. To describe environmental noise one can use the following 
principles (Sethi et al., 2005): 
 

 the variance is proportional to the expected population in the next generation; 
 environmental fluctuations affect the population multiplicatively (this holds under a 

range of conditions - the density-independent or maximum growth rate of individuals 
are affected); 

 demographic and environmental fluctuations can have long-range and/or short-range 
consequences on biological system. 

 

The goal of this work is to show the ways of problem optimal solution when control object 
meets the principles mentioned above. The rest of the chapter is organized as follows. In 
Section 2, we formulate the optimal control problem for given tasks, showing how to 
convert the stochastic task into non-stochastic one. In Section 3, we derive necessary 
optimality conditions for short-range and long-range dependences, as it requires the object 
equation, under certain control and state constraints. Finally, Section 4 provides an 
application of obtained theoretical results to the problem of maximization of expected utility 
from the terminal wealth. 
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If in the first case population has an unlimited growth, in the second case we can also show 
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and is in a state of equilibrium if  
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Fig. 1. Changes in population size  X t  predicted by logistic growth function (2) for the 
southern bluefin tuna (McDonald et al., 2002)  
 

Taking into account continuous harvesting at variable rate  u t  the model (1) can be 
rewritten as  
 
       ,dX t s t X t u t dt    ,  (3) 

 
where the harvest rate has to be limited, for example   
 
   max0 u t u  , (4) 
 
in order to guarantees the existence of the ecosystem under environmental variability and 
internal transformations (Edelstein-Keshet, 2005). 
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Fig. 1. Changes in population size  X t  predicted by logistic growth function (2) for the 
southern bluefin tuna (McDonald et al., 2002)  
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Assume that   constantu t  . In this case the dynamic equation (3) gives a picture of the 

logistic growth model behavior. So, for   max ,u s t X t    , the equation has one stable 

(point B on Fig. 2) and one unstable equilibrium (point A on Fig. 2). For   max ,u s t X t    ,  

there is not any equilibrium state. If   max ,u s t X t    , the equation has only a single 

semistable equilibrium at the point called maximum sustainable yield (point C on Fig. 2). 
MSY is widely used for finding optimal rates of harvest, however and as it was mentioned 
before,  there are problems with MSY approach (Kugarajh et al., 2006; Kulmala et al., 2008).  
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Fig. 2. Population dynamics with constant rate harvesting u  for the southern bluefin tuna 
(McDonald et al., 2002) 
 
To make the model more realistic one has to take into account different types of 
uncertainties introduced by diverse events as fires, pests, climate changes, government 
policies, stock prices etc. (Brannstrom & Sumpter, 2006). Very often these events might have 
long-range or short-range consequences on biological system. To take into account both 
types of consequences and to describe renewable resource stock dynamics it is reasonable to 
use stochastic differential equation (SDE) with fractional Brownian motion (fBm):  
 

          
1

, , , i
n

i t
i

dX t f t X t u t dt q t X t dB


  H ,  0 0X t X ,  (5) 
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uncorrelated increments of fBm with the Hurst parameters  0,1i H  in the sense that 
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where second integral can be understand as a pathwise integral or as a stochastic Skorokhod 
integral with respect to the fBm. 
 

An economical component of the bioeconomic  model can be introduced as discounted 
value of utility function or production function, which may involve three types of input, 
namely labor  L t , capital  C t  and natural resources  X t : 
 
            , , , ,CLtF t X t u t e L t C t X t   , (7) 

 
where       , ,CLL t C t X t   is the multiplicative Cobb-Douglas function with L , C  and 

  constant of elasticity, which corresponds to the net revenue function at time t  from 
having a resource stock of size  X t and harvest  u t ,   is the annual discount rate. 
 

The model (7) was used in (Filatova & Grzywaczewski, 2009) for named task solution, other 
production function models can be found, for an example in (Kugarajh et al., 2006) or 
(Gonzalez-Olivares, 2005)): 
  
                  , , , , , ,t tF t X t u t e C t X t e p t u t c t X t u t         , (8) 

 
where  ,p    is the inverse demand function and  , ,c     is the cost function. 
 

In both cases the objective of the management is to maximize the expected utility 
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J X u F t X t u t dt
 

    
  
E   (9) 

 
on time interval 0 1,t t    subject to constraints (4) and (5), where   E  is mathematical 
expectation operator.  
 

