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Summary. We present analytical and numerical results of modeling of flows rep-
resented as correlated non-Poissonian point process and as Poissonian sequence of
pulses of different size. Both models may generate signals with power-law distribu-
tions of the intensity of the flow and power-law spectral density. Furthermore, differ-
ent distributions of the interevent time of the point process and different statistics
of the size of pulses may result in 1/fβ noise with 0.5 � β � 2. A combination of
the models is applied for modeling Internet traffic.

1 Introduction

Modeling and simulations enable one to understand and explain the observ-
able phenomena and predict new ones. This is true, as well, for mathematical
studies and modeling of traffic flow with the aim to get a better understanding
of phenomena and avoid some problems of traffic congestion. Traffic phenom-
ena are complex and nonlinear, they show cluster formation, huge fluctuations
and long-range dependencies. Almost twenty years ago it was detected from
empirical data that fluctuations of a traffic current on a expressway obey a
1/f law for low spectral frequencies [1]. Similarly, 1/f noise is observable in
the flows of granular materials [2, 3].
1/f noise, or 1/f fluctuations are usually related with power-law distributions
of other statistics of the fluctuating signals, first of all with the power-law
decay of autocorrelations and the long-memory processes (see, e.g., the com-
prehensive bibliography of 1/f noise on the website [4], review articles [5, 6]
and references in the recent paper [7]). The appearance of clustering and large
fluctuations in traffic and granular flows may be a result of synchronization
of the ensemble of the nonlinear system subjected to common random exter-
nal perturbations, which may result in nonchaotic behavior of Brownian-type
motions, intermittency and 1/f noise [8, 9].
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Traffic and granular flows usually may be considered as consisting of discrete
identical objects such as vehicles, pedestrians, granules, packets and so on.
They may be represented as consisting of pulses or elementary events and
further simplified to a point process model [7, 10–12]. Moreover, from the
modeling of traffic it was found that 1/f noise may be the result of clustering
and jumping [10] similar to the point process model of 1/f noise [7, 11, 12].
On the other hand, 1/f noise may be conditioned by the flow consisting of
uncorrelated pulses of variable size with a power-law distribution of pulse
durations [13]. In Internet traffic the flow of the signals primarily is composed
of power-law distributed file sizes. The files are divided by the network protocol
into equal packets [14]. Therefore, the total incoming web traffic is a sequence
of packets arising from a large number of requests. Such a flow exhibits 1/f
fluctuations as well [14, 15].
Long-range correlations and power-law fluctuations of expressway traffic flow
have recently been observed on a wide range of time-scales from minutes to
months and investigated using the method of detrended fluctuation analysis
[16]. There are no explanations why traffic flow exhibits 1/f noise behavior
in such a large interval of time.
It is the purpose of this paper to present analytical and numerical results for
the modeling of flows represented as sequences of different pulses and as a
correlated non-Poissonian point process resulting in 1/f noise and to apply
these results to the modeling of Internet traffic.

2 Signal as a Sequence of Pulses

We will investigate a signal of flow consisting of a sequence of pulses,

I(t) =
∑

k

Ak(t− tk). (1)

Here the function Ak(t− tk) represents the shape of the pulse k having influ-
ence on the signal I(t) in the region of time tk.

2.1 Power Spectral Density

The power spectral density of the signal (1) can be written as

S(f) = lim
T→∞

〈
2
T

∑
k,k′

eiω(tk−tk′ )

tf−tk∫
ti−tk

tf−tk′∫
ti−tk′

Ak(u)Ak′(u′)eiω(u−u′)dudu′
〉
,

(2)
where ω = 2πf , T = tf − ti � ω−1 is the observation time and the brackets
〈. . .〉 denote the averaging over realizations of the process. We assume that the
pulse shape functions Ak(u) decrease sufficiently fast when |u| → ∞. Since
T →∞, the bounds of the integration in Eq. (2) can be changed to ±∞.
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When the time moments tk are not correlated with the shape of the pulse Ak,
the power spectrum is [2]

S(f) = lim
T→∞

2
T

∑
k,k′

〈
eiω(tk−tk′ )

〉〈 +∞∫
−∞

+∞∫
−∞

Ak(u)Ak′(u′)eiω(u−u′)dudu′
〉
.