The problem (4), (5), (9) could be solved by means of maximum principle staying with the idea 
of MSY. There are several approaches, which allow find optimal harvest rate. First group 
operates in terms of stochastic control (Yong, 1999) and (Biagini et al., 2002), second one is 
based on converting the task (9) to non-random fractional optimal control (Jumarie, 2003). It is 
also possible to use system of moments equations instead of equation (5) as it was proposed in 
(Krishnarajaha et al., 2005) and (Lloyd, 2004). Unfortunately, there are some limitations, 
namely the redefinition of MSY for the model (5) and in a consequence finding an optimal 
harvest cannot be done by classical approaches (Bousquet et al., 2008) and  numerical solution 
for stochastic control problems is highly complicated even for linear SDEs. 
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To overcome these obstacles we propose to combine the production functions (7) and (8) 
using  X t  E  instead of  X t  E in the function (8), specifically the goal function (9) 

takes a form 
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where 0,1   .  
If the coefficient of elasticity 1  , then the transformation to a non-random task gives a 
possibility to apply the classical maximum principle. If 0 1  , then the cost function (8) 
contains a fractional term, which requires some additional transformations. This allows to 
introduce an analogue of MSY taking into account multiplicative environmental noises, as it 
was mentioned in Introduction, in the following manner 
 
  * maxX X t   E ,  (11) 

 
which can be treated as the state constraint.  
 

Now the optimal harvest task can be summarized as follows. The goal is to maximize the 
utility function (10) subject to constraints (4), (5), and (11). 

 
2.2 A background of dynamic fractional moment equations 
To get an analytical expression for  X t  E  it is required to complete some 

transformations. The fractal terms complicate the classical way of the task solution and 
therefore some appropriate expansion of fractional order is required even if it gives an 
approximation of dynamic fractional moment equation. In the next reasoning we will use 
ideas of the fractional difference filters. The basic properties of the fractional Brownian 
motion can be summarized as follows (Shiryaev, 1998). 
 

Definition. Let  , , F P  denotes a probability space and H , 0 1 H , referred to as the 

Hurst parameter. A centered Gaussian process   , , 0B B t t H H defined on this 

probability space is a fractional Brownian motion of order H if 
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If 1

2H , BH  is the ordinary Brownian motion. 
 

 

There are several models of fractional Brownian motion. We will use Maruyama’s notation 
for the model introduced in (Mandelbrot & Van Ness, 1968) in terms of Liouville fractional 
derivative of order H of Gaussian white noise. In this case, the fBm increment of (5) can be 
written as 
 
   tdB t dt HH  (12) 
 
where  t  is the Gaussian random variable. 
 

Now the equation (5) takes a form 
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In order to obtain the explicit expression of (17) we suppose that random variables i  and 

j  are uncorrelated for any i j  and denote      2
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integer  . Application of the Ito formula gives 
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Taking expectation and solving (18) in iterative manner, we get the following results 
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Successive solution of this expression brings the sequence 1t  ,  21
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gives the expression for even moments 
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Now (17) can be presented in the following way: 
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Let L  denote the lag operator and   be the  fractional difference parameter.  In this case 

the fractional difference filter  1 
 L  is defined by a hypergeometric function as follows 

(Tarasov, 2006) 
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where     is the Gamma function. 

 

Right hand-side of (19) can be also approximated by binominal expansion 
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This expansion allows to rewrite (17) and finally to get an approximation of dynamic 
fractional moment equation of order   
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where    0 0m t X t

    E . 

To illustrate the dynamic fractional moment equation (20) we will use the following SDE  
 
         1 2 31 tdX t X t X t dt X t dB     H , (21) 

 
where  0 25000X t  , 1 0.2246  , 1

2 564795  , 3 0.0002  and 0.5H . 
 

Applying (20) to (21) and using a set of  0.25;0.5;0.75;0.95;1  , we can see possible 
changes in population size (Fig.3) and select the appropriate risk aversion coefficient  .  
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Fig. 3. The dynamic fractional moment equation (20) for equation (21) 
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2.3 Some required transformations 
To get rid of fractional term  2dt H  and to obtain more convenient formulations of the 
results  we replace ordinary fractional differential equation (20) by integral one 
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3. Local maximum principle 

3.1 Statement of the problem 
Let the time interval 0 1[ , ]t t  be fixed, xR denote the state variable, and uR denote the 
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where  Rnx  ,  Rmy ,  Rru , mbR ,  g x  and   G x  are smooth ( 1C ) functions. 
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The Euler equation has the form 
 

         
1

0

0

t

x u
t

F t x t F t u t dt   

     0 1 1x t x t   

       , , ,x y u u u      

       
1

0

0
t

t

x t x t d t   , 

 
where  ( )L   ,  0  ,    , 0u    ,  d C  ,  0d  ,       0x t d t  . 
 

Note that the complementary slackness condition       0x t d t   combined with the 
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Therefore, relation (34) implies the following local maximum principle:  
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Thus the following theorem is proved. 
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Theorem. Let       , ,x t y t u t  be {the} [an] optimal process on the interval   0 1,t t , where 

   0 1, , nx C t t     R ,    0 1, , my C t t     R ,    0 1, , ru L t t     R . Then there exists a set of 

Lagrange multipliers       0 , ( ), ( ),   such that  0   is a scalar,    0 1: , nt t     R   is a function 

of bounded variation continuous from the left, defining the measure  d ,   *
0 1: , rt t     R  is an 

integrable function,   0 1: ,t t     R  is a function of bounded variation continuous from the left, 
defining the measure  d  , and the following conditions are fulfilled: 
 
(a) nonnegativity:   0 0 ,   ( ) 0t   a.e. on    0 1,t t  ,    0d ; 
(b) nontriviality:   
 
 0 0d     ; 
 
(c) complementarity:   
 
      0t u t     a.e. on    0 1,t t  ,   

      0x t d t  ; 

 
(d) adjoint equation: 
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  0 ( , ( ), ( )) ( ( )) ( )xF t x t u t dt x t d t , 
[where    1 3: 1k     H , 1 1: 1 2   H , and 2 2: 1  H ;] 
 
(e) transversality condition:  
 

      1 0 1t x t ; 

 
(f) local maximum principle: 
 

                0, , , , 0u ut f t x t u t F t x t u t t u t      . 

 
4. Example 

In this section we will illustrate the theoretical results to  get optimal control for the North-
East Arctic Cod Fishery, using partly the data presented in (Kugarajh et al., 2006),  by means 

 

of the expected utility from terminal wealth maximization and without paying attention on 
economics and biological aspects of the problem.  
 

Figure 4 shows the biomass time series made by individual vessels. In order to introduce the 
model for the data description we found the parameters of fBm, using methodology 
presented in (Filatova, 2008). There was only one significant parameter 0.4501H (with 
standard deviation 0.0073 ), which allowed to select a model of the biomass population, 
namely  
 
  2

1 2 3t t t t tdX X X dt X dB     H , (38) 

 
where 0,0.5 H  and  0 0X X t . 
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Fig. 4. The North-East Arctic cod biomass for the years 1985 – 2001.  
 

Next to find estimates of (38) we used ideas of identification methods (Filatova & 
Grzywaczewski, 2007; Filatova et al., 2007) and got 
 
  2 0.45011

1567700.12150.6416 0.0031t t t t tdX X X dt X dB   , (39) 

 
where initial value 3

0 500 10X   . 
 

Applying the goodness-of-fit test for received SDE model (this test can be found in (Allen, 
2007)) we calculated for 18M   simulations the test statistics  =5.0912Q . Since three  
parameters were estimated on initial data stock, the number of degree of freedom is 

3 15M    and the critical value of  2 0.05;15 24.9958  . The probability 

  2 0.05;15 5.0912 0.5491  p  is greater than the level of significance 0.05. That is, we 



Fractional bioeconomic systems: optimal control problems, theory and applications 645

 

Theorem. Let       , ,x t y t u t  be {the} [an] optimal process on the interval   0 1,t t , where 

   0 1, , nx C t t     R ,    0 1, , my C t t     R ,    0 1, , ru L t t     R . Then there exists a set of 

Lagrange multipliers       0 , ( ), ( ),   such that  0   is a scalar,    0 1: , nt t     R   is a function 

of bounded variation continuous from the left, defining the measure  d ,   *
0 1: , rt t     R  is an 

integrable function,   0 1: ,t t     R  is a function of bounded variation continuous from the left, 
defining the measure  d  , and the following conditions are fulfilled: 
 
(a) nonnegativity:   0 0 ,   ( ) 0t   a.e. on    0 1,t t  ,    0d ; 
(b) nontriviality:   
 
 0 0d     ; 
 
(c) complementarity:   
 
      0t u t     a.e. on    0 1,t t  ,   

      0x t d t  ; 

 
(d) adjoint equation: 
 

       
 

 
 

    
 

    
 

  

1

1 1

1

2 2

1

1

1 1

1

t

x
t

t

t

d t
d t t f t dt k dt

t t t

G y d t G y t
g x t dt

t t t

 

 

  
 



   



 
    
   

  
    
   




 

  0 ( , ( ), ( )) ( ( )) ( )xF t x t u t dt x t d t , 
[where    1 3: 1k     H , 1 1: 1 2   H , and 2 2: 1  H ;] 
 
(e) transversality condition:  
 

      1 0 1t x t ; 

 
(f) local maximum principle: 
 

                0, , , , 0u ut f t x t u t F t x t u t t u t      . 