(3)
After introduction of the functions [13]

Ψk,k′(ω) =

〈 +∞∫
−∞

Ak(u)eiωudu

+∞∫
−∞

Ak′(u′)e−iωu′
du′
〉

(4)

and
χk,k′(ω) =

〈
eiω(tk−tk′ )

〉
(5)

the spectrum can be written as

S(f) = lim
T→∞

2
T

∑
k,k′

χk,k′(ω)Ψk,k′(ω). (6)

2.2 Stationary Process

Equation (6) can be further simplified for the stationary process. Then all
averages can depend only on k − k′, i.e.,

Ψk,k′(ω) ≡ Ψk−k′(ω) (7)

and
χk,k′(ω) ≡ χk−k′(ω). (8)

Equation (6) then reads

S(f) = lim
T→∞

2
T

∑
k,k′

χk−k′(ω)Ψk−k′(ω). (9)

Introducing a new variable q ≡ k − k′ and changing the order of summation
yields

S(f) = lim
T→∞

2
T

kmax−kmin∑
q=1

kmax−q∑
k=kmin

χq(ω)Ψq(ω)

+ lim
T→∞

2
T

−1∑
q=kmin−kmax

kmax∑
k=kmin−q

χq(ω)Ψq(ω) + lim
T→∞

2
T

kmax∑
k=kmin

Ψ0(ω). (10)

Here kmin and kmax are minimal and maximal values of the index k in the
interval of observation T . Eq. (10) may be simplified to the structure
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S(f) = 2ν̄Ψ0(ω) + lim
T→∞

4
N∑

q=1

(
ν̄ − q

T

)
Reχq(ω)Ψq(ω) (11)

where ν̄ is the mean number of pulses per unit time and N = kmax − kmin is
the number of pulses in the time interval T .
If the sum 1

T

∑N
q=1 qReχq(ω)Ψq(ω) → 0 when T →∞, then the second term

in the sum vanishes and the spectrum is

S(f) = 2ν̄Ψ0(ω) + 4ν̄
∞∑

q=1

Reχq(ω)Ψq(ω) = 2ν̄
∞∑

q=−∞
χq(ω)Ψq(ω). (12)

2.3 Fixed Shape Pulses

When the shape of the pulses is fixed (k-independent) then the function
Ψk,k′(ω) does not depend on k and k′ and, therefore, Ψk,k′(ω) = Ψ0,0(ω).
Then equation (6) yields the power spectrum

S(f) = Ψ0,0(ω) lim
T→∞

2
T

∑
k,k′

χk,k′(ω) ≡ Ψ0,0(ω)Sδ(ω). (13)

Eq. (13) represents the spectrum of the process as a composition of the spec-
trum of one pulse,

Ψ0,0 =

∣∣∣∣∣∣
+∞∫

−∞
Ak(t)eiωtdt

∣∣∣∣∣∣
2

, (14)

and the power density spectrum Sδ(ω) of the point process

Iδ(t) = a
∑

k

δ(t− tk) (15)

with the area of the pulse a = 1.

3 Stochastic Point Processes

The shapes of the pulses mainly influence the high frequency power spectral
density, i.e., at ω ≥ 1/∆tp, with ∆tp being the characteristic pulse length.
Therefore the power spectral density at low frequencies for not very long
pulses is mainly conditioned by the correlations between the transit times tk,
i.e., the signal may be approximated by the point process.
The point process model of 1/fβ noise has been proposed [11, 12], generalized
[7], analysed and used for financial systems [17]. It has been shown that when
the average interpulse, interevent, interarrival, recurrence or waiting times
τk = tk+1 − tk of the signal diffuse in some interval, the power spectrum
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of such process may exhibit the power-law dependence, Sδ(f) ∼ 1/fβ , with
0.5 � β � 2. The distribution density of the signal (15) intensity defined
as I = 1/τk may be of the power-law, P (I) ∼ I−λ, with 2 
 λ 
 4, as
well. The exponents β and λ are depending on the manner of diffusion-like
motion of the interevent time τk and, e.g., for the multiplicative process are
interrelated [7, 17]. For the pure multiplicative process [7]

β = 1 + α, λ = 3 + α, (16)

where α is the exponent of the power-law distribution, Pk(τk) ∼ τα
k , of the in-

terevent time. In general, for relatively slow fluctuations of τk, the distribution
density of the flow I,

P (I) ∼ Pk(I−1)I−3, (17)

is mostly conditioned by the multiplier I−3. Since the point process model has
recently [7, 17] been analysed rather properly we will not repeat the analysis
here and present only some new illustrations.
Figure 1 demonstrates that for essentially different distributions of τk, the
power spectra and distribution densities of the point processes are similar.
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Fig. 1. Distribution densities of the interevent time τk, (a), of the flow I(t), (b),
and of the power spectra S(f), (c), for different point processes with slow diffusion-
like motion of the average interevent time. Different symbols correspond to different
types of generation of the interevent sequences.
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Further we proceed to the flow consisting of the pulses of different durations
and application of this approach for modeling of the Internet traffic.