 
4. Example 

In this section we will illustrate the theoretical results to  get optimal control for the North-
East Arctic Cod Fishery, using partly the data presented in (Kugarajh et al., 2006),  by means 

 

of the expected utility from terminal wealth maximization and without paying attention on 
economics and biological aspects of the problem.  
 

Figure 4 shows the biomass time series made by individual vessels. In order to introduce the 
model for the data description we found the parameters of fBm, using methodology 
presented in (Filatova, 2008). There was only one significant parameter 0.4501H (with 
standard deviation 0.0073 ), which allowed to select a model of the biomass population, 
namely  
 
  2

1 2 3t t t t tdX X X dt X dB     H , (38) 

 
where 0,0.5 H  and  0 0X X t . 
 

1986 1988 1990 1992 1994 1996 1998 2000 2002
0

500

1000

1500

2000

2500

Year

Bi
om

as
s,

 1
00

0 
m

et
ri

c 
to

ns

 

 
data1
data2
data3
data4

 
Fig. 4. The North-East Arctic cod biomass for the years 1985 – 2001.  
 

Next to find estimates of (38) we used ideas of identification methods (Filatova & 
Grzywaczewski, 2007; Filatova et al., 2007) and got 
 
  2 0.45011

1567700.12150.6416 0.0031t t t t tdX X X dt X dB   , (39) 

 
where initial value 3

0 500 10X   . 
 

Applying the goodness-of-fit test for received SDE model (this test can be found in (Allen, 
2007)) we calculated for 18M   simulations the test statistics  =5.0912Q . Since three  
parameters were estimated on initial data stock, the number of degree of freedom is 

3 15M    and the critical value of  2 0.05;15 24.9958  . The probability 

  2 0.05;15 5.0912 0.5491  p  is greater than the level of significance 0.05. That is, we 



Stochastic Control646

 

cannot reject that SDE model (39) describes the biomass dynamics. Thus, we can use the 
methodology proposed in this work in order to find the optimal strategy. 
 

The model (39) can be used for the forecast of biomass dynamics (see Fig.5). Since the data 
had a significant variation, it is reasonable to take 0.8  .  
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Fig. 5. The 10 years forecast for the North-East Arctic cod biomass for model (39).  
 

Setting    :x t X t   E  and applying transformation (20) we get the object equation (28) in 

the following form 
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where  0 0x X t   E . 
 

Next one can set the constraints (29) and (30) as for an example 
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where 2  H . 
Next we define the goal function (27) with the production function (8) 
 

              
 

1

1

0

2
1, max

t
tt

u t
t

cJ x u e au t bu t dt e x t
x t

 
           

    
 , (44) 

 
where 88.25a  , 0.0009b   and 111.633 10c    are the parameters of production function 
(8). 
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Finally the local maximum principle (36) is 
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On the basis of (44) the optimal control function can be defined as 
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Solution of the system (45), (48) allows to define the solution of adjoint equation  t , 

optimal control  u t  and as result  the expected utility from terminal wealth (44). The ideas 
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of numerical algorithm for the system (45), (48) are presented in (Filatova et al., 2010), that 
gives following optimal control (see Fig. 6). 
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Fig. 6. The optimal control strategy for ten years period for the North-East Arctic cod. 

 
5. Conclusion 

In this work we studied stochastic harvest problem, where the biomass dynamics was 
described by stochastic logarithmic growth model with fractional Brownian motion. Since 
the data used for the fishery management are not accurate, to maintain existing of the 
population we proposed to use the risk aversion coefficient for fish stock and added not 
only control but also state constraints.  
 

This formulation of optimal harvest problem could not be solved by classical methods and 
required some additional transformations. We used fractional filtration and got the integral 
object equation, which did not contain stochastic term. As a result stochastic optimization 
problem was changed to non-random one. Using maximum principle we got necessary 
optimality conditions, which were used for numerical solution of the North-East Arctic cod  
fishery problem to set suitable harvest levels. 
 

We hope that to improve the quality of proposed methodology time-varying parameters 
model can be used as a control object. This requires new parametric identification method 
from one side and better understanding of economics and biological development of the 
exploitable  ecosystem from the other one.  
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