4 Flow Consisting of Pulses of Variable Duration

When the occurrence times tk of the pulses are uncorrelated and distributed
according to a Poisson process, the power spectrum of the random pulse train
is given by Carlson’s theorem

S(f) = 2ν̄
〈|Fk(ω)|2〉 , (18)

where

Fk(ω) =

+∞∫
−∞

Ak(t)eiωtdt (19)

is the Fourier transform of the pulse Ak. Suppose that the random parameters
of the pulses are the duration and the area (integral) of the pulse. We can
take the form of the pulses as

Ak(t− tk) = T ρ
kA

(
t− tk
Tk

)
, (20)

where Tk is the characteristic duration of the pulse. The value of the exponent
ρ = 0 corresponds to the fixed height but different durations, the telegraph-like
pulses, whereas ρ = −1 corresponds to constant area pulses but of different
heights and durations, and so on.
For the power-law distribution of the pulse durations,

P (Tk) =

{
δ+1

T δ+1
max−T δ+1

min
T δ

k , Tmin ≤ Tk ≤ Tmax,

0, otherwise,
(21)

from Eqs. (18) and (19) we have the spectrum

S(f) =
2ν̄(δ + 1)

(T δ+1
max − T δ+1

min )ωδ+2ρ+3

ωTmax∫
ωTmin

|F (u)|2uδ+2ρ+2du. (22)

For τ−1
max � ω � τ−1

min when δ > −1 the expression (22) may be approximated
as

S(f) ≈ 2ν̄(δ + 1)
(T δ+1

max − T δ+1
min )ωδ+2ρ+3

∞∫
0

|F (u)|2uδ+2ρ+2du. (23)

Therefore, the random pulses with the appropriate distribution of the pulse
duration (and area) may generate signals with the power-law distribution of
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the spectrum with different slopes. So, the pure 1/f noise generates, e.g., the
fixed area (ρ = −1) with the uniform distribution of the durations (δ = 0)
sequences of pulses, the fixed height (ρ = 0) with the uniform distribution
of the inverse durations γ = T−1

k and all other sequences of random pulses
satisfying the condition δ + 2ρ = −2.
In such a case we have from Eq. (23)

S(f) ∼ (δ + 1)ν̄
(T δ+1

max − T δ+1
min )f

. (24)

5 Internet Traffic

In this Section we will apply the results of Section 4 for modeling Internet
traffic. The incoming traffic consists of a sequence of packets, which are the
result of the division of the requested files by the network protocol (TCP).
The maximum size of a packet is 1500 bytes. Therefore, the information signal
is as in the point process (15) with pulse area a = 1500 bytes. Further, we
will analyse the flow of the packets and will measure the intensity of the flow
in packets per second. In such a system of units in Eq. (15) we should put
a = 1.
We exploit the empirical observation [14, 18] that the distribution of the file
sizes x may be described by the positive Cauchy distribution

P (x) =
2
π

s

s+ x2
(25)

with the empirical parameter s = 4100 bytes. This distribution asymptotically
exhibits the Pareto distribution and follows Zipf’s law P (X > x) ∼ 1/x. The
files are divided into packets of a maximum size of 1500 bytes or less by the
network protocol. In Internet traffic the packets spread into the Poissonian
sequence with average inter-packet time τp (see Fig. 2). The total incoming
flow of the packets to the server consists of packets arising from the Poissonian
request of the files with average interarrival time of files τf .
The files are requested from different servers located at different distance.
This results in the distribution of the average inter-packet time τp in some
interval. For reproduction of the empirical distribution of the interpacket time
τk we assume the uniform distribution of lg τk in some interval [τk,min, τk,max],
similarly to the McWhorter model of 1/f noise [7]. As a result, the presented
model reproduces sufficiently well the observable non-Poissonian distribution
of the arrival interpacket times and the power spectral density, as well (see
Fig. 3).

6 Conclusion

In the paper it was shown that processes exhibiting 1/f noise and power-law
distribution of the intensity may be generated starting from the signals as
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Fig. 2. Division of the requested files into equal size packets with some inter-packet
time.
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Fig. 3. Distribution densities of (a) the interpacket time τk, and (b) the power spec-
tra, for the simulated point process (open circles ◦) and empirical data (open squares
�). The used parameters are as in the empirical data [14, 18], τf = 0.101s, τk,min =
11.6µs and τk,max = 1000 τk,min.

sequences of constant area pulses with correlated appearance times as well as
of different size Poissonian pulses. Combination of both approaches enables
the modeling of signals in Internet traffic.
